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1. Introduction

Let us consider an infinite homogeneous isotropic and centro-symmetric elastic
body. The action of body forces and couples produces in the body a field of displace-
ments u(x, t) and rotations to(x, t). These fields vary with the position of the point
x and the time t.

The strain of the body is characterized by two asymmetric tensors: the strain tensor
yji and the flexural-torsional tensor Xjti where, [1-4]

The state of stress is determined by the stress tensor aJt and the couple-stress tensor pjt.
The relations between the state of stress and the state of strain are expressed by the equa-
tions

0-2) <J]i = (j*+a)yji+(jJ.—a)yij+Xykkdij,

(1.3) fiji = (y+«)«ji-l-(y—e)xy+/SH**<3y, t,j = 1, 2, 3.

The quantities //, A, a, /?, y, e are material constants. On substituting (1.2) and (1.3) in
the equations of motion

(1-4) ajij+Xi-QUi = 0,

(1.5) zUkaJk+/[ijij+Yi—Ja)i=0,

and expressing the quantities ySi, xJt in terms of the displacement wj and the rotation
o>i, according to Eq. (1.1), we obtain a set of six differential equations which can be pre-
sented in the vectorial form:

(1.6) (/M+a) V2u-|-(A-|-^—a)grad divu-f-2arotco+X = QU,

(1.7) (y+e)V2(o + (yS+y—e)grad divto—4occo+2arotu+Y = Jió,

where X is the vector of body force, Y — the body couple vector, Q — the density, and
/—the rotational inertia. The time derivative of the functions ut, a>i is denoted by a dot.

Our aim is to find a fundamental solution to the set of Eqs. (1.6) and (1.7), assuming
that mass forces and moments vary in function of time in a harmonic manner.

We shall seek for the displacements u = U(fc)(x, %, t) and the rotations <o = £i(l°(x, %, t)
produced by the action of a concentrated force at a point C directed parallel to the xk-
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axis as well as the displacements u = Vw(x, % t) and rotations to = Ww(x, C, ?) pro-
duced by the action of a concentrated body couple in the point t\, directed parallel to
the x4-axis.

We shall obtain pairs of tensors (JUf\ Qf]) and (yf\ Wf>) which will be referred to,
in a general manner, as Green functions for micropolar elasticity.

Our problem will be solved by two methods. The first consists in resolving the displa-
cement vector u and the rotation vector to into potential and solenoidal parts. The other
method of solution will involve the use of stress functions.

Let us present the vectors u and to in the form

(1.8) u = grad <Z>+rot¥, div*F = 0,

(1.9) w = gradZM-rotH, divH = 0.

The same can be done for the body forces and body couples:

(1.10) X = e(grad#+rotx),
(1.11) Y = /(grado-+rotyj).

On substituting (1.8) to (1.11) in Eqs. (1.6), (1.7), we reduce these equations to a system
of four wave equations
(1.12) Di#+e# = 0,

(1.13) UiZ+Jo = 0,

(1.14) (D2D4+4a2V2)^ = 2a/rotY]-<?D4X>

(1.15) (D

The notations introduced are

• i = (A+^JV2

• 3 = (p+2y)V2-4a-Jdl D4 = (y+e)V2-4a-/d2 ,

It is known that Eq. (1.12) represents a longitudinal wave and Eq. (1.13) a rotation wave.
Equations (1.14) and (1.15) represent modified transversal waves. Let us observe that
in the infinite elastic region the body force X' = egrad# produces only a longitudinal
wave, and the body couple Y' = /grader a rotation wave only.

Let us assume that the causes producing wave perturbations — that is, body forces
and body couples — vary harmonically with time

(1.16) X = (x, 0 = X*(x)e-'ra(, Y = (x, 0 = Y*(x)e~iat.

The results of these actions — that is, the displacement u and the rotation to — will
also vary harmonically in time. Denoting by an asterisk the amplitudes of these functions,
we reduce Eqs. (1.12)—(1.15) to the following set of equations:

(1.17) i

(1.18) (
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(1.19) (V2+kl) (V2+fcf)W* = i rot i j * — i -
C 4 C2

(1.20) (V2+&?) (V2+fc|)H* = ^TOt%*—-Zjj

where
co ti+2u\lh

2a 2a l/j,-\-ot\ 2 j 7 + e \ 2 <*>

0-4 = — , A = V 2 + f f l , D 2 = W2+iĄ-2p,
C4

and k\, k\ are the roots of the equation:

(1.21) k4-k2[cr22+crl+p(r-2)]+a2
2(cĄ~2p) = O.

The discriminant of

HA = ^H+°Z4+P(r-Z)± i/[ol-G2
2+p(r-2)Y+4prcĄ\

is positive.
Let us consider the homogeneous Eq. (1.19). Its solution can be presented (by virtue

of the theorem of T. BOGGIO, [5]) as a sum of two partial solutions
(1 22) *¥* = w'*_i_tt/"*

satisfying Helmholtz vector equations

(1.23) (V2+£2)»F* = 0, (V2+fcf0¥"* = 0.

Particular integrals of these equations are the functions R~1e±ika^a = 1, 2; i = \f—1.
The solutions Jł~1e'*«R are, however, the only having a physical sense, because the expres-
sions

are the only to express a wave moving from the place of perturbation to infinity. The
solution of the homogeneous Eq. (1.14) will, therefore, take the form:

(1.24) ^ ^ A - j ^

An analogous solution of the homogeneous Eq. (1.12) is presented by the function:

(1.25) H * = C - ^ ' ^

In the waves T, H, real phase velocities are the only that can occur. We must, therefore,
have k\ > 0, k\ > 0. The first condition is satisfied for a positive determinant of Eq.
(1.21). The other condition will be satisfied if <r4 > 2p or if co2 > 4oc/J. This follows from
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the relation k\k\ — a\(a\-~2p) > 0. In the expressions (1.24), (1.25), there are two waves
undergoing dispersion (because kx and k2 are functions of the frequency co). The rotation
wave £* will e x i s t if °f > 0- This condition leads to the inequality m1 > 4a//,

2. Body Force Effect

Let us consider the action of body forces. Let us observe that the lack of body couples
(Y = 0) results in a* = 0 , YJ* = 0. No rotation wave will occur in the infinite elastic
space Q£* = 0)- The following set of equations remains to be solved:

(2.1) ( V 2 + ) 0 *

(2.2) (V2+/c

(2.3) (y2+kj) (V2+fc!)H* = P rot
C

If the body forces X are distributed over a closed region B, the quantities •&* and
will be determined from the following equations [6]:

(2.4) **W=-^fm)^(~)dV®, ,-=1,2,3,

By introducing in these equations the formula

X*(x) = d(Xl)8(x2)5(x3)dij, j = 1, 2, 3,

expressing a concentrated force at the origin in the direction of the x^axis, we obtain:

(2.6)

It remains to solve the equations

(2.7)

(2.8)
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(2.9)

The solution of Eq. (2.7) is known from classical elastokinetics (dynamic theory of elasti-
city)^]:

(2.10) <2>*(x) = -

• (* ) •

Equations (2.8), (2.9) will be solved by applying Fourier integral transformation of the
exponential type. Thus, for instance, the solution of the equation for W* will be presen-
ted in the form of the integral:

ip**(x) 1 8 f fc (<x2-al+2p)e-ia*x'<doc1da2cki

where

Bearing in mind that

„2 „2 I „2

a = a + a

a2_jfe2

the function ¥% of (2.11) can be presented in the form:

where
n2 — lf2 rr2 h2

— — 1 .

Solving Eq. (2.8) in an analogous manner, we have:

1 8 I eik>R p'k*R 1
/") 1 ON 177* l ° \ A K \ A _L A

Application of Fourier integral transformations to the set of Eqs. (2.9) yields

(2.14) Hf =



W. Nowacki

The displacements u and the rotations to will be found from (1.8) and (1.9).
Since if = 0, therefore:

. . * a /fi* i P) IZ/* 3 W* i i * Pi fh* Pi VS* II Pi AI* I Pi W *
Wj = »i<P + C 2 r 3 — O 3 r t , U2 — ^ V 1 —<?l " 3 j "3 — O3C) -1-01^2

if- ł\ i'» #" \ T f "i «2* = djHf-dtHf, of = 81H$-d2Hr.

As a result, we shall obtain the following equations for the amplitudes u* and to*:

(2.19) m T -flf> - 4 7 t g c g ( ^ f c t ) ^ — ( i ± ^ l ) , ; , * - ! , 2, 3.

We have obtained three components of the displacement vector U*w and three compo-
nents of the vector of rotation Qf(iK We now displace the concentrated force from the
origin to the point %, and let it act parallel to the xraxis. Then, Eqs. (2.18), (2.19) become:

(2.20) uf = Vf» - ^ [ ^ ^

V ( ^ X Tf /.'-I. 2. 3,
and

In Eqs. (2.20), (2.21), i? has a different meaning. We have

Thus, we have obtained the displacement tensor Uf(l)(x, C) and the rotation tensor
Qfpfa C). These tensors constitute two symmetric matrices.

Let us introduce in Eqs. (2.20), (2.21) a = 0, thus passing to classical elasto-
kinetics [6]. We have:

0, j , I = 1 , 2 , 3 ,
with the notations

Let us return to Eqs. (2.18) and (2.19) and observe, that the concentrated force directed
parallel to x, does not produce rotation cof. We have cof = i3* f l ) = 0. This results in
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the fact that the components tc^ (j= 1, 2, 3) of the curvature-twist tensor are zero.
The components of the strain tensor yji are different to zero.

Equations (2.20) and (2.21) express waves of three types. Waves connected with the
values k\, k2 undergo dispersion.

3. Body Couples Effects

Let us consider the action of body couples. Since X = 0, therefore also •& = 0, x = 0.
No longitudinal wave (0* = 0) will occur in the infinite space. We must now solve the
set of equations

(3.D (v*+k\)r=-~°\

(3.2) (V2+fc?)(V2+fc?)W*=4rotY)*,

(3.3) (V2+kl) (V2+/cf)H* = - i 2>, YJ*.

If the body couples Y are distributed over a closed region B, the quantities a* and YJ*
will be found from the equations:

(3-4)
B

On introducing in these equations the expression

Yf(x) = d(xl)d(x2)d(x3)d1J, j= 1,2,3,

— that is, a concentrated body couple acting at the origin in the Xi direction — we obtain:

Sx2\R)-

On solving Eqs. (3.1) to (3.3) in the same manner as was done in Sec. 2, we find:

y*__ 1 8 leik*-\
a 7i

2'1 dXl\ R
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where _ k\-a\ „ k\-a\ = ___̂ 1_
C l - fc 2 ( fc 2 -A: 2 ) ' 3 fc|(A:2

2-^)' 3 ^ 2 M

The displacements and rotations will be found from the equations

On substituting (3.7)-(3.9) in (3.10), we obtain:

(3.12)

On moving the concentrated body couple to the point Ę, and directing the body couple
vector parallel to the x,-axis, we obtain the Green tensor of displacement Vfil)(x, Ę)
and the rotation tensor ^^'''(x, %).

Thus, for example, we have

where
R = [(Xi-

On returning to Eqs. (3.7)-(3.9), let us observe that the action of the concentrated body
couple Y* = d(x1)d(x2)d(x3)8lj produces zero displacement in the direction of the axis
Xi (yfll) = 0), therefore also yn = 0. Since kit k2, k3 are functions of the frequency w,
all the types of waves occurring in the expressions (3.11) and (3.12) undergo dispersion.

4. Determination of the Green Functions by Means of Stress Functions

We shall now describe in brief the other method for finding the Green function. Use
will be made of the stress functions cp and tj> generalized by N. SANDRU, [7]. These functions
are connected with the displacements and rotations by the relations:

(4.1) u = DiD4V—graddivPcp—

(4.2) to = D2D3^—graddiv@4»—2arotDi<p,
where

T = (k+/i-a) D 4 -4a 2 , 0 = (jS+y-e) D 2 - 4 a 2 .

On introducing (4.1) and (4.2) in the set of Eqs. (1.6), (1.7), we obtain:

(4.3)

(4.4)
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The particular usefulness of these equations for the determination of Green function
is evident. It suffices to find a particular integral of these equations and to determine the
displacement u and the rotation to from Eqs. (4.1) and (4.2).

From Eqs. (4.3), (4.4), we find that cp = 0 for no body forces and ij> = 0 for no body
couples. By considering harmonic body forces and cotiples, Eqs. (4.3) and (4.4) can
be reduced to the form:

(4.5) (V2+&?) (V2+fc2) (V2+<T?)cp*+*X* = 0,

(4.6) (V2+k\) (V2+k2) {V2+kj)<\t*+crY* = 0,

where
1 1

a) (y+e)' 03+2y) Qt+a) (y+e)'

The symbols k\, k\, k\, a\ have the same meaning as in Sec. 2. Let us observe that the
solution of the homogeneous Eqs. (4.5) and (4.6) has the form:

(4.7) <P* = A-—- + B-—- + CR R

(4.8) ^ * = D ^ _ + E ^ _ + F+ E + F

It is seen that the first two wave terms of (4.7) undergo dispersion. In Eq. (4.8) all the
three wave terms are dispersed.

Let us quote the equations for the amplitude of displacement and rotation:

(4.9) u* = (A+2p) (y+e) (V2+kj) (V2+<r2-2/>)q>*

(4.10) u>* - 0*+«) GS+2y) (V:

where
_ 4a2 4a2

ifi+y-e) (y+e)' ' (y+e) (X+p-a) *
Let us consider first the action of body forces. Since Y* = 0, therefore also *|>* = 0.
It remains to consider Eq. (4.5) and to set ij>* = 0 in Eqs. (4.9), (4.10).

On applying to (4.5) the Fourier exponential transformation, and introducing the new
notations

we obtain, making use of the method used in [8]:

(411) »*-f H f I H ? | H ? \
1 ' ; V \(MI/Ą) (fĄiĄ)+ (/4/Ą)(/ĄMI) + W-i&QA-l® I'
The vector functions Hf, H*, H* should satisfy the Helmholtz equations:

(4.12) (V2+^2)Hi* = -«X, (V2+/4)H? <- -«X*. (V 2+,«§)H 3*=-
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The solution of these equations is provided by the functions:

Therefore

(4.14)

where

2\~ > 3 — "7 2 2\ / %

Let us assume that a concentrated force X(x, /) = e~'°" (X*, 0, 0), where .Jf* = <5(jti)
S(x2)S(x3), acts at the origin. Then, from Eq. (4.14), we shall obtain <p* = (<pf, 0, 0),
where

a = l

On substituting <pf of (4.15) in (4.9) and (4.10) and moving the concentrated force from
the origin to the point % and directing it parallel to the Xj-axis, we obtain:

(4.16) Uf\x,%) =
r=l

p+a) dx, dxj \ZJ " DrR / '

(417)
DrR

It can be shown that these equations are identical with (2.20) and (2.21). For this,
use must be made of the relations:

= al+ol+p(r-2), [ĄfĄ = o\{o\-2p).

Let us assume that only body couples act in the body. Thus, X* = 0 and tp* = 0
The solution of Eq. (4.6) can be presented in the form:

(4.18)

where

•^1 — ~F7?i

The vector functions Tf, T2*, Tf must satisfy the Helmholtz equations:

(4.19) (V2+£?)r? = -aY*, (V2+kl)T* = -oY*, (yz+kl)Tf = -aY*.
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By analogy with the solution (4.14), we have:

Let us consider the action of a concentrated couple at the origin parallel to the jcraxis.
On introducing in (4.20) the expression Yf = d(xl)d(x2)d(x3)d1J, we obtain:

3

(4.21) <j>* • (yf, 0, 0), yf = -j~ ^ - 1 ^ 1 .

On introducing 4** of (4.21) and cp* = 0 in (4.9) and (4.10), moving the concentrated
body couple to the point Ę and directing it parallel to the xraxis, we shall obtain the fol-
lowing expressions for displacements and rotations:

(4.22) uj =

(4.23) coj =

8 8 ( ^ ( c ą - 2 r - £ - k l ) e " " * \ , , _ , , ,
J, I 1, JL, J .

RFS

It can easily be seen, after some minor rearrangements, that these last equations are iden-
tical with those obtained in Sec. 2.

5. Two-dimensional Problems

Let a body force Xj = d(xi)d(x2)d1je"1" act in the infinite elastic body in the direction
of the x^axis and let these forces be uniformly distributed along the X3-axis. In this case,
the displacements and the rotations are independent of the variable X3, and we are con-
cerned with the two-dimensional problem.

The relevant equations for the two-dimensional problem will be obtained from the
equations of the foregoing sections by means of the principle of superposition.

Let us start out from the Green function for displacement Vf(1\ Eq. (2.18), assuming
that the concentrated force acts at the point (0, 0, | 3 ) in the direction of the xt-axis. On
integrating the function Ufll) along the x3-axis from — 00 to 00, we shall find the cor-
responding equations for the displacement in the two-dimensional problem.

Let us observe that

r =
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where K0(z) is the modified Bessel function of the third kind. On the other hand, we have

(5.2) 2K0{-ikar) = 7iiH£\kar), a = 1 , 2 ,

where H^(kar) is a Hankel function.
If now we integrate the displacements Ufw of (2.18) along the x3-axis, we obtain,

bearing in mind (5.1) and (5.2):

(5.3) VfM(xi, Xi', 0 , 0 ) = - ~ ^ - [ ( \ i )

d18j(Aim
1\k1r)+A2Hi1Kk2r)+A?,m

iK<r1r))]r j = 1, 2.

In a similar manner, we shall also determine the rotation JOf^\xi, x2; 0, 0). In Eq.
(2.19), we obtain:

(5.4) flf« = flf« = 0, 2 > f ^ ^ (

We must now direct the linear force parallel to xt(l = 1, 2), and move it to the point
C = (ft, ft). Then

(5.5) J7/W(x,, x 2 , ft, ft) = ^

l)(<r1 r))], ;, / = 1, 2.

The Green functions can also be determined starting from Eqs. (4.5) and (4.6), and treating
them as concerning a two-dimensional problem.

The solution of (4.5) will be assumed in the form (4.11). However, the functions Hf-
H* ; H* should satisfy the two-dimensional Helmholtz equations

(dl+dl+fĄ)H? = -xX*, ( 5 M + / $ H ? = -xX*,

(dl+dl+l)Hl = -*X*, H* = (Hf, Hf), X* = (X?, X*).

For the concentrated force Xf = d(x1)8(x2)d1J acting in the xj-direction, we obtain,
from Eqs. (5.6):

1 IX 2 3

f5 7} u* ff(lHii. i-} JJ* Pt* 0
\ ''/ -*̂ *2 — H -*-̂ 0 \r*2'y> •*-*2 — **2 — "s

4

4

On substituting the above in (4.14), we find cp* = (c>f, 0, 0), where

On substituting (5.8) in (4.9) and (4.10) (in which all the derivatives with respect to x3

should be rejected), we shall obtain Eqs. (5.3) and (5.4).
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6. Singular Solution of Higher Order

Let us consider first the spatial problem. Let a concentrated force of intensity --Tr-e

( At \

Si H—-z—, f2, £3) parallel to the Xt-axis, and let a force of the same in-

tensity act at the point If] y~s £2, f3l in the direction of the negative ^-axis. Then,
the amplitude of the displacement u* produced by these forces will be:

(6.1) Mł=

By letting A f x -> 0, we shall obtain the displacement U*(1) for what is referred to as a double
force without moment:

(6.2) UfV=~P~-UfV(x,Q.

Similarly, for the double force, we obtain the following rotation function

(6.3) flf'=-pAi3*(i)(Xi?).

Generally, if a double force without moment acts at the point C in the direction of the
xraxis, the corresponding singularities are given by the equations:

(6.4) ^

(6.5)

with the functions Uf*\ Qfl) as expressed by Eqs. (2.20) and (2.21).
Let now three double forces of intensity Pe~ia" act in the direction of the JCI , x2 and

x3-axis.
• It is known that such a set of forces constitutes what is termed centre of compression

or nucleus of dilatation. Let us denote by Uft the displacement components, and by Qj
the rotation components. Making use of the results obtained for double forces, we shall
obtain, by superposition, the expression:

(6.6) uf=
(6.7) QJ = 0.

It can easily be shown that a compression centre produces only longitudinal waves.

Let a force-T-r-e"'0" act at the point (fi + -7p, | 2 , | 3 j in the direction of the positive
<4fi \ 2 /

x2-axis and let the same force act at the point Ifi ~$2> S3) in the opposite direction.

Then,
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By making zl£i tends to zero, we find the displacement uf, corresponding to the double
force with moment

(6.8) u*=-MJL

Me~irot I A£2 \
Let now a force———act at the point I | i , f2 + -^—,£}) in the direction of the nega-

ńĘ2 \ 2 /

tive Xj-axis and let a force of the same intensity act at the pointllj, £2 y^i £3) in the

direction of the Xraxis. As a result, we obtain:

(6.9) uf = M~Uf».

The sum of these two double forces with moment will produce the displacements;

(6.10) ^ „J = _

Similarly, we obtain:

Making use of Eqs. (2.20) and (2.21), we obtain

M I 8F

where

x " 1 < V 1 R ™"* R '
and

(f, 1 X\ m* — ^

or

where

Let now a concentrated couple of intensity-j-r-e"'"0" act at the point If 1 +-^-, |2>

in the direction of the Xj-axis, and let a concentrated couple of the same intensity act

at the point l | i ~ , £2.£ij in the direction of the negative Xi-axis.

The amplitude uj resulting from these two body couples is:

(6.14)
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If At\ tends to zero, we obtain the displacement F/ ( 1 ) for the double couple:

(6.15) p*W =-c

Similarly, for the rotation function, we have

(6.16) Wf(1) = - 'S

the functions Ff(1) and Wf(1) being given by (3.11) and (3.12). If now three double

couples of intensity 'Me'"0' act in the directions of the Xi, x2 and x raxis, then, by super-

position, we find that

3$! J dC2
 J + df3

 J J ~ '
I e'klR

The action of the three double couples can be treated as that of centre of torsion. It
is of interest to observe that there is no displacement field and the function Wf satisfied
the homogeneous Eq. (1.18). -

Let us now consider Eqs. (6.12) and (6.13). In the classical theory of elasticity, Eq.
(6.12) is treated as a vector of displacement produced by the action of a concentrated mo-
ment acting at the origin and directed along the negative x -axis. On confronting this
equation with (3.11), which takes now the form:

Mr 8 lekiR—eklR\R\

it is seen that the results are not in agreement. This results from the fact that in the micro-
polar theory of elasticity a concentrated body couple is a fundamental load, similarly
to concentrated forces. The above problem has been analysed in detail by P. P. TEODO-
RESCU [9] in the static case.

Our considerations are also valid for the two-dimensional problem. Let us consider
the case of a linear centre of compression. Let us make use of Eq. (6.6) which takes a so-
mewhat different form:

(6.20)

where the displacement vector is taken from Eq. (5.5). As a result, we find:

(6.21) Uf(Xl, x2; Su & ^

where

7. Conclusions Following from the Reciprocity Theorem

One of the fundamental theorems of the theory of elasticity is the theorem of recip-
rocity of works. For a body with micropolar elasticity, and if causes and effects vary
with time in a harmonic manner, we have [10]:

2 Problemy drgań nr 1/69
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(7.1) / (W+3?co'^dV = f (X!*ur+Yl*a>t)dV.
V V

In the form (7.1), the reciprocity theorem concerns, of course, an infinite body.
Let us consider loads of two types
a. Let a concentrated force Xf = 6(x—%)dJr act at a point %, thus producing a dis-

placement Uf(r\x, \) field and a rotation field ^^' '(x, C). Let now a concentrated force
Xf' = <5(x—Y))<5/J act at a point y), parallel to the xraxis. This force will produce in the
body a displacement Uf-l)(x, TQ) and a rotation QJ(l)(x, yj). From the reciprocity theorem
(7.1), we have

/ 8(x-%)dJrUf >(x, r,)dV(x) =
K V

Hence
(7.2)

b. Let a concentrated body couple Yj* = ó(x—Ę)<5/,. act at the point C and a body
couple Yj" = <5(x—Y))(5J, at the point »). The body couple Ff is connected with a field
Vf<» and PFf(r) and the body couple Yf with a field Vfm and H7(1). From Eq. (7.1),
we obtain
(7.3) V*«\%, *)) = VrrKr\, 5).

It can easily be seen, from (2.20) and (3.12), that the equations (7.2) and (7.3) are
satisfied.

c. Let a concentrated force Xf = i5(x—%)djr act at the point Ę, thus producing a field
UfW(x, C) and i3j=(r>(x, C). Let now a concentrated body couple Y'f = ó(x-vj)5y, act at
the point rj, in the direction of the .K/-axis, thus producing a displacement field Vf(l)(x, yj)
and a rotation field Wfil)(x, v\).

From the reciprocity theorem (7.1), we have

J d(x-Ę)dJrV?»(x, Y))^(x) = J d(x-n)8j&?r>(x, %)dV(x).
V V

Hence
(7.4) F*«(S,Y))
Making use of (2.21) and (3.13), we have:

p 8

8 / e'kiR_eitiR \

It is evident, bearing in mind that r = 2oc/gcf, ^ = 2a//c|, that the relation (7.4) is sa-
tisfied.

Thus, making use of the reciprocity theorem, we have obtained additionally a proof
of correctness of the equations obtained in Sees. 2 and 3.

The relations (7.2)-(7.4) can be treated as a generalization of the familiar reciprocity
theorem of J. C. MAXWELL known from the classical dynamic theory of elasticity (elasto-
kinetics).
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S t r e s z c z e n i e

FUNKCJE GREENA MIKROPOLARNEJ SPRĘŻYSTOŚCI

W pracy podano podstawowe rozwiązania równań różniczkowych mikropolarnej sprężystości (micro-
polar elasticity). Podano funkcje Greena (tensory przemieszczenia i obrotu) dla siły skupionej i momentu
skupionego, działający w nieskończonym ośrodku sprężystym tak dla zagadnienia trój- jak i dwuwymiaro-
wego. Omówiono wreszcie osobliwe rozwiązanie wyższych rzędów.

P e 3 io M e

<E>yHKUHH TPHHA MHKPOnOJIflPHOft

B pa6oTe flaioTca dpyHflaineHTajifcHŁie peinerom aHd)d;epeHU,iłajii>H£ix ypaBHeHiiit
ynpyrocTH (micropolar elasticity) JJ,aioTca dpyiiKmui FpHHa (TeH3opbi nepeMemeinrił H Bpamemdi)
cocpeflOTOieHHOH CHJIŁI H cocpeflOTOMeHHoro MOMeHTa3 fleitcTByiomnx B 6ecK0HeHH0H ynpyroft cpefle.
Tan jyiH TpexMepHOHj KaK u HBymepHOH npoBjieiwŁi. HaKonen oScyw^eHbi oco6i>ie peuieiuin BMCUIHX
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