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1. Introduction

The subject of the present work is an axially symmetrical problem of wave propagation
in an elastic micropolar semi-space on the boundary of which there is given a time varying
loading axially symmetrical on the semi-space surface. In the classical elastokinetics,
this is called the axially symmetrical Lamb’s problem. On the ground of the non-symmetrical
theory of elasticity, this problem is more complicated, since, in this case, the deformation
of a body is described by two independent vectors—mnamely, the displacement vector u,
and the rotation vector w. Because the semi-space boundary z = 0 is assumed to be axially
symmetrically loaded, the investigation will be performed in the cylindrical coordinates
(r, @, z). 1t will be seen that in our modified axially symmetrical Lamb’s problem, the
loading of the boundary z = 0 can be divided into two groups. The first produces the
displacement u = (,, 0, ©,) and the rotation w = (0, w,, 0), the second causes the dis-
placement u = (0, v,, 0) and the rotation @ = (w,, 0, w,). The integral Fourier-Hankel
tranformation has been used to solve this problem.

2. Fundamental Equations

We shall consider an elastic isotropic homogeneous and centro-symmetrical medium.
External loadings produce, in the medium, the field of displacement u(x, 7) and the ro-
tation field w(x, 7) depending on the position x and time ¢.

The strain state is determined by two non-symmetrical tensors: the deformation tensor
;i and the curvature-twist tensor ;. These tensors are defined as follows [1-3]:

(21) Yii = u‘,J—emwk, Hppo= Ui j.

The stress state is determined by two non-symmetrical tensors—namely, the force-
stress tensor ¢ and the couple-stress tensor . The relations between the stress and strain
states are linear and expressed as
o = (p+0) it (p— ) yi+ Ay ;i
Hji = (y+e)siit (v —&)%ij+Prewa by
Here o, u, B, v, &, A are the material constants, € is a unit quasi-tensor.

2.2
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By substituting (2.2) into the equations of motion
(2.3) oji, X = oilt, €Ot by, Y = Jo,
and by expressing y;; and #;; in terms of the displacements %; and rotations ; determined

from (2.1), we obtain the following set of six equations which can be written in the vector
from in the following way

(n+0o) V2u+ (A4 p—e) grad diva+-2arotw-+X = pii,

2.4 =
(28). (y+e) V2w (y+p—e) grad divw —daw-2arotu+ Y = Jw,

where X—vector of body forces, Y—vector of body couples, p—density, J—rotational
inertia.
Equations (2.4) are coupled one to another. They can be decoupled by assuming o = 0.
In this case, we obtain:
uV2u+ (u+2)grad dive+X = gii,

(2.5) ‘ 5
(y+e) Vw4 (y+f—e)graddivm+Y = Jo.

The first of Eqs. (2.5) is an equation of the classical theory of elasticity. The second refers
to a hypothetical medium in which only rotations are possible.

We have assumed that the loadings are axially symmetrical and, therefore, the investi-
gation will be performed using the cylindrical coordinates (r, g, z). After these coordi-
nates have been introduced, the set of Egs. (2.4) takes the following form:

1 8&:,
r

(#-i—m) (szr—-—?'—ﬁ afp)—k(ﬂ [‘.u. GC)'—"'i 20 l (rwq,)]—l—X, = Qif—r

2 3 5
(u+a) (vzuqﬂ + i )+(;~+# “)_l'%i" (i;:l o= 3&): +Xp = iy,

(2.6) (u—}—o&)V’u-—i—(Z—l—p a)_‘f'za [a (r wrp) op ]+X: = iz,

w, 2 dw,

(}’-I-s)((Vzw.-—-—r'z——r—z 39?) 40![U,+l:ﬁ+}f 3)_+2 (1 ‘ai'_' auq’)‘{“Yr:den

r g dz

2 dw d
V2 @y = ,) . - % du.  ou,
(3"1‘5)( Wy — rz + CP 4a”@+(ﬁ+y 8) a“p +205 —g‘z— __ar_ +Yw i Jwﬂ”
(7 +&) Vo, —daw.+(B+yp—e) %+2a 1 [ (rugy)— a”']JrY, = Jd,,
where
1 du du- 1 4 1 @
= oarlu)t L B B 10y L0 O,
rip T Ty atedt Tt

We shall consider a particular case in which external loadings, body forces and body
couples, as well as the vectors of displacement u and of rotation depend only on the
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coordinates r, z. In this case, the set of Egs. (2.6) is decomposed into two mutually in--
dependent sets of equations:

i 2, _ i’ L de om0 .,
(u- a}(V U — 3 ) +@+u a)g 2&—5;—— 0idy 5
" de 1 4 .,
2.7 (o) Viu+ (A p—a) A + 2 = (rwy) = oii.,
o, u, o, n
(y+e (V’w@ 2 ) 4aw¢+2o¢( = W) = Ji>,,,
and
dw,  dw. 5
(pu+o) (Vzuq,—r-%ﬁ) + 2 (—%— - ;’) =iollss
(2.8) (y+e) (Vzw,—— ——) 4om,+(f+y— 8) e —2 3;" = Ji,,
4 o 1 2 3
(y+e)Viw,—4doaw,+ (f+y—e) v + 20 = (rue,) = Jarz,
where
19 __ 1 4 Eiw- &
=7 o (ru ’)+ o ( W) ¥ 6r2 +r_dF+32:'

In Egs. (2.7) and (2.8) we have d1sregardcd the body forces and body couples.

The sets of Egs. (2.7) and (2.8) will be considered separately. First, we shall investigate
the set of Egs. (2.7). To the displacement vector u = (u,, 0, w.) and to the rotation vector
w = (0, wgy, 0), is ascribed the following state of force stresses and couple stresses

Trr 0 Crrzl 0 Hrg 0
(2.9) 6=0 0pp O, p=[ter O ppi,
o 0 og 0 py O

where the particular components of the stress tensors have, according to (2.2), the follow-
ing form:
Bu, du.

oz

+ e,

Orr = 2#

+-de, 04o=2n —?——f- de, 0..=2pu

aor gz  or
du. . du, du,  Ou.
Tar = (Br +"a*)* (aT— 2 ) 2acy,
(2.10)
_ 2%_2_«1)- dov, &)
Kk (ar r Te( ar T r )’
_|fve  we)  [lw, | we
b (3:‘ T) 8(—6';"‘_ s
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With the set of Eqs. (2.8), there is related the displacement field u = (0, u,,, 0) and the

rotation field w = (w,, 0, w.).
The following state of force stresses and couple stresses

0 o O Ber O oz
(2.11) G=l0, 0 Cpsy B=|0 pge 0],
0 o, O e O p

is ascribed to this field. In (2.11), the following denotations are introduced:

- 1 du, | du, u,,,) o [ ] !
Org = ,u(T 70 -} 3 = -+ — P (upr)— 0 — 200,

3 5u, Up o | @ ou,
r 8(p ar _T)_ r [51‘ (tg7) 3@]4-2&(0,,

dup 1 ou, ou, @&
‘“( : 3¢)+ [acp E(’”“’]‘z““‘”

auy, o | du. G e
(2.12) 02 = ( ratp)*‘T[-g‘; o~ g‘z"('“m)]+20twr,

dw,

39 +w,)+ﬁx, Ugr = 2

3m, 1
frr =2 + B, n“t“’@:zy?(

. (3&1, 5 do- | ( dw,  dw,
Hee =¥\ 72z or “\ oz or |’

dw, dw. dw, aw,
#zr*_y( + ) E‘a( or Pz ).

The components of the force-stress tensor and the couple-stress tensor described by the
formulae (2.11) and (2.12) are functions of variables r, z and of time . Now we proceed
to solving the set of Egs. (2.17) and then to the set of Eqs. (2.8).

3. General Solution to the Set of Egs. (2.7)

The following mutually independent functions u,, u., w, are involved in the set of Egs.
(2.7). They arise in the semi-space under the action, on its boundary z = 0, of forces and
moments: the loading normal and tangent to the boundary and the moment with a vector
tangent to a circle of radius r (Fig. 1). The boundary conditions will be written in the
following form:

(31) G::(rs 0, '() = _.fl(r’ t)’ 0';.-(-", 0, f) = ‘—'_f;(f', f), ,Uz{,(.?‘, 0, f) = —j},(r, I),

where f; > 0 represents the normal loading directed along the positive axis z, f> > 0
is a tangent loading lying in the plane z = 0 and f; > 0 is a moment with a vector tangent
to a circle of radius r and lying in the plane z = 0.

We shall now introduce elastic potentials @, W and express the displacements u,, u,
in terms of these potentials

pale] oW ob 1 ¢
32 e e, =
G2) He or 0z T F r or ).
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We shall introduce, moreover, the functions ¥, I" defined as

(3.3) W=——b ) wp=——F.

FiG. 1.

After substituting (3.2) and (3.3) into (2.7), we obtain the following set of wave equations:
(VZH-%-E)?)(D =0,
G
(3.4) (Vz -——:2— 33) Yipl'=0,
‘2
(vz—v%; - T:? 33) r—sv¥ — 0,
4

where the following denotations have been introduced

12 1/2 12
i IR o IR e
0 e J

e s 20 2 = 4o
pta’ T yte’ Tyt

Equation (3.4), represents the propagation of longitudinal waves. Equations (3.4), and
(3.4); are coupled one to another. After eliminating from them first " and then ¥, we
arrive at the following equation:

p

1
(3.5) [(vt-va —~ 33) (vz — CL% af) + 3 v’] &, IN=0,
where

e A0
ot
which describes the propagation of modified transverse waves.

After the Fourier-Hankel transformation has been performed on Egs. (3.4); and (3.5)
defined as [4]
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@, %, I 1/1:,: l ety J' v o) (@, W, T)dr,
(3.6) g )
(D,¥,I' = 1 f "':‘dtff 75 o) (D, P, Iydy,

where @, ‘ff, I" are the functions of z, 7, & we obtain the following set of ordinary dif-
ferential equations with respect to the variable z

[22— (P —o)]® = 0,
G.7) R

where
A=)+ AB—n") = v—03—03,
B—) (B—n?) = o3 (05—),
L & ¢

a3
G=—— O=—, og=—.
e e’ Cy

Similarly as in the classical Lamb’s problem, we assume that the loading acting on the
boundary is bounded. We assume, moreover, that the functions @, ¥, I" should tend to
zero for R = [r?+2z%|"* - 0. In this connection, we seek solutions to Egs. (3.4) in the
form:

= e, o= (ft—0d),

= Be M Ce %,
f=Bie"‘"+Cle"1‘3’.

The quantities B, and C, are related with the quantities B and C by means of Egs. (3.4),
and (3.4);. They can be determined, for example, from Eq. (3.4); as

3.9 B =B, Ci=mC,

where

"Gl B

(ERY)

= %(nz—;{?—a%), i=1,2.

The quantities 4, B, C involved in Eq. (3.8) will be determined from the boundary
conditions (3.1) which can be written, on the basis of (2.10), in the form:

Bu.

+Ae 5 = _ﬁ(rx f),

2=l

du,

(3.10) (nt-0)—

-|-(;¢——ot)————2a:w,, . = —fo(r, 1),

=

e —fa(r, B).

=

We express the displacements u,, u. in Eqgs. (3.10) in terms of the potentials @, ¥, and
perform the Fourier-Hankel transformation on these equations. Thus, we obtain the set
of nonhomogeneous linear equations:
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[2u0?+ A(a* —2)) A— 222 B—2 2 C = —fi(m, ),
(3.11) 2uonA—na, B—na, C = —f3(, £),

Ly +e) B+hn(y+e)x C = fin, £),
from which we can determine the quantities 4, B, C:

A= ﬁnﬁ‘l"ﬂtlz‘fg-l'ﬂuf;,
(3.12) B= ﬁlef:'i‘“zzf;'l‘ fxzsf;;
C = oy fitonfitafs,

where
1 2
% = A (a2 01—ay Aatr) %2 = A 1Ay As(ta—1) 5
2un 2
oy = — May—aydy), oy = —— uoiyn,,
13 (‘}!+)A(12 142) 2 ‘:1# 2%2
1
Oay = = zz?ﬂz[zﬂffz'f‘;{(az—??z)]:
(3.13) "
_ - BT
a3 = ?}A (‘y ) {[2;10'2—[-,1(0 )1 (45} 4)“' n GH‘Z} 3
_ 2 . _ i 2 B2
o3 = A podyxy, U3z = —-7?1-4 Ao [2p0?+A(0*—n")],
Oy = 4( E ) 1[2,{10'2-%-2(0’2 7?2)]61 4‘&21?2.110'},
in which we have adopted the following denotations:
(3.14) d= [2#0’2—}-‘2(02—?‘}2)] (szza;—ilxlaz)—4p21;202122(%2-—?¢1)
and

= (p+a) A+ (p—o)+20, i=1,2.
Now, we subject Egs. (3.2) and (3.3) to the Fourier-Henkel transformation. Then we
make use of (2.8) and the relations (3.9), and thus obtain:
#, = —n[Ae "=+ Be~ 174 ), Ce 7],
(3.15) i, = —ode "2 4y?(Be~ M4 Ce %),
@Dy = N(Brye~ M=+ Crye~),
The quantities 4, B, C mvo[ved in (3.15) are determined by the formulae (3.11). We
perform the inverse Fourier-Hankel transformation on Eqs. (3.15) and thus obtain
the expressions for the displacements u,, u. and for rotation w, in the form

— .___l... 4 —ile i 2 —oz —-Mz — Az j
== = Je df:ufnme 2y Be-M= 2, Ce= 515 \(yr) dn,

27t 4

(3.16)  w.

I
|
|
1'

s f ety f 1P o de" —y(Be 41+ Ce5))F o (r)dy,
-0 0

o0

Wy = ——— J e'”-"d{f ﬂz(Bxle“)'"+sze_%zz)f1(’?r)d77-
b
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We have already determined the displacements and rotations, and therefore we can uti-
lize the formulae (2.1) and (2.2) to find the state of strain and the state of stress in the
semi-space.

We shall now consider the particular case « = 0. In this case, Egs. (2.7) can be decoupled
and we obtain the following set of equations:

i) [
.u(vzﬂr_%) + (A“‘ﬂ)%: @ﬁrs (Vz—?—ag)(b — 0,

1

(3.17) P T IS e (v= L af) w—o,
dz ch

(r-+e) (V"'w‘, —= ) = Ji,, (vz - -;i 3,2) r=o,

and the wave Eqs. (3.4) assume the form:
(3.18) (V’——l-z—&f)d)=0, (vﬁ-_l,_a;-’)au=o, (vz—iz-a‘:)rzo.
CI Ci 04

After the Fourier-Hankel integral transformation has been carried out on the wave
Egs. (3.18), the solution to them is given by the functions:

(3.19) D(z) = e, P(2) = Bye ™", @y(z) = Coe™™,
where
c 12
o=@—)'’  do=0'—0D'" yo=0l—0)" GH=-, &= (_g) '
2

The constants 4y, By, Co will be determined directly from (3.12) with the following assump-
tions

(3.20) Ay= o\ fi+adrfo, Bo=odfitohhf, Co=adfi,
where
1 2un’c
05?1=A—D(15+’?2)"?, 'x“:ll2=_ ;ji ’
G2)  di=poy, == [Qu PR, o=t
4o : 4o y+e)

Ao = n(Ai+7")[Qu+D P — ] — 4ol
Finally, the displacements and rotations are expressed by the formulae:

1 f ~
U = — /-—2-—- f e_‘;‘d‘:f 1;.'[Age”"’-l—ioBge"l“’}fi(?;.-r)dn,
Ver o, Lk
1 f ~
@2 w= == [ e [ nlotee B 1S sy,
for ) :

o

l oo
Wy = s fe"c"a'Cf nCoe "% \(yr)dy.

-0




The axially symmetrical Lamb’s problem in a semi-infinite micropolar elastic solid 105

It is obvious from (3.22) and (3.20) that the displacements ,, u. can be produced only
by the loading on the semi-space boundary o..(r, 0, t) = —fi(r, 1), o..(r, 0, 1) = —/f.(r, 1).
But the rotations can be caused only by the moment p.,(r, 0, t) = —/f3(r, t) applied to
the semi-space surface. The formulae (3.22), and (3.22), describe displacements in a classical
elastic medium, whereas the third of Egs. (3.22) refers to a hypothetical medium in which
only moment rotations and stresses can arise.

Now we proceed to solving the set of Eqs. (2.8).

4. The General Solution to the Set of Eqgs. (2.8)

The solutions (2.8) constitute a set of differential equations with respect to mutually
independent function::: the displacement u, and the rotations e,, .. The displacement
u, and the rotations w,, . arise in the semi-space due to the following loadings acting
on its boundary z = 0: the tangent stress o,, and the moments y,,. and y,.. The boundary
conditions for the set of Eqs. (2.8) have the form: '

(41) azgo(rs 0, t) = _hl(r: t): .puzz(rs 0; r) = —-hz(l", I), .“zr(ra 0: t} — —h;(r, I)a

where /i, > 0 is a loading tangent to a circle of radius » on the plane z=10; h >0 is
a moment with a vector directed along the positive axis z; #; > 0 is a moment with a vector
lying on the plane z = 0, and this vector is directed along the radius r (Fig. 2).

FiG. 2.

Similarly as in Sec. 3, we shzll now introduce the elastic potentials 5, /7, and use them to
express the rotations:
_ o0& ol o

1 2 '
(32) W= =g Be=geb g ).

Moreover, we shall introduce the functions A, @ expressed as
aa T — e

T T U7 T

After substituting (4.2) and (4.3) into (2.8), we obtain the following set of equations

(4.3) U

(Vz—v§ = -Ez— 3,2)5 =0,
C3
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(4.4) (Vzmvﬁ—% 33)9—%&’1 =0,
4
1 5 4o
g L e R, -y o e
(V 2 3,)A pViO =0, » B3y
The first of Eqgs. (4.4) describes the propagation of a twist wave and the next two are
coupled one to another. We find from them first the 2 and then the @; we arrive at the
equation:
(4.5) l(vz—vﬁ— : 33) (Vz—-é-z- a?)wﬁvﬂ] (4,0)=0,

3
Cy 2

which is identical with Eq. (3.5) describing the modified transverse waves.
Similarly as previously, we perform the Fourier-Hankel transformation on Egs. (4.4),
and (4.5)

(4.6) (5 A,0)= == f et f rZo(r)(E, A, @)dr,
|/2n A y
and obtain in this way the following set of equations:
@.7) (@—o)E =0, (@-21) @A, 6) =0,
where “
s 4o
oo = (P+v3—ad)?, o=—, ==
o = (7*+v3—03) 3 e V2 2y

fa=— % (43224 —} F V(B —d5+—r)+dicd).
The solution to the set of Eqs. (4.7) will be sought in the form
(4.8) E(z) = De*, O(z) = Ee**+Fe~*, /[(z) = Eje =4 F e,
where the quantities £, E, and F, F, are interrelated by
4.9 Ei=mE, F =%F,
where

= 1 2 ’
"y = _s_(,’?!_ ?+”ﬁ_0'i), Eie I, 21

which result from the requirement that the functions @, A should satisfy Eqs. (4.4),.
We should, moreover, determine the remaining quantities D, E and F. They will be found
from the boundary conditions (4.1). By virtue of (2.10), the boundary conditions (4.1)
take the form:

P
|(u+a)7“;i+zam, = —h(, 1),
z=0
(4.10) ‘2:» 9e0e +ﬂxl = —hy(r, 1)
[ 32 z=0 ’ ’
dw. dw,
)(?Jre) EP +(?—e)£—zzo = —h(r, 1).
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By expressing the displacement u,, and the rotations ,, ®. in (4.10) in terms of the po-
tentials 5, @, and performing the Fourier-Hankel integral transformation on these equa-
tions, we obtain the following set of equations:

—2anD—nliri E—nlyry F = —f?l(??, £);
(4.11) 2yaenD—ng E—ng, F = —hy(n, ),

[y +B) o5 —Pr1D—2p P E— 2y don’F = —hy(n, &),
where
ri= Al(ut+0)x—20], g = @y+*+@—ei, i=1,2.

This is a set of algebraic nonhomogeneous linear equations with respect to D, E, F. From
the solution to (4.1%; we obtain:

D= ﬁngrl‘ﬁmﬁz-f'ﬁuﬁs,
4.12) E = ﬁzli;l +Bas fio+ Bash,
F = fy hy ‘Jrﬂszf;z-i"ﬁaa Iy,

where
1 1 1
pu = Z2V’?(‘?132—€2 4), = —A—z%liﬂz(fz_-"l); fis = a (M Ag2—ra22q),
8 _3-( N . ) B —-1-(4 A+ —nr,
2= dy7oo A nﬂqz, 2= —~ |\4yei? ﬂm'zl.
By it S ﬁ——~1(422 — 2 )
3= A q2-1-YOola/z), 3= A YO Ay ??Gh,

| 1 2
(413) fy=— A (4?0511’3‘_""% ‘?7'): faz = Z(Wh +yoediry),

A = 4oy (A2 gi— A @2)— A1 (nga—4Y°00 A1)+ 12 Ao (g —4y* Ay 0o,

n= (2y-+p)oi—p’.
To determine the displacement u, and the rotations w,, ., we shall perform the Fourier-
Hankel transformation on (4.2) and (4.3), taking into account (4.8) and (4.9). We obtain

then
0, = —n(De~%*+ ), Ee~*174 ), Fe~h%),

(4.14) ®; = —0o De** 1’ (Ee~**+Fe*¥),
i, = (% Ee~ "1+, Fe~*7%),

In turn, we shall subject the above equations to the inverse Fourier-Hankel transfor-
mations. Thus, we obtain the expression for the quantities sought w,, w. and u,:

®, = ————V,lz_ j et f 7P (De "2y Ee= %24 3, Fe=) 7\ (yr) dn,
e —o0 0

(4.15) W, = _-_12::_ f e“"dfﬁf no De 0= —n}(Ee~ = Fe="%)|# o(ypr) d,
0
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1 f ~ilt f Q= =AMz | = DAz
=—— e dr #y Ee=" 7, Fe~*%) F \(yr)dy,
Uy ]/E_w 4 ’?(1 2 17 d’)

the quantities D, E, F being given by the formulae (4.12). Now, making use of the formulae
(2.1) and (2.2), we are able to determine the strain and stress fields in the semi-space.

We shall now proceed to consideration of the particular case in which & = 0. In this
case, the set of Egs. (2.8) can be reduced to the following set:

- u .

(P )=,
g % .

(4]6) (}’—l—a) (V‘zmr_ (:.j_?.)+(?_8) E’ = an

d .
(+8) Voo + (y—e) - = Job.,
and the set of wave Eq. (4.4) will have the form:

(4.17) (vz—%a§)£=o, (vi—-j-i-af)@zo, (vz——:z_af)A=o.
3 4 2

After the Fourier-Hankel integral transformation has been carried out on Egs. (4.17),
the solution to these equations will be sought in the form:

(4.18) E(2) = Dye™, A(z) = Foe ™%, @(z) = Ege ",
where
Gy = (,?Z_gg)‘ﬂ’ Ao = (7?2—'6';)”2, Yo = ("}'2“0'3)”2-

The constants Dy, Ey, F, will be obtained from (4.12) under assumption that o = 0:

(4.19) Dy = fhhyt-BYaks,  Ey=Bhhyt-phhs, Fo=pUh,
where

Bo = (O AP, fa=——2pmo0, =
(4.20) Ag AD ? : Auﬂ ’

4o = =8y npe00—n[Qy-+F G —B 1y -+ — (y—e)yil.
The displacements and rotation will be determined from the formulae:

w, = H}/—E f f-’""d‘:af n[Doe™"" — Egyoe=11 7 (yr)dy,

l o o
(4.21) W, = —E f&’*tc'dff [00 Doe 0"~y Eye I F o(nr) dy ,
-0 0

o

f e~ dt f nFoe*F (yr)dn,

1
h“, = VIE
the cons{ants Dy, Eo, F, being determined by the formulae (4.19). It is easy to find that
the rotations ,, w, can be caused only by loading the semi-space boundary with the



The axially symmetrical Lamb's problem in a semi-infinite micropolar elastic solid 109

moment stresses «u..(r, 0, 1) = —hy(r, 1), p(r, 0, 1) = —hs(r, 1) [cf. the boundary con-
ditions (4.1)]. On the other hand, the displacement «, can be produced only by the tangent
stress 0.4(r, 0, 1) = —hy(r, 1). It can be stated that the formula (4.21); describes displace-
ments in a classical elastic medium, whereas Eqs. (4.21),, (4.21), refer to a hypothetical
medium in which there can exist only rotations but not displacements.

5. The Action of Loadings Harmonically Varying in Time

In the present section, we shall consider a particular case of loading the semi-space
boundary—namely the loading varying harmonically in time. We shall discuss two
different variants of such a loading. First, we shall assume that there exist only the stresses
normal to the semi-space surface. Next, we shall investigate the second case in which
there are assumed only the moment stresses on the semi-space surface and their vectors
are directed along the positive axis z.

In the first case, we deal with the following boundary conditions
(5.1) 0:(r, 0, 1) = =A™,  0.(r,0,) =0, 0,0, =0.

The boundary conditions thus assumed produce the displacements u,, v. and rotation
w, in the elastic semi-space. Making use of (3.16) with f; = f3 = 0, we arrive at the follow-
ing expressions for the displacements and rotation sought:

l r —igt d z -0z -4 -4 7
U= —— e~ "al | Aoy A o e M Ay o z=)f(f;,§')fl(-qr)dn,
|
1 i ~it ¢ -0z 2 —Ayz —A2z\] £
(52 i r el f ooy e = =1 (o e M 4oz e )] (1), O)F o(r) ey,
st 0
1 d —ift d 2 —oz 2 —Ayz —dazy] £ ¥
0= f ettt h[ 1 loa e — (ot € MF gy e 49)] fi, £) Fopr)ey.

In these formulae

o0

(G3) b= ?12? ] i " et f fLie @ r L omrydr = V22 8 —w)fi o),

where

ﬁ(‘?}) = f FHE)rF o(nr)dr.

o0
Use has been made here of [ &"¢~*)dt = 278({ —w), where 6 denotes the Dirac function.
-

Making use of (5.3) and integrating, we obtain from (5.2):

U, = —e~ ' f oy €0y Ay e 154 at3, 329_13’)‘c=mﬁ(’?) '\ (gr)d,
a

(5.4) U, = —e=' j |(00¢'19_“—??20'5213_“’"'?}'21131 e_lzz)|r=m}] (’?)7710(7?’)‘}'1:
0

we = e~ [ |(an s e+ oz 26 ) e filr) £ (nr) .
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In o4( =1, 2,3), #,, A4 (r=1,2) and ¢ involved in (5.4), the { should be replaced
by w. Moreover, it should be noted that the expression

55) Aoy = |RpTH A=A (st — Ay a2)— Pk oz~ = O,

involved in o; can be regarded as the condition of the appearance of surface waves in
the elastic semi-space. If we consider the set of homogeneous Egs. (3.11) for monochro-
matic vibrations, the compliance conditions of this set would be the condition of zero
value of a characteristic determinant of this set of equations — that is, the condition
(5.5). This equation has been derived in [3, 6].

We shall now consider the particular case in which o = 0. Then, taking into account
(3.19) and (3.20) with f; = f; = 0, we obtain from (3.6),:

D = B% 12;:? ;[ e~ itde J —- B+m)nre = fin, O)F o@r)dn,
(5.6) o

o

= l/2n f e "tdt f 7, ron %o~ fi(n, &) F o(nr) .

-

Taking into account (5.3), we have the following expressions for the potentials:

w0 5 = 2o \U2, .
qxs:e"“"f i)(zn —%)n“e (-3 A Zo@r)dy,

0

r]
- ;,1..0"_ ”zz

[=+] 2 2 =
(5.7 P=2ue i f 11) ( 2—%) (fqz—i"—)e ( S fitn) Sor)d,
0
F=0,

2 w? 12 w? 12
p=mifor—)-ser -] () )

We shall now consider the second variant of loading—namely, the semi-space boundary
is loaded with loadings varying harmonically in time and with their vectors bein g directed
along the positive z-axis. The boundary conditions are of the form:

(5.8) Bz (0, ) = —hy(r, 1), 0:(r, 0,) =0, i, (r,'0, 1) = 0.

The above boundary conditions produce, in the semi-space, the displacements u, and the
rotations w,, w. which will be determined from (4.15):

Lx 2
(XY

where

Q=S 7= "]—/z—' f e ’Crdcf ﬂz(ﬁlzeqm‘JFAl.BzzE_l‘z‘}‘lzﬁsze_"'zz)gz(??, O F1(r)dn,
—o0 0

(59 w.=— Vo _!; e~"df ;f oo frae "~ (B..e~ M=+ Bre= %) I, £) Fo(nr)dy,

[ eea | PGB e Y ht, O F rry .
0

V2n
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Here
(5.10) ho(n, &) = /27 8 —w)ha(n),
and

ﬁ;(n) = jf hy (e o(yrdr-

Finally, the rotations w,, , and the displacement u, have the form

w, = —e f (Brae™ 0+ 2 fare ™%+ Aafae™ %) _unPa(n) £ 1) iy,

0

(1) @, =—e' J |[o0Brae " —17(Brre™H= - Brre™*9)]|e_umha(n) # 1 (r) iy,
0

Up = eh'}mf |(Elﬁne"-lz—}—kzﬁne‘"-23)_!:=w9?2};2(9;)f1(7;r)dq.
0

The expression 4|;-,, = 0 involved in the functions #;. (i = 1, 2, 3) is a characteristic
determinant of the set of Eqs. (4.11). Under the assumption of homogeneous boundary
conditions, the expression A|;_, = 0 is the condition of the noncontradictory character
of the homogeneous set of Eqs. (4.11). This equation is identical with the characteristic
equation for the Love’s waves appearing in a micropolar elastic semi-space [5, 6].

Finally, we shall consider additionally the case oo = 0. Then, for the boundary conditions
(5.8), and taking into account (4.18), we obtain the following expressions for the potentials:

D.: 1 CUZ - :;2—..’:.; z
0= e_i“"J 5;[2}”?2*"(2‘}’-%5) T:T] ne ( ‘] () o(nr)dn,
3
0
" w?\ (=)
612 E=c [ Dpp(r-G)e U9 R,
4
o

where

> 12 w?\ 12 w? " y

By virtue of (4.2) and (4.3), we can determine the rotation vector @ = (w,, 0, ;) in such
a hypothetical medium that only moment rotations and stresses can occur.
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Streszczenie

OSIOWO-SYMETRYCZNE ZAGADNIENIE LAMBA W MIKROPOLARNEJ
POLPRZESTRZENI SPREZYSTEJ

W pracy rozwazono zagadnienie propagacji fal w polprzestrzeni sprezystej mikropolarnej izotropowej
i centrosymetrycznej, wywolanych przez obcigzenia zmienne w czasie i rozlozone osiowo-symetrycznie na
powierzchni pélprzestrzeni. Rozwazono przypadek szczegblny, w ktorym obciazenia zewngtrzne, wektor
przemieszczen u i wekior obrotéw w sg zaleine jedynie od wspolrzednych r, z (w ukladzie wspOlrzednych
cylindrycznych r, @, z). Rozwigzanie problemu sprowadza si¢ do rozwigzania dwoch niezaleznych od siebie
ukladow réwnan. Pierwszy z nich wywoluje przemieszezenia u = (i, 0, 1tz) i obroty w = (0, wg, 0), drugi
za$ wywoluje przemieszezenia u = (0, ugp, 0) i obroty w = (w,, 0, @;). Do rozwigzania zastosowano trans-
formacje calkowq Fouriera~-Hankela.

Peawome

OCECHMMETPHYHAS 3AIAYA JTAMBA B MHKPOIIOJIAAPHOM VIIPYTOM
ITOJIYITPOCTPAHCTBE

B paGote paccmorpena npofiemMa pacrnpocTpaHeHuss BOJH B MHKDONOIAPHOM, H30TPOITHOM M LIEHTPO-
CHMMETPHYHOM, YIPYTOM IIOJIYIPOCTPAHCTEE, BHISBAHHBIX EPEMEHHBLIMH BO BPEMEHH M OCECHMMETPHUHO
pacnpe/ie/ieHHLINK Ha NOBEPXHOCTH IIONYIPOCTPAHCTBA HArpyaKamMu., PaccMOTpeH JacTHBII cay«ail, B Ko-
TOPOM BHELIHHE HATDY3KH, BEKTOP MEPEMEMICHHIT u i BEKTOp BPALEHHIT & 3aBHCAT TONBKO OT KOOPIH-
HAT r, z (B CHCTeMe IMIMHIPHYECKHX KOODAWHAT r, @, z). Pemrenne npofiiemMbl CBOJUTCA K PEILICHHIO
IIBYX HE3aBHCHMBIX OT cebr cucreMm ypaBHeHuil. IlepBast H3 HUX BhISLIBAET Nepemeitenuss u = (i, 0, uz)
u Bpaiieana w = (0, wy, 0), Bropas ke BhiabiBacr nmepemeiternsa u = (0, #,, 0) 1 BpameHusa w =
= (wy; 05 wz). Ina pemienns npumMeReHO HHTErPabHoe Npeobpasoanile Pypre-XaHKems,
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