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1. Introduction

The object of the present paper is to present several solution methods
of plane dynamic problems of thermoelasticity. In. the first part, the non-
coupled thermoelastic problem is formulated in stresses and in strains. It
is shown that the particular integrals differ in the two methods of solution
methods by a constant only.

The second part presents two examples of solution of the non-coupled
problem by means of the stress function. This is the problem of forced vi-
bration of an infinite rectangular prism and an elastic layer heated at the edge
in a manner harmonically variable in time.

The third part contains the solution of the plane dynamic problem of thermo-
elasticity for coupled temperature and displacement fields, by introducing
a stress function and resolving the displacement vector. Such a procedure
is illustrated by way of an example of forced vibration of an infinite rectan-
gular prism and an elastic layer due to heat sources harmonic in time and
uniformly distributed inside the region of the prism.

2. Plane Non-Coupled Dynamic Problem of Thermoelasticity

Let us consider an elastic body under the action of a temperature field and
in a plane state of strain. It is assumed, first, that the temperature field is
not coupled with the strain field. It is assumed also that the mass and surface
forces are equal to zero.

In plane strain, the stress-strain relations are given by the equations:

(2.1) <Ty = 2/ieu+(Xekk-yT)3tJ (i,] - 1, 2),

where ft, A are LAME constants, T—temperature, y = (3A+2/z)a, where a,
is the coefficient of thermal dilatation, <5;j- KRONECKER'S delta.
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Observe that
(2.2) <rkk =

The strains are connected with the displacements u( by the relations:

(2.3) ey = i - (UU J + UJ, ;) (/ J ma 1, 2) .

The displacements, strains, stresses and temperature are functions of the
time / and the variables x1, x2.

The point of departure for our considerations are the equations of motion
(the mass forces are disregarded)

(2.4) a^j^QU, (i,j= 1,2)

and the heat equation

(2.5) n s r = - e / « , G3
2 = V 2 - - ^ 9 „

ft

where Q is the density per unit volume, Q — a function of heat sources and
H — the coefficient of heat conduction.

Let us differentiate the first of Eqs. (2.4) with respect to x,, the second
with respect to x2 and add and substract the equations thus obtained, bearing
in mind Eqs. (2.1). We obtain

(2.6) "•ll,ll+022,22+2012,12 =

( 2 - 7 )

Let us differentiate the first equation of-the set (2.4) with respect to x2, the
second to x1} and add. Then:

(2.8) ffa.u+Dtoi, = 0, D l=V a V5?-
C 2

Substituting the stresses from Eq. (2.1) into (2.6), eliminating the quantity
°i2> by means of the compatibility equation

{/••') ell,?2~rfi23,ll = 2%2,12)

and making use of (2.2), we obtain the equations;

(2.10)

Let us express the stresses in terms of the stress function F in the form:

(2-11) <ry = -Fu+d^-4^di\ F (t,j = 1 , 2 ) .
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It is seen that, by eliminating the inertia terms — that is for the quasi-static
problem — this function becomes the AIRY function.

It is also seen that by expressing the stresses in Eqs. (2.7) and (2.8) by means
of the function F, these equations are satisfied identically. Substituting in
(2.10) the equation

(2.12) akk = DJF,

we obtain the following differential equation for the function F

(2.13) n ? n l F + 2 M m D | r = o.

For the isothermal problem, this equation becomes the equation of J. R. M
RADOK, [1]. The solution of (2.13) may be composed of two parts:
F = Fo+F*, where Fo is a particular integral satisfying the equation

(2.14)

where

(2.15) <7i)'= -FOiiJ+dtJ ( v a — ^ S?J Fo

and F* is the general integral of the homogeneous equation

(2.16) DlPlF* = 0.

Eq. (2.16) may be replaced by a system of two equations, by making use
of the theorem of T. BOGGIO, [2]:

(2.17) n?Fi = 0, D S ^ = O,

where

(2.18) F* = Ą + Ą , <• = -FH+du ( V 2 - ^ | - 3?j F*.

Another way of solving the plane problem consists in assumption solving
the displacement vector in the form:

(2.19) u = grad 3>+rot 4».

Substituting (2.19) in the equations of motion in displacements

(2.20) ^V2u-f (A+A) grad div u—y grad T = QU,

we obtain the system of equations:

(2.21) nt$ = mT, Dl4» = 0.
The solution of Eqs. (2.21) is composed of a particular integral &0 satisfying
the equation

(2.22) •!<£„ = mT,
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and of the general integrals of

(2.23) Df<Pi = 0, DM» = 0.

Let us observe that Eq. (2.22) becomes (2.14) if we assume that Fo = —2f,i0a.
It is equally easy to show that the stresses corresponding to the function &a

are given by the equations

(2.24) ff|oi = 2/j<P0, „-Ay ( v 2 - y c T ^ W 0 l (i,j =1,2) .j<P0, „-Ay

Still another method of solution, consists in composing the displacement
M, of the terms w,*,0' = <£Oj ( and of the term M/I;, satisfying the homogeneous
system of displacement equations
(2.25) nu{jlk+(A+fi)ui%-gu^ = O.

These equations may be expressed in the operational form

(2.26) Lyu|« = 0, LtJ = n2Aj+a 5, dJt a =

Introducing the stress functions £ l 5 £2, and using them to express the dis
placements u\u

(2.27) <> = L 2 2 ^ - L 1 2 %B, w'1' = - I n x 1 + Z M z „
or
(2.28) wj» = [ n i < 5 y + f l ( V ^ - 5 ^ ) ] ^ (Ż, 7 = 1,2)..

we shall obtain the following system of equations
(2.29) DiDSz«=0 ( / = l , 2 ) .

The functions ^i are B. G. GALERKIN'S functions [3], [4], generalized to the
plane dynamic problem. In most cases only one displacement function
(%2 = X, Xx ~ °> f° r instance) will suffice to find the stresses.

The simplest of the methods just described is that which involves applying
the stress function F. It has the advantage of obtaining the quasi-static pro-
blem by rejecting the inertia terms (that is by cancelling the time derivatives
of F).

In further considerations, we shall discuss the solution problem of Eq.
(2.13).

We shall be concerned first with the particular integral of (2.14). For the
infinite plate, this integral constitutes the final solution of the problem. In
this case, there are no edge conditions and we are concerned only with a lon-
gitudinal thermoelastic wave.

For solving the system of equations

(2.30) DtT=-Qlx,
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we introduce the auxiliary function S, satisfying the equation

(2.31)

with the same boundary conditions as the function T.
Let us perform the operation Qjj on the second of Eqs. (2.30). We

obtain:

(2 32) n*n*F - 2p™Q

H

Bearing in mind that

•?—Di l
• i D f = - 7 — a = r i — 2vi" > • ! — • ! = —9,—crfdf, a\ = 1/cf

we obtain from Eq. (2.32):

(2.33)

Since
1
« 3

therefore (2.33) takes the form:

(2.34)

Let us subject (2.34) to the LAPLACE transformation, assuming that
Fa(x1 ,x2, 0) = 0, Fa(x1} JC2, 0) = 0. These conditions follow from the
assumption that the body is free from stress for t =^ 0. We have

(2-35) {
W F0(Xl,x2,p)= f e-"'F0(Xl, x2, t)dt.

The quantities T and S will be found from the equations:

(2.36) V 2 ? 1 - — f = - — , S7*Ś-p*olŚ =•- — .
yt % "

Here also, homogeneous initial conditions are assumed for the functions
T and S.

2 Problemy drgań
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The transform of Aix^x^p) may be expressed by performing on Eq.
(2.35) the double FOURIER transformation

(2.37) F0(Xl, x2,p) = , T* , , (T*-S*) exp [-i{alXl +

+a2x2)]da1 da.2,
where

0* 0*
(2.38) T* = ^ ^
and

1
(2.39) g*(a 1, a2,^) = ^— 2 (xx, x%,p) exp [i ((^jei+aaX

Performing the inverse LAPLACE transformation, we obtain the function
sought, Fo, and from Eq. (2.15) the stresses a\°K For an infinite plane, they
will constitute the final stresses.

In the particular case of axially symmetric temperature field, the function
Ą(r>JP) m a Y D e represented by HANKEL transform in the form:

(2.40) Fo (r,p) = - 2 / ^ 2 f (r*-5#)a J0(ar)da,
P\ if) J

o
where

o* o*
(2.41) T*(a, /») = f, , ^* = -— ^
and

(2.42) Q*(a,p) = JQ(r,p)rĄ{ar)dr .
0

Only a few cases of wave propagation of cylindrical thermoelastic waves
in the infinite space or plate have hitherto been solved. Above all should
be mentioned the solution of the thermal shock in the region of a cylinder
of infinite length, obtained by T. MURA, [5], and that of sudden point heating
of the infinite plate by H. PARKUS, [6]. Attention is also directed to the solu-

-tion by W. DERSKI, [7], and that of the two-dimensional problem by J. IGNA-
CZAK, [8]. The latter concerns a temperature field, discontinuous in time
and space.

An example of a plane problem will be given below. A solution of forced
vibration of an infinite cylinder will be given with rectangular cross-section
heated on the surface in a manner harmonically variable in time. The above
stress function method will be used.
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3. Forced Tiiermoeiastic Vibration of a Rectangular Prism

Let us consider an infinite rectangular prism with the sides ax and a2, the
surface being free from stress and heated to the temperature T0e

io", where
co is the frequency.

The problem is to solve the heat equation

(3-D

in the region [Xx|<~, \x2\ <~-

with the boundary conditions

( m - l

(3.2)
"a - ^

V̂ I
n-X

. 2

-COS i an «
nn

Next, we solve the equation

(3.3) (d\-\-d\-ir})U = 0, rj = Cti/x,

obtained from (3.1) by inserting T(Xj,x2, t) = eim'U{xx, x2).
The solution of (3.3) with the boundary conditions (3.2) takes the form:

(3.4) U(xlt xt) = 4! V (-
n - l

, 2

a,, ,

1 (—1)

m - l

ch "'

Next, making use of (2.34), we obtain the function JF0, if the function
(Xi,*2, 0 = &mV(xux^ is known, satisfying the equation

(3.5)
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and the same boundary conditions as the function U. Thus, a solution is
obtained analogous to (3.4):

n-i

(3.6) L y
a, z_i

(-D chf,,x2— cosa,lx1+

(—1)

m—liSi...

It is easy now to find Fa, from the Eq. (2.34), and the stresses off from (2.15).

Substituting Fo = e™'G0 in (2.34), we obtain:

n_ 2/tm
(3-7) (U-V).

The stresses off attached to the function Fo are given by the equations

(3-8) 0$> = e«> \- G0,y+<5y(va+ -f-) G„ j (*, 7 = 1,2).

It is easy to find from (3.7) and (3.8) that Go = 0 on the boundary of the
prism and that ojj* = 0 on the edge Xi = ±a1/2, and a$ = 0 on the edge
x2 = ±c2/2. The shear stresses crjg are different from zero. These stresses
assume the form:

(3.9) /y„shy„x2

+
m=l,3,.

(3.10) 1 y f-(-1)

- f t h - ^
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To cancel the stresses o-$ on the boundaiy of the prism an appropriate state
of stress should be superposed, a*j expressed in terms of the functions Fx

and F2 satisfying Eqs. (2.17). Introducing the notations
(3.11) F* = F1+F2 = &«"(0+W), F* = Gxel°»t

we reduce Eqs. (2.17) to the form

(3.12)
„a '

The solutions of these equations, taking into consideration the symmetry
in relation to the % and x2-axis, are the functions

(3.13) 0= J? CnchCnx2cosanx1+ ^J Amohr}mx1cos^mx2,

(3.14) W =

where

The additional stresses <r(* are expressed by Eq. (2.18), where the function
F* is expressed in terms of 0 and W by Eq. (3.11).

In order to cancel the shear stresses a[f on the boundary, the following
boundary conditions should be satisfied:

for *x = ± f

(3.15) fffiM-oi-0, crj»>+<r?a = 0;

or
k?

(3 15') G + — G = 0 G + t ( 0 ) = 0 <r(0) = e'""T(0);

and for x2 = ± -y-

or
1-2

(3.16') (?!,!!+ ^ Gx = 0, -G 1 ; 1 2 +T1 0
2 ) = 0.

From the first condition (3.15') and from the first condition (3.16'), we obtain:

(3.17) Bm =-Aj (rfm, TfJ, Dn = -CHt(jft,ft),
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with the followiag notations

ch%
"T

ł7

From the second condition (3.15'), we obtain the equation:
ll-l

(3.18) Cn [in sh in Xz-tUt, Ol sh In*8](-1) 2 a„+

V fr al * - «ll
+ y Am\ Vim S n Vm-Z KVm) VnJVm S ^ Vm^T I

ra=l,3,... L -I

, sm pm x2—

n-1,3,,..
r„

shy,,x2 sh

f„ -j-

•4- J 1 (-i
m=S,l,...

= 0.

Expressing the function shf„x2,shf„x2,shy„A;2 in the form of the infinite
series

sh,
(3.19)

sin

m-1

M 2

and introducing the notations

(3.20) J

-'f- ^ S0 On'

^Vm-f-
2 2 2 ?

we reduce Eq. (3.18) to the form:

C „ ( - l ) 2 «„ch^„^-
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7)1—1
, 2

From a boundary condition of the group (3.16), we obtain a system of equa-
tions aualogous to (3.21):

4 ~T~ V
C\ 07} C n r Or2 £-2V 1̂  n2 \

<7| — ..

w - l

U 2 y, y" 2

where
( « = 1 ,3 ,5 , . . . ,oo),

2
"flii ? shf iLbh* ^
2 2 2 / '

We have obtained an infinite system of non-homogeneous equations of which
for given frequencies of temperature changes co, we can determine the con-
stants Am, Bm, C„,D„. Let us observe that for a fixed and finite
value w it is that a^ — hf < 0 or that for a certain n the quan-
t i t i e s !„ become imaginary .

The same applies to £„ ,.vjm,rjm.
The system of equations (3.21) and (3.22) can be written in the form:

(3.23) (n, m = \, 3, ..., oo).

m=l

Since the quantities Am, Cn, em, ... etc. are complex Am = A°m-\-iAm, ...,
therefore the system of equations should be split up into two systems:

(3.24)

njnm— nj -m) '— m5

~~ •Amnnm) = kn,

m-1
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and

(3.25)

= dm

= K-

In the case of a quadratic prism, considerable simplification can be achieved
because C° — A°„, C„ = A„. The following system of equations is to be solved:

f
(3.26)

I
01 4-
iitiiT

Z f° 4-
nJ nm <

The frequency of forced vibration a> must be chosen so that it does not coincide
with the natural frequency of the prism. The natural frequency of the prism
will be obtained from the homogeneous system of equations (3.21), (3.22)
by setting the determinant of this system equal to zero.
The case of an elastic layer (a2->oo) is therefore particulary simple in

the case where Tl±—~-, t\= Toe
!a", if the temperature and the stresses

\ 2 I
depend on x and t only.

v(Xl) =
ch E -~ 7 " 1

cos lą —

(3.27)" U(Xl) = T0-

and

(3.28)

To determine the stresses, it suffices to know the function Fo because the
boundary conditions <?u — cr12=0 on the boundaries xt = ±a a/2 are satisfied.

The stresses will be obtained from the equations:

(3.29)

In particular, for an we obtain the equation:

,n - m /imklToe
iwt I ch \/h]

*11= -~WfW

= 0.

cos

iij-j- cosk,.
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If the temperature To cos cot is prescribed on the boundary the stresses <rn

are given by the real part of the equation (3.29) if Ta sin cat on the boundary
then — by the imaginary part of (3.29).

Let us observe that the stresses increase indefinitely if cos k^a-> 0. The
case of cos/C]<3 = 0 determines the natural frequencies w0 = (jr/a1)(2;j~l)c1

of an elastic layer.

4. The Plane Dynamic Coupled Problem of Thermoelasticity

Let us consider an elastic body acted on by a non-steady-state temperature
field in a plane state of stress. The coupling between the temperature field
and the strain field will, however, be taken into account. In this case we
have the generalized heat equation

(4-1) DtT-dtXekk = ~ G

where % = yT0/QC and To-\-T is the absolute temperature and the state T — O
is identical with the state where the stresses and displacements are zero;
c — is the specific heat.

For the coupled problem, Eqs. (2.1)-(2.3) are valid. If we confine ourselves
to the temperature field only the mass forces being disregarded 1, equations
(2.11), (2.12) and (2.13) remain valid.

Expressing ekk in (4.1) in terms of ckk by means of (2.2) and in terms of
the stress function F by means of (2.12) we obtain finally the system of two
equations

(4.2) ^ L l

2(A+ju)

(4.3) nintF+2nmn%T=0.

Eliminating from these equations the temperature, we obtain the differential
equation:

(4.4) • | l [ n 2 n | _ ^ z 3 ( V 2 ] F _ i ^ 7 ! 2 _ | = 0.
I H J

It is seen that if the coupling is disregarded (#-> 0) Eq. (4.4) becomes (2.13)
subject to the operation • § .

The particular integral will be obtained from the equation:

(4.5) (ntUi



368 J- Ignaczak and W. Nowacki

and the stress corresponding to the function Fo— from Eqs. (2.15). For the
infinite region, Fo, constitutes the solution of the problem.

For a bounded region, the general integral F* of the equation

(4.6) DKDjnJ-OT^rW* = °

should be added to the particular integral Fo, where F* = Ft+Fz and the
functions Fx, Fz should satisfy the equations:

(4.7) ( n i n i - T ^ W 2 ^ = o, DIF2 = o.
The stresses connected with the function F* will be found from Eqs. (2.18).

The second method, also very convenient, consists in reassumption of
the displacement vector in the form:

(4.8) u = grad«ZM-rot«]>.

Substituting (4.8) in the displacement equations (2.20) and in the heat equation
(4.1), we obtain a system of three equations:

(4.9) n%T-xdtX/*$ = -Qfx,

(4.10) Ut<I> = mT, D14» = O.

Eliminating T we shall obtain a system of equations [10]:

(4.11) (U\Ul-mxdtS7*W0 = — ^ , DM* = 0.
i

Finding the function 0 from Eq. (4.11), we shall obtain the temperature
T from the first of Eqs. (4.10).

If we are concerned with an infinite body, the function 0O which is a parti-
cular integral of the equation

(4.12) (apl-j^v1)^ = —

is the solution of the problem. The stresses afy connected with the function
0O are given by the equations

(4.13) <r<°> = 2 J ^ y - a J V2-^|-5?J0OJ (/,/ = 1,2).

For a bounded region, we should solve also the system of equations
(4.14) (DilH!-/nz0rV

8)0* = 0,

1 The consideration of the influence of the mass forces requires the introduction of three
stress functions. Cf. the Ref. [9].
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The additional stresses 0y are given by the equations

(4.15)

The final expressions for stresses aie obtained by superposition

(4.16) ff;. =

5. Forced Coupled Thermoelastie Vibration of a Rectangular Prism

Let us consider an infinite rectangular cylinder inside which uniformly
distributed heat sources act in a harmonic manner Q = Qo e'"".

Let T = 0 on the lateral surface of the prism. Substituting in (4.9) and
(4.10)

(5 1̂  T — U&mt 0 = Qe**0* w = We*at

we obtain the system of equations:

^r v~-'rr
(5.3) = mU, = 0, aa =

Eliminating from these equations first U and then 0, we obtain:

1 ._

— 0

(5.4)

(5.5) (\
m

where

* 2+x! = -q(l+e)+<r2, H\K\ = -qa\

The solution of (5.4) is the double series:

7 1 - 1

ifin. v-i (—1
(5.6) £/(*,., *2;

ICO

X

m—1

(-D 2 (-D 2

2
n,m=l,S,...
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where
nn „ inn

The boundary conditions T= 0 are satisfied for x, = ±«i/2, xa =
Next, we determine a particular integral of Eq. (5.5). It has the form:

n—l m—1
,~2~ s i\ 2

(5.7) 0O = -

n,m=l,3, ...

or
w—1

(-1) * c

ch-C

A!
c h ^

It can easily be verified that the normal stresses vanish on the boundary
of prism. The stress <rj2 remain different from zero

1 J

n ,m- l , 3, . . .

The stresses a\f at the edge will.be suppressed by adding to the state a\f
the state of stress a*p expressed in terms of the functions 0* and W*. Thus,
Eqs. (4.14) should be solved with the following boundary conditions

\<+u , < 2 + 2 , T = 0 for

U = 0 for
where the function T* is determined by the relation

(5.io) r*=~

Introducing the notations

(5.11) <P*(x1,x2,t) = ei°»e*(x1,x2), W=e:«»W*, T* = e«-"U*,

Eqs. (4.14) are reduced to the form:
(5.12) ( V 2 + ^ ) ( v a + ^ | ) ( 9 * = O ; (V2+T2)f* = 0

(5.13) c/* = J-(V2+ff2)0*.
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The functions 6* and W* will be assumed in the form:

(5.14) 6* = Y (£nchA„x2+F„chX„x2)cosa„x1

n-1,3, ...

where

(5.15)

and

— ,//ja „„„a 6 _ i/«2 _, ,2

Anshynxisin.anx1+
m=l,3,...

Yn = VK-1
From (5.13), we obtain

(5.16) U*=-lr
m 2 i

n=l,3,...

oo

xf) ch X„ x2) ch A„x2] cos

[Gm(<̂ 2 - «D ch fffl^+ F m (a 2 - xl) ch teJ cos ̂ „,
m=l,3, ...

The constants A„, Bn, ..., Hm will be determined from the boundary con-
ditions (5.9) which, according to Eqs. (5.11), take the form:

(5.17)

la = 0,

U* == 0 for xx = aJ2,

+MSl-V = 0,

t/* = 0 for x3 = a2/2.

Let us eliminate the quantities Fn and Hm by means of the conditions of
zero temperature on the boundary of the prism. Then,

-2ij}F*li = 0 ,

^ /
(5.18) 6* = > EA ch ^„x 2 -

- \
ch A„x2 cos an

\
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where

(5.19) U* = -
m

V
c h l

EjchLx,
" 2

cos

2^ Gm ch £„,:*! a ch imx1 cos pmx2

By means of the conditions of zero normal stress on the edge of the cylinder,
we eliminate the constants En, Gm. The following expression is obtained for
the function 6*,

(5.20) 6* =
1

AA
«=-l,8,.,.

where

>m c h

l * m 2

(5.21)

' /l/'M

Finally, from the condition of zero shear stress on the boundary we obtain
a system of linear equations with an infinite number of coefficients An, Bm



The plane dynamic problem of thermoelasticity 373

where the hyperbolic functions have been expanded in series according to
Eqs. (3.19):

(5.22)

n+m—2

± y (-D2
 A. ch A„ - ^ 1 - H U -

-GVŁ-^!)sh ̂  x l ~
m - 1

(-1)2 /I

(5.23)

4

n - 1

(77, w , = 1, 3 , 5, . . . , 0 0 ) ,

where

2 -r , •-

' , „ =

(5.24) -

The system of equations (5.22), (5.23) may be reduced to one infinite system
of equations for the sequence {Anj or {Bm}.
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It is seen that the coupled problem can be represented by the simple series
fl*-|-0o = 6, of which the coefficients can be determined from the system of
equations (5.22), (5.23). Assuming % = 0 in (5.2) and the subsequent equations,
the calculations are simplified considerably for the uncoupled problem.

Let us consider in addition the case of aa —> co that is the case of an elastic
layer with the heat sources Q(x1. t) = QQeim> and T= 0 on the edge.

Then
n-i

^5 25) 6(x) = - 4Q°m V
(5.25) 0{xl}- ^ 2
and the stresses are obtained from the equations:

(5.26) an = -gmW&Je™1, <r22 = -2jue to( ( 0 , n + - C - o\, al2 - 0.

These are the final results, all the boundary conditions being satisfied. The
temperature field is:

(5.27) T =

Let us consider the particular case where the heat sources are Q(xx, i) =
= QQ cos cot. Then, taking the real part of Eq. (5.27), we obtain:

n - l

(5.28) ' * " & . ^
(qg-g2){«g(«g-(Ta) coso)?+-^K(l +e)-a2] sin cô }

co

The stress o^ is given by the equation:

(5.29)

480mgft)2 y i (-1) 8 «^(aa-g2) cos cof+?? [«2(1 +e)-<r2] sin cot
aH ZJ an

The forced vibration has the character of a damped vibration. There is no
indefinite increase in the stresses. For the non-coupled problem (e = 0),
the stresses increase indefinitely if a„-^an (n = 1, 3, ..., oo).
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For the coupled quasi-static problem, we have (a = 0) from (5.29):

(5.30) T = ̂  V <ZHL «•<»»y(l+«)rin«'
ax% JLJ a «?!»? ( 1 + e ) 2

The stresses <jn and cr12 will be zero. The stresses a22 and <T3S will be different
from zero, and a22 = a3i.
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S t r e s z c z e n i e

PŁASKIE DYNAMICZNE ZAGADNIENIE TERMOSPRĘŻYSTOŚCI

Przedmiotem pracy jest przedstawienie kilku dróg rozwiązania płaskich
zagadnień dynamicznych termosprężystości. W pierwszej części pracy sfor-
mułowano niesprzężone zagadnienie termosprężystości w naprężeniach oraz
w przemieszczeniach, przy czym wykazano, że całki szczególne w obu sposo-
bach rozwiązania różnią się jedynie stałym współczynnikiem.

W drugiej części pracy przedstawiono dwa przykłady rozwiązania zagadnie-
nia niesprzężonego przy użyciu funkcji naprężenia, mianowicie drgania wy-
muszone walca nieograniczonego o przekroju prostokątnym i warstwy
sprężystej, ogrzanych na brzegu w sposób harmoniczny w czasie.

3 Problemy drgań
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W trzeciej części podano rozwiązanie zagadnienia płaskiego dynamicznego
termosprężystości przy uwzględnieniu sprzężenia pola temperatury i pola
deformacji i to na drodze wprowadzenia funkcji naprężenia oraz przez de-
kompozycję wektora przemieszczenia. Tok postępowania objaśniono przykła-
dem drgań wymuszonych walca nieograniczonego o przekroju prostokątnym
i warstwy sprężystej, wywołanych działaniem harmonicznie w czasie zmiennych
źródeł ciepła i rozłożonych równomiernie w objętości walca.

P e 3 io M e

flHHAMH^ffiCKAH 3AJWIA

PaccMaTpHBaerai HecKOJisKo cnocoSoB pemeHHH IUIOCKHX
TepMoynpyrocTH. B nepBoii qacTH paSoTŁi cbopMyjinpyeTCH HeconpH-

3afla*ia TepMoynpyrocTH B HanpHH<eHHHX H B nepeMeiyeHHHX., n p n -
H0Ka3biBaeTcaj ^rro tiacTHBie HHTerpaji&i B O6OHX cnocoSax pernennH

eflMHCTBeHHO IIOCTOflHHŁIM KO3ĆpCDHU.HeHTOM.
Bo BTopoń M:acTH npHBOMaTCH flBa npHMepa peraeHHH HeconpH>KeHHOH

3a«a^H rrpn Hcnojit3OBaHHH c|>yHKD;HH HanpnłKeHHHj a HMCHHO BbmyjKaeH-
Horo KojieSaHHH SecKOHe^moro irHttHH/rpa npHMoyrojitHoro ce^reHHii H ynpy-
r o r o CJIOH, HarpeTLix Ha Kpaio rapMOHH^ecKH BO BpeMeHH.

B TpeTŁeił *iacTH «aeTCH pemeHHe njiocKoił flHHaMH^ecKOH 3afla^H TepMO-
ynpyrocTH n p n yyeTe conpH>KeHHH TeMnepaTypHoro nonH H noun aetbopMairHH
H TO rryTem BBefleHHH (pyHKiu™ HanpHJKeHiiH H nyTeM pa3Jio>KeHHH Bercropa

Ha flBe ^racTH: noTemrHanBHyio H poTauHOHHyio. Xofl n p o -
onepaHHH OS'LHCHHCTCH Ha npHMepe Bbmy>KfleHHbix KOJie6aHHił

rprai-iHflpa npHMoyrojiBHoro ceneroisi H ynpyroro CJIOHJ BBI-
3BaHHBix fleMcTBHeMj rapMOHH^ecKH BO BpeMeHH nepeMeHHbix HCTOHHHKOB
Tenjia H pacnpefleireHHLix paBHOMepHO B oS'BeMe rj;HJiHHflpa.
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