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1. Introduction

Let us consider an infinite homogeneous isotropic and centro-symmetric elastic
body. The action of body forces and couples produces in the body a field of displace-
ments u(x, ) and rotations w(x, t). These fields vary with the position of the point
x and the time ¢.

The strain of the body is characterized by two asymmetric tensors: the strain tensor
¥;i and the flexural-torsional tensor #x;;, where, [1-4]
(1.1) Y= Hf‘j—EkﬁCOk, Kiji = Hl,j.

The state of stress is determined by the stress tensor o;; and the couple-stress tensor p;;.

The relations between the state of stress and the state of strain are expressed by the equa-
tions

(1.2) on = () v+ (u—a)yiy+Ayu iy,
(1.3) Wi = &+ (y—e)xy+Prg 0y, 1,j=1,2,3.

The quantities u, A, ¢, f, v, € are material constants. On substituting (1.2) and (1.3) in
the equations of motion

(1.4) o, +Xi—eii; = 0,
(1.5) €ijk O+ i,y +Yi—Jiy = 0,

and expressing the quantities yj}, %j; in terms of the displacement »; and the rotation

w;, according to Eq. (1.1), we obtain a set of six differential equations which can be pre-
sented in the vectorial form:

(1.6) (u+o) V2u+(A+pu—a) grad divu+-2arot w-+X = pi,

n (y+&) V2w-+(B+y—e)grad divw—4daw-+2arotu+Y = Jo,

where X is the vector of body force, Y — the body couple vector, p — the density, and
J — the rotational inertia. The time derivative of the functions u;, w; is denoted by a dot.
Our aim is to find a fundamental solution to the set of Egs. (1.6) and (1.7), assuming
that mass forces and moments vary in function of time in a harmonic manner.
We shall seek for the displacements u = U®)(x, &, ¢) and the rotations w = 2®(x, &, 1)
produced by the action of a concentrated force at a point § directed parallel to the x;-



4 W. Nowacki

axis as well as the displacements u = V®(x, §, #) and rotations @ = W®(x, &, 1) pro-
duced by the action of a concentrated body couple in the point ¥, directed parallel to
the xg-axis.

We shall obtain pairs of tensors (U, 2¥) and (V{¥, W{") which will be referred to,
in a general manner, as Green functions for micropolar elasticity.

Our problem will be solved by two methods. The first consists in resolving the displa-
cement vector u and the rotation vector w into potential and solenoidal parts. The other
method of solution will involve the use of stress functions.

Let us present the vectors u and w in the form

(1.8) u = grad @-rot¥, div¥ =0,
(1.9) w = gradX4rotH, divH =0.
The same can be done for the body forces and body couples:
(1.10) X = p(grad ?-roty),

(111D Y = J(grad o+roty).

On substituting (1.8) to (1,11) in Egs. (1.6), (1.7), we reduce these equations to a system
of four wave equations

(1.12) 0,949 =0,
(1.13) 0:2+4Jo = 0,
(1.14) (O, 04+-4*VHY = 20Jrotn—pes X,
(1.15) (2044402 V) H = 209r0tx—JO2M.
The notations introduced are
Oy = (A+2u) V2—pd?, Oz = (u+a)V2—pd7;

Os = (B+2)V?—4a—Jo}, [s= (y+&V'—4a—J3;,
V:= 9,0, &= *lor>.

It is known that Eq. (1.12) represents a longitudinal wave and Eq. (1.13) a rotation wave.
Equations (1.14) and (1.15) represent modified transversal waves. Let us observe that
in the infinite elastic region the body force X' = pgrad¥ produces only a longitudinal
wave, and the body couple Y’ = Jgrade a rotation wave only.

Let us assume that the causes producing wave perturbations — that is, body forces
and body couples — vary harmonically with time
(1.16) X=(1=X*x)e'", Y=(x1)=Y*x)e""

The results of these actions — that is, the displacement u and the rotation w — will
also vary harmonically in time. Denoting by an asterisk the amplitudes of these functions,
we reduce Egs. (1.12)-(1.15) to the following set of equations:

(1.17) (Vo) ¥ — __c_lz.g*’
1

(1.18) (Vo) T* = — %,
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(1.19) (V) (P-HE® = rrotn® —Dix?,
(1.20) (Vi) (VKB = Loroty*— i,
where -

O4~—73 Dl = V2+U§, DZ‘: Vz_l_gi'—zps

and k3, k3 are the roots of the equation:
(1.21) k*—k*[o54-05+p(r—2)]+-03(05—2p) = 0.
The discriminant of

2
kl,z =

2|

|03 +03+pa—2)+ VIoF—03 +p(r—2)P+4prai |

is positive.
Let us consider the homogeneous Eq. (1.19). Its solution can be presented (by virtue
of the theorem of T. BoGaio, [5]) as a sum of two partial solutions

(1.22) W — WL,
satisfying Helmholtz vector equations
(1.23) (VHR)W'™* =0, (V+Q)W'*=0.

Particular integrals of these equations are the functions R'e*®aRy = 1, 2; i = 1/ =
The solutions R~'e**=® are, however, the only having a physical sense, because the expres-
sions
iky R
e il G ¢ LS Sor o
Re[e R ]—Rcosw(t 15‘“)’ e?a_kg, o=1,2

are the only to express a wave moving from the place of perturbation to infinity. The
solution of the homogeneous Eq. (1.14) will, therefore, take the form:

elkiR PRI

e e
(1.24) = A+ B—

An analogous solution of the homogeneous Eq. (1.12) is presented by the function:

eik;RJ el'k:R
L
R R
In the waves W, H, real phase velocities are the only that can occur. We must, therefore,

have ki >0, k3 > 0. The first condition is satisfied for a positive determinant of Eq.
(1.21). The other condition will be satisfied if a4 > 2p or if @? > 4e/J. This follows from

(1.25) H*=C
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the relation k3k2 = o3(03—2p) > 0. In the expressions (1.24), (1.25), there are two waves
undergoing dispersion (because k, and k, are functions of the frequency w). The rotation

wave " will exist if 63 > 0. This condition leads to the inequality w* > 4a/J.

]

2. Body Force Effect

Let us consider the action of body forces. Let us observe that the lack of body couples
(Y = 0) results in ¢* = 0, n* = 0. No rotation wave will occur in the infinite elastic
space (3* = 0). The following set of equations remains to be solved:

1
@.1) (VP +-0})D* = —g
- 1
22) (VKD (P-HR)E* = —— D, x*,
2
(2.3) (V2+K2) (V2 H* = f%' rot x*.

If the body forces X are distributed over a closed region B, the quantities 9* and y*
will be determined from the following equations [6]:

2.4 P*(x) = _ﬁ-!X?(E)%(R_GCI,—E))dV(E)’ i=12, 3,»

@)XW= [ X | g )® bhk=123

By introducing in these equations the formula
XFx) = 6(x1)0(x2)0(x3)8y, Jj=1,2,3,

expressing a concentrated force at the origin in the direction of the x,-axis, we obtain:
1 a1 1= ar 1l
9 = S * * il (e
26) 470 ax,(R)' w=0 % 4o Oxs (R)’
' 1 8
" S MM RN ol (il — (2 21/2
X3 43_9 axz (R)l R (x1+X§+X3) .

It remains to solve the equations:

2.7) (Voo = 9 (l);

4mpc? dx, \ R

1

24 22\ (2 LAWK
(VPARD (P DY = —

0 (1
2 2_ e
(V*+-05—2p) 9x3 (R)’
(2.8)
1 a |1
2 L2Y (TR L\ 2 toi— r)
(Vb)) (VA B = (Pl =2 5 (R)
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(V?._I__kZ) (V2+k )H'I — 475902 (Vz.—.ﬂ'l)( )
2 2 2 .___P___ a -—-a—- .
(2.9) (V) (VD B = o 5 B (ﬁ)

2 2 2 == p mi.._a- —-l—
(VH4-K3) (VP +-k) HY = dmocs 0x, Ox, ( )

The solution of Eq. (2.7) is known from classical elastokinetics (dynamic theory of elasti-
city) [6]:

1 d [enR—1
* _ —e,— —_
(2.10) 5 dmom® 0x, ( R )

Equations (2.8), (2.9) will be solved by applying Fourier integral transformation of the
exponential type. Thus, for instance, the solution of the equation for P} will be presen-
ted in the form of the integral:

1 3 ([ (P—cB+20)e " " ki, ey dirs
* - e s g
21D = 80 9x; f f o (> —k?) (> —k3) :

where

2 2 2 2
o = of oo,

‘ql“‘k *dotl dﬂzdﬂ; Ik R
fff e

the function ¥ of (2.11) can be presented in the form:

Bearing in mind that

1 P eihR e.‘sz
. P NGB ) <
Z12) ¥ = dmow® dx; \"' R R TR )
where
o3—k3 03—k}
A'=_fc?—_kz:_’ Ao=p—ar A=-1
Solving Eq. (2.8) in an analogous manner, we have:
1 9 ek oikaR 1
* __ _mE i S i
(&) = dmo® Ox, ( "R +4 R +4 R)'
Application of Fourier integral transformations to the set of Egs. (2.9) yields
ikyR__ ikaR 32 er‘klR e'k2R 1 )
2.14 e = e pr — -
3 a e:kl.R ekl
2.15 ey s
@15 i 4moc} dx, Ox, (B R PR R +Bx )

P P erkln eisz 1
2.16 He—_ 29
(216) 7 4mpc? 9x; Oxy ( R TR R tBy R)
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where - 1 B 1 B 1
KB —R)’ \2 -k —kD)’ *TKE

The displacements u and the rotations w will be found from (1.8) and (1.9).

Since n* = 0, therefore:
) 17) ”:‘ — 3145*_4_32117;"_,33?}(;? uZ = azd)* l* Uy = 63¢*_’_31 ’:F(Z*
o wt=32H;_'33H;a w¥ = d;Hf—0, HY, CU;‘=3[H‘2"—32H1*.

As a result, we shall obtain the following equations for the amplitudes u* and w*:

1 ; ek 1R k
(2.18) uf = U}‘(” — prm (At ki ‘I“Azkz dyj
1 MR gikaR iR
+W3131(A1 R + 4, R + 4 R )= Jj=1273
o [e™MR_ gikaR
* _ (O*(1) e i e S e i =
(2.].9) w; QJ 4n9c2(k2 kz) Eigkm ax ( R ), I k 1, 2, 3.

We have obtained three components of the displacement vector U} and three compo-
nents of the vector of rotation 2F™. We now displace the concentrated force from the
origin to the point g, and let it act parallel to the x;-axis. Then, Eqgs. (2.18), (2.19) become:

(2.20) PO S PR Uil Lt P
' dmpw® ETR P
1 gkaR k2R el7iR
+2§'€Q_ﬂ)ialaj(141 R +A2 R +A3 R ) j,.f:I, 23
and
8 [e™MR_gikaR
#() — . IS i =

(221) Q} 4;'!9(.‘2(3'62 kz) Eljk 3)4: ( R ), Js k, / 1, 2, 3

In Egs. (2.20), (2.21), R has a different meaning. We have
R = [(%,— &)+ (0= &)+ (x3— &)
Thus, we have obtained the displacement tensor UF®(x, ) and the rotation tensor

Q¥ "(x, E). These tensors constitute two symmetric matrices.

Let us introduce in Egs. (2.20), (2.21) a =0, thus passing to classical elasto-
kinetics [6]. We have:

itR 1 a 9 eloR_ er":R
2.22 yrm — _€ _ o o =€
(222 J 4muR O dmpw® dx; 0x; R t

Qj‘(”"-:o, j:’z Iy233:

with the notations
12 112
=2, a=(4)", o=, o ()

Let us return to Eqs. (2.18) and (2.19) and observe, that the concentrated force directed
parallel to x; does not produce rotation wf. We have w¥* = Q¥® = 0. This results in
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the fact that the components sx;; (j= 1, 2, 3) of the curvature-twist tensor are zero.
The components of the strain tensor y;; are different to zero.

Equations (2.20) and (2.21) express waves of three types. Waves connected with the
values k;, k, undergo dispersion.

3. Body Couples Effects

Let us consider the action of body couples. Since X = 0, therefore also ? = 0, 3 = 0.
No longitudinal wave (@* = 0) will occur in the infinite space. We must now solve the
set of equations

(3.1) (VP4 2™ = —-}ﬂ*,
3
(32) (V) (V2-+16) W% = - rotn*,
)
(3.3) (V24-k3) (VP HIQH* = %c—lzbm*.
4

If the body couples Y are distributed over a closed region B, the quantities ¢* and n*
will be found from the equations:

1 8 1 .
__EZ-EJ‘YJ"(E) % (R(x E))r VE), j=1,2,3.

G35 ) = "E%E fe.,k Y15 (R(x E))d VE®), ijk=1,2,3.
B

(3.4) a*(x) =

On introducing in these equations the expression
Yi(x) = 6(x1)0(x)0(x3)dyy, Jj=1,2,3,

— that is, a concentrated body couple acting at the origin in the x; direction — we obtain:

1 a1 1 9 (1
3.6 e T * — o s o
(3:9) 7 dnT Bx;(R)’ =S s Bxs(R)’

#___1 9 [1
5= T 4] I\ R

On solving Egs. (3.1) to (3.3) in the same manner as was done in Sec. 2, we find:

d [e™*R—1
3 =
( 7) Z 4?IJC§k3 3x1 ( R )’

2% i -~ o*1R__ gikaR eMR ek B
(3.8) j = I 0a—13) ( R )5j|+4 123131( —— 4B —— R + R)
1 d efaR elk2R 1
W o=
@9 Hf= dnic; % ox, ( =® T Cz +Gx R)
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o3
e

where € — k3 —ao3
Ki(ki—k3)’

The displacements and rotations will be found from the equations

uf = 0, P¥—0,W¥, uf=0a,¥Yf—0,7%, uif=20o¥Yi-0,%PF,

wf = 8, 3 *+,H¥—:H}, o} =08,3*—0H}, of=20,3*+0H}.

k3—o3

" -k

C3=

(3.10)

On substituting (3.7)-(3.9) in (3.10), we obtain:
r ikyR _ pikaR )

e
* __ 1) e e

. i ] e o/*sR ¥ kR 2
(3.12) ol = W] = A K2 R

{4

R 124,
anJc Ry T ) J 2

On moving the concentrated body couple to the point , and directing the body couple
vector parallel to the x;-axis, we obtain the Green tensor of displacement Vi¥)(x, §)
and the rotation tensor WF¥(x, ).

Thus, for example, we have

1 ik R ikaR ik3R
H_—— 5 a,;(c1

ikyR__ kR
(G.13)  VIO(x,E)= 2 (L

4

g O , difk=1,2,3.
dnJei(ki—k3 &l ox;, R ) bk

where

R = [(x;—&) (x;i—&)]'?

On returning to Eqs. (3.7)-(3.9), let us observe that the action of the concentrated body
couple Y} = 8(x;) d(x,) d(x3)d;; produces zero displacement in the direction of the axis
x; (V¥® = 0), therefore also yy; = 0. Since ky, k,, k3 are functions of the frequency w,
all the types of waves occurring in the expressions (3.11) and (3.12) undergo dispersion.

4. Determination of the Green Functions by Means of Stress Functions

We shall now describe in brief the other method for finding the Green function. Use
will be made of the stress functions ¢ and ¢ generalized by N. SANDRU, [7]. These functions
are connected with the displacements and rotations by the relations:

4.1 u = [; Osp—grad divie—2arot (3 Y,
(4.2) w = [O,[03¢Y—grad divOp—2arot [, ¢,
where

I'= (A+p—a)O4—422, O = (B+y—e)[a—402.
On introducing (4.1) and (4.2) in the set of Eqs. (1.6), (1.7), we obtain:
(4.3) 01 (02 Os+-4e2 V¥ +X = 0,
(4.4) O3(02 04442 V)P +Y = 0.
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The particular usefulness of these equations for the determination of Green function
is evident. It suffices to find a particular integral of these equations and to determine the
displacement u and the rotation w from Egs. (4.1) and (4.2).

From Eqgs. (4.3), (4.4), we find that ¢p = 0 for no body forces and ¢ = 0 for no body
couples. By considering harmonic body forces and couples, Egs. (4.3) and (4.4) can
be reduced to the form:

(4.5) (V2 +K}) (V24-k3) (VP +a)ep* +X* = 0,
(4.6) (V24K (V24K3) (V4K d* +oY* = 0,
where
1 1
M=

Gt20) et +o)  ° = Br2p) (wra) o)

The symbols k?, k3, k3, of have the same meaning as in Sec. 2. Let us observe that the
solution of the homogeneous Egs. (4.5) and (4.6) has the form:

e.r'k,R "k;R el
@4.7) ot =A—+B—+cp
(4'8) q’* _n elhR + Eeth s r I'ksR
R R

It is seen that the first two wave terms of (4.7) undergo dispcrsion. In Eq. (4.8) all the
three wave terms are dispersed.
Let us quote the equations for the amplitude of displacement and rotation:

49) u* = (A42u) (y+e) (V2 4+K3) (V2 +-0i—2p)p*
—(y+8) (A-+p—oa) grad div[(V?+of —2p—n)] * —2a(B+2y) (V>+k3) Tot ¥,
(4.10)  w* = (u+a) (B+2y) (V?+03) (V2+KD) *
—(B+y—e) (+e) grad div[V?+ 03— 2r— L] P* —20(A4-2u) (V20D rot ¥,

where
4&2 40‘2
Brr—o0+e’ " Grotu—a)
Let us consider first the action of body forces. Since Y* = 0, therefore also {* = 0.
It remains to consider Eq. (4.5) and to set =0 in Egs. (4.9), (4.10).
On applying to (4.5) the Founer exponential transformatlon, and introducing the new
notations

C::

mi=ky,, ==k, p=a,
we obtain, making use of the method used in [8]:

Hf HY HY )
4.11 e | .
G0 & (Gu%—#%) (ﬁxﬁ—#§)+ (3 —13) (15— p13) (.u2 143) (3 —p3)

The vector functions H¥, H¥, H¥ should satisfy the Helmholtz equations:
(4.12)  (VHpdHY = —xX, (V+H@)HY = —xX*, (VHud))HF = —xX*.
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The solution of these equations is provided by the functions:

”(. jR
@.13) H (x) = f X g VO J=1,23.
Therefore
X* II'“R
4.14) @*(x) :—4’—‘5 e (2 )dV(z),
where
] | ]

D; = , D= oS Dy = s
') (i —B) T W) -3 T (D (B8
Let us assume that a concentrated force X(x, f) = e~ (X*, 0, 0), where X* = d(x,)

d(x,)8(x3), acts at the origin. Then, from Eq. (4.14), we shall obtain ¢@* = (¢f, 0, 0),

where
oMk

oF = = (x24-x2 2172
(4.15) o1 4nROZ 5 Ro= (i+aiad)

On substituting ¢f of (4.15) in (4.9) and (4.10) and moving the concentrated force from
the origin to the point E and directing it parallel to the xj-axis, we obtain:

(u3—pp) (5—2p—pp) ™™

@16 UM (x,E)=

47 R(p+-01) — 17
./ 2 (@i —2p—n—pp)e™:"
4m(A4-2p) (u+0) Ox; Ox; D.R ?
—20e a (3—m)
4.17 (@ O L et
LD 7 s Yoy axk( “DR )

It can be shown that these equations are identical with (2.20) and (2.21). For this,
use must be made of the relations:

Wit = a+oit+p(r—2), i = o3(0i—2p).

Let us assume that only body couples act in the body. Thus, X* = 0 and ¢@* =0
The solution of Eq. (4.6) can be presented in the form:

3
418 s Iz
a1 v a=1 F.*
where
1 1 1

F, — e L
TEmE-R T EnEn BT e

The vector functions I'f, I'f, I'} must satisfy the Helmholtz equations:

(4.19)  (V*HADTY = —oY*, (VDT = —o¥*, (VT = —o¥Y*,
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By analogy with the solution (4.14), we have:
3 ikR
Y*(8) e
* e N T
(4.20) P*(x) = 4ﬂ e (_)_:’ -

Let us consider the action of a concentrated couple at the origin parallel to the x,-axis,
On introducing in (4.20) the expression Y7 = d(x;)d(x,)d(x3)d;;, we obtain:

3. KiBy
* = (y* ey 10 AReTT
(421) Y= 00, vi= >

On introducing * of (4.21) and ¢* = 0 in (4.9) and (4.10), moving the concentrated
body couple to the point E and directing it parallel to the x-axis, we shall obtain the fol-
lowing expressions for displacements and rotations:

3
20er j; 9 V1 e* R —k)
) 7 L N RS AN e
422) uf=Vj} dn(uto) (y+2) Ox (2‘ Fak ’

) (03—k3) (ka —k3)e™sR
g % E 1 (02—
(af). i 4n(y+e)

_._g_—!:_?___s_).__ d (0’2 2?’ kz)e‘ks .‘ . -
4n(B+2y) (u+a) dx; axjk y ), hil=1,2,3.

It can easily be seen, after some minor rearrangements, that these last equations are iden-
tical with those obtained in Sec. 2.

5. Two-dimensional Problems

Let a body force X; = 8(x,)8(x2)d;;€'" act in the infinite elastic body in the direction
of the x,-axis and let these forces be uniformly distributed along the x,-axis. In this case,
the displacements and the rotations are independent of the variable x;, and we are con-
cerned with the two-dimensional problem,

The relevant equations for the two-dimensional problem will be obtained from the
equations of the foregoing sections by means of the principle of superposition.

Let us start out from the Green function for displacement U}, Eq. (2.18), assuming
that the concentrated force acts at the point (0, 0, &) in the direction of the x;-axis. On
integrating the function U¥™") along the xj-axis from — oo to co, we shall find the cor-
responding equations for the displacement in the two-dimensional problem.

Let us observe that

(5.1) f exp [ika )/ r*+ ] dby = 2Ky (—~ikyr), o=1,2,

F= i),
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where K, (z) is the modified Bessel function of the third kind. On the other hand, we have
(5.2) 2Ko(—ikyr) = miH{P(kyr), oa=1,2,

where HiV(kqr) is a Hankel function.
If now we integrate the displacements U¥" of (2.18) along the xj-axis, we obtain,
bearing in mind (5.1) and (5.2):

(53) U*(”(xl, Xas 0 0) 2 (A_ sz“}(klr)‘}'Azszs”(sz))6”

—|-513_:(A|H151)(k1")‘F'AzHé]}(sz)“l“Aangl)(ﬁif))], ji=1,2.

In a similar manner, we shall also determine the rotation £2¥"(x,, x,; 0, 0). In Eq.
(2.19), we obtain:

*(1) _ O%(l) — w1 _ _ _ Pi€uk g ) 1)
4 & 23 0, &3 eI 7, ——(H§"(kyr)— H§" (k1)) .
We must now direct the linear force parallel to x;(/ = 1, 2), and move it to the point
g = (&, &;). Then

(55  UMI(xy, x5, 61, &) = (A K HEP ey r)+-Aqke3 HEV (k1)) 851

L
20007
+0,0 (AL H{ (ke )+ A HV (leyr) + A HV (01 7))], o 1= 1, 2.
The Green functions can also be determined starting from Egs. (4.5) and (4.6), and treatmg
them as concerning a two-dimensional problem.
The solution of (4.5) will be assumed in the form (4.11). However, the functions H¥’.
H¥, H¥ should satisfy the two-dimensional Helmholtz equations

(i+3+H)HY = —xX¥*,  (Gi+03+ud)HY = —xX*,

5.6 1
CO Ganpm = e m=GlnAD, X .

For the concentrated force X§ = d(x;)0(x;)d,; acting in the x-direction, we obtain,
from Egs. (5.6):

1 3
HE

} 2
Hf = Hur), Hf=H=0,
1 j 2 3
.7) Hf = -‘;iHa”w), BY = Hp =0,
1 2 3
H3 -—'-—'Hﬂ}(}l;f') H?.':H:,*‘:O.

On substituting the above in (4.14), we find * = (¢f, 0, 0), where

3

o G
(5.8) ot =7 D, HED(pqr).

o=l

On substituting (5.8) in (4.9) and (4.10) (in which all the derivatives with respect to x;
should be rejected), we shall obtain Eqgs. (5.3) and (5.4).
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6. Singular Solution of Higher Order

Let us consider first the spatial problem. Let a concentrated force of intensity ;; =l
1
act at the point (El 4— 48, o Bas E;) parallel to the x,-axis, and let a force of the same in-

4§,
2
the amplitude of the displacement u produced by these forces will be:

A‘El 52,53) U*m(xlsv\z,xas & ‘l—Agl > &2y 53)] .

By letting A&, — 0, we shall obtain the displacement U}‘m for what is referred to as a double
force without moment:

tensity act at the point (E; 5 Eas Ea) in the direction of the negative x,-axis. Then,

6.1) uf= A—‘Z—I[Ufm(xn X2, X33 E1—

(6.2) U = —P% UF(x, §).
Similarly, for the double force, we obtain the following rotation function
6.3) Orn — —PF(}I—Q}‘“’(X, £).

Generally, if a double force without moment acts at the point E in the direction of the
x;-axis, the corresponding singularities are given by the equations:

. ;
wWhi— (1)
(6.4) Uj P 78, Uj (x, E),
(6.5) Q0 — —P_‘?_Q*m(x, E).
oF,

with the functions U}", 21" as expressed by Eqgs. (2.20) and (2.21).

Let now three double forces of intensity Pe~'®! act in the direction of the x;, x, and
x;-ams

It is known that such a set of forces constitutes what is termed centre of compression
or nucleus of dilatation. Let us denote by U}, the displacement components, and by .Q
the rotation components. Making use of the rcsults obtained for double forces, we sha]]
obtain, by superposition, the expression:

d
&

*(1) *(2)
©9 - (o vt
(6.7) ox =0.

It can easily be shown that a compression centre produces only longitudinal waves.

*(3)
75 Ui ) 4mpet R’

Let a force Aj: e~'® act at the point (5: -f—AE &, 53) in the direction of the positive
1
A&

X,-axis and let the same force act at the point (51
Then,

M ;
uf = A_EI[U?(Z)(JC" Xz, X33 E1—

&2, E;) in the opposite direction.

AEI , &2 Ea) U*m(xl, X35 X35 E1F—— A‘El s &2, 53)] .
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By making A&, tends to zero, we find the displacement u¥, corresponding to the double

force with moment

(6.8) — Mi Uro,
I3

—feof
Let now a forcchact at the pomt (51, 524_&353) in the direction of the nega-
2

: i A 4 :
tive x;-axis and let a force of the same intensity act at the point (Eu E;—%, E;) in the

direction of the x;-axis. As a result, we obtain:

2
* *{l}
(6.9) uf = M—e-U]

The sum of these two double forces with moment will produce the displacements:

U™ BU}“”)
oE, 9k

(6.10) up = -—M(

Similarly, we obtain:

Q#(Z) 0¥
= i
(6.11) oF M( 3, 7L, )
Making use of Egs. (2.20) and (2.21), we obtain
M [ OF oF
A e ey (L PR
(6'12) u = 4:‘9&)2(352 3 3'51 2 0) ’
where
.*k erkz.R
F = Alk +A2k2
and
M 3 3 a e"-"l.k__e”‘zk
6.13 e e e R
(6.13) ] Amgcj(ki—K3) \ ¥ o, Uk asz) ax; ( R )
or
M d
6.13' e *
85 o = SRy |0+ 28 7 0]
where
; eMR_gikaR
* =
I (n) = ——

Let now a concentrated couple of intensity j:g ~1ot act at the point (5"1 el ——i €25 Ea)
1

in the direction of the xj-axis, and let a concentrated couple of the same mtensnty act

at the point (5'. = —?-, Ez,fa) in the direction of the negative x;-axis.

The amplitude uf resulting from these two body couples is:

4§,

am , ;
(6.14) u}"r-A—&[VJ* n(xlsxz,xsifl— > ,Ez,fa) Vf{”(xl:xz,xaa El-i"ﬁ.fz,fs)]-
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If A&, tends to zero, we obtain the displacement f’}"“’ for the double couple:

- d
¥1) — _qn 2
(6.15) Vi 932351 V2
Similarly, for the rotation function, we have
]
1) (1),
(6.16) W MmM— 2, W}

the functions ¥} and W} being given by (3.11) and (3.12). If now three double
couples of intensity C.‘O?e“‘”‘ act in the directions of the xl, X, and xj-axis, then, by super-
position, we find that

= 2 d d
ol RO ) *H|
(6.17) 1% tm(a& +95 VPt 55 i ) 0,
—- m a [e™®
* _ P
(6.18) W} = dmicid afj( ) J=1,23.

The action of the three double couples can be treated as that of centre of torsion. It
is of interest to observe that there is no displacement field and the function W} satisfied
the homogeneous Eq. (1.18). -

Let us now consider Eqgs. (6.12) and (6.13). In the classical theory of elasticity, Eq.
(6.12) is treated as a vector of displacement produced by the action of a concentrated mo-
ment acting at the origin and directed along the negative x -axis. On confronting this
equation with (3.11), which takes now the form:

Mr 3 [e*MR—g*R
(619) N}i = — m‘i':‘ﬁﬁhk"a_g( '_R - )v
it is seen that the results are not in agreement. This results from the fact that in the micro-
polar theory of elasticity a concentrated body couple is a fundamental load, similarly
to concentrated forces. The above problem has been analysed in detail by P. P. Teopo-
RESCU [9] in the static case.

Qur considerations are also valid for the two-dimensional problem. Let us consider
the case of a linear centre of compression. Let us make use of Eq. (6.6) which takes a so-
mewhat different form:

= 9 =
* *(1) #(2) *
(6.20) F= (35. Uy e 85 Uj ), =0,
where the displacement vector is taken from Eq. (5.5). As a result, we find:
(6.21) Uty 22380, 82) = 4
where

r=[(1—&)+0a—&)T.

7. Conclusions Following from the Reciprocity Theorem

One of the fundamental theorems of the theory of elasticity is the theorem of recip-
rocity of works. For a body with micropolar elasticity, and if causes and effects vary
with time in a harmonic manner, we have [10]:

2 Problemy drgafi nr 1/69
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(7.1) [ xFur+yrordr = [ X ut+Yixordv.
¥ v

In the form (7.1), the reciprocity theorem concerns, of course, an infinite body.

Let us consider loads of two types

a. Let a concentrated force XF = d(x—E)J;, act at a point §, thus producing a dis-
placement U (x, E) field and a rotation field QF"(x, ). Let now a concentrated force
X} = 6(x—mn)d; act at a point ¥, parallel to the x;-axis, This force will produce in the
body a displacement UF®(x, n)) and a rotation QF"(x, ). From the reciprocity theorem
(7.1), we have

[ 8x—)8,,UxOx, mydV(x) = [ 8(x—m)8, U (x, §)dV (x).
¥ v
Hence

(7.2) VEOE, ) = UM, §).

b. Let a concentrated body couple Y;* = 6(x—E)J;, act at the point § and a body
couple Y} = d(x—mn)d;; at the point . The body couple Y} is connected with a field
Vi§® and W}" and the body couple Y} with a field V}" and W}¥. From Eq. (7.1),
we obtain
(7.3) VFOE, n) = V0, ©).

It can easily be seen, from (2.20) and (3.12), that the equations (7.2) and (7.3) are
satisfied.

c. Let a concentrated force X} = d(x—E)d;, act at the point E, thus producing a field
Uf")(x, §) and QF"(x, ). Let now a concentrated body couple Y;* = §(x—n)d;; act at
the point v, in the direction of the x;-axis, thus producing a displacement field V}®(x, )
and a rotation field W} (x, v).

From the reciprocity theorem (7.1), we have

vf 8(x—E) 8, VO (x, MaV(x) = [ 8(x—0)8, 25" (x, E)dV(x).
Hence ‘ ’
(7.4) VeO(E, n) =2, €).
Making use of (2.21) and (3.13), we have:
9 [ eMR_pikaR
'3}?(_1?6??*:)_)

Qf‘"(’ls E) =
r 9 [ effaR_gikaR
And 3 (—I3) EZ( R(x, n) ) x=§

It is evident, bearing in mind that r = 2ufoc?, p = 2u/Jc}, that the relation (7.4) is sa-
tisfied.

Thus, making use of the reciprocity theorem, we have obtained additionally a proof
of correctness of the equations obtained in Secs. 2 and 3.

The relations (7.2)-(7.4) can be treated as a generalization of the familiar reciprocity

theorem of J. C. MAXWELL known from the classical dynamic theory of elasticity (elasto-
kinetics).

>
X=n

P
Ampci(kKi—i3) ™

Vr*[”(g’ 71) o=
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Streszczenie
FUNKCJE GREENA MIKROPOLARNEJ SPREZYSTOSCI

W pracy podano podstawowe rozwigzania rownan rézniczkowych mikropolarnej sprezystosci (micro-
polar elasticity). Podano funkcje Greena (tensory przemieszczenia i obrotu) dla sily skupionej i momentu
skupionego, dzialajacy w nieskonficzonym o$rodku sprezystym tak dla zagadnienia tréj- jak i dwuwymiaro-
wego. Omowiono wreszcie osobliwe rozwiazanie wyzszych rzedow.

Pesome
GOVYHKIIMA TPUHA MHUKPOIIOIIAPHOM VIIPYTOCTHU

B pabore matorca QyHpamenTambHble pernenHa auddbepeHuHaNbHBIX YPaBHEHHH MHKpPOMOJIAPHOI
yapyrocti (micropolar elasticity) Hatorca dyuxmun T'puna (TeH30pEI NepemellleHMit 1 BPalleHuii) 1T
COCPENOTOUCHHOM CHIIBI M COCPEJIOTOUEHHOTO MOMEHTa, MAciicTBYyIomux B GeckoHewHOil ynpyroii cpene,
TAK JJIA TpexMepHoii, Kak ¥ AsyxmepHoil mpo6memsi. Hakoner; ofcy/aeHbl 0cofble pPElIeHHsT BBICIIIX
TIOPAKOB,
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