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1. Introduction

The subject of the present work is an axially symmetrical problem of wave propagation
in an elastic micropolar semi-space on the boundary of which there is given a time varying
loading axially symmetrical on the semi-space surface. In the classical elastokinetics,
this is called the axially symmetrical Lamb's problem. On the ground of the non-symmetrical
theory of elasticity, this problem is more complicated, since, in this case, the deformation
of a body is described by two independent vectors—namely, the displacement vector u,
and the rotation vector to. Because the semi-space boundary z = 0 is assumed to be axially
symmetrically loaded, the investigation will be performed in the cylindrical coordinates
(r, <p, z). It will be seen that in our modified axially symmetrical Lamb's problem, the
loading of the boundary 2 = 0 can be divided into two groups. The first produces the
displacement u = (ur, 0, w2) and the rotation to = (0, co9, 0), the second causes the dis-
placement u = (0, uv, 0) and the rotation to = (a>r, 0, coz). The integral Fourier-Hankel
tranformation has been used to solve this problem.

2. Fundamental Equations

We shall consider an elastic isotropic homogeneous and centro-symmetrical medium.
External loadings produce, in the medium, the field of displacement u(x, t) and the ro-
tation field <o(x, t) depending on the position x and time t.

The strain state is determined by two non-symmetrical tensors: the deformation tensor
7/i and the curvature-twist tensor xJ(. These tensors are defined as follows [1-3]:

(2.1) Yji — tHj—GuiCOk, Hjt=Uij.

The stress state is determined by two non-symmetrical tensors—namely, the force-
stress tensor o and the couple-stress tensor |x. The relations between the stress and strain
states are linear and expressed as

Here a, \i, /S, y, s, X are the material constants, ekJi is a unit quasi-tensor.
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By substituting (2.2) into the equations of motion

(2.3) aJiJ+Xi = QUI, etjtOjH+Pjij+YicBJ&i,

and by expressing yjt and njt in terms of the displacements ut and rotations a>i determined
from (2.1), we obtain the following set of six equations which can be written in the vector
from in the following way

( + ) K / i — a)graddivu+2arota>+X = QU,
(2 4)

(y+e)V2co+(y+j5—e)graddivw—4aco+2arotu+Y = Jtli,
where X—vector of body forces, Y—vector of body couples, Q—-density, J—rotational
inertia.

Equations (2.4) are coupled one to another. They can be decoupled by assuming a = 0.
In this case, we obtain:

/łVzu+(/i-|-Jl)graddivu4-X = QU,

(y+e)V2w-r-(y+/3—e)graddivco + Y •= /u>.
(2.5)

The first of Eqs. (2.5) is an equation of the classical theory of elasticity. The second refers
to a hypothetical medium in which only rotations are possible.

We have assumed that the loadings are axially symmetrical and, therefore, the investi-
gation will be performed using the cylindrical coordinates (r, <p, z). After these coordi-
nates have been introduced, the set of Eqs. (2.4) takes the following form:

( 2 6 )

where

8<p + 8z

We shall consider a particular case in which external loadings, body forces and body
couples, as well as the vectors of displacement u and of rotation o> depend only on the
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coordinates r, z. In this case, the set of Eqs. (2.6) is decomposed into two mutually in-
dependent sets of equations:

(2.7)

and

(2.8)

where

LA
r 8r

2a | — —

(y+e) (v2«r - "f) - ~ -2a

r dry

« 9 M Z d 1 d

In Eqs. (2.7) and (2.8) we have disregarded the body forces and body couples.
The sets of Eqs. (2.7) and (2.8) will be considered separately. First, we shall investigate

the set of Eqs. (2.7). To the displacement vector u == (wr, 0, wz) and to the rotation vector
<«> = (0, ci)p, 0), is ascribed the following state of force stresses and couple stresses

(2.9) a =

W 0 an

0 avv 0
zr 0 a„

0 A<r„ 0
\ięr O ^^ :

O ^ 0

where the particular components of the stress tensors have, according to (2.2), the follow-
ing form:

a = 2n + X 2 ^ A l 2

( duz 8ur \ , / 8ur du,
-~- + -JT- + a h ^ ^

azz =

(2.1U)

dr r J \ ór r f
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With the set of Eqs. (2.8), there is related the displacement field u = (0, uv, 0) and the
rotation field to = (a>,, 0, coz).

The following state of force stresses and couple stresses
0 arip 0 firr 0 /xrz

(2.11) a = <t9r 0 a9x, ( x = 0 fiV9 0
0 azv 0 nsr 0 fizz

is ascribed to this field. In (2.11), the following denotations are introduced:

a f 8 , % 8i

* . - "

8r

Hzr =
8z

8coz

8r

dcoz do)r

The components of the force-stress tensor and the couple-stress tensor described by the
formulae (2.11) and (2.12) are functions of variables r, z and of time t. Now we proceed
to solving the set of Eqs. (2.17) and then to the set of Eqs. (2.8).

3. General Solution to the Set of Eqs. (2.7)

The following mutually independent functions ur, u,, cov are involved in the set of Eqs.
(2.7). They arise in the semi-space under the action, on its boundary z — 0, of forces and
moments: the loading normal and tangent to the boimdary and the moment with a vector
tangent to a circle of radius r (Fig. 1). The boundary conditions will be written in the
following form:

(3.1) azz(r, 0, t) = -Mr, t), aXT{r, 0, t) = -Mr, t), iizip(r, 0, t) = -Mr, 0 .

where /j > 0 represents the normal loading directed along the positive axis z , / 2 > 0
is a tangent loading lying in the plane z — 0 and/3 > 0 is a moment with a vector tangent
to a circle of radius r and lying in the plane z = 0.

We shall now introduce elastic potentials 0, W and express the displacements ur, uz

in terms of these potentials

(32) 80 3W 2/R ' Q

ur = 8r 8z
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We shall introduce, moreover, the functions *F, F defined as

ar
(3.3) dr

FIG. 1.

After substituting (3.2) and (3.3) into (2.7), we obtain the following set of wave equations:

(3.4)

- •— 82
t) r-sv2*? = o,

where the following denotations have been introduced

2a

I
4a

1/2

Equation (3.4): represents the propagation of longitudinal waves. Equations (3.4)2 and
(3.4)3 are coupled one to another. After eliminating from them first F and then W, we
arrive at the following equation:

(3.5)

where

4a2

which describes the propagation of modified transverse waves.
After the Fourier-Hankel transformation has been performed on Eqs. (3.4)t and (3.5)

defined as [4]
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CO CO

= - 4 = f e^dt f
(3.6)

where CP, ?P, Z1 are the functions of z, ij, f, we obtain the following set of ordinary dif-
ferential equations with respect to the variable z

(3.7)

where

or, =
C2 • C 4

Similarly as in the classical Lamb's problem, we assume that the loading acting on the
boundary is bounded. We assume, moreover, that the functions 0, W, F should tend to
zero for R = | r 2 + z 2 j l / 2 -> oo. In this connection, we seek solutions to Eqs. (3.4) in the
form:

(3.8)

The quantities Bl and Cx are related with the quantities B and C by means of Eqs. (3.4)2

and (3.4)3. They can be determined, for example, from Eq. (3.4)2 as
(3.9) Ą = XiB, C, = x2C,

where

1 2 ? j - - 1 2

The quantities ^4, i?, C involved in Eq. (3.8) will be determined from the boundary
conditions (3.1) which can be written, on the basis of (2.10), in the form:

du.

(3.10) 8u^
8z

8uz

~8T
•2aa>,

8m„
8z

z = 0

z = 0

z = 0

We express the displacements wr, «z in Eqs. (3.10) in terms of the potentials 0 , XF, and
perform the Fourier-Hankel transformation on these equations. Thus, we obtain the set
of nonhomogeneous linear equations:



The axially symmetrical Lamb's problem in a semi-infinite micropolar elastic solid 103

(3.11) 2lxariA-r,aiB—na2C= -£% Q,

from which we can determine the quantities A, B, C:

A = t*llf 1+1*12 fi + Uufj,

(3.12) B=

C =
where

1 2
a n =^-(fl2^i«i—fliA2«2). «i2 = -j

a = ( A ^ a ^ ) « = —
— -y

(3.13)

1
a 3 2 = 2f

in which we have adopted the following denotations:

(3.14) zl = [2/jff2+A(ff2—J52)](A2x2a1-A1«1a2)—^ycrA^C^-Hi)
and

a, = (/ł+a)^H-?? z(M-a)+2a«i, i = 1, 2.
Now, we subject Eqs. (3.2) and (3.3) to the Fourier-Henkel transformation. Then we

make use of (2.8) and the relations (3.9), and thus obtain:
u, =

(3.15) uz =

The quantities A, B, C involved in (3.15) are determined by the formulae (3.11). We
perform the inverse Fourier-Hankel transformation on Eqs. (3.15) and thus obtain
the expressions for the displacements ur, uz and for rotation OJV in the form

Vln J
* - c o 0

DO 00

(3.16) uz = ^ = r f e-'t'dC f

00 00

v2n i i
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We have already determined the displacements and rotations, and therefore we can uti-
lize the formulae (2.1) and (2.2) to find the state of strain and the state of stress in the
semi-space.

We shall now consider the particular case a = 0. In this case, Eqs. (2.7) can be decoupled
and we obtain the following set of equations:

ih (v2 i a?(3.17) /*w+(A+At)~- = Qih, (v2 - -i- a?) w = o,

and the wave Eqs. (3.4) assume the form:

(3.18) ( v 2 — i -

After the Fourier-Hankel integral transformation has been carried out on the wave
Eqs. (3.18), the solution to them is given by the functions:

(3.19) (f(z) = Ą r « , ¥(z) = Boe-^, a>3(z) = Coe~^',

•where

Q

The constants Ao, Ba, Co will be determined directly from (3.12) with the following assump-
tions

(3.20) A, = «
where

o 2u?i2ff

a? = ^

(3.21) «4i

-do

Finally, the displacements and rotations are expressed by the formulae:
oo oo

»r = 7 = J e-it(C J
' - c o 0

00 00

<3.22) uz = j== f e-1«<% f
* 6

0 0
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It is obvious from (3.22) and (3.20) that the displacements ur, uz can be produced only
by the loading on the semi-space boundary azz(r, 0, t) = —/,(/•, t), azr(r, 0, t) = —fr{r, t).
But the rotations can be caused only by the moment j.iztp{r, 0, t) = —fi(r, t) applied to
the semi-space surface. The formulae (3.22)j and (3.22)2 describe displacements in a classical
elastic medium, whereas the third of Eqs. (3.22) refers to a hypothetical medium in which
only moment rotations and stresses can arise.

Now we proceed to solving the set of Eqs. (2.8).

4. The General Solution to the Set of Eqs. (2.8)

The solutions (2.8) constitute a set of differential equations with respect to mutually
independent function!1.: the displacement uv and the rotations mr, OK. The displacement
uv and the rotations o>,., coz arise in the semi-space due to the following loadings acting
on its boundary z = 0: the tangent stress arip and the moments jxrr and y.rz. The boundary
conditions for the set of Eqs. (2.8) have the form:

(4.1) o,9(r, 0, 0 = -hir, i), fxzz(r, 0, 0 = -h2(r, t), r, 0, t) = -h^r, t),

where hv > 0 is a loading tangent to a circle of radius r on the plane z = 0; h2 > 0 is
a moment with a vector directed along the positive axis z; h3 > 0 is a moment with a vector
lying on the plane z = 0, and this vector is directed along the radius r (Fig. 2).

FIG. 2.

Similarly as in Sec. 3, we shell now introduce the elastic potentials S,TI, and use them to
express the rotations:

\ą-1) ffl' a- a- ' COz a~ ' .. a^

Moreover, we shall introduce the functions A, 6 expressed as

(4.3) 8A 30
Uę~ dr' dr'

After substituting (4.2) and (4.3) into (2.8), we obtain the following set of equations
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(4.4) = 0,

The first of Eqs. (4.4) describes the propagation of a twist wave and the next two are
coupled one to another. We find from them first the A and then the (9; we arrive at the
equation:

(4.5) = 0,

which is identical with Eq. (3.5) describing the modified transverse waves.
Similarly as previously, we perform the Fourier-Hankel transformation on Eqs. (4.4)j

and (4.5)
CO O

(4.6) (3, A, 0) = ~ = J e^dt J rfo(W)(3, A, &)dr,
' - c o 0

and obtain in this way the following set of equations:

(4.7) {8l-al)3 = 0, (82
S- Ś

where

f of).j V^TT»* =F l
The solution to the set of Eqs. (4.7) will be sought in the form

(4.8) §{£) = De-"<>z, @(z) = Ee-
XiZ+Fe-^\ A(z) = ą r ^ + Ą r ^ ' ,

where the quantities E, Ex and i5; Fi are interrelated by

(4.9) Ą = g ^ , i?x = S2JF,
where

g.-.i.^-^+^-oJ), i-1,2,
o

which result from the requirement that the functions 9, A. should satisfy Eqs. (4.4)2.
We should, moreover, determine the remaining quantities D, E and F. They will be found
from the boundary conditions (4.1). By virtue of (2.10), the boundary conditions (4.1)
take the form:

(4.10)

0H-. dz

i 5 a ) *

-> ^2 1 A-

, . dcor

f C > C j 8z

h tr A

— n2(r, t),

— «3(^, ')•
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By expressing the displacement uę and the rotations cor, ioz in (4.10) in terms of the po-
tentials S, 0, and performing the Fourier-Hankel integral transformation on these equa-
tions, we obtain the following set of equations:

(4.11) 2yaarjD-rjq1E-r1q2F = -h2(rj, £),

l 2 F = -h3(f]> 0,
where

n=Ai[(M+a)«(-2«], qt = (y+s)r]2+(y-E)Z.h i = 1, 2.

This is a set of algebraic nonhomogeneous linear equations with respect to D, E, F. From
the solution to (4.1iJ^we obtain:

(4.12)

where

(4.13) fo

1

1

, = —

! = —

2yrj{

(y,

E =

F =

lih-qih),

1
j 0 x2yj nq2

q2+yaorM,

•ya. ,?j nrx

-\

7] — —

To determine the displacement uę and the rotations ft)f, cox, we shall perform the Fourier-
Hankel transformation on (4.2) and (4.3), taking into account (4.8) and (4.9). We obtain
then

a, =

(4.14) mz =

In turn, we shall subject the above equations to the inverse Fourier-Hankel transfor-
mations. Thus, we obtain the expression for the quantities sought cor, coz and uv\

GO TO

(4.15) ft), = ~ f e-iCt(% f
V2n J •}
' - c o 0
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V2n _i J
the quantities D, E, F being given by the formulae (4.12). Now, making use of the formulae
(2.1) and (2.2), we are able to determine the strain and stress fields in the semi-space.

We shall now proceed to consideration of the particular case in which a = 0. In this
case, the set of Eqs. (2.8) can be reduced to the following set:

(4.16) (y+e) (vV - ^+(y-s) ~r=J&r,

Bit
E)~£- = JS>t,

and the set of wave Eq. (4.4) will have the form:

(4.17)

After the Fourier-Hankel integral transformation has been carried out on Eqs. (4.17),
the solution to these equations will be sought in the form:

(4.18) 5 ( 2 ) = ą r r A{z) = Foe-*>, ą ^ Ą r ' " ,
where

ff0 = tf-ąyi\ ;0 = o?2-^)1'2, ro = o?2-*2)"2.
The constants Do, Eo, Fo will be obtained from (4.12) under assumption that a = 0:

(4.19) Do^Piih+ffih, Eo - fizKt+fitKs, Fo^fiihu
where

(4.20) /«2 = ^ [ ( 2 y + ^ - / V ] ^ = - ^ 2 ^ 0 P=

The displacements and rotation will be determined from the formulae:
00

' - o o 0

<O CO

(4.21) coz = - - — J e-^'dC f [aoDoe-«>*-y2
oE0e-y°*]rifo(nr)dri,

' - c o 0

the constants Do, Eo, Fo being determined by the formulae (4.19). It is easy to iind that
the rotations <wr, a>s can be caused only by loading the semi-space boundary with the
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moment stresses -nzz(r, 0, t) = —hz(r, i), iizr(
r> 0, 0 = —h$(r, t) [cf. the boundary con-

ditions (4.1)]. On the other hand, the displacement uv can be produced only by the tangent
stress azip{r, 0, t) = —hi(r, t). It can be stated that the formula (4.21)3 describes displace-
ments in a classical elastic medium, whereas Eqs. (4.21);, (4.21)2 refer to a hypothetical
medium in which there can exist only rotations but not displacements.

5. The Action of Loadings Harmonically Varying in Time

In the present section, we shall consider a particular case of loading the semi-space
boundary—namely the loading varying harmonically in time. We shall discuss two
different variants of such a loading. First, we shall assume that there exist only the stresses
normal to the semi-space surface. Next, we shall investigate the second case in which
there are assumed only the moment stresses on the semi-space surface and their vectors
are directed along the positive axis z.

In the first case, we deal with the following boundary conditions
(5.1) <7Z2(r, 0, 0 - -/,(r)e- t o r, a„(r, 0, i) = 0, ^„(r, 0, *) = 0.
The boundary conditions thus assumed produce the displacements ur, uz and rotation
to,, in the elastic semi-space. Making use of (3.16) withf2 = f3 — 0, we arrive at the follow-
ing expressions for the displacements and rotation sought:

ur = J
OD 0

00 co

(5.2) uz = ~ ( e-l«<Ę f

CO 00

o), = - , = f e-^'dt f
~V2n -i o

In these formulae
00 CO

(5.3) 7,(77,0 = - — • J euidtj A{r)e-"-"r/0{nr)dr =
' - c o 0

where
CO

fiti) - J Mr)r/0(r]r)dr.
o

CO

Use has been made here of J e'^~m)dt = 2nd(£,—a>), where d denotes the Dirac function.
- c o

Making use of (5.3) and integrating, we obtain from (5.2):
CO

Ur = -e--' J
0

oo

(5.4) uz = ~e-ia"J
0

oo
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In an(i a= 1, 2, 3), «,, Ar (r = 1, 2) and <r involved in (5.4), the f should be replaced
by «. Moreover, it should be noted that the expression

(5.5) ^)|f=w = \[2pi.a2Ą-2.{a1—rj2)]{X2K2ai—Xi>Cia2)—Ai.łrj2aXil2{>C2~Xi)\(=m = 0 ,

involved in a,n can be regarded as the condition of the appearance of surface waves in
the elastic semi-space. If we consider the set of homogeneous Eqs. (3.11) for monochro-
matic vibrations, the compliance conditions of this set would be the condition of zero
value of a characteristic determinant of this set of equations — that is, the condition
(5.5). This equation has been derived in [5, 6].

We shall now consider the particular case in which a = 0. Then, taking into account
(3.19) and (3.20) with/ź -£ = 0, we obtain from (3.6)2:

1

(5-6)
v J CO co

\ r r 2
y/ =

 1 I e-<tdc I JL
\/2n J J A
' —00 0

Taking into account (5.3), we have the following expressions for the potentials:
( T to2 V1/2

* j " ) Z ~

(5.7) W=2ue-itot

0

r=o,
where

We shall now consider the second variant of loading—namely, the semi-space boundary
is loaded with loadings varying harmonically in time and with their vectors being directed
along the positive z-axis. The boundary conditions are of the form:

(5.8) fizz(r, 0, t) = ~h2{r, t), azę(r, 0, t) = 0, ^zr(/-,0, t) = 0.

The above boundary conditions produce, in the semi-space, the displacements u9 and the
rotations wr, caz which will be determined from (4.15):

CO

(5.9) mz = - - / = • J e-^'dc
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Here
(5.10) k(v, 0 = ]/2^d(C~co)h2(v).
and

CO

kiv) = / h2(ryf0(rjr)dr.
o

Finally, the rotations w,, a>z and the displacement vv have the form
CO

Ó
00

(5.11) co2 - -e-'°" J | [ffoiSne-^-^CS^

The expression A\is(a = 0 involved in the functions /9,-z (;' = 1, 2, 3) is a characteristic
determinant of the set of Eqs. (4.11). Under the assumption of homogeneous boundary
conditions, the expression A\c=w = 0 is the condition of the noncontradictory character
of the homogeneous set of Eqs. (4.11). This equation is identical with the characteristic
equation for the Love's waves appearing in a micropolar elastic semi-space [5, 6].

Finally, we shall consider additionally the case a = 0. Then, for the boundary conditions
(5.8), and taking into account (4.18), we obtain the following expressions for the potentials:

6 = e'l °5'

(5.12)

where

By virtue of (4.2) and (4.3), we can determine the rotation vector to = (car, 0, mz) in such
a hypothetical medium that only moment rotations and stresses can occur.
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S t r e s z c z e n i e

OSIOWO-SYMETRYCZNE ZAGADNIENIE LAMBA W MIKROPOLARNEJ
PÓŁPRZESTRZENI SPRĘŻYSTEJ

W pracy rozważono zagadnienie propagacji fal w półprzestrzeni sprężystej mikropolarnej izotropowej
i centrosymetrycznej, wywołanych przez obciążenia zmienne w czasie i rozłożone osiowo-symetrycznie na
powierzchni półprzestrzeni. Rozważono przypadek szczególny, w którym obciążenia zewnętrzne, wektor
przemieszczeń u i wektor obrotów co są zależne jedynie od współrzędnych r, z (w układzie współrzędnych
cylindrycznych r, <p, z). Rozwiązanie problemu sprowadza się do rozwiązania dwóch niezależnych od siebie
układów równań. Pierwszy z nich wywołuje przemieszczenia u = (u,, 0, uz) i obroty co = (0, tov, 0), drugi
zaś wywołuje przemieszczenia u = (0, uę, 0) i obroty w = (wr, 0, mz). Do rozwiązania zastosowano trans-
formację całkową Fouriera-Hankela.

P e 3 w M e

OCECHMMETPIMHAJI 3A.HAMA JIAMBA B MHKPOnOJMPHOM
nOJiynPOCTPAHCTBE

B pa6oTe paccMOTpeHa npo6jieMa pacnpocrpaHeHHH BOHH B MHKponojmpiiOM, H3OTponHOM H ijempo-
ynpyroM noKynpocrpaHCTBej Bbi3BaHHbix nepeMeHHŁiMH BO BpeMeHH H ocecHMMeipwiHO

na noBepxHOCTH nonynpocipaHCTBa Harpy3KaMH. PacciwoTpeH qacTHbiii cny naft, B KO-
TOpOM BHeillHHe Harpy3KHa BeKTOp nepeMeilieHHH U H BeKTOp BpaiD(eHHH CO 3aBHCHT TOJIbKO OT KOOpflH-
HaT r, z (B cucTeMe iłHJiHHflpH«eci<HX KoopflHHaT r, <p, z). PeiueHHe npoSjieinw CBOSHTCH K peuieHHK)
flByx He3aBHcnMbix OT ce6a CHdeM ypaBHeHHH. IlepBaH H3 HHX Bbi3biBaei nepeiwemenHH u = (ur! 0, «z)
H BpameHHH to = (0, copj 0) , BTopaa >Ke Bbi3ŁiBaeT nepeMemeHHH u — (0 3 uęl 0) ir BpameHHH w =
= (joir> 0, cu z). flJiH peuieHHa npHMeHeHo HUTerpanbHoe npeo6pa3OBaHne <t>ypŁe-XaHi<enH.
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