INSTITUTE OF BASIC TECHNICAL PROBLEMS

PROCEEDINGS OF VIBRATION PROBLEMS

QUARTERLY

VOL. 2

THE PLANE DYNAMIC PROBLEM OF THERMOELASTICITY

JÓZEF IGNACZAK and WITOLD NOWACKI (WARSAW)

1. Introduction

The object of the present paper is to present several solution methods of plane dynamic problems of thermoelasticity. In the first part, the noncoupled thermoelastic problem is formulated in stresses and in strains. It is shown that the particular integrals differ in the two methods of solution methods by a constant only.

The second part presents two examples of solution of the non-coupled problem by means of the stress function. This is the problem of forced vibration of an infinite rectangular prism and an elastic layer heated at the edge in a manner harmonically variable in time.

The third part contains the solution of the plane dynamic problem of thermoelasticity for coupled temperature and displacement fields, by introducing a stress function and resolving the displacement vector. Such a procedure is illustrated by way of an example of forced vibration of an infinite rectangular prism and an elastic layer due to heat sources harmonic in time and uniformly distributed inside the region of the prism.

2. Plane Non-Coupled Dynamic Problem of Thermoelasticity

Let us consider an elastic body under the action of a temperature field and in a plane state of strain. It is assumed, first, that the temperature field is not coupled with the strain field. It is assumed also that the mass and surface forces are equal to zero.

In plane strain, the stress-strain relations are given by the equations:

$$
\begin{equation*}
\sigma_{i j}=2 \mu \varepsilon_{i j}+\left(\lambda \varepsilon_{k k}-\gamma T\right) \delta_{i j} \quad(i, j=1,2) \tag{2.1}
\end{equation*}
$$

where μ, λ are Lamé constants, T-temperature, $\gamma=(3 \lambda+2 \mu) \alpha_{t}$ where α_{t} is the coefficient of thermal dilatation, $\delta_{i j}$ Kronecker's delta.

Observe that

$$
\begin{equation*}
\sigma_{k k}=2(\lambda+\mu) \varepsilon_{k k}-2 \gamma T . \tag{2.2}
\end{equation*}
$$

The strains are connected with the displacements u_{i} by the relations:

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) \quad(i, j=1,2) \tag{2.3}
\end{equation*}
$$

The displacements, strains, stresses and temperature are functions of the time t and the variables x_{1}, x_{2}.

The point of departure for our considerations are the equations of motion (the mass forces are disregarded)

$$
\begin{equation*}
\sigma_{t j, j}=\varrho \ddot{u}_{i} \quad(i, j=1,2) \tag{2.4}
\end{equation*}
$$

and the heat equation

$$
\begin{equation*}
\square_{3}^{2} T=-Q / \varkappa, \quad \square_{3}^{2}=\nabla^{2}-\frac{1}{x} \partial_{t}, \tag{2.5}
\end{equation*}
$$

where ϱ is the density per unit volume, Q - a function of heat sources and x - the coefficient of heat conduction.

Let us differentiate the first of Eqs. (2.4) with respect to x_{1}, the second with respect to x_{2} and add and substract the equations thus obtained, bearing in mind Eqs. (2.1). We obtain

$$
\begin{gather*}
\sigma_{11,11}+\sigma_{22,22}+2 \sigma_{12,12}=\varrho \ddot{\varepsilon}_{k k} \tag{2.6}\\
\left(\partial_{1}^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) \sigma_{11}-\left(\partial_{2}^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) \sigma_{22}=0, \quad c_{2}^{2}=\mu / \varrho .
\end{gather*}
$$

Let us differentiate the first equation of the set (2.4) with respect to x_{2}, the second to x_{1}, and add. Then:

$$
\begin{equation*}
\sigma_{k k, 12}+\square_{2}^{2} \sigma_{12}=0, \quad \square_{2}^{2}=\nabla^{2}-\frac{1}{c_{2}^{2}} \partial_{t}^{2} \tag{2.8}
\end{equation*}
$$

Substituting the stresses from Eq. (2.1) into (2.6), eliminating the quantity σ_{12}, by means of the compatibility equation

$$
\begin{equation*}
\varepsilon_{11,22}+\varepsilon_{22,11}=2 \varepsilon_{12,12} \tag{2.9}
\end{equation*}
$$

and making use of (2.2), we obtain the equations;

$$
\begin{equation*}
\square_{1}^{2} \sigma_{k k}+2 \mu \bar{m} \square \square_{2}^{2} T=0, \quad \square_{1}^{2}=\nabla^{2}-\frac{1}{c_{1}^{2}} \partial_{t}^{2}, \quad c_{1}^{2}=\frac{\lambda+2 \mu}{\varrho}, \quad \bar{m}=\frac{\gamma}{\lambda+2 \mu} \tag{2.10}
\end{equation*}
$$

Let us express the stresses in terms of the stress function F in the form:

$$
\begin{equation*}
\sigma_{i j}=-F_{, i j}+\delta_{i j}\left(\nabla^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) F \quad(i, j=1,2) \tag{2.11}
\end{equation*}
$$

It is seen that, by eliminating the inertia terms - that is for the quasi-static problem - this function becomes the AIRY function.
It is also seen that by expressing the stresses in Eqs. (2.7) and (2.8) by means of the function F, these equations are satisfied identically. Substituting in (2.10) the equation

$$
\begin{equation*}
\sigma_{k k}=\square_{2}^{2} F, \tag{2.12}
\end{equation*}
$$

we obtain the following differential equation for the function F

$$
\begin{equation*}
\square_{1}^{2} \square_{2}^{2} F+2 \mu \bar{m} \square_{2}^{2} T=0 . \tag{2.13}
\end{equation*}
$$

For the isothermal problem, this equation becomes the equation of J. R. M Radok, [1]. The solution of (2.13) may be composed of two parts: $F=F_{0}+F^{*}$, where F_{0} is a particular integral satisfying the equation

$$
\begin{equation*}
\square_{1}^{2} F_{0}+2 \mu \bar{m} T=0, \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{i j}^{(0)}=-F_{0, i j}+\delta_{i j}\left(\nabla^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) F_{0} \tag{2.15}
\end{equation*}
$$

and F^{*} is the general integral of the homogeneous equation

$$
\begin{equation*}
\square_{1}^{2} \square_{2}^{2} F^{*}=0 \tag{2.16}
\end{equation*}
$$

Eq. (2.16) may be replaced by a system of two equations, by making use of the theorem of T. Boggio, [2]:

$$
\begin{equation*}
\square_{1}^{2} F_{1}=0, \quad \square_{2}^{2} F_{2}=0, \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
F^{*}=F_{1}+F_{2}, \quad \sigma_{i j}^{*}=-F_{i j}^{*}+\delta_{i j}\left(\nabla^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) F^{*} \tag{2.18}
\end{equation*}
$$

Another way of solving the plane problem consists in assumption solving the displacement vector in the form:

$$
\begin{equation*}
\mathbf{u}=\operatorname{grad} \Phi+\operatorname{rot} \psi \tag{2.19}
\end{equation*}
$$

Substituting (2.19) in the equations of motion in displacements

$$
\begin{equation*}
\mu \nabla^{2} \mathbf{u}+(\lambda+\mu) \operatorname{grad} \operatorname{div} \mathbf{u}-\gamma \operatorname{grad} T=\varrho \ddot{\mathbf{u}} \tag{2.20}
\end{equation*}
$$

we obtain the system of equations:

$$
\begin{equation*}
\square_{1}^{2} \Phi=\bar{m} T, \quad \square_{2}^{2} \psi=0 \tag{2.21}
\end{equation*}
$$

The solution of Eqs. (2.21) is composed of a particular integral Φ_{0} satisfying the equation

$$
\begin{equation*}
\square_{1}^{2} \Phi_{0}=\bar{m} T \tag{2.22}
\end{equation*}
$$

and of the general integrals of

$$
\begin{equation*}
\square_{1}^{2} \Phi_{1}=0, \quad \square_{2}^{2} \psi=0 \tag{2.23}
\end{equation*}
$$

Let us observe that Eq. (2.22) becomes (2.14) if we assume that $F_{0}=-2 \mu \Phi_{0}$. It is equally easy to show that the stresses corresponding to the function Φ_{0} are given by the equations

$$
\begin{equation*}
\sigma_{i j}^{(0)}=2 \mu\left[\Phi_{0, i j}-\delta_{i j}\left(\nabla^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right) \Phi_{0}\right] \quad(i, j=1,2) \tag{2.24}
\end{equation*}
$$

Still another method of solution consists in composing the displacement u_{i} of the terms $u_{i_{1}^{(0)}}^{(0)}=\Phi_{0, t}$ and of the term $u_{i}^{(1)}$, satisfying the homogeneous system of displacement equations

$$
\begin{equation*}
\mu u_{i, k k}^{(1)}+(\lambda+\mu) u_{k, k i}^{(1)}-\varrho \ddot{u}_{i}^{(1)}=0 . \tag{2.25}
\end{equation*}
$$

These equations may be expressed in the operational form

$$
\begin{equation*}
L_{i j} u_{i}^{(1)}=0, \quad L_{i j}=\square_{2}^{2} \delta_{i j}+a \partial_{i} \partial_{j}, \quad a=\frac{\lambda+\mu}{\mu} \tag{2.26}
\end{equation*}
$$

Introducing the stress functions χ_{1}, χ_{2}, and using them to express the dis placements $u_{i}^{(1)}$

$$
\begin{equation*}
u_{1}^{(1)}=L_{22} \chi_{1}-L_{12} \chi_{2}, \quad u_{2}^{(1)}=-L_{21} \chi_{1}+L_{11} \chi_{2}, \tag{2.27}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{i}^{(1)}=\left[\square_{2}^{2} \delta_{i j}+a\left(\nabla^{2} \delta_{j}-\partial_{i i} \partial_{j}\right)\right] \chi_{j} \quad(i, j=1,2), \tag{2.28}
\end{equation*}
$$

we shall obtain the following system of equations

$$
\begin{equation*}
\square_{1}^{2} \square_{2}^{2} \chi_{i}=0 \quad(i=1,2) \tag{2.29}
\end{equation*}
$$

The functions χ_{1} are B. G. Galerkin's functions [3], [4], generalized to the plane dynamic problem. In most cases only one displacement function ($\chi_{2}=\chi, \chi_{1}=0$, for instance) will suffice to find the stresses.

The simplest of the methods just described is that which involves applying the stress function F. It has the advantage of obtaining the quasi-static problem by rejecting the inertia terms (that is by cancelling the time derivatives of F).

In further considerations, we shall discuss the solution problem of Eq. (2.13).

We shall be concerned first with the particular integral of (2.14). For the infinite plate, this integral constitutes the final solution of the problem. In this case, there are no edge conditions and we are concerned only with a longitudinal thermoelastic wave.

For solving the system of equations

$$
\begin{equation*}
\square_{3}^{2} T=-Q / \varkappa, \quad \square_{1}^{2} F_{0}+2 \mu \bar{m} T=0, \tag{2.30}
\end{equation*}
$$

we introduce the auxiliary function S, satisfying the equation

$$
\begin{equation*}
\square_{1}^{2} S=-Q / x \tag{2.31}
\end{equation*}
$$

with the same boundary conditions as the function T.
Let us perform the operation \square_{3}^{2} on the second of Eqs. (2.30). We obtain:

$$
\begin{equation*}
\square_{1}^{2} \square_{3}^{2} F_{0}=\frac{2 \mu \bar{m} Q}{\varkappa} \tag{2.32}
\end{equation*}
$$

Bearing in mind that

$$
\square_{1}^{2} \square_{3}^{2}=\frac{\square_{1}^{2}-\square_{3}^{2}}{\left(\square_{3}^{2}\right)^{-1}-\left(\square_{1}^{2}\right)^{-1}}, \quad \square_{1}^{2}-\square_{3}^{2}=\frac{1}{\gamma} \partial_{t}-\sigma_{1}^{2} \partial_{t}^{2}, \quad \sigma_{1}^{2}=1 / c_{1}^{2}
$$

we obtain from Eq. (2.32):

$$
\begin{equation*}
\left(\frac{1}{x} \partial_{t}-\sigma_{1}^{2} \partial_{t}^{2}\right) F_{0}=\frac{2 \mu \bar{m}}{x}\left[\left(\square_{3}^{2}\right)^{-1}-\left(\square_{1}^{2}\right)^{-1}\right](Q) . \tag{2.33}
\end{equation*}
$$

Since

$$
T=-\frac{1}{x}\left(\square_{3}^{2}\right)^{-1}(Q), \quad S=-\frac{1}{x}\left(\square_{1}^{2}\right)^{-1}(Q),
$$

therefore (2.33) takes the form:

$$
\begin{equation*}
\left(\frac{1}{x} \partial_{t}-\sigma_{1}^{2} \partial_{t}^{2}\right) F_{0}=-2 \mu \bar{m}[T-S] . \tag{2.34}
\end{equation*}
$$

Let us subject (2.34) to the Laplace transformation, assuming that $F_{0}\left(x_{1}, x_{2}, 0\right)=0, \dot{F}_{0}\left(x_{1}, x_{2}, 0\right)=0$. These conditions follow from the assumption that the body is free from stress for $t \leqslant 0$. We have

$$
\left\{\begin{array}{l}
\bar{F}_{0}\left(x_{1}, x_{2}, p\right)=-\frac{2 \mu \bar{m}}{p / \varkappa-\sigma_{1}^{2} p^{2}}(\bar{T}-\bar{S}) \tag{2.35}\\
\bar{F}_{0}\left(x_{1}, x_{2}, p\right)=\int_{0}^{\infty} e^{-p t} F_{0}\left(x_{1}, x_{2}, t\right) d t
\end{array}\right.
$$

The quantities \bar{T} and \bar{S} will be found from the equations:

$$
\begin{equation*}
\nabla^{2} \bar{T}-\frac{p}{\varkappa} \bar{T}=-\frac{\bar{Q}}{\varkappa}, \quad \nabla^{2} \bar{S}-p^{2} \sigma_{1}^{2} \bar{S}=-\frac{\bar{Q}}{\varkappa} \tag{2.36}
\end{equation*}
$$

Here also, homogeneous initial conditions are assumed for the functions T and S.

The transform of $\bar{F}_{0}\left(x_{1}, x_{2}, p\right)$ may be expressed by performing on Eq. (2.35) the double Fourier transformation

$$
\begin{array}{r}
\bar{F}_{0}\left(x_{1}, x_{2}, p\right)=-\frac{\mu \bar{m}}{\pi p\left(\varkappa^{-1}-\sigma_{1}^{2} p\right)} \int_{-\infty}^{\infty}\left(T^{*}-S^{*}\right) \exp \left[-i\left(\alpha_{1} x_{1}+\right.\right. \tag{2.37}\\
\left.\left.+\alpha_{2} x_{2}\right)\right] d \alpha_{1} d \alpha_{2}
\end{array}
$$

where

$$
\begin{equation*}
T^{*}=\frac{Q^{*}}{\varkappa\left(\alpha_{1}^{2}+\alpha_{2}^{2}+p \varkappa^{-1}\right)}, \quad S^{*}=\frac{Q^{*}}{\varkappa\left(\alpha_{1}^{2}+\alpha_{2}^{2}+p \sigma_{1}^{2}\right)} \tag{2.38}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{*}\left(\alpha_{1}, \alpha_{2}, p\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{Q}\left(x_{1}, x_{2}, p\right) \exp \left[i\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)\right] d x_{1} d x_{2} \tag{2.39}
\end{equation*}
$$

Performing the inverse Laplace transformation, we obtain the function sought, F_{0}, and from Eq. (2.15) the stresses $\sigma_{i j}^{(0)}$. For an infinite plane, they will constitute the final stresses.

In the particular case of axially symmetric temperature field, the function $\overline{F_{0}}(r, p)$ may be represented by HANKEL transform in the form:

$$
\begin{equation*}
\bar{F}_{0}(r, p)=-\frac{2 \mu \bar{m}}{p\left(\varkappa^{-1}-\sigma_{1}^{2} p\right)} \int_{0}^{\infty}\left(T^{*}-S^{*}\right) \alpha J_{0}(\alpha r) d \alpha \tag{2.40}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{*}(\alpha, p)=\frac{Q^{*}}{\varkappa \alpha^{2}+p}, \quad S^{*}=\frac{Q^{*}}{\varkappa\left(\alpha^{-2}+\sigma_{1}^{2} p^{2}\right)} \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{*}(\alpha, p)=\int_{0}^{\infty} \bar{Q}(r, p) r J_{0}(\alpha r) d r . \tag{2.42}
\end{equation*}
$$

Only a few cases of wave propagation of cylindrical thermoelastic waves in the infinite space or plate have hitherto been solved. Above all should be mentioned the solution of the thermal shock in the region of a cylinder of infinite length, obtained by T.MURA, [5], and that of sudden point heating of the infinite plate by H. Parkus, [6]. Attention is also directed to the solu--tion by W. Derski, [7], and that of the two-dimensional problem by J. IgnaCZAK, [8]. The latter concerns a temperature field, discontinuous in time and space.

An example of a plane problem will be given below. A solution of forced vibration of an infinite cylinder will be given with rectangular cross-section heated on the surface in a manner harmonically variable in time. The above stress function method will be used.

3. Forced Thermoelastic Vibration of a Rectangular Prism

Let us consider an infinite rectangular prism with the sides a_{1} and a_{2}, the surface being free from stress and heated to the temperature $T_{0} e^{i \omega t}$, where ω is the frequency.

The problem is to solve the heat equation

$$
\begin{equation*}
\left(\partial_{1}^{2}+\partial_{2}^{2}-\frac{1}{x} \partial_{t}\right) T=0 \tag{3.1}
\end{equation*}
$$

in the region $\left|x_{1}\right|<\frac{a_{1}}{2}, \quad\left|x_{2}\right|<\frac{a_{2}}{2}$
with the boundary conditions

$$
\left\{\begin{array}{l}
T\left(\pm \frac{a_{1}}{2}, x_{2}, t\right)=T_{0} e^{i \omega t}=e^{i \omega t} \frac{4 T_{0}}{a_{2}} \sum_{m=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{m-1}{2}}}{\beta_{m}} \cos \beta_{m} x_{2}, \quad \beta_{m}=\frac{m \pi}{a_{2}} \tag{3.2}\\
T\left(x_{1}, \pm \frac{a_{2}}{2}, t\right)=T_{0} e^{i \omega t}=e^{i \omega t} \frac{4 T_{0}}{a_{1}} \sum_{n=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{\alpha_{n}} \cos \alpha_{n} x_{1}, \quad \alpha_{n}=\frac{n \pi}{a_{1}}
\end{array}\right.
$$

Next, we solve the equation

$$
\begin{equation*}
\left(\partial_{1}^{2}+\partial_{2}^{2}-i \eta\right) U=0, \quad \eta=\omega / \varkappa \tag{3.3}
\end{equation*}
$$

obtained from (3.1) by inserting $T\left(x_{1}, x_{2}, t\right)=e^{i \omega t} U\left(x_{1}, x_{2}\right)$.
The solution of (3.3) with the boundary conditions (3.2) takes the form:

$$
\left.\begin{array}{l}
U\left(x_{1}, x_{2}\right)=4 T_{0}\left\{\frac{1}{a_{1}} \sum_{n=1,3}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{\alpha_{n}} \frac{\operatorname{ch} \gamma_{n} x_{2}}{\operatorname{ch} \frac{\gamma_{n} a_{2}}{2}} \cos \alpha_{n} x_{1}+\right. \tag{3.4}\\
\left.\quad+\frac{1}{a_{2}} \sum_{m=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{m-1}{2}}}{\beta_{m}} \frac{\operatorname{ch} \delta_{m} x_{1}}{\operatorname{ch} \frac{\delta_{m} a_{1}}{2}} \cos \beta_{m} x_{2}\right\}
\end{array}\right\}
$$

Next, making use of (2.34), we obtain the function F_{0}, if the function $S\left(x_{1}, x_{2}, t\right)=e^{i \omega t} V\left(x_{1}, x_{2}\right)$ is known, satisfying the equation

$$
\begin{equation*}
\left(\partial_{1}^{2}+\partial_{2}^{2}+k_{1}^{2}\right) V=0, \quad k_{1}^{2}=\frac{\omega^{2}}{c_{1}^{2}}, \tag{3.5}
\end{equation*}
$$

and the same boundary conditions as the function U. Thus, a solution is obtained analogous to (3.4):

$$
\begin{gather*}
V\left(x_{1}, x_{2}\right)=4 T_{0}\left\{\begin{array}{l}
\frac{1}{a_{1}} \sum_{n=1,3}^{\infty} \ldots \\
a_{n} \\
+\frac{(-1)^{\frac{n-1}{2}}}{a_{2}} \sum_{m=1,3} \ldots \\
\frac{\operatorname{ch} \xi_{n} x_{2}}{\operatorname{ch} \xi_{n} \frac{a_{2}}{2}} \cos \alpha_{n} x_{1}+ \\
\beta_{m} \\
\operatorname{ch} \frac{(-1)^{\frac{m-1}{2}}}{2} \eta_{m} \eta_{1} x_{1} \\
\cos \beta_{m} x_{2}
\end{array}\right\} \tag{3.6}\\
\xi_{n}=\sqrt{\alpha_{n}^{2}-k_{1}^{2}}, \quad \eta_{m}=\sqrt{\beta_{m}^{2}-k_{1}^{2}} .
\end{gather*}
$$

It is easy now to find F_{0}, from the Eq. (2.34), and the stresses $\sigma_{i j}^{(0)}$ from (2.15).
Substituting $F_{0}=e^{i \omega t} G_{0}$ in (2.34), we obtain:

$$
\begin{equation*}
G_{0}=-\frac{2 \mu \bar{m}}{i \eta+k_{1}^{2}}(U-V) \tag{3.7}
\end{equation*}
$$

The stresses $\sigma_{i j}^{(0)}$ attached to the function F_{0} are given by the equations

$$
\begin{equation*}
\sigma_{i j}^{(0)}=e^{i v t}\left[-G_{0, i j}+\delta_{i j}\left(\nabla^{2}+\frac{k_{1}^{2}}{2}\right) G_{0}\right] \quad(i, j=1,2) \tag{3.8}
\end{equation*}
$$

It is easy to find from (3.7) and (3.8) that $G_{0}=0$ on the boundary of the prism and that $\sigma_{11}^{(0)}=0$ on the edge $x_{1}= \pm a_{1} / 2$, and $\sigma_{22}^{(0)}=0$ on the edge $x_{2}= \pm a_{2} / 2$. The shear stresses σ_{12}^{0} are different from zero. These stresses assume the form:

$$
\begin{align*}
& \sigma_{12}^{(0)}\left(\frac{a_{1}}{2}, x_{2}, t\right)=-\frac{8 \mu \bar{m} T_{0} e^{i \omega t}}{i \eta+k_{1}^{2}}\left\{\frac{1}{a_{1}} \sum_{n=1,3, \ldots}^{\infty}\left(\frac{\gamma_{n} \operatorname{sh} \gamma_{n} x_{2}}{\operatorname{ch} \gamma_{n} \frac{a_{2}}{2}}-\frac{\xi_{n} \operatorname{sh} \xi_{n} x_{2}}{\operatorname{ch} \xi_{n} \frac{a_{2}}{2}}\right)+\right. \tag{3.9}\\
&+\left.\frac{1}{a_{2}} \sum_{m=1,3, \ldots}^{\infty}(-1)^{\frac{m-1}{2}}\left(\delta_{m} \text { th } \frac{\delta_{m} a_{1}}{2}-\eta_{m} \text { th } \frac{\eta_{m} a_{1}}{2}\right) \sin \beta_{m} x_{2}\right\} \\
& \sigma_{12}^{(0)}\left(x_{1}, \frac{a_{2}}{2}, t\right)=-\frac{8 \mu \bar{m} T_{0} e^{i \omega t}}{i \eta+k_{1}^{2}}\left\{\frac { 1 } { a _ { 1 } } \sum _ { n = 1 , 3 , \ldots } ^ { \infty } (- 1) ^ { \frac { n - 1 } { 2 } } \left(\gamma_{m} \operatorname{th} \frac{\gamma_{n} a_{2}}{2}-\right.\right. \tag{3.10}\\
&\left.\left.-\xi \operatorname{th} \frac{\xi_{n} a_{2}}{2}\right) \sin \alpha_{n} x_{1}+\frac{1}{a_{2}} \sum_{m=1,3, \ldots}^{\infty}\left(\frac{\delta_{m} \operatorname{sh} \delta_{m} x_{1}}{\operatorname{ch} \delta_{m} \frac{a_{1}}{2}}-\frac{\eta_{m} \operatorname{sh} \eta_{m} x_{1}}{\operatorname{ch} \eta_{m} \frac{a_{1}}{2}}\right)\right\}
\end{align*}
$$

To cancel the stresses $\sigma_{12}^{(0)}$ on the boundary of the prism an appropriate state of stress should be superposed, $\sigma_{i j}^{*}$ expressed in terms of the functions F_{1} and F_{2} satisfying Eqs. (2.17). Introducing the notations

$$
\begin{equation*}
F^{*}=F_{1}+F_{2}=e^{i \omega t}(\Phi+\Psi), \quad F^{*}=G_{1} e^{i \omega t} \tag{3.11}
\end{equation*}
$$

we reduce Eqs. (2.17) to the form

$$
\begin{equation*}
\left(\nabla^{2}+k_{1}^{2}\right) \Phi=0, \quad\left(\nabla^{2}+k_{2}^{2}\right)^{\Psi}=0, \quad k_{2}^{2}=\frac{\omega^{2}}{c_{2}^{2}} \tag{3.12}
\end{equation*}
$$

The solutions of these equations, taking into consideration the symmetry in relation to the x_{1} and x_{2}-axis, are the functions

$$
\begin{align*}
& \Phi=\sum_{n=1,3, \ldots}^{\infty} C_{n} \operatorname{ch} \xi_{n} x_{2} \cos \alpha_{n} x_{1}+\sum_{m=1,3, \ldots}^{\infty} A_{m} \operatorname{ch} \eta_{m} x_{1} \cos \beta_{m} x_{2}, \tag{3.13}\\
& \Psi=\sum_{n=1,3, \ldots}^{\infty} D_{n} \operatorname{ch} \bar{\xi}_{n} x_{2} \cos \alpha_{n} x_{1}+\sum_{m=1,3, \ldots}^{\infty} B_{m} \operatorname{ch} \bar{\eta}_{m} x_{1} \cos \beta_{m} x_{2},
\end{align*}
$$

where

$$
\bar{\xi}_{n}=\sqrt{\alpha_{n}^{2}-k_{2}^{2}}, \quad \bar{\eta}_{m}=\sqrt{\beta_{m}^{2}-k_{2}^{2}} .
$$

The additional stresses $\sigma_{i j}^{*}$ are expressed by Eq. (2.18), where the function F^{*} is expressed in terms of Φ and Ψ by Eq. (3.11).

In order to cancel the shear stresses $\sigma_{12}^{(0)}$ on the boundary, the following boundary conditions should be satisfied:

$$
\begin{gather*}
\text { for } \quad x_{1}= \pm \frac{a_{1}}{2} \\
\sigma_{11}^{(0)}+\sigma_{11}^{*}=0, \quad \sigma_{12}^{(0)}+\sigma_{12}^{*}=0 \tag{3.15}
\end{gather*}
$$

or

$$
G_{1,22}+\frac{k_{1}^{2}}{2} G_{1}=0, \quad-G_{1,12}+\tau_{12}^{(0)}=0, \quad \sigma_{12}^{(0)}=e^{i \omega t} \tau_{12}^{(0)} ;
$$

and for $\quad x_{2}= \pm \frac{a_{2}}{2}$

$$
\begin{equation*}
\sigma_{22}^{(0)}+\sigma_{22}^{*}=0, \quad \sigma_{12}^{(0)}+\sigma_{12}^{*}=0 ; \tag{3.16}
\end{equation*}
$$

or

$$
G_{1,11}+\frac{k_{1}^{2}}{2} G_{1}=0, \quad-G_{1,12}+\tau_{12}^{(0)}=0
$$

From the first condition (3.15') and from the first condition (3.16'), we obtain:

$$
\begin{equation*}
B_{m}=-A_{m} t\left(\eta_{m}^{*}, \bar{\eta}_{m}^{*}\right), \quad D_{n}=-C_{n} t\left(\xi_{n}^{*}, \bar{\xi}_{n}^{*}\right), \tag{3.17}
\end{equation*}
$$

with the following notations

$$
t\left(\eta_{m}^{*}, \bar{\eta}_{m}^{*}\right)=\frac{\operatorname{ch} \eta_{m} \frac{a_{1}}{2}}{\operatorname{ch} \bar{\eta}_{m} \frac{a_{1}}{2}}, \quad t\left(\xi_{n}^{*}, \bar{\xi}_{n}^{*}\right)=\frac{\operatorname{ch} \xi_{n} \frac{a_{2}}{2}}{\operatorname{ch} \bar{\xi}_{n} \frac{a_{2}}{2}} .
$$

From the second condition (3.15'), we obtain the equation:

$$
\begin{align*}
& \sum_{n=1,3, \ldots}^{\infty} C_{n}\left[\xi_{n} \operatorname{sh} \xi_{n} x_{2}-t\left(\xi_{n}^{*}, \bar{\xi}_{n}^{*}\right) \bar{\xi}_{n} \operatorname{sh} \bar{\xi}_{n} x_{2}\right](-1)^{\frac{n-1}{2}} \alpha_{n}+ \tag{3.18}\\
& +\sum_{m=1,3, \ldots}^{\infty} A_{m}\left[\left[\eta_{m} \operatorname{sh} \eta_{m} \frac{a_{1}}{2}-t\left(\eta_{m}^{*}, \bar{\eta}_{m}^{*}\right) \bar{\eta}_{m} \operatorname{sh} \bar{\eta}_{m} \frac{a_{1}}{2}\right] \beta_{m} \sin \beta_{m} x_{2}-\right. \\
& \quad-\frac{8 \mu \bar{m} T_{0}}{i \eta+k_{1}^{2}}\left\{\frac { 1 } { a _ { 1 } } \sum _ { n = 1 , 3 , \ldots } ^ { \infty } \left[\gamma_{n} \frac{\operatorname{sh} \gamma_{n} x_{2}}{\operatorname{ch} \gamma_{n} \frac{a_{2}}{2}}-\xi_{n} \frac{\operatorname{sh} \xi_{n} x_{2}}{\left.\operatorname{ch} \xi_{n} \frac{a_{2}}{2}\right]+}\right.\right. \\
& \left.\quad+\frac{1}{a_{2}} \sum_{m=3,1, \ldots}^{\infty}(-1)^{\frac{m-1}{2}}\left(\delta_{m} \text { th } \frac{\delta_{m} a_{1}}{2}-\eta_{m} \text { th } \frac{\eta_{m} a_{1}}{2}\right) \sin \beta_{m} x_{2}\right\}=0 .
\end{align*}
$$

Expressing the function $\operatorname{sh} \xi_{n} x_{2}, \operatorname{sh} \bar{\xi}_{n} x_{2}, \operatorname{sh} \gamma_{n} x_{2}$ in the form of the infinite series

$$
\left\{\begin{array}{l}
\operatorname{sh} \xi_{m} x_{2}=\sum_{m=1,3, \ldots}^{\infty} E_{n m} \sin \beta_{m} x_{2},\left|x_{2}\right|<a_{2} / 2 \tag{3.19}\\
E_{n m}=\frac{4 \xi_{n}}{a_{2}} \frac{(-1)^{\frac{m-1}{2}}}{\xi_{n}^{2}+\beta_{m}^{2}} \operatorname{ch} \frac{\xi_{n} a_{2}}{2} \quad \text { and so on }
\end{array}\right.
$$

and introducing the notations
(3.20) $\left\{\begin{array}{l}\nabla_{n m}=\alpha_{n}^{2}+\beta_{m}^{2}, \\ b_{m}=\frac{1}{\operatorname{ch} \bar{\eta}_{m} \frac{a_{1}}{2}}\left(\eta_{m} \operatorname{sh} \eta_{m} \frac{a_{1}}{2} \operatorname{ch} \bar{\eta}_{m} \frac{a_{1}}{2}-\bar{\eta}_{m} \operatorname{sh} \bar{\eta}_{m} \frac{a_{1}}{2} \operatorname{ch} \eta_{m} \frac{a_{1}}{2}\right),\end{array}\right.$
we reduce Eq. (3.18) to the form:

$$
\begin{equation*}
A_{m} \beta_{m} b_{m}-\frac{4}{a^{2}}\left(k_{1}^{2}-k_{2}^{2}\right)(-1)^{\frac{m-1}{2}} \beta_{m}^{2} \sum_{n=1,3, \ldots}^{\infty} \frac{C_{n}(-1)^{\frac{n-1}{2}} \alpha_{n} \operatorname{ch} \xi_{n} \frac{a_{2}}{2}}{\left(\Lambda_{n m}-k_{1}^{2}\right)\left(\Delta_{n m}-k_{2}^{2}\right)}- \tag{3.21}
\end{equation*}
$$

$-\frac{8 \mu \bar{m} T_{0}}{i \eta+k_{1}^{2}} \frac{(-1)^{\frac{m-1}{2}}}{a_{2}}\left(\frac{k_{1}^{2}}{\eta_{m}}\right.$ th $\eta_{m} \frac{a_{1}}{2}+\frac{i \eta}{\delta_{m}}$ th $\left.\frac{\delta_{m} a_{1}}{2}\right)=0 \quad(m=1,3,5, \ldots, \infty)$.
From a boundary condition of the group (3.16), we obtain a system of equations analogous to (3.21):

$$
\begin{gather*}
C_{n} \alpha_{n} c_{n}-\frac{4}{a_{1}}\left(k_{1}^{2}-k_{2}^{2}\right)(-1)^{\frac{n-1}{2}} \alpha_{n}^{2} \sum_{m=1,3, \ldots}^{\infty} \frac{A_{m}(-1)^{\frac{m-1}{2}} \beta_{m} \operatorname{ch} \eta_{m} \frac{a_{1}}{2}}{\left(\Delta_{n m}-k_{1}^{2}\right)\left(\Delta_{n m}-k_{2}^{2}\right)}- \tag{3.22}\\
-\frac{8 \mu \bar{m} T_{0}}{i \eta+k_{1}^{2}} \frac{(-1)^{\frac{n-1}{2}}}{a_{1}}\left(\frac{k_{1}^{2}}{\xi_{n}} \operatorname{th} \xi_{n} \frac{a_{2}}{2}+\frac{i \eta}{\gamma_{n}} \operatorname{th} \gamma_{n} \frac{a_{2}}{2}\right)=0 \\
\quad(n=1,3,5, \ldots, \infty),
\end{gather*}
$$

where

$$
c_{n}=\frac{1}{\operatorname{ch} \bar{\xi}_{n} \frac{a_{2}}{2}}\left(\xi_{n} \operatorname{sh} \frac{\xi_{n} a_{2}}{2} \operatorname{ch} \frac{\bar{\xi}_{n} a_{2}}{2}-\bar{\xi}_{n} \operatorname{sh} \bar{\xi}_{n} \frac{a_{2}}{2} \operatorname{ch} \xi_{n} \frac{a_{2}}{2}\right) .
$$

We have obtained an infinite system of non-homogeneous equations of which for given frequencies of temperature changes ω, we can determine the constants $A_{m}, B_{m}, C_{n}, D_{n}$. Let us observe that for a fixed and finite value ω it is that $\alpha_{n}^{2}-k_{1}^{2}<0$ or that for a certain n the quantities ξ_{n} become imaginary.
The same applies to $\bar{\xi}_{n}, \eta_{m}, \bar{\eta}_{m}$.
The system of equations (3.21) and (3.22) can be written in the form:

$$
\left\{\begin{array}{l}
A_{m} e_{m}+\sum_{n=1}^{\infty} C_{n} f_{n m}=d_{m}, \tag{3.23}\\
C_{n} g_{n}+\sum_{m=1}^{\infty} A_{m} h_{n m}=k_{n},
\end{array} \quad(n, m=1,3, \ldots, \infty) .\right.
$$

Since the quantities $A_{m}, C_{n}, e_{m}, \ldots$ etc. are complex $A_{m}=A_{m}^{0}+i \bar{A}_{m}, \ldots$, therefore the system of equations should be split up into two systems:

$$
\left\{\begin{array}{l}
A_{m}^{0} e_{m}^{0}-A_{m}^{\bar{e}} \bar{e}_{m}+\sum_{n=1}^{\infty}\left(C_{n}^{0} f_{n m}^{0}-\bar{C}_{n} \bar{f}_{-m}\right)=d_{m}^{0} \tag{3.24}\\
C_{n}^{0} g_{n}^{0}-\bar{C}_{n} \bar{g}_{n}+\sum_{m=1}^{\infty}\left(A_{m}^{0} h_{n m}^{0}-\bar{A}_{m} \bar{h}_{n m}\right)=k_{n}^{0}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\bar{A}_{m} e_{m}^{0}+\bar{e}_{m} A_{m}^{0}+\sum_{n=1}^{\infty}\left(\bar{C}_{n} f_{n m}^{0}+\bar{f}_{n m}^{0} C_{n}^{0}\right)=\bar{d}_{m} \tag{3.25}\\
\bar{C}_{n} g_{n}^{0}+\bar{g}_{n} C_{n}^{0}+\sum_{m=1}^{\infty}\left(\bar{A}_{m} h_{n m}^{0}+A_{m}^{0} \bar{h}_{n m}\right)=\bar{k}_{n}
\end{array}\right.
$$

In the case of a quadratic prism, considerable simplification can be achieved because $C_{n}^{0}=A_{n}^{0}, \bar{C}_{n}=\bar{A}_{n}$. The following system of equations is to be solved:

$$
\left\{\begin{array}{l}
A_{m}^{0} e_{m}^{0}-\bar{A}_{m} \bar{e}_{m}+\sum_{n=1}^{\infty}\left(A_{n}^{0} f_{n m}^{0}-\bar{A}_{n} \bar{f}_{n m}\right)=d_{m}^{0} \tag{3.26}\\
\bar{A}_{m} e_{m}^{0}+A_{m}^{0} \bar{e}_{m}+\sum_{n=1}^{\infty}\left(\bar{A}_{n} f_{n m}^{0}+A_{n}^{0} \bar{f}_{n m}\right)=\bar{d}_{m}
\end{array}\right.
$$

The frequency of forced vibration ω must be chosen so that it does not coincide with the natural frequency of the prism. The natural frequency of the prism will be obtained from the homogeneous system of equations (3.21), (3.22) by setting the determinant of this system equal to zero.
The case of an elastic layer $\left(a_{2} \rightarrow \infty\right)$ is therefore particulary simple in the case where $T\left(\pm \frac{a_{1}}{2}, t\right)=T_{0} e^{i \omega t}$, if the temperature and the stresses depend on x and t only.
(3.27)

$$
U\left(x_{1}\right)=T_{0} \frac{\operatorname{ch} \varepsilon x_{1}}{\operatorname{ch} \varepsilon \frac{a_{1}}{2}}, \quad V\left(x_{1}\right)=T_{0} \frac{\cos k_{1} x_{1}}{\cos k_{1} \frac{a_{1}}{2}}, \quad \varepsilon=\sqrt{i \eta},
$$

and

$$
\begin{equation*}
F_{0}=-\frac{2 \mu \bar{m}}{i \eta+k_{1}^{2}}(U-V) e^{i \omega t} \tag{3.28}
\end{equation*}
$$

To determine the stresses, it suffices to know the function F_{0} because the boundary conditions $\sigma_{11}=\sigma_{12}=0$ on the boundaries $x_{1}= \pm a_{1} / 2$ are satisfied.

The stresses will be obtained from the equations:

$$
\begin{equation*}
\sigma_{11}=\frac{k_{1}^{2}}{2} e^{i \omega t} G_{0}, \quad \sigma_{22}=e^{i \omega t}\left(G_{0,11}+\frac{k_{1}^{2}}{2} G_{0}\right), \quad \sigma_{12}=0 . \tag{3.29}
\end{equation*}
$$

In particular, for σ_{11} we obtain the equation:

$$
\begin{equation*}
\sigma_{11}=-\frac{\mu \bar{m} k_{1}^{2} T_{0} e^{i \omega t}}{\left(i \eta+k_{1}^{2}\right)}\left(\frac{\operatorname{ch} \sqrt{i \eta} x_{1}}{\operatorname{ch} \sqrt{i \eta} \frac{a_{1}}{2}}-\frac{\cos k_{1} x}{\cos k_{1} \frac{a_{1}}{2}}\right) \tag{3.30}
\end{equation*}
$$

If the temperature $T_{0} \cos \omega t$ is prescribed on the boundary the stresses σ_{11} are given by the real part of the equation (3.29) if $T_{0} \sin \omega t$ on the boundary then - by the imaginary part of (3.29).

Let us observe that the stresses increase indefinitely if $\cos k_{1} a \rightarrow 0$. The case of $\cos k_{1} a=0$ determines the natural frequencies $\omega_{0}=\left(\pi / a_{1}\right)(2 n-1) c_{1}$ of an elastic layer.

4. The Plane Dynamic Coupled Problem of Thermoelasticity

Let us consider an elastic body acted on by a non-steady-state temperature field in a plane state of stress. The coupling between the temperature field and the strain field will, however, be taken into account. In this case we have the generalized heat equation

$$
\begin{equation*}
\square_{3}^{2} T-\partial_{t} \chi \varepsilon_{k k}=-\frac{Q}{\varkappa}, \tag{4.1}
\end{equation*}
$$

where $\chi=\gamma T_{0} / \varrho c$ and $T_{0}+T$ is the absolute temperature and the state $T=0$ is identical with the state where the stresses and displacements are zero; c - is the specific heat.

For the coupled problem, Eqs. (2.1)-(2.3) are valid. If we confine ourselves to the temperature field only the mass forces being disregarded 1 , equations (2.11), (2.12) and (2.13) remain valid.

Expressing $\varepsilon_{k k}$ in (4.1) in terms of $\sigma_{k k}$ by means of (2.2) and in terms of the stress function F by means of (2.12) we obtain finally the system of two equations

$$
\begin{equation*}
\square_{4}^{2} T-\varepsilon \partial_{t} \square_{2}^{2} F=-Q / \varkappa, \quad \square_{4}^{2}=\nabla^{2}-\frac{1}{\varkappa_{0}} \partial_{t}, \quad \frac{1}{x_{0}}=\frac{1}{\varkappa}+2 \varepsilon \gamma, \tag{4.2}
\end{equation*}
$$

$$
\varepsilon=\frac{\chi}{2(\lambda+\mu)}
$$

$$
\begin{equation*}
\square_{1}^{2} \square{ }_{2}^{2} F+2 \mu \bar{m} \square \square_{2}^{2} T=0 . \tag{4.3}
\end{equation*}
$$

Eliminating from these equations the temperature, we obtain the differential equation:

$$
\begin{equation*}
\square_{2}^{2}\left\{\left[\square_{1}^{2} \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right] F-\frac{2 \mu \bar{m} Q}{\varkappa}\right\}=0 . \tag{4.4}
\end{equation*}
$$

It is seen that if the coupling is disregarded $(\chi \rightarrow 0)$ Eq. (4.4) becomes (2.13) subject to the operation \square_{3}^{2}.

The particular integral will be obtained from the equation:

$$
\begin{equation*}
\left(\square_{1}^{2} \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right) F_{0}=\frac{2 \mu \bar{m} Q}{\varkappa} \tag{4.5}
\end{equation*}
$$

and the stress corresponding to the function F_{0}-from Eqs. (2.15). For the infinite region, F_{0}, constitutes the solution of the problem.

For a bounded region, the general integral F^{*} of the equation

$$
\begin{equation*}
\square_{2}^{2}\left(\square_{1}^{2} \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right) F^{*}=0 \tag{4.6}
\end{equation*}
$$

should be added to the particular integral F_{0}, where $F^{*}=F_{1}+F_{2}$ and the functions F_{1}, F_{2} should satisfy the equations:

$$
\begin{equation*}
\left(\square_{1}^{2} \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right) F_{1}=0, \quad \square_{2}^{2} F_{2}=0 \tag{4.7}
\end{equation*}
$$

The stresses connected with the function F^{*} will be found from Eqs. (2.18).
The second method, also very convenient, consists in reassumption of the displacement vector in the form:

$$
\begin{equation*}
\mathbf{u}=\operatorname{grad} \Phi+\operatorname{rot} \psi \tag{4.8}
\end{equation*}
$$

Substituting (4.8) in the displacement equations (2.20) and in the heat equation (4.1), we obtain a system of three equations:

$$
\begin{align*}
& \square_{3}^{2} T-\chi \partial_{t} \nabla^{2} \Phi=-Q / \varkappa, \tag{4.9}\\
& \square_{1}^{2} \Phi=\bar{m} T, \quad \square_{2}^{2} \psi=0 . \tag{4.10}
\end{align*}
$$

Eliminating T we shall obtain a system of equations [10]:

$$
\begin{equation*}
\left(\square_{1}^{2} \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right) \Phi_{0}=-\frac{\bar{m} Q}{\varkappa}, \quad \square_{2}^{2} \psi=0 \tag{4.11}
\end{equation*}
$$

Finding the function Φ from Eq. (4.11), we shall obtain the temperature T from the first of Eqs. (4.10).

If we are concerned with an infinite body, the function Φ_{0} which is a particular integral of the equation

$$
\begin{equation*}
\left(\square_{1}^{2} \square_{3}^{2}-\chi \bar{m} \partial_{t} \nabla^{2}\right) \Phi_{0}=-\frac{\bar{m} Q}{x} \tag{4.12}
\end{equation*}
$$

is the solution of the problem. The stresses $\sigma_{i j}^{0}$ connected with the function Φ_{0} are given by the equations

$$
\begin{equation*}
\sigma_{i j}^{(0)}=2 \mu\left\{\Phi_{0, i j}-\delta_{i j}\left[\nabla^{2}-\frac{1}{2 c_{2}^{2}} \partial_{t}^{2}\right] \Phi_{0}\right\} \quad(i, i=1,2) . \tag{4.13}
\end{equation*}
$$

For a bounded region, we should solve also the system of equations

$$
\begin{equation*}
\left(\square_{1}^{2} \square \square_{3}^{2}-\bar{m} \chi \partial_{t} \nabla^{2}\right) \Phi^{*}=0, \quad \square_{2}^{2} \psi=0 . \tag{4.14}
\end{equation*}
$$

[^0]The additional stresses $\sigma_{i j}^{*}$ are given by the equations

$$
\left\{\begin{array}{l}
\sigma_{11}^{*}=2 \mu\left(-\Phi_{, 22}^{*}+\frac{1}{2 c_{2}^{2}} \partial_{t}^{2} \Phi^{*}\right)+2 \mu \psi_{, 12} \tag{4.15}\\
\sigma_{22}^{*}=2 \mu\left(-\Phi_{, 11}^{*}+\frac{1}{2 c_{2}^{2}} \partial_{t}^{2} \Phi^{*}\right)-2 \mu \psi_{, 12} \\
\sigma_{12}^{*}=2 \mu \Phi_{, 12}^{*}+\mu\left(\psi_{, 22}-\psi_{, 11}\right)
\end{array}\right.
$$

The final expressions for stresses are obtained by superposition

$$
\begin{equation*}
\sigma_{i j}=\sigma_{i j}^{(0)}+\sigma_{i j}^{*} \tag{4.16}
\end{equation*}
$$

5. Forced Coupled Thermoelastic Vibration of a Rectangular Prism

Let us consider an infinite rectangular cylinder inside which uniformly distributed heat sources act in a harmonic manner $Q=Q_{0} e^{i o t}$.

Let $T=0$ on the lateral surface of the prism. Substituting in (4.9) and (4.10)

$$
\begin{equation*}
T=U e^{i \omega t}, \quad \Phi=\theta e^{i \omega t}, \quad \psi=\Psi e^{i \omega t} \tag{5.1}
\end{equation*}
$$

we obtain the system of equations:

$$
\begin{equation*}
\nabla^{2} U-i \eta U-\chi^{i \omega} \nabla^{2} \theta=-\frac{Q_{0}}{x} \quad \eta=\frac{\omega}{x} \tag{5.2}
\end{equation*}
$$

(5.3) $\quad\left(\nabla^{2}+\sigma^{2}\right) \theta=\bar{m} U, \quad\left(\nabla^{2}+\tau^{2}\right) \Psi=0, \quad \sigma^{2}=\frac{\omega^{2}}{c_{1}^{2}}, \quad \tau^{2}=\frac{\omega^{2}}{c_{2}^{2}}$.

Eliminating from these equations first U and then θ, we obtain:

$$
\begin{equation*}
\left(\nabla^{2}+x_{1}^{2}\right)\left(\nabla^{2}+x_{2}^{2}\right) U=-\frac{1}{x}\left(\nabla^{2}+\sigma^{2}\right) Q_{0} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla^{2}+x_{1}^{2}\right)\left(\nabla^{2}+x_{2}^{2}\right) \theta=-\frac{\bar{m}}{x} Q_{0}, \quad\left(\nabla^{2}+\tau^{2}\right) \psi=0 \tag{5.5}
\end{equation*}
$$

where

$$
x_{1}^{2}+\varkappa_{2}^{2}=-q(1+\varepsilon)+\sigma^{2}, \quad \varkappa_{1}^{2} \varkappa_{2}^{2}=-q \sigma^{2}, \quad q=\frac{i \omega}{\varkappa}, \quad \varepsilon=\chi \varkappa \bar{m} .
$$

The solution of (5.4) is the double series:
(5.6) $U\left(x_{1}, x_{2}\right)=\frac{16 Q_{0}}{a_{1} a_{2} \chi_{n}} \sum_{n=m=1,3}^{\infty} \frac{(-1)^{\frac{n-1}{2}}(-1)^{\frac{m-1}{2}}\left(\Delta_{n m}-\sigma^{2}\right) \cos \alpha_{n} x_{1}}{\alpha_{n} \beta_{m}\left(\Delta_{n m}-\varkappa_{1}^{2}\right)\left(\Delta_{n m}-\chi_{1}^{2}\right)} \cos \beta_{m} x_{2}$,
where

$$
\Delta_{n m}=a_{n}^{2}+\beta_{m}^{2}, \quad a_{n}=\frac{n \pi}{a_{1}}, \quad \beta_{m}=\frac{m \pi}{a_{2}} .
$$

The boundary conditions $T=0$ are satisfied for $x_{1}= \pm a_{1} / 2, x_{2}= \pm a_{2} / 2$. Next, we determine a particular integral of Eq. (5.5). It has the form:
(5.7) $\quad \theta_{0}=-\frac{16 Q_{0} \bar{m}}{a_{1} a_{2} \varkappa} \sum_{n, m=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}(-1)^{\frac{m-1}{2}}}{\alpha_{n} \beta_{m}\left(\Delta_{n m}-\varkappa_{1}^{2}\right)\left(\Delta_{n m}-\varkappa_{2}^{2}\right)} \cos \alpha_{n} x_{1} \cos \beta_{n} x_{2}$,
or
$\theta_{0}=-\frac{8 Q_{0} \bar{m}}{a_{1} \psi\left(\chi_{1}^{2}-\chi_{2}^{2}\right)} \sum_{n=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}} \cos \alpha_{n} x_{1}}{\alpha_{n}}\left[\frac{1}{\lambda_{n}^{2}}\left(1-\frac{\operatorname{ch} \lambda_{n} x_{2}}{\operatorname{ch} \frac{\lambda_{n} a_{2}}{2}}\right)-\right.$ $\left.-\frac{1}{\bar{\lambda}_{n}^{2}}\left(1-\frac{\operatorname{ch} \bar{\lambda}_{4} x_{2}}{\operatorname{ch} \frac{\bar{\lambda}_{n} a_{2}}{2}}\right)\right]$,

$$
\lambda_{n}=\sqrt{a_{n}^{2}-\varkappa_{1}^{2}}, \quad \bar{\lambda}_{n}=\sqrt{a_{u}^{2}-\varkappa_{2}^{2}} .
$$

It can easily be verified that the normal stresses vanish on the boundary of prism. The stress σ_{12}^{0} remain different from zero

$$
\begin{equation*}
\sigma_{12}^{(0)}=-\frac{32 \bar{m} \mu Q_{0}}{a_{1} a_{2} \tau} \sum_{n, m=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}(-1)^{\frac{m-1}{2}}}{\left(\Delta_{n m}-\chi_{1}^{2}\right)\left(\Delta_{n m}-\varkappa_{2}^{2}\right)} \sin \alpha_{n} x_{1} \sin \beta_{m} x_{2} \tag{5.8}
\end{equation*}
$$

The stresses $\sigma_{i j}^{(0)}$ at the edge will be suppressed by adding to the state $\sigma_{12}^{(0)}$ the state of stress $\sigma_{i,}^{*}$, expressed in terms of the functions Φ^{*} and Ψ^{*}. Thus, Eqs. (4.14) should be solved with the following boundary conditions

$$
\left\{\begin{array}{llll}
\sigma_{11}^{(1)}+\sigma_{11}^{*}=0, & \sigma_{12}^{(0)}+\sigma_{12}^{*}=0, & T^{*}=0 & \text { for } \tag{5.9}\\
x_{1}=a_{1} / 2 \\
\sigma_{22}^{(0)}+\sigma_{22}^{*}=0, & \sigma_{12}^{(0)}+\sigma_{12}^{*}=0, & T^{*}=0 & \text { for } \\
x_{2}=a_{2} / 2
\end{array}\right.
$$

where the function T^{*} is determined by the relation

$$
\begin{equation*}
T^{*}=\frac{1}{\bar{m}} \square_{1}^{2} \Phi^{*} \tag{5.10}
\end{equation*}
$$

Introducing the notations
(5.11) $\quad \Phi^{*}\left(x_{1}, x_{2}, t\right)=e^{i \omega t} \theta^{*}\left(x_{1}, x_{2}\right), \quad \Psi=e^{i \omega t} \Psi^{*}, \quad T^{*}=e^{i \omega t} U^{*}$,

Eqs. (4.14) are reduced to the form:

$$
\begin{gather*}
\left(\nabla^{2}+x_{1}^{2}\right)\left(\nabla^{2}+x_{2}^{2}\right) \theta^{*}=0, \quad\left(\nabla^{2}+\tau^{2}\right) \Psi^{*}=0 \tag{5.12}\\
U^{*}=\frac{1}{\bar{m}}\left(\nabla^{2}+\sigma^{2}\right) \theta^{*} . \tag{5.13}
\end{gather*}
$$

The functions θ^{*} and Ψ^{*} will be assumed in the form:

$$
\begin{align*}
& \theta^{*}=\sum_{n=1,3, \ldots}^{\infty}\left(E_{n} \operatorname{ch} \lambda_{n} x_{2}+F_{n} \operatorname{ch} \bar{\lambda}_{n} x_{2}\right) \cos \alpha_{n} x_{1}+ \tag{5.14}\\
&+\sum_{m=1,3, \ldots}^{\infty}\left(G_{m} \operatorname{ch} \xi_{m} x_{1}+H_{m} \operatorname{ch} \bar{\xi}_{m} x_{1}\right) \cos \beta_{m} x_{2},
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\xi_{m}=\sqrt{\beta_{m}^{2}-x_{1}^{2}}, \quad \bar{\xi}_{m}=\sqrt{\beta_{m}^{2}-x_{2}^{2}} \tag{5.15}\\
\Psi^{*}=\sum_{n=1,3, \ldots}^{\infty} A_{n} \operatorname{sh} \gamma_{n} x_{2} \sin \alpha_{n} x_{1}+\sum_{m=1,3}^{\infty} B_{m} \operatorname{sh} \eta_{m} x_{1} \sin \beta_{m} x_{2},
\end{array}\right.
$$

and

$$
\gamma_{n}=\sqrt{\alpha_{n}^{2}-\tau^{2}}, \quad \eta_{m}=\sqrt{\beta_{m}^{2}-\tau^{2}} .
$$

From (5.13), we obtain

$$
\begin{align*}
U^{*}=\frac{1}{\bar{m}} & \left\{\sum_{n=1,3, \ldots}^{\infty}\left[E_{n}\left(\sigma^{2}-\varkappa_{1}^{2}\right) \operatorname{ch} \lambda_{n} x_{2}+F_{n}\left(\sigma^{2}-\varkappa_{2}\right) \operatorname{ch} \bar{\lambda}_{n} x_{2}\right] \cos \alpha_{n} x_{1}+\right. \tag{5.16}\\
& \left.+\sum_{m=1,3, \ldots}^{\infty}\left[G_{m}\left(\sigma^{2}-x_{1}^{2}\right) \operatorname{ch} \xi_{m} x_{1}+H_{m}\left(\sigma^{2}-\varkappa_{2}^{2}\right) \operatorname{ch} \bar{\xi}_{m} x_{1}\right] \cos \beta_{m} x_{2}\right\}
\end{align*}
$$

The constants $A_{n}, B_{n}, \ldots, H_{m}$ will be determined from the boundary conditions (5.9) which, according to Eqs. (5.11), take the form:

$$
\left\{\begin{array}{rr}
-2 \mu\left(\partial_{2}^{2}+\frac{\tau^{2}}{2}\right) \theta^{*}+2 \mu \Psi_{.12}^{*}=0, & \sigma_{12}^{0}+2 \mu \theta_{.12}^{*}+\mu\left(\partial_{2}^{2}-\partial_{1}^{2}\right) \Psi^{*}=0 \tag{5.17}\\
-2 \mu\left(\partial_{1}^{2}+\frac{\tau^{2}}{2}\right) \theta^{*}-2 \mu \Psi_{.12}^{*}=0, & \sigma_{12}^{0}+2 \mu \theta_{.12}^{*}+\mu\left(\partial_{2}^{2}-\partial_{1}^{2}\right) \Psi^{*}=0 \\
\text { for } x_{1}=a_{1} / 2 \\
U^{*}=0 & \text { for } x_{2}=a_{2} / 2
\end{array}\right.
$$

Let us eliminate the quantities F_{n} and H_{m} by means of the conditions of zero temperature on the boundary of the prism. Then,

$$
\begin{align*}
& \theta^{*}=\sum_{n=1,3, \ldots}^{\infty} E_{n}\left(\operatorname{ch} \lambda_{n} x_{2}-\varkappa_{12} \frac{\operatorname{ch} \lambda_{n} \frac{a_{2}}{2}}{\operatorname{ch} \bar{\lambda}_{n} \frac{a_{2}}{2}} \operatorname{ch} \bar{\lambda}_{n} x_{2}\right) \cos \alpha_{n} x_{1}+ \tag{5.18}\\
&+\sum_{m=1,3}^{\infty} G_{m}\left(\operatorname{ch} \xi_{m} x_{1}-\varkappa_{12} \frac{\operatorname{ch} \xi_{m} \frac{a_{1}}{2}}{\operatorname{ch} \bar{\xi}_{m} \frac{a_{1}}{2}} \operatorname{ch} \bar{\xi}_{m} x_{1}\right) \cos \beta_{m} x_{2},
\end{align*}
$$

where

$$
\begin{align*}
& U^{*}=\frac{\sigma^{2}-\varkappa_{1}^{2}}{\bar{m}}\left[\sum_{n=1,3}^{\infty} E_{n}\left(\operatorname{ch} \lambda_{n} x_{2}-\frac{\operatorname{ch} \lambda_{n} \frac{a_{2}}{2}}{\operatorname{ch} \bar{\lambda}_{n} \frac{a_{2}}{2}} \operatorname{ch} \bar{\lambda}_{n} x_{2}\right) \cos \alpha_{n} x_{1}+\right. \tag{5.19}\\
&\left.+\sum_{m=1,3, \ldots}^{\infty} G_{m}\left(\operatorname{ch} \xi_{m} x_{1}-\frac{\operatorname{ch} \xi_{m} \frac{a_{1}}{2}}{\operatorname{ch} \bar{\xi}_{m} \frac{a_{1}}{2}} \operatorname{ch} \bar{\xi}_{m} x_{1}\right) \cos \beta_{m} x_{2}\right] .
\end{align*}
$$

By means of the conditions of zero normal stress on the edge of the cylinder, we eliminate the constants E_{n}, G_{m}. The following expression is obtained for the function θ^{*},
(5.20) $\theta^{*}=\frac{2 \mu}{1-\varkappa_{12}}\left[\sum_{n=1,3, \ldots}^{\infty} A_{n} a_{n}^{0}\left(\operatorname{ch} \lambda_{n} x_{2}-\varkappa_{12} \frac{\operatorname{ch} \lambda_{n} \frac{a_{2}}{2}}{\operatorname{ch} \bar{\lambda}_{n} \frac{a_{2}}{2}} \operatorname{ch} \bar{\lambda}_{n} x_{2}\right) \cos \alpha_{n} x_{1}-\right.$

$$
\left.-\sum_{m=1,3 \ldots}^{\infty} B_{m} b_{m}^{0}\left(\operatorname{ch} \xi_{m} x_{1}-\varkappa_{12} \frac{\operatorname{ch} \xi_{m} \frac{a_{1}}{2}}{\operatorname{ch} \bar{\xi}_{m} \frac{a_{1}}{2}} \operatorname{ch} \bar{\xi}_{n} x_{1}\right) \cos \beta_{m} x_{2},\right]
$$

where

$$
\left\{\begin{array}{l}
a_{n}^{0}=\frac{\alpha_{n} \gamma_{n}}{2 \mu a_{n}^{2}-\varrho \omega^{2}} \frac{\operatorname{ch} \gamma_{n} \frac{a_{2}}{2}}{\operatorname{ch} \lambda_{n} \frac{a_{2}}{2}}, \tag{5.21}\\
b_{m}^{01}=\frac{\beta_{m} \eta_{m}}{2 \mu \rho_{m}^{2}-\varrho \omega^{2}} \frac{\operatorname{ch} \eta_{m} \frac{a_{1}}{2}}{\operatorname{ch} \xi_{m} \frac{a_{1}}{2}}
\end{array}\right.
$$

Finally, from the condition of zero shear stress on the boundary we obtain a system of linear equations with an infinite number of coefficients A_{n}, B_{m}
where the hyperbolic functions have been expanded in series according to Eqs. (3.19):

$$
\begin{array}{r}
\begin{array}{r}
\frac{4}{a_{2}} \sum_{n=1,3, \ldots}^{\infty}(-1)^{\frac{n+m-2}{2}} A_{m}\left\{\frac{\left(2 \alpha_{n}^{2}-\tau^{2}\right) \gamma_{a} \operatorname{ch} \gamma_{n} \frac{a_{2}}{2}}{\Delta_{n m}-\tau^{2}}-\frac{4 \mu}{1-\varkappa_{12}} \alpha_{n} a_{n}^{0} \operatorname{ch} \lambda_{n} \frac{a_{2}}{2}\left[1-\varkappa_{12}-\right.\right. \\
\left.\left.-\beta_{m}^{2}\left(\frac{1}{\Delta_{n m}-\varkappa_{1}^{2}}-\varkappa_{12} \frac{1}{\Delta_{n m}-\varkappa_{2}^{2}}\right)\right]\right\}+B_{m}\left[\frac{4 \mu}{1-\varkappa_{12}} b_{m}^{0} \beta_{m} i_{m}-\left(2 \beta_{m}^{2}-\tau^{2}\right) \operatorname{sh} \eta_{m} \frac{a_{1}}{2}\right]- \\
\\
-\frac{M a_{1}}{4} \frac{(-1)^{\frac{m-1}{2}}}{\varkappa_{1}^{2}-\varkappa_{2}^{2}}\left(\frac{1}{\xi_{m}} \operatorname{th} \xi_{m} \frac{a_{1}}{2}-\frac{1}{\bar{\xi}_{m}} \operatorname{th} \bar{\xi}_{m} \frac{a_{1}}{2}\right)=0
\end{array} \tag{5.22}
\end{array}
$$

$$
\begin{gathered}
\frac{4}{a_{1}} \sum_{m=1,0, \ldots}^{\infty}(-1)^{\frac{m+m-2}{2}} B_{m}\left\{\frac{\left(2 \beta_{m}^{2}-\tau^{2}\right) \eta_{m} \operatorname{ch} \eta_{m} \frac{a_{1}}{2}}{\Delta_{n m}-\tau^{2}}-\frac{4 \mu}{1-\varkappa_{12}} \beta_{m} b_{m}^{0} \operatorname{ch} \xi_{m} \frac{a_{1}}{2}\left[1-\varkappa_{12}-\right.\right. \\
\left.\left.-a_{n}^{2}\left(\frac{1}{\Delta_{m m}-\varkappa_{1}^{2}}-\varkappa_{12} \frac{1}{\Delta_{n m}-\varkappa_{2}^{2}}\right)\right]\right\}+A_{n}\left[\frac{4 \mu}{1-\varkappa_{12}} a_{n}^{0} \alpha_{n} j_{n}-\left(2 a_{n}^{2}-\tau^{2}\right) \operatorname{sh} \gamma_{n} \frac{a_{2}}{2}\right]+ \\
+\frac{M a_{2}}{4} \frac{(-1)^{\frac{n-1}{2}}}{\varkappa_{1}^{2}-\varkappa_{2}^{2}}\left(\frac{1}{\lambda_{n}} \operatorname{th} \frac{\lambda_{n} a_{2}}{2}-\frac{1}{\bar{\lambda}_{n}} \operatorname{th} \frac{\bar{\lambda}_{n} a_{2}}{2}\right)=0 \\
(n, m,=1,3,5, \ldots, \infty)
\end{gathered}
$$

where

$$
\left\{\begin{array}{l}
i_{m}=\left(\xi_{m} \operatorname{sh} \xi_{m} \frac{a_{1}}{2}-\varkappa_{12} \frac{\operatorname{ch} \xi_{m} \frac{a_{1}}{2}}{\operatorname{ch} \bar{\xi}_{m} \frac{a_{1}}{2}} \bar{\xi}_{m} \operatorname{sh} \bar{\xi}_{m} \frac{a_{1}}{2}\right), \tag{5.24}\\
j_{n}=\left(\lambda_{n} \operatorname{sh} \lambda_{n} \frac{a_{2}}{2}-\varkappa_{12} \frac{\operatorname{ch} \lambda_{n} \frac{a_{2}}{2}}{\operatorname{ch} \bar{\lambda}_{n} \frac{a_{2}}{2}} \bar{\lambda}_{n} \operatorname{sh} \bar{\lambda}_{n} \frac{a_{2}}{2}\right), \quad M=\frac{32 Q_{0} \bar{m}}{a_{1} a_{2} \varkappa}
\end{array}\right.
$$

The system of equations (5.22), (5.23) may be reduced to one infinite system of equations for the sequence $\left\{A_{n}\right\}$ or $\left\{B_{m}\right\}$.

It is seen that the coupled problem can be represented by the simple series $\theta^{*}+\theta_{0}=\theta$, of which the coefficients can be determined from the system of equations (5.22), (5.23). Assuming $\chi=0$ in (5.2) and the subsequent equations, the calculations are simplified considerably for the uncoupled problem.

Let us consider in addition the case of $a_{2} \rightarrow \infty$ that is the case of an elastic layer with the heat sources $Q\left(x_{1} \cdot t\right)=Q_{0} e^{i \omega t}$ and $T=0$ on the edge.

Then

$$
\begin{equation*}
\theta\left(x_{1}\right)=-\frac{4 Q_{0} \bar{m}}{a_{1} \nless} \sum_{n=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}} \cos \alpha_{n} x_{1}}{\alpha_{n}\left(\alpha_{n}^{2}-x_{1}^{2}\right)\left(\alpha_{n}^{2}-x_{2}^{2}\right)} \tag{5.25}
\end{equation*}
$$

and the stresses are obtained from the equations:

$$
\begin{equation*}
\sigma_{11}=-\varrho \omega^{2} \theta\left(x_{1}\right) e^{i \omega t}, \quad \sigma_{22}=-2 \mu e^{i \omega t}\left(\theta_{, 11}+\frac{\varrho \omega^{2}}{2 \mu} \theta\right), \quad \sigma_{12}=0 \tag{5.26}
\end{equation*}
$$

These are the final results, all the boundary conditions being satisfied. The temperature field is:

$$
\begin{equation*}
T=U e^{i \omega t}=\frac{4 Q_{0} e^{i \omega \lambda}}{a_{1} \varkappa} \sum_{n=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}\left(\alpha_{n}^{2}-\sigma^{2}\right)}{\alpha_{n}\left(\alpha_{n}^{2}-x_{1}^{2}\right)\left(\alpha_{n}^{2}-\chi_{2}^{2}\right)} \cos \alpha_{n} x_{1} \tag{5.27}
\end{equation*}
$$

Let us consider the particular case where the heat sources are $Q\left(x_{1}, t\right)=$ $=Q_{0} \cos \omega t$. Then, taking the real part of Eq. (5.27), we obtain:

$$
\begin{gather*}
T=\frac{4 Q_{0}}{a_{1} \varkappa} \sum_{n-1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{\alpha_{n}} \tag{5.28}\\
\frac{\left(\alpha_{n}^{2}-\sigma^{2}\right)\left\{\alpha_{n}^{2}\left(\alpha_{n}^{2}-\sigma^{2}\right) \cos \omega t+\eta\left[\alpha_{n}^{2}(1+\varepsilon)-\sigma^{2}\right] \sin \omega t\right\}}{a_{n}^{4}\left(\alpha_{n}^{2}-\sigma^{2}\right)^{2}+\eta^{2}\left[\alpha_{n}^{2}(1+\varepsilon)-\sigma^{2}\right]^{2}} \cos \alpha_{n} x_{1}, \\
\eta=\frac{\omega}{\varkappa} .
\end{gather*}
$$

The stress σ_{11} is given by the equation:
$\sigma_{11}=\frac{4 Q_{0} \bar{m} \varrho \omega^{2}}{a_{1} \notin} \sum_{n=1,3}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{\alpha_{n}} \cdot \frac{\alpha_{n}^{2}\left(\alpha_{n}^{2}-\sigma^{2}\right) \cos \omega t+\eta\left[\alpha_{n}^{2}(1+\varepsilon)-\sigma^{2}\right] \sin \omega t}{a_{n}^{4}\left(a_{n}^{2}-\sigma^{2}\right)^{2}+\eta^{2}\left[\alpha_{n}^{2}(1+\varepsilon)-\sigma^{2}\right]^{2}} \cos \alpha x_{1}$.
The forced vibration has the character of a damped vibration. There is no indefinite increase in the stresses. For the non-coupled problem $(\varepsilon=0)$, the stresses increase indefinitely if $\sigma_{n} \rightarrow \alpha_{n}(n=1,3, \ldots, \infty)$.

For the coupled quasi-static problem, we have $(\sigma=0)$ from (5.29):

$$
\begin{equation*}
T=\frac{4 Q_{0}}{a_{1} \kappa} \sum_{n=1,3, \ldots}^{\infty} \frac{(-1)^{\frac{n-1}{2}}}{\alpha_{n}} \frac{\alpha_{n}^{2} \cos \omega t+\eta(1+\varepsilon) \sin \omega t}{\alpha_{n}^{4}+\eta^{2}(1+\varepsilon)^{2}} \cos \alpha_{n} x_{1} \tag{5.30}
\end{equation*}
$$

The stresses σ_{11} and σ_{12} will be zero. The stresses σ_{22} and σ_{33} will be different from zero, and $\sigma_{22}=\sigma_{33}$.

References

[1] J. R. M. Radok, On the solution of problems of dynamic plane elasticity, Quart. Appl. Math., 14 (1956).
[2] T. Boggio, Sull integrazione di alcune equazioni alle derivati parziali, Annali di matem. p.ed.appl., s. III, VIII, 181 (1903).
[3] S. Kaliski, Some boundary-value problems of the theory of elastic and anelastic bodies, (in Polish), Warszawa 1957.
[4] W. Nowacki, Problems of thermoelasticity, (in Polish), Warszawa 1960.
[5] T. Mura, Dynamical thermal stresses due to thermal shocks, Res. Rep. Fac. of Engng. Meiji Univ, 8, 1956.
[6] H. Parkus, Stresses in a centrally heated disc, Proc. Second U.S.A. Nat. Congr. Appl. Mechan., 307, 1954.
[7] W. Derski, On transient thermal stresses in an infinite thin plate, Bull. Acad. Polon. Sci., Serie Sa. Techn., 9, 8 (1960).
[8] J. Ignaczak, A plane problem of dynamic thermal distortions in thermoelasticity, Arch. Mech. Stos., 5-6, 12 (1960).
[9] W. Nowacki, On the treatment of the two-dimensional coupled thermoelastic problems in terms of stresses, Bull. Acad. Polon. Sci., Ser. Sci. Tech., 3, 9 (1961).
[10] W. Nowacki, Some dynamic problems of thermoelasticity, Arch. Mech. Stos., 2, 11 (1959).

Streszczenie

PŁASKIE DYNAMICZNE ZAGADNIENIE TERMOSPRĘŻYSTOŚCI

Przedmiotem pracy jest przedstawienie kilku dróg rozwiązania płaskich zagadnień dynamicznych termosprężystości. W pierwszej części pracy sformułowano niesprzężone zagadnienie termosprężystości w naprężeniach oraz w przemieszczeniach, przy czym wykazano, że całki szczególne w obu sposobach rozwiązania różnią się jedynie stałym współczynnikiem.

W drugiej części pracy przedstawiono dwa przykłady rozwiązania zagadnienia niesprzężonego przy użyciu funkcji naprężenia, mianowicie drgania wymuszone walca nieograniczonego o przekroju prostokątnym i warstwy sprężystej, ogrzanych na brzegu w sposób harmoniczny w czasie.

W trzeciej części podano rozwiązanie zagadnienia płaskiego dynamicznego termosprężystości przy uwzględnieniu sprzężenia pola temperatury i pola deformacji i to na drodze wprowadzenia funkcji naprężenia oraz przez dekompozycję wektora przemieszczenia. Tok postępowania objaśniono przykładem drgań wymuszonych walca nieograniczonego o przekroju prostokątnym i warstwy sprężystej, wywołanych działaniem harmonicznie w czasie zmiennych źródeł ciepła i rozłożonych równomiernie w objętości walca.

Резюме

ПЛОСКАЯ ДИНАМИЧЕСКАЯ ЗАДАЧА УПРУГОСТИ

Рассматривается несколько способов решения плоских динамических задач термоупругости. В первой части работы формулируется несопряженная задача термоупругости в напряжениях и в перемещениях, причем доказывается, что частньге интегралыг в обоих способах решения разнятся единственно постоянным коэффициентом.

Во второй части приводятся два примера решения несопряженной задачи при использовании функции напряжения, а именно вьпужденного колебания бесконечного цилиндра прямоугольного сечения и упругого слоя, нагретых на краю гармонически во времени.

В третьей части дается решение плоской динамической задачи термоупругости при учете сопряжения температурного поля и поля деформации и то путем введения функции напряжения и путем разложения вектора перемещения на две части: потенциальную и ротационную. Ход проведения операции объясняется на примере вьнужденных колебаний бесконечного цилиндра прямоугольного сечения и упругого слоя, вызванных действием, гармонически во времени переменных источников тепла и распределенных равномерно в объеме цилиндра.

[^0]: ${ }^{1}$ The consideration of the influence of the mass forces requires the introduction of three stress functions. Cf. the Ref. [9].

