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Abstract—The integral relations analogous to that of Somigliana and Helmholtz in elastokinetics have been
introduced by the integration of basic differential equations of coupled thermoelasticity. Thus we have
obtained the representation of displacements, temperature and the thermoelastic displacement potential by
surface integrals.

The solutions have been utilized to construct the general thermoelastic potentials of single and double
layer. By means of these potentials the basic boundary problem of coupled thermoelasticity has been
reduced to the solution of a system of singular integral equations.

1. INTRODUCTION

THE purpose of the present paper is to obtain the solutions of the equations of thermo-
elasticity describing the harmonic vibrations of medium by means of singular integral
equations. By the integration of basic differential equations of thermoelasticity one can
derive integral relations which constitute a generalization the Somigliana theorem known
from the elastokinetics [1]. The integration of the equation of thermoelastic displacement
potential leads also to the representation of its solution in the form of surface integrals.
In the case when there is no coupling between the temperature and the deformation of a
body we obtain the Helmholtz theorem known from the elastokinetics.

The solutions obtained in sections 2 and 3 provide the so called surface potentials of
single and double layer. The application of these potentials allows us to reduce the basic
boundary problem of thermoelasticity to the solution of a system of singular integral
equations. Finally, the theorem on discontinuity of thermoelastic potentials during the
passage through the boundary of the equations satisfied by these potentials.

The integral equations here obtained are the Fredholm singular integral equations of
the second kind. The integrals encountered here must be understood in the sense of the
Cauchy principal values. In the last section of the paper we give the procedure for the
construction of the approximate solutions of the equations of thermoelasticity by means of
the so called canonical functional integral equations.

This method enables to solve the equations of thermoelasticity in an approximate way
for an arbitrary, single connected, three-dimensional body.

2. EQUATIONS OF THERMOELASTICITY

Let us now consider a homogeneous, isotropie, perfectly elastic body occupying the
region V and bounded by the surface E. For this medium the linearized equations of
thermoelasticity [2], [3]
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(2.1)

- ^ - 1 4 M — - . i.fc-1,2,3, (2.2)

hold.

The first equation represents the Lame equation (the equation of motion) while the
second one constitutes the extended equation of thermal conductivity. In these equations
0=T—To denotes the increase of temperature with respect to the natural state T0 for which
the stresses and deformations are equal to zero. ut are the components of the displacement
vector, Xt denote the components of the body force vector, g is a function describing the
intensity of heat sources. The magnitudes n, X are the Lame constants referring to the iso-
thermal state. Next we have y=(3A+2p)a(, where a, is the coefficient of linear thermal
expansion, p denotes the density, and K = X0/pc£ is a coefficient for which Ao is the coefficient
of thermal conductivity while cE is the specific heat for a constant deformation. Finally
Q = Wjpcc, where W denotes the amount of heat produced in the unit of time and volume,
and t]=yTojXQ. The functions w;, 6, Xt, Q are the functions of place and time. The dot
denotes the derivative with respect to time.

Besides equations (2.1) and (2.2) we have the constitutive equations

^ij = ̂ Bij + (XBkk-y9)öu, (2.3)

and the relations between the deformations and displacements

fi ij = } ( « i,j + « j , () = « ( i , j) • ( 2 -4 )

By the decomposition of the displacement vector and the body forces vector into the potential
and solenoidal parts

ut = <l>,i+zijkiïk,i, Xi-P(&,i+etjkXk,j)> (2.5)

the system of equations (2.1), (2.2) can be reduced to the form

rn0-i9) (2.6)
c

^ j = - | . (2.8)

We have introduced the symbols

C
2_hl e
2~ l

p C\p at
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Equation (2.6) represents the longitudinal elastic wave while equation (2.7) the transversal
wave. Equation (2.8) is the equation of thermal conductivity. Eliminating from equations
(2.6) and (2.8) the temperature we obtain

( 2 ' 9 )

In the sequel we shall consider only the vibrations varying harmonically in time. Since
the loading by body forces and heat sources may be reduced to a boundary problem we shall
assume that the causes of the vibrations are expressed only by the boundary conditions.

Substituting the relations

<Mx, t)=0*(x)e'", tfr/x, 0 = WxyP,

in equations (2.6)-(2.8) and neglecting the heat sources and the body forces on the right
hand sides of these equations we obtain the following system of equations [4]

D^*-m0*=O, (2.10)

Df*f-O, (2.11)

D ! 0 * + -/I?V2<Ê* = O, (2.12)
m

where we have introduced the symbols

D2=V2 + /i2, «=1 ,2 ,3 , h i - - , fca-~, h3
cx c2

Eliminating from (2.10) and (2.12) the function 0* we obtain the equation of longitudinal
waves

DfcD^' -O, (2.13)

where

The magnitudes ku k3 are the roots of the equation

and take the values

kr=ar-ißr, r - 1 , 3 , aP>0, ßr>Q.
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Denoting ky =kl(a), k3 =k3(s) we have: k^O) =hL, k3(0) =/z3. In the subsequent considera-
tions we shall discuss only the vibrations harmonic in time, therefore we shall drop the stars
in the symbols of the functions <j>*, 6* etc.

3. INTEGRAL FORM OF THE SOLUTION OF THE
THERMOELASTIC POTENTIAL EQUATION

In this section we consider only the longitudinal waves arising in a body V bounded by
the surface X. Equations (2.13) and (2.10) constitute a point of departure of our con-
siderations. In order to obtain the integral identity determining the function <D for xeV by
means of surface integrals we make use of the following equality valid for arbitrary two
functions (f>=(l>{x), $>=$>(;c):

f * <=•* ; * 2 2 f
Jv ** 3 J i

. (3.1)
v

Making use of the basic formula for bi-Laplacian

J ^ v " ^ - ^ ^ _^S). (3.2)
and of the Green transformation

equation (3.1) can be represented in the following form

I
where D 2 = V2 + J + |

Let us assume that the function $ has no singularity in the region V and satisfies the
homogeneous equation

D2
lD

23^=0, xeV. (3.5)

Temperature 0, related with the function Ö is given by the formula

0 = jjjDfo. (3.6)
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Let the function <F satisfy the following singular equation in an infinite thermoelastic space

D2,D2
3$(x, 0 = - w 5 ( x - 0 , (3.7)

where S(x) is the Dirac function.
The function [5]

m e~ikir~e~ik3r
 2

4nr k\ — k\ ' j J J J ' ' '

is the solution of this equation.
It can readily be verified (equation 2.9) that the function $ is the potential of thermo-

elastic displacement for a concentrated source of heat of the intensity K applied at a point £.
For the external regions the function (f> satisfies also the condition of radiation [4] extended
on the problem of thermoelasticity.

Note that

B(x, 0 = —DÎ$= - -A—77^—r?S(h\-k\)e~ik'r—(hl-k\)e~ikir'\. (3.9)

Substituting (3.7) in equation (3.4) and making use of equation (3.6) we obtain thefollowing
basic equations

- Ì f dE(ö|vV(0^(f, *)-V2^, *)|;*«)1. for

=0 for x e £ - F (3.11)

where E denotes the entire space. These equations can be transformed by means of the
relation between the functions § and 6 in accordance with (3.6). After a little manipulation
we find that

<K*)=0 for xeE-V, (3.12')

where D2=V2 + fc? + /c2- / i2 .

Formula (3.12) expresses the function (p(x) inside the region V by means of the functions
, d(j)(Oldn, 0(0. d9(Ç)ldn given on the surface E.

Performing the operation l/m Di on equation (3.12) and making use of the properties of
the function $ and of the relation — (fcf —/if)(fe2-?i2)=8/if/i3 we arrive at the analogous
formula for the temperature



58 J. loNACZAK and W. NOWACKI

xeV, (3.13)
a j r un un

where

my
&—-T2, B = t]mK.

In the case when there is no coupling ( E = 0 ) we obtain from equation (3.13)

Since for the uncoupled problem kl(O)=hl, /;3(0)=/?3, it results from equation (3.9) that

1
£~° 4nr

Formula (3.14) assumes the following form

— ^ - Ö ^ M — H r = r&x) (3.15)
r on on\ r J \

Formula (3.15) is known as the Green formula for uncoupled classical equation of thermal
conductivity [6].

Let us return to equation (3.12) and assume that we have to deal with a hypothetical
medium for which a , = 0 .

For such a medium we have t\ =0, m =0. Taking into consideration that

— ( D t ^ ) , = o = — e " " 1 " , (<jS),,=0= j 2—• (3.16)

Substituting (3.16) in formula (3.12) we find

This formula can easily be reduced to the case when the motion in the medium takes place
in adiabatic conditions (classical elastokinetics). The isothermic Lame constants JXT, XT

appearing in the magnitude hx must then be replaced by the adiabatic constant ßs, Às.
Equation (3.17) is the Helmholtz equation [7] known form the elastokinetics.

Formulae (3.12) and (3.13), derived for coupled problem of thermoelasticity, do not
constitute the complete functions solving the general boundary problem. Therefore we shall
require more general integral representations making use of the direct method of integration
of the basic equations of thermoelasticity or applying the reciprocity theorem [8, 9].
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4. INTEGRAL FORM OF THE GENERAL SOLUTION OF THE
EQUATIONS OF COUPLED THERMOELASTICITY

Our purpose is to represent the vector of the displacement and the temperature at an
internal point x of the region V by means of the integrals on the surface E bounding the
region.

Let us assume that the causes producing the motion of a medium are expressed by the
boundary conditions.

We shall construct the solution of the following equations of thermoelasticity

aiJtj = -œ2puh (4.1)

where

0 jj + h2
3G+y-uksk=0, xeV, U , fe-1,2, 3, (4.2)

my
a = —2, <r(;=<x,/x), u, = u,(x), 0=0(x)

and the constitutive equations

fftj=2|«y+(Aut> k - y9)ôt]. (4.3)

The differential equations (4.1) and (4.2) and relations (4.3) describe the amplitudes of the
motion harmonically varying in time.

Let us assume another set of equations corresponding to thermoelastic infinite medium
in which there act a concentrated source of heat of intensity K harmonically varying in time.
All the functions appearing in these equations will be denoted by horizontal bars

äiJJ=-co2püi (4.4)

ffw-ffytx,O, B|-0i(x,O, 0 = 9 ( x , a . (4-5)

Besides we have to add the Duhamel-Neumann equations

St}=2/i6y+(Aûft, k - yS)8,j. (4.6)

Combining the sets of equations (4.1), (4.2), (4.3), and (4.4), (4.5), (4.6) integrating them
correspondingly over the region Fand making use of the Green transformation we obtain
the following equation
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Here we have

PAO - ffyCOn/O, M£, *)=Bttf, x)nj(O,

while the differentiation under the sign of surface integrals is performed with respect to the
variables £. Formula (4.7) represents a relation between the temperature 0 at a point
xeFand the functions 6, dd/dn, u^pi on the surface. The comparison of relations (4.7) and
(3.13) gives the relations on the surface S between the values of the potential (f> and dcp/dn
and the loadings /?; and the surface displacements ur In order to obtain an integral
representation for the vector u£x) for œ F w e must assume two other systems of relations,
namely the set of equations (4.1), (4.2), (4.3) and the set of equations

<r?w=-ß>V?-<5(x-«J)5(s) (4.8)

0:kk+hl8s+y~us
ktk=0, (4.9)

oc

a?J. = 2^+(A<,-y0s)«5 iJ-, i,j, K 5 -1 , 2, 3,

afc-er^x,©, «î-uKx.0, 0s=0s(*, £)• (4.10)

This set of equations refers to a concentrated force, harmonically varying in time, applied
at a point £,, and directed along the xs axis.

Combining correspondingly the sets of equations (4.1), (4.2), (4.3) and (4.8), (4.9),
(4.10) we obtain the following formula

where

«fc Ö=t&x, Ö=«JK«. x), pj(ft x) - fff/i, /

The functions w ,̂ 0s as well as ü h S are the Green functions for thermoelastic medium [5J
and are the known magnitudes.

Formulae (4.7) and (4.11) constitute the coupled integral representation of the general
solution of thermoelasticity. These formulae constitute the generalization of the Somigliana
formulae known in elastostatics on the case of thermoelasticity [1]. Observe that the
functions 0s and tis are not arbitrary and satisfy the following relations

ttjx, ® = aO%Ç, x), Fix, 0= -OXÇ, x). (4.12)

This relation can be obtained either by the appropriate combination of the sets of equations
(4.4-4.6) and (4.8-4.10) or directly from the reciprocity theorem.



Singular integral equations of thermoelasticity 61

If the Green functions ü t, B and wj, 0s are chosen in such a way that they refer to a body
occupying the region V and bounded by a surface E and if the boundary conditions

Ü1=O, 0=0 , uf=O, 0S=O

hold on the surface E, then equations (4.7) and (4.11) can be reduced to the form

(4.13)

us(x) - - f £, X) + a9(0^~^\. (4.14)

Formulae (4.13), (4.14) constitute the solution of the first boundary problem for which the
displacements W; and the temperature 0 are given on E.

If the functions ü h B and wf, 0s referred to a body occupying a bounded region V and
free from stresses and temperature on the surface then the magnitudes

p. = 0, 0 = 0, pf=O, 0 s =OonS ,

would have to be substituted in equation (4.7) and (4.11). Then formulae (4.7) and (4.11)
take the form

000 = - f dE to jW-^f^ - ;« ,« , x)p«(ö]. (4.15)= - f
us00= [ (4.16)

and constitute the solution of the second boundary problem for which the loadings pk and
the temperature 9 are given on E.

But the application of formulae (4.13-4.16) is limited on account of the difficulties
arising in course of determination of the Green functions M;, B, 14, 6s satisfying the pre-
scribed boundary conditions.

5. THERMOELASTIC POTENTIALS AND INTEGRAL EQUATIONS FOR
BOUNDARY VALUE PROBLEMS

Let us introduce the thermoelastic surface potentials similarly as for the potentials of
elastokinetics [10]. The system of relations

[ x ) ,

V(x) = 2 { dSCöWöfl«, *) + - f âliOtpfâùté, x), (5.1)



62 J. IGNACZAK and W. NOWACKI

will be called the thermoelastic potential of single layer. Here (pk = q>k(O, ^=<Kf) are
unknown surface densities of an appropriate regularity. The functions Uk, Ü, u';, 0s are the
Green functions given by equations (4.4-4.6) and (4.8-4.10) and they refer to the thermo-
elastic infinite space. The system

**2 [
J

W(x)**2 [ dl(i)H^r^+- f WQtptäPtä x), (5.2)
J on a J

will be called the thermoelastic potential of double layer. The following symbols have been
introduced in formulae (5.2)

, x) = [2/14,+(Au'„,-

, x)=l2nëk]+(MPtP-yB)ôkj]nj. (5.3)

Now, let us define a thermoelastic potential which is a combination of the potentials of
single and double layer.

Ms(x) =

M(x)=2 | d!(ö^(öS({, x)+- I dS(O^(Opt(^ x). (5.4)
Ï

Investigating the jumps of the potentials (5.1), (5.2) and (5.4) at the passage through the
surface S we introduce the following notation. Let WS(ÇO), W{p{£,0), and W^\^o) denote
the limits of the vector WJ&) for ^-»^oeE over the surface E, WS(Ç) for Ç-*ÇQeV inside the
region V, and W£Ç) for ^ ^ ^ 0 e 2 for ÇeE—V, respectively. It can be proved that the
potentials Vs(x), V(x) are the continuous functions of points xëZ. We show, however, that
the potential of double layer W,(x), W(x) is discontinuous on this surface. We have

These relations are analogous to those for jumps of the harmonic potential of double layer.
We prove that the first surface integral in formulae (5.2) is a discontinuous function while the
second one represents a continuous function.

From the first equation of the set (4.8) the following relation results

(x, © - - ö(x - 0<Ps(O - co2pus
k(x, £,)cpk(x) (5.6)
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Observing that

' l fo r

dV(x)ô(x - Ç)=h(Ç) = •{ i for £6X, (5.7)

ofor £eE-K,

and integrating relation (5.6) with respect to jreKand changing the variables we get

2 J dE(£)<M£)P*(£, x) = -2h(x)(Ps(x) + gJLx) (5.8)

where

i}(i;t x)-2pco
V

It can be proved that gs(x) is a combination of volume integrals is continuous for xeZ.

Similarly, taking into account equation (4.9) we verify that the second term of the
potential Ws is a continuous function. Formulae (5.8) and (5.2) furnish the first group of
relations (5.5). The discontinuity of the function W= W(x) can be derived in the same way
by the integration of equations (4.4) and (4.5). The second term in formula for W(x) is
continuous on the surface S.

We introduce the notation

[2/1 v(it

where the functions Vs, V are given by formula (5.1). It can be shown that

. (5-10)

The thermoelastic potentials (5.1-5.4) and the jump relations for these potentials allows us
to reduce the basic boundary problems of thermoelasticity to the solution of singular
integral equations.

Let us confine our considerations only to certain typical problems. We consider the
case when the displacements are given on the boundary and simultaneously the temperature
or flux of temperature are prescribed on the surface E.

Let us assume that the displacements us(Ça)=fs(Ç0) and the temperature ö(£o)=<7(£o)
are given on the boundary S.

The solution to the problem is required in the form of the potential of double layer (5.2);
we assume

Us(x) = Wlx\ 0(JC) = W(x). (5.11)
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We can verify easily that the functions Us(x), 0(x) satisfy the equation

LskUk-yds8=0, nle + hkUk = 0, xeV, (5.12)

where
Lsk = (paß, + co2p)ôsk+(A+ß)dsdk.

Taking into account relations (5.5) for the functions q>k(Ç), \p(Ç) we obtain the system of
coupled integral equations

, W - -0(Éo) • (5-13)

Equations (5.13) have the form of Fredholm singular integral equations of the second kind ;
the integrals appearing there should be understood in the sense of Cauchy principal values.

For the uncoupled problem we obtain from equations (5.11) and (5.13)

respectively. Here the functions q>k and \j/ satisfy the uncoupled integral equations

ps(Co) -21 aZ<pM),-o = -mù + 2

= -0«o) . (5-15)

Let us assume that the displacements tt,-(£0)=/;(£0)
 ar*d the flux of heat 89/dn\i=io=S(^o)

are given on the boundary £. The solution is required in the form

Û£x~)=M,(x), S(x) = M(x), xeV, (5.16)

where the functions Ms, M are given by formulae (5.4). We easily verify that inside the
region V equations (5.12) are satisfied and that the unknown densities q>k{l;), x//^) satisfy
the following system of singular integral equations

f (5.17)
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where

—5——= lim^—0(g, x) for xeS,
dn0 x_>io dnx

and in the same way we define dpk(Ç, Ç0)/dn0.

In the case of the uncoupled problem equations (5.17) can be considerably simplified

(5.18)

We are not going to rewrite the integral equations for a boundary problem for which
loadings are given on the boundary. We observe, however, that if a loading p t =p f(^0) and
a flux S=S(£0) are given on the boundary X then the required solution is given in the form
of the potentials of single layer Vs(x), V(x). By means of relations (5.9) and (5.10) the
corresponding singular integral equations can be written down in the explicit form.

The investigation of the existence and the uniqueness of the obtained integral equations
can be proved in a similar way as it was done for the elastic potentials [10].

6. CANONICAL FUNCTIONAL INTEGRAL EQUATIONS AND
APPROXIMATE SOLUTIONS

Let us assume that the normal derivative of the thermoelastic displacement potential
|i; =/(<*) and the temperature 0(£)=#(O are given on the boundary £ of a body.

Taking into account relations (3.12), (3.13) we arrive at the following functional equations
for xeE- V:

(6.

(6.2)

In equations (6.1) and (6.2) the unknown functions are d9/dn and <j> on the surface 2.
If these functions are known then also 6 and </> for xeV are known in accordance with

formulae (3.12) and (3.13). Equations (6.1) and (6.2) for which the functions (j), dOfdn
appear only under the sign of integral, and for which the regions of variability of the points
x and £ do not coincide, are called the canonical functional equations. It can be proved
that equations (6.1) and (6.2) have only one solution for the functions <j) and dd/dn for



66 J. IGNACZAK and W. "NOWACKI

Let us introduce the symbols

on
(6.3)

Equations (6.1) and (6.2) can be solved in an approximate way replacing them by linear
algebraic equations by means of the mechanical quadrature.

We select N points Xj(J= 1, 2, . . . , N) on a certain surface 2' containing the entire region
V. The points xi may be taken the points of intersection of the N normals to the surface S
with the surface E'. As a rule, these normals are uniformly distributed on £. In this case
the kernels of the integrands in equations (6.1) and (6.2) are bounded functions for XjéL'
and £,eZ. Thus we can apply the mechanical quadrature.

FIG. 1.

Equations (6.1), (6.2) lead to the approximate relations

£T< dn^"^1'

v2 N

where
1=1 a. ja) 3n

(6.4)

(6.5)

Here A\N^ are the coefficients of the given mechanical quadrature. The set of equations
(6.4), (6.5) has 2N unknowns X(Çt), Y{£,^), i=l , 2, . . . N, and can be solved when its
fundamental determinant is not equal to zero, this, as a rule, can be achieved by an appro-
priate selection of the points Xj on the surface £'.

The approximate form of the potential $(x), 9(x) for the points situated inside the region
V is given by the formulae

(6.6)
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].- — Mm&x) \. (6.7)

Let us consider an arbitrary, bounded, thermoelastic body with the displacements
i and the temperature g(Ç) prescribed on 2. Making use of relations (4.7) and (4.11) and

applying the analogous procedure of the approximate solution we obtain for the displace-
ments and the temperature inside the body the following relations

N

— dE(£) fi{OPt(c> x)+as(Ç)—^~— > (6-8)

N f l "1

(=i ' l_a ' J
r n ant* v\-\

(6.9)

where 3N+N unknown values <pfc(£j), <K£t) fc=l» 2, 3, i — l, 2, . . . , JV constitute the solu-
tion of the following linear system of algebraic equations

us(xj)=O, 0(xj)=O, Xj-eE', V'sV, j - 1 , 2 , . . . , N. (6.10)
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Résumé—Les relations intégrales analogues à celles de Somigliana et Helmoltz en élastocinétique ont été
utilisées pour l'intégration des équations différentielles de base de thermoélasticité couplée. On obtient
ainsi la représentation des déplacements, de la température et du potentiel thermoélastique du déplacement
sur les intégrales de surface.

On a utilisé les solutions pour déterminer les potentiels thermoélastiques généraux de simple ou de
double couche. Au moyen de ces potentiels le problème de la base des limites de thermoélasticité couplée
sont ramenés à la solution d'un système d'équations intégrales simples.
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Zusammenfassung—Durch das Integrieren der Grunddifferentialgleichungen war es möglich integrale
Beziehungen einzuführen, welche den von Somigliana und Helmholtz gefundenen elastokinetischen Bezie-
hungen analog sind. Auf diese Weise konnten die Verschiebungen, die Temperatur und das thermoelastische
Verschiebepotential in der Form von Oberflächenintegralen erhalten werden.

Die Lösungen wurden dazu herangezogen, die allgemeinen thermoelastischen Potentiale von Einzel-
und Doppelschichten zu konstruieren, Mit Hilfe dieser Potentiale konnte die Lösung des grundlegenden
Grenzwertproblems der gekoppelten Thermoelastizität auf die Lösung eines Systems singulärer Integral-
gleichungen reduziert werden.

Sommario—I rapporti integrali analoghi a quello del Somigliane e dell'Helrnholtz nell'elastocinetica sono
stati introdotti con l'integrazione di equazioni basiche differenziali di termoelasticità accoppiata. In tal
modo abbiamo ottenuto la rappresentazione degli spostamenti, della temperatura e del potenziale di
spostamento termoelastico mediante integrali di superficie.

Le soluzioni sono state utilizzate per costruire i potenziali termoelastici generali di strato singolo e
doppio. Tramite tali potenziali, il problema fondamentale limite della termoelasticità accoppiata è stato
ridotto alla soluzione di un sistema di equazioni integrali singolari.

A6cTpaKT—C noMomtio HHTerpHpoBamw OCHOBHHX flmJxfrepeHriHajibHbix ypaBHeHHtt TepMoynpyrocTir e
B3aKMOfleflCTBHeM BBOJHTCH HHTerpaJItHWe COOTHOUieHH« aHanOrHHHbie C COOTHOIIieHHaMH CoMHJISffla H
rejH>Mrojii>Tu.a B Teopira AHHaMinecKoä ynpyrocTH. TaKHM o6pa3OM nojiynaeTca npeflCTaBnemie
nepeMemeimit, TeMnepaTypw H noTeHmiajia TepMoynpyroro nepeMemeirtiH B BHfle noBepxHOcrabix
HHTerpajioB.

PenieHHH Hcnojib3yioTCsi pjin nocTpoeHH» O6IHHX TepMoynpyrnx noTeHimajioB npocToro H flBOÄHoro
ariosi. C noMombKj STHX noTeuuHanoB ocuoBHaa KpaeBaa 3aflaia TepMoynpyrocxn c B3aHM0AeÄCTBneM

K pemeHHKi CHcreMbi CHHryjwpHbix HHTerpaJibHbix i


