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1. Introduction

The object of the present paper is to present several solution methods
of plane dynamic problems of thermoelasticity. In the first part, the non-
coupled thermoelastic problem is formulated in stresses and in strains. It
is shown that the particular integrals differ in the two methods of solution
methods by a constant only.

The second part presents two examples of solution of the non-coupled
problem by means of the stress function. This is the problem of forced vi-
bration of an infinite rectangular prism and an elastic layer heated at the edge
in a manner harmonically variable in time.

The third part contains the solution of the plane dynamic problem of thermo-
elasticity for coupled temperature and displacement fields, by introducing
a stress function and resolving the displacement vector. Such a procedure
is illustrated by way of an example of forced vibration of an infinite rectan-
gular prism and an elastic layer due to heat sources harmonic in time and
uniformly distributed inside the region of the prism.

2. Plane Non-Coupled Dynamic Problem of Thermoelasticity

Let us consider an elastic body under the action of a temperature field and
in a plane state of strain. It is assumed, first, that the temperature field is
not coupled with the strain field. It is assumed also that the mass and surface
forces are equal to zero.

In plane strain, the stress-strain relations are given by the equations:

(2.1) oy = 2pey+(Aey—yT)d;, G(,j=1,2),

where p, A are LAME constants, 7'— temperature, y = (34+2p)a, where a,
is the coefficient of thermal dilatation, d;; KRONECKER’S delta.
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Observe that
(2.2) o = 200+ e —29T.

The strains are connected with the displacements #; by the relations:
1 s
(2.3) &= 2 (3":, it ) (i,j=1,2).

The displacements, strains, stresses and temperature are functions of the
time ¢ and the variables X, x,.

The point of departure for our considerations are the equations of motion
(the mass forces arc disregarded)

(249 G, = 0 (4,j=1,2)
and the heat equation

1
@5 T =—0Jx, D=V'-—_32,

where p is the density per unit volume, Q — a function of heat sources and
» — the coeflficient of heat conduction.

Let us differentiate the first of Eqs. (2.4) with respect to x;, the second
with respect to x, and add and substract the equations thus obtained, bearing
in mind Egs. (2.1). We obtain

(2.6) 0'11.11+Usa,23+20'12,12 = Q&
1 1
@D (dgg Ao (A gy )on=0, d=we

Let us differentiate the first equation of.the set (2.4) with respect to x,, the
second to x;, and add. Then:

1
(2.8) ﬂ'kk.12+|j§012 =0, Dg = vﬂ__é?af .
3

Substituting the stresses from Eq. (2.1) into (2.6), eliminating the quantity
0,9, by means of the compatibility equation

(2.9) e e e = 261310,
and making use of (2.2), we obtain the equations;
— 1 A-2pu _ y
34 2 T =0, L Vi ;. B . i
10k 12p1m3 Oi=V @ 0 51 0 m Py
(2.10)
Let us express the stresses in terms of the stress function F in the form:

@.11) - —FIU‘I—(SU(VZ—ZI—(J af) F G,j=1,2).
2
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It is seen that, by eliminating the inertia terms — that is for the quasi-static
problem — this function becomes the Airy function.

It is also seen that by expressing the stresses in Eqs. (2.7) and (2.8) by means
of the function F, these equations are satisfied identically. Substituting in
(2.10) the equation

(2.12) o = 2F,
we obtain the following differential equation for the function £
(2.13) O30 F+-2umOET = 0.

For the isothermal problem, this equation becomes the equation of J. R. M
RADOK, [1]. The solution of (2.13) may be composed of two parts:
F = Fy-+F*, where F, is a particular integral satisfying the equation

(2.14) C3Fy+2umT = 0,
where
1
@15 off = —Fot0y (va_—fl?%— f}%) £y

and F* is the general integral of the homogeneous equation
(2.16) [22F* = 0.

Eq. (2.16) may be replaced by a system of two equations, by making use
of the theorem of T. BocGalo, [2]:

(2.17) [3F, =0, [O,=0,
where
: 1
(2.18) F*¥ = F,+F,, a,j = —Fjj—[—au (v*—z—c% 6?) F*,

Another way of solving the plane problem consists in assumption solving
the displacement vector in the form:

(2.19) u = grad @--rot .

Substituting (2.19) in the equations of motion in displacements
(2.20) 17 %u+ (A-+4) grad divu—y grad T = oii,

we obtain the system of equations:

(2.21) (20 =mT, O3p=0.

The solution of Eqgs. (2.21) is composed of a particular integral @, satisfying
the equation

(2.22) (3P, = T,
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and of the general integrals of
(2.23) 03, =0, Oip=0.
Let us observe that Eg. (2.22) becomes (2.14) if we assume that I, = —2ud,.

It is equally easy to show that the stresses corresponding to the function @,
are given by the equations i

I .
224 o = 2;;[@9, " ( Vi 3?)@0] (,1=1,2).
2

Still another method of solution consists in composing the displacement
u; of the terms uf” = @, , and of the term u{", satisfying the homogeneous
system of displacement equations

(2.25) Bt (k- gy — it = 0.

These equations may be expressed in the operational form
A

(2.26) Luf =0, L,=0%,+ad,0, a =_1i‘

Introducing the stress functions y,, y., and using them to express the dis
placements u{"

(2.27) uf? = Logyy—Lap %9y 8" = —Lyyya+ L,

or

(2.28) uft! = [O36;+a(V*6;—0,,0)]y; G,j=1,2),
we shall obtain the following system of equations

(2.29) =0 (i=1;2).

The functions y; are B. G. GALERKIN'S functions [3], [4], generalized to the
plane dynamic problem. In most cases only one displacement function
(2 = %, %1 = 0, for instance) will suffice to find the stresses.

The simplest of the methods just described is that which involves applying
the stress function F. It has the advantage of obtaining the quasi-static pro-
blem by rejecting the inertia terms (that is by cancelling the time derivatives
of F).

In further considerations, we shall discuss the solution problem of Eq.
(2.13).

We shall be concerned first with the particular integral of (2.14). For the
infinite plate, this integral constitutes the final solution of the problem. In
this case, there are no edge conditions and we are concerned only with a lon-
gitudinal thermoelastic wave.

For solving the system of equations

(2.30) 03T = —Qfx, [OfFy+2umT =0,
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we introduce the auxiliary function S, satisfying the equation
(2.31) 3S = —Q/x,
with the same boundary conditions as the function 7.
Let us perform the operation [J2 on the second of Egs. (2.30).
obtain:
2im
2.32) DR F, = ’:’Q
Bearing in mind that
22 =3 2 2 I 252 2
D],D:i'__' (D%)-l__(D%_};]. 3 DIH‘D = %_ al_ﬂ'lorl — ]}’(‘
we obtain from Eq. (2.32):
| 2umn
@3) P N GO )

Since

T= -1 (@D, S=—— @O,

therefore (2.33) takes the form:

(2.34) (% a,—agaf) Fy = —2um[T—S].

Let us subject (2.34) to the LAPLACE transformation, assuming that

Fy(x,,%,,0) = 0, Fy(x;,x,,0)=0. These conditions follow from
assumption that the body is free from stress for << 0. We have
- 2um =
Fﬂ(xhx'z:p)z __,U/V 0'2)2 (
(2.35)

||‘ ‘f'(l(xl’ xs!p) =f e“P‘Fn(xl, Xa, f)df

( b

The quantities 7" and S will be found from the equations:

(2.36) VeT— T" _%, ViS—p2olS = %

the

Here also, homogeneous initial conditions are assumed for the functions

T and S.

2 Problemy drgan
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The transform of Fy(x;, X5, p) may be expressed by performing on Eq.
(2.35) the double Fourier transformation

@3 Flu e = ek [ [ —s e it

+ayXy)lday dos,
where
0* o
W |y ; =
(2.38) I = @ raip * #(aj+a+po?)
and

(39 0%, as 1) = - [ [ oo 3, exp [ v tanml, s

Performing the inverse LAPLACE transformation, we obtain the function
sought, F,, and from Eq. (2.15) the stresses of’. For an infinite plane, they
will constitute the final stresses.

In the particular case of axially symmetric temperature field, the function

Fy(r,p) may be represented by HAnkeL transform in the form:

i i Zﬂﬁ ; *__ Q¥
(2.40) Fo(r,p)= PG—oTp) f(T S*®a Jy(ar)da,
0
where
o _ .o
(2.41) T*(a, p) = m ] S* = W
and
(2.42) 0*(a, p) = f Q(r, p)rdy(ar)dr .
]

Only a few cases of wave propagation of cylindrical thermoelastic waves
in the infinite space or plate have hitherto been solved. Above all should
be mentioned the solution of the thermal shock in the region of a cylinder
of infinite length, obtained by T.MuRra, [5], and that of sudden point heating
of the infinite plate by H. Parkus, [6]. Attention is also directed to the solu-

~tion by W. Derskr, [7], and that of the two-dimensional problem by J. IGNA-
CZAK, [8]. The latter concerns a temperature field, discontinuous in time
and space.

An example of a plane problem will be given below. A solution of forced
vibration of an infinite cylinder will be given with rectangular cross-section
heated on the surface in a manner harmonically variable in time. The above
stress function method will be used.
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3. Forced Thermoelastic Vibration of a Rectangular Prism

Let us consider an infinite rectangular prism with the sides a, and a,, the
surface being free from stress and heated to the temperature T,et, where
w 1s the frequency.

The problem is to solve the heat equation

(3.1 (a’ﬁ— 03 —% a,)T =0
in the region [x1]<-a—r-1—, [xo] <-azi

with the boundary conditions

m—1
a : AT, =1):° ma
T :l:~2r1;xz. t) = Tyeiot = e'wf—?:l % ( 5 ——c0s BuXe: Bp= T
(32) o n—1
ot T
T(xl,:;_—_ﬂ,z) = Tyelot= e‘""'ij‘i Z El—o::os Xy O, = i .
\ 2 al n=1,3,... Cn 1

Next, we solve the equation
(33) @+3—ipU =0, 5=olx

obtained from (3.1) by inserting 7'(x,, x,, 1) = e U(x,, X5).
The solution of (3.3) with the boundary conditions (3.2) takes the form:

n—1

1\ ) ® chyx
oN = ) = "2 COS @,X; 1
(3.4) UGes, ) = 4Tl o= D = L X
n=13,... ch~=—=
2
m—1
£ 2
4 m=1,8,... ﬂm C]:I. 1

2
v, =Vai+ing, 8, =Vpi+in,

Next, making use of (2.34), we obtain the function F, if the function
S(x;, x5, t) = eV(x,, x,) is known, satisfying the equation
2 2 kﬂ V 0 kﬂ f— ClJa
(3.5) (31‘5‘52'1' V=0, 17— T2

1

9%
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and the same boundary conditions as the function U. Thus, a solution is
obtained analogous to (3.4):

n—1

o ) 2 | "
(3'6) V(x!.: x2) = 4Tﬂ L Z ( ) )" - C : 5,,\ -Ccos a xr!“
a [
n=1,3,... ch {-'"__._
2
(— l) Ch 7?mx1
E cos X,
i dy m%: ﬁm ,?m 1 ﬁm :
B
b= VAR, .= )/FR.

1t is easy now to find F,, from the Eq. (2.34), and the stresses ¢’ from (2.15).
Substituting Fy, = e'G, in (2.34), we obtain:

me

B.7 Gy = in+ kz

——=(U-V).
The stresses off attached to the function F, are given by the equations
2
G.8) o = em[H Go.fﬁ—au(vznt k?) Gn] (i =1.2).

It is easy to find from (3.7) and (3.8) that G, = 0 on the boundary of the
prlsm and that o{® = 0 on the edge x;, = +a,/2, and ¢{y = 0 on the edge

= 4-a,/2. The shear stresses of; are different from zero. These stresses
assume the form:

8umT et | 1 f ypshy,x, £,shéx
3.9 W} ek Gl S n nt2 _ Sn n"vg
( ) S5t (2 1"2yt) ”?|k1 al |

n=18n.. | Chy, % ché, ;E

+ 2 (_ 1) ( —Mm th ??m;:l ) sin ﬁmxs !
m 1,3,.
rr—l
SHF?’IT eior Yall
(BA0) ol ot 2 — 2T | 2 e
12 1 2 ”?+k% “513 ( )

_'E th ‘Snzaz ) sin fl,.xrl-L \' m sh 5," ??m sh ??maxl.
2 m=13,...| chd Ch?? =

m 2 m_z_'
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To cancel the stresses {9 on the boundaiy of the prism an appropriate state
of stress should be superposed, oj; expressed 'in terms of the functions F;
and F, satisfying Egs. (2.17). Introducing the mnotations
(3.11) F¥ = Fi+F, = elo(P+¥F), F* = G,eir,
we reduce Eqgs. (2.17) to the form
(3.12) (VRO =0, (V)P =0, Ig="r.

2
The solutions of these equations, taking into consideration the symmetry
in relation to the x;, and x,-axis, are the functions

(313) o= Z C, ch &,x, cos a,x, -} Z A, ch 77,%; cos B, %,
n=138,... m=1,3,...

(314 ¥ = 2 D, ch &, x, cos a,x,+ 2 B, ch#,x; cos f,,x,,

n=1.3.... m=1,3,...
where

glft = ]/aﬁ—kﬁ, “ﬁm=l/ﬁ:rsl_kg
The additional stresses oj; are expressed by Eq. (2.18), where the function
F* is expressed in terms of @ and ¥ by Eq. (3.11).
In order to cancel the shear stresses ¢{ on the boundary, the following
boundary conditions should be satisfied:

a
for x = 7’
(3.15) o+ =0. off+ot,=0;
or
’ k% 0) 0) jwtr(0) «
(3.15") Gl,22+T G,=0, —G.t+t) =0, off=e;
2l 8
and for Xy=% 5
(3.16) o)+t =0, o+of,=0;
or
kf i
(3.16") Giut 56 =0, —Gptrfi=0

From the first condition (3.15") and from the first condition (3.16'), we obtain:
(3'17) Bm =_‘4mz (??:I’ 7_?:1)’ Dn = _Cn't(E:)E:)}
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with the following notations

chn,,,-%i 3 ch E,, 2
!(q?ms nm) - -—“1 p t(E: s ‘5: —

o 2

ch ™ E— ch En -E—

From the second condition (3.15"), we obtain the equation:
EL‘ * FMF oh £ ";1

(3.18) D) Glushé, x—1@E EEhEXI (D * ot
A=1.3,...

£y g @ ,
_i_ Z m [[??m Sh ??NI '{(nﬂl : nﬂl)ﬁ'ﬂl Sh ??ﬂl _2:1":| ﬁl’ﬂ Sln ﬁm xﬂ__

m=1,3,...
ad
8umT, | 1 shy, x sh &, x.
I'ﬂ"“k: a 2 Vn 4 26‘ — En aa "|"
= chy, —21 chg, —=—
1 m-1 ;
2 8 m ay _ Tl‘mal : = Do

- o g (—1) (5,,, th > 7, th e ) sin 3, x, |=0.

Expressing the function sh &,x,, sh&,x,,shy,x, in the form of the infinite
series

oy
Sh mez = Z Enm sm ﬁﬂlxﬁ’ |x21 < 63/2,
(3.19) ) M=L8;...
m—1
_ 4 (=D°  &a
E.. - _§§+ﬁ$, ch > and so on
and introducing the notations
vnm == ai'{"ﬂﬁn
(3.20 ot 4
)3 b= ——— (o $h 2 5 ch iy -7y sh Ty - ch 7
chy,, —
2
we reduce Eq. (3.18) to the form:
n—1

m-—l @ Cn("l) : a, ch En'%l
(3.21) Amﬁmbm———(kz —K3)(— 1) [ A, —d,, —k)

n=1,3,...
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m—1
gumT, (—1) * (K in . duay\
a ”;"'{_kf - ag (??f th??m 2 +5m 2 )_0 (m=l’3’5""aw)'

From a boundary condition of the group (3.16), we obtain a system of equa-
tions analogous to (3.21):

m—‘l.
(3 22) C 42 —i (k2 k2)(_1}h-2-l 0 Am( ﬁm Ch 1?!}! 2
2 Lot ay ( am~ I)(dnm 2)
m=1,3,...
n—1
8uinT, (—1)° [k a ”‘?
(n: 1,3,5, e ,CO),
where
o (g:" sh ‘?"2“2 ch 5""“- —&,shE,—*ch &, )
chgnﬁ

We have obtained an infinite system of non-homogeneous equations of which
for given frequencies of temperature changes @, we can determine the con-
stants 4,,, B,,, C,, D,. Let us observe that for a fixed and finite
value w it is that a2—k} < 0 or that for a certain n the quan-
tities &, become imaginary.
The same applies to &, , %, m-

The system of equations (3.21) and (3.22) can be written in the form:

( @
A’"em +2 Cllfﬂm = dm ]
(3.23) i A= n,m=1, 3, ..., ).
ﬂgﬂ+2 Am’“nm nl
m=1

Since the qﬁantmes A,, C,, e,, ... etc. are complex 4,, = A%+id,, ..
therefore the system of equations should be split up into two systems:

AD en Aﬂlem (beﬂm n *m) i dgl’
(3.24) !
O~ Tt > (A A i) = I3,

m=1

.
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and
Hl HI + LHI m + Z (Cﬂﬂlﬂl _]_f"i" C Hi L

(3.25) J e

E!I gﬂ ..{_ §ﬂCg+ 2 (;a_l!l l"'r:-:ﬂl—i“ Aﬁ\ EII!II) == E!I .

m=1

-

In the case of a quadratic prism, considerable simplification can be achieved
because CP = A9, C,, = /'f The following system of equations is to be solved:
A%, — A, et ) (A0S S0 — Anfom) = 43,

(3.26) =

o

| A em F‘Am m Z(Anﬁnl + Anfrlm) = m
n=1
The frequency of forced vibration w must be chosen so that it does not coincide
with the natural frequency of the prism. The natural frequency of the prism
will be obtained from the homogeneous system of equations (3.21), (3.22)
by setting the determinant of this system equal to zero.
The case of an elastic layer (a,—-co) is therefore particulary simple in

a Lo
the case where T(i—z—l-, t):.: Tyeiot, if the temperature and the stresses

depend on x and ¢ only.

ch exy cos ky x,

(3.27)° U(xy) = Tn—"———'g‘* ) V() =T, . £ = }/TT?;.
che —2‘- cos ky —Zi
and
2um .
(328) FO = ”?_i_ka ( V)e‘”".

To determine the stresses, it suffices to know the function F, because the
boundary conditions oy; = g,,=0 on the boundaries x, = +-a,/2 are satisfied.
The stresses will be obtained from the equations:
k. . 3
329 oy= _21 Gy, Ty = el (Gu. 11+%Gn)’ o2 = 0.

In particular, for ¢y, we obtain the equation:
umkiToeet [ chy/in x, cos kyx

(3.30) 0= ——r =
(on-+43) chy/ ?1_;-%1— cos k; -;i
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If the temperature 7 cos ! is prescribed on the boundary the stresses oy,
are given by the real part of the equation (3.29) if 7, sinw? on the boundary
then — by the imaginary part of (3.29).

Let us observe that the stresses increase indefinitely if cos kya— 0. The
case of cos kya = 0 determines the natural frequencies w, = (7/a,)(2n—1)¢,
of an elastic layer.

4, The Plane Dynamic Coupled Problem of Thermoelasticity

Let us consider an elastic body acted on by a non-steady-state temperature
field in a plane state of stress. The coupling between the temperature field
and the strain field will, however, be taken into account. In this case we
have the generalized heat equation

@.1) C3T—3,58,, = —_f-,

where y = yT,/oc and T, T is the absolute temperature and the state 7= 0
is identical with the state where the stresses and displacements are zero;
¢ —is the specific heat.

For the coupled problem, Eqs. (2.1)-(2.3) are valid. If we confine ourselves
to the temperature field only the mass forces being disregarded 1, equations
(2.11), (2.12) and (2.13) remain valid.

Expressing &, in (4.1) in terms of g, by means of (2.2) and in terms of
the stress function F by means of (2.12) we obtain finally the system of two
equations

1 1 I
(4.2) O3T—ed,O3F = —0fx, DO}=V*——08,, — =—+2ey,
g %o #
SN
2(A4-p)
(4.3) O203F+-2umD3T = 0.

Eliminating from these equations the temperature, we obtain the differential
equation:

: B 21
(4.4) ;{[mfaa—mxa,vw— _“:—’9-} -
It is seen that if the coupling is disregarded (y— 0) Eq. (4.4) becomes (2.13)
subject to the operation [J2.

The particular integral will be obtained from the equation:

= 2um
4.5) (O30, V) F, = .,
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and the stress corresponding to the function F, — from Eqgs. (2.15). For the
infinite region, F,, constitutes the solution of the problem.
For a bounded region, the general integral F* of the equation

(4.6) D203 —my0, VHF* =0

should be added to the particular integral F,, where F* = F|-F, and the
functions Fy, F, should satisfy the equations:

4.7) (OI03—myo, V)HF =0, [O3F; = 0.

The stresses connected with the function F* will be found from Eqs. (2.18).
The second method, also very convenient, consists in reassumption of
the displacement vector in the form:

(4.8) u = grad O+-rot .

Substituting (4.8) in the displacement equations (2.20) and in the heat equation
(4.1), we obtain a system of three equations:

(4.9) O8T—x0,V*@ = —0/x,
(4.10) 03P = mT, 2 =0.
Eliminating 7" we shall obtain a system of equations [10]:

4.11) (O305—myd, V2P, = —KQ » O =0.

Finding the function @ from Eq. (4.11), we shall obtain the temperature
T from the first of Eqgs. (4.10).

If we are concerned with an infinite body, the function @, which is a parti-
cular integral of the equation

@12 (O —0,v)P, = — 2.

is the solution of the problem. The stresses of; connected with the function
@, are given by the equations

(4.13) ol = 2 {mu_uﬁag[vz—-—zi—gaf]dﬁo} (i=12).

For a bounded region, we should solve also the system of equations
(4.14) (OI08—my0,V*)P* = 0, 3y = 0.

! The consideration of the influence of the mass forces requlres the introduction of three
stress functions. Cf. the Ref. [9].
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The additional stresses o;; are given by the equations

-

of = 2 (—-d’.’zer —;;2—6390* )‘|“2#1.1P,12,
a

(4.15)

-

. .
O3 = 2U ( —Ph+ BT h ‘:D*) =2 10,
2

k“fe = 2uD R+ (9 po— P 10)
The final expressions for stresses ate obtained by superposition

(4.16) oy = of)+aj).
5. Forced Coupled Thermoelastic Vibration of a Rectangular Prism

Let us consider an infinite rectangular cylinder inside which uniformly
distributed heat sources act in a harmonic manner Q = Q, e,

Let T'= 0 on the lateral surface of the prism. Substituting in (4.9) and
(4.10)
.1 T = Uei»t, & = feiot, o= Peiot,

we obtain the system of equations:

(5.2) VEU—inU—yi\J*0 = —% N = -;3
w? w?
G (Vo =aU, (V4 =0, =70 =
Eliminating from these equations first U and then 0, we obtain:
1

(5.4) (V") (VP42 U = ——(V*+0") 0y,
(5.9) (V) (V) = — 2.0, (V2419 =0,
where

wi+tud = —q(l+e)+o?, wui= —qo®, gq= i::i, & = ynim.

The solution of (5.4) is the double series:

n=1 m—1

160, N1 (=) (=1 * (4,,—0% cosax,
(5.6) U(xy,xy) = a,axx Z a"ﬁm(A"m—pcf) (A"m-—;\,;f)

aym=1,3,...

cos ﬁmxss
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where
ni M

nm =4 " ﬂms a, = 'a’ ﬁm = —a:'

The boundary conditions 7"= 0 are satisfied for x; = &, /2, x, = +-a,/2.
Next, we determine a particular integral of Eq. (5.5). It has the form:

u—l m—1

e i 2
6.7 0, = - 2000A 2 o) (_—9—-— cos a,x; cos f,x,,

aaye  Ld [ Y g p—
or
—1
0, = 8Qom 2 (=D cosay [1f_ chAm)
0 Ch"«'(?ﬂx_ ?'-'E) Nt 3,. a,, 25 : ﬂ"gz
2
_1_ 1= ch Z,,xa
=2 L L TR
& 011'1"‘12

2
by =yai—xt, 2=y ai—ni.
It can easily be verified that the normal stresses vanish on the boundary

of prism. The stress ¢}, remain different from zero
r:—!. m-—l

G8) ¥ =— 32muQy 2 _t*_g__(lll sm @, Xy Sin f,%,.

ayayx (A nm x].) (A nm~

nm=1,3, ...

The stresses of at the edge will be suppressed by adding to the state o3
the state of stress o}, expressed in terms of the functions @* and ¥*, Thus,
Egs. (4.14) should be solved with the following boundary conditions
(59) [ off+op =0, off+o =0, T*=0 for x =a)/2,

ol+en=0, off4eli=0, T*=0 for x,=a,2,
where the function T* is determined by the relation

* 1 *
(5.10) T* = —ﬁ—[ﬁ(b S
Introducing the notations
(5.11)  DP*(xy, Xy, 1) = elof*(x,, x,), W= eltP*  T* = eitY*,

Egs. (4.14) are reduced to the form:
(5.12) (Vi) (VE422)0* =0, (VE4H)¥P* =0

(5.13) U* = L (V*+a%0".
m
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The functions 0* and ¥Y* will be assumed in the form:

o

(5.14) 0* = S’ (E ch A,x,+F, ch 4,%,) cos a,x,+

Ne=1,3, ...

w

1 s
-.t— .2&’ (GHI ch ‘Sm 1‘l-i_ J(_)(rr: ch “Em'xl) Cos ﬁmxﬁ ’

m=13; ...
where _
I ﬁm_xl’ m — l ﬁﬂl
(5.15) Y
Yt — 2 A, shy, x; sin a,x,+ 2’ B, shw,x sinf,x,,
n=13,... m=13, ...
and

= l/["'?l_lra’ M =V ﬂ _Ta
From (5.13), we Obtain

GiLE) TP =— | 2 [, (0®—32) ch A, xy-+F,(a%—3,) ch A,x,] cos a,x, -

n=1,3,.
o

-+ Z [G, (6% —32) ch &,x,+ H,,(6°— %%) ch E,x,] cos X, -

m=1,3, ...

The constants 4,, B,, ..., H, will be determined from the boundary con-

m

ditions (5.9) which, accorclmg to Egs. (5.11), take the form:
i 2

2 (0 |2 =0, oA B0 GO =0,
(5.17) J : Ut=0 for x;, = af2,
-—2;1( b= )ﬂ*~—2p‘}7‘;z =0, oh+2uf%,+u@—a)¥* =0,

L U*=0 for x, = a,f2.

Let us eliminate the quantities F, and H,, by means of the conditions of
zero temperature on the boundary of the prism. Then,

) ch 2.,, 2 -
(5.18)  6* = 2 E, | ch A, x,—y————ch &,x, | cos ax+-
n=13, ... ch l,,—;-
o -::h<§,,,i -
+ Z Gm Ch‘mel_-;“l.tz _Ch‘fmxl cos ﬁmle
m=13, ... ché& my
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where
07—}
H1p = _az——:u:g
o ch}, 22
2,2 — nTa _
(5.19) U*= _a_ ~y— b E, |chix,— — chA,x, | cos o,
m 2 = =
n=1,3,.., Ch An —.
2
ché, 2 B
+ Z m Ch mel Ch mel. cos ﬁmxz
m=1,3,. ché&, -~

By means of the conditions of zero normal stress on the edge of the cylinder,
we eliminate the constants E,, G,,. The following expression is obtained for
the function. 0%,

o ch A, —
(5.20) 0% = _‘l y A,ab | ch 4,x,—2;, = ch Z,x, | cos a,x;—
%12 n= 1 8. ch ;{ 2
\ meﬂ ch &,x;—2, —— ch &, x, | cos Boxs, |
m=1,3, ch ‘,tm —21—‘
where
ay
r ao 3 @y, C]l Yn T
n 2 ) Ll
2uak—pw i, %_
(5.21) J
a
ch#,, —-
bm = ﬁm?;"m & 2
m SR ]
| 2uph—ow h £ Q 2

Finally, from the condition of zero shear stress on the boundary we obtain
a system of linear equations with an infinite number of coefficients 4,, B,
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where the hyperbolic functions have been expanded in series according to
Egs. (3.19):

(5.22)
n--m—2 r.-l—‘3 (20,%—1’2)'})“ chy, -
Z(l) A L 3 a,ad ch 2 1—29—
—_ m /jm'u_'r2 1—”12 " 2 b
B T

1 1 4 ;
__ﬁﬁt(_A__.—xf _xi2m)] +‘Bm|: & bgl mim (Zﬁﬁm_rﬂ) sh T __“] i

m=1
(= * (1 a B
S D (E.,.ﬂ b —— th;—‘m 2)_0
(5.23)
a
4 U&, '——————"+;[—2 (21821 —'fs)??m ch M _21‘ 4
o I 0
5. -1 * B, S At ch £, 2[1 o
1 | 4u a
— a2 — e S On 7 T it
a" (Anm_?‘:f xlzdnm %)] ‘i An[l_“xuananjn (2% T)Shyﬂ 2 ]+
n—1
(=D (1 . Aa h )_0
T3 #3—nd j,_"th ) 2
(n, my=1,3,5 , 00)
where
( o E"'_aZ_L- g
I = §m sh Em Gt = a 'Em sh "S&m_iL ?
ch ,,,~2i
(5.24) 1
chi 22
n o iy 2 —_—
p=lada B "2 Tan sl =20
2 n7 % 2 a,ayx

The system of equations (5.22), (5.23) may be reduced to one infinite system
of equations for the sequence {4,} or {B,}.
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It is seen that the coupled problem can be represented by the simple series
0%-4-0, = 0, of which the coefficients can be determined from the system of
equations (5.22), (5.23). Assuming y = 0 in (5.2) and the subsequent equations,
the calculations are simplified considerably for the uncoupled problem.

Let us consider in addition the case of a@,— co that is the case of an elastic
layer with the heat sources Q(x;. t) = Qyei* and T'= 0 on the edge.

Then

-1
@ 5
40,m O (—1)  cosax
ax L a, (al—x})(a2—x3)’

(5.25) 0(x) = —

and the stresses are obtained from the equations:

. , w?
(5.26) 0y = —ow(x)e@, oy = —2peion (o'“+_5;;_“£ ) =0,
These are the final results, all the boundary conditions being satisfied. The
temperature field is:
n—1
@ B
_ trse . 20 (=1 " (fa—0?

(5.27) T = Uelt = i & (@ =) @D COS @, X, .

fi=13s...

Let us consider the particular case where the heat sources are Q(x,, ?) =
= Oy cos wt. Then, taking the real part of Eq. (5.27), we obtain:

_ 40, {1 (=D
k= ax Z T a,
(5.28) =
(a2—0?) {a2(a2—0®) cos wi+n[a2(l +&)—0o?] sin wt
ab(a2—0®)*+nP[ed (14-&)—c?]* _

L cos a,x ,

n=—.

The stress oy, is given by the equation:
(5.29)

e, |

__ 40 mow?® > (—-I)Taf}(aﬁ—a”) cos wt-+n[ad(1+4-£)—o?] sin wt
T Z a,

= (@0 [a2(1+6)—o7

08 aX;y.
n=1,8,...

The forced vibration has the character of a damped vibration. There is no

indefinite increase in the stresses. For the non-coupled problem (¢ = 0),

the stresses increase indefinitely if 6,—a, (n = 1,3, ..., ).
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For the coupled quasi-static problem, we have (¢ = 0) from (5.29):
n—1

40, N (=D a2coswt-+y(l+6)sin o
(530) 7= Z . _

" — COS O, Xy .
(e #

n=1.3...

The stresses gy, and a,, will be zero. The stresses a,, and gy, will be different
from zero, and gy, = 0y.
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Streszczenie
PELASKIE DYNAMICZNE ZAGADNIENIE TERMOSPREZYSTOSCI

Przedmiotem pracy jest przedstawienie kilku drég rozwigzania plaskich
zagadnien dynamicznych termosprezysto$ci. W pierwszej czgéci pracy sfor-
mulowano niesprzezone zagadnienie termosprezystoSci w naprezeniach oraz
w przemieszczeniach, przy czym wykazano, ze catki szczegdlne w obu sposo-
bach rozwiazania réznia sig jedynie stalym wspolczynnikiem.

W drugiej czgéei pracy przedstawiono dwa przyklady rozwigzania zagadnie-
nia niesprz¢zonego przy uzyciu funkcji naprgzenia, mianowicie drgania wy-
muszone walca nieograniczonego o przekroju prostokatnym i warstwy
sprezystej, ogrzanych na brzegu w spos6b harmoniczny w czasie.

3 Problemy drgan
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W trzeciej czeci podano rozwiazanie zagadnienia plaskiego dynamicznego
termosprezystosci przy uwzglednieniu sprzezenia pola temperatury i pola
deformaciji i to na drodze wprowadzenia funkcji napre¢zenia oraz przez de-
kompozycje wektora przemieszezenia. Tok postgpowania objasniono przykta-
dem drgan wymuszonych walca nieograniczonego o przekroju prostokatnym
i warstwy sprezystej, wywolanych dziataniem harmonicznie w czasie zmiennych
zrodet ciepla i rozlozonych réwnomiernie w objetosei walca.

Peswme

IIJIOCKASI TMHAMHWYECKAS 3ATAYA YVIIPYTOCTH

PaccmaTpuBaeTcsi HECKOJBKO CIOCOBOB PelIeHUs IIIOCKHX JIMHAMHUECKIX
3aj1av TepMoynpyrocti. B niepBoii yactu padoTsl DOpMYIMpYeTcs HeCOIpsi-
YKEHHAST 3a7laya TePMOYIPYTOCTH B HAUPSDKEHUAX M B IEPEMELICHIAX, IPH-
UeM JIOKA3LIBAETCA, UTO HACTHBIC MHTErpansl B 00OHMX crocofax pelneHmHs
PASHATCS EJMHCTBEHHO MOCTOAHHEIM K0athdureHTOM.

Bo BTOpOii uacrMm NPHBOJATCA ABAa IIPUMEPA PENICHHA HECOIPSHKEHHON
3agavun mpH MCIIOJb30BAHNH (IJYHKIJ;H.H HAIPsKEHNs, 4 HMEHHO BBIHYH{ICH-
HOro KoJebanist 6eCKOHEUHOT0 IMIMH/IPA IPSMOYTOIEHOI0 CEUEHHA | YIIPY-
roro Closi, HAarpeThbIX Ha Kpalo I‘apMDHH‘:IECKH BO BpPEMCHH.

B Tperbeif yacry /1acTca pelIeHMe IIIOCKOMH JHHAMAYECKONR 3a[[aui TEPMO-
YIPYTOCTH IIPH YUETE CONPSIYKEHUA TeMIIEPATyYPHOTO TIOJIA M T0JIst JTeh opMariiu
H TO IyTeM BBeJleHHA (DYHKINH HATPSDKEHUSA U IyTEeM PAsSIIOMKEH sl BEKTOPa
TIEPeMENIEHNA Ha JIB€ YaCTH: IOTECHIIHAJIBHYIO M POTAI[HOHHYIO. XOI IIpOo-
BeeHHUA onepanuy OOBACHAETCA HA TPHMEPE BEIHYIKICHHBIX KOJeGaHmit
BECKOHEUHOr0 IHIMHIPA IIPSMOYTOJEHOr0 CEUeHHA H YHIPYroro CJIos, BbI-
3BAHHBIX JIEI‘:ICTBHEM, rapmMoOHHYECKH BO BpEMECHH IIEPCMCHH]:D( HCTOUYHHKOB
TeIUla U Pacpe/ielIeHHBIX PABHOMEPHO B 00BEME IIMIHHIPA.
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