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1. Introduction

The aim of the present work is the determination of the field of displacement u(x, t)
and the field of rotations w(x, f) in an infinite micropolar elastic medium, generated as
a result of the action of body forces and couples. Such a general approach includes the
particular case of the action of concentrated body forces and couples. Displacements and
rotations caused by these actions form the set of basic solutions.

We shall consider an elastic, isotropic, homogeneous and circularly symmetrical medium
in which the state of strain is determined by two nonsymmetrical tensors, the tensor of
deformation y;; and the torsional-bending tensor x;;, which are defined as follows [1-3]:

(L.1) Vi = Wi, j—CgjiWk,  %ji = Wy j.

The state of stresses is determined by two nonsymmetrical tensors, the tensor of stresses o
and the tensor of couple stresses . The dependence between the state of strain and the
state of stress is described by the following relations [1-3]:

o = (o) ypt(e—) yiy+Ayinbpis
i = (&) %yt (y—8) 2iy+Prar O
The equations of motion are

(1.2)

o,y +Xi = oil;,

€O+, +Yi = Joyg,
where u; are the coordinates of the vector of displacements; w;—the coordinates of the
vector of rotations; X;, ¥;—the coordinates of the vector of external forces and the vector
of body couples respectively; &;;,—the unit pseudotensor; o, =, A, 8, p, € are material
constants, p, J—respectively the density and the rotational inertia. The functions u, w,
X, Y are functions of position x and time .

Expressing the components of the tensor of stresses and the tensor of couples stresses
in Egs. (1.3) from the relations (1.2), and considering (1.1), we obtain the following set
of equations for the vector of displacements and the vector of rotation:

(¢ o) Vu+ (A4 %— o) grad div u+2arot w+X = pi,
(y+€) Vw4 (y+p—e) graddivw+-2arot u—daw+Y = Jw.

(1.3)

(1.4)
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The set of six differential Eqs. (1.4) may be reduced by way of the decomposition of the
vectors of displacement u, rotation w and the vector of external body forces X and the
vector of body couples Y into a potential part and a rotational part to a set of simple
wave equations.

Thus by decomposing the vectors u, w into:

(L5) u = grad®-}rot¥, div¥ =0,
" w = gradg+rotQ, divR =0,

and the vectors
X = p(gradd+roty), divy =20

Y = J(grado+roty), divy=0,

we obtain from the set of Egs. (1.4) the following equations:

(1.6)

(Vz—i_ 8?)@+—‘-2-a =D,

[ €1
(V’—‘rz——lv— 6f QJ+—}-‘G =0
o3 5 :

(1.7)

[(VZ_L: 3::) (Vz—wz— Lz 3?) +75 VZJ Y= —‘Ez- roty —'LZ(VB——vZ—— L 52) X»
Cs €y Cy 3 Ly
1
[(Vzﬁ iz Bf) (V‘_vz - 3?) —i—'q%V’] D= iz roty — LZ(Vz o
(.'1 04 ' Cz 04
where the following denotations have been introduced:

12 12 12 12
= (EE) e B anBAS wmER

3?)71,

(1.72) ¢ I J
2o de o, A, 4 2e o 2a
B+2y”° yre TPT oFoete T wta T pte”

Equations (1.7); and (1.7), are decoupled, the first one representing the propagation
of longitudinal waves, whereas the second—the propagation of torsional waves. Equa-
tions (1.7); and (1.7), are coupled and present the propagation of the modified trans-
verse waves. The completeness of these potentials has been proved in the work [6].

In the next section, the general solutions of the equations of motion (1.4) will be pre-
sented for the case in which the causes bringing about the deformation of the body are
body forces and moments. Fourier's quadruple integral exponential transformation
will be used for solutions of problems for the case of the plane state of strain and solu-
tions for the case of the static action of concentrated forces and couples will also be inclu-
ded. In Sec. 3, the solutions for the case of harmonic vibrations will be presented. Next
in Sec. 4, we shall present solutions for the case of axially symmetrical deformation of
the body with the independence of all causes and effects of the angle ¢ (in the system of
cylindrical coordinates r, ¢, z). And finally in Sec. 5 the solutions will be presented for
the axially symmetrical deformation of the body in the case of the action of body forces
and couples harmonically varying in time. .
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2. General Solutions of the Equations of Motion

To solve the set of Eqgs. (1.7), we shall use the quadruple Fourier transformation defined
as follows:
& 1 .
2 (E‘l 3 523 ‘EE} ﬂ) == Q f¢(xl » X253 X3, t)exp[l (xk Ek—l_.ut)]st
Ey

B
B (o1, 10, ) =5 [ Beus b, s, WexDI—i (it W,
Wy

where dV = dx,dx,dx;dt and E,; denote the interior of the space x,, x,, x3, 7, and dW =
= d&, dé,dEydp, where W, is the interior of the space.
From the set of Eqgs. (1.7), we obtain, after applying the expressions

1 ob D . . o
22) =) (56, 5 )t anar = e o
the following transforms:
Ful ¥ g @
R - U I e
~ 1 1 24 fp& ~
(2.3) V)= | 7z @+ —odti——7 emin|,
c3 Cy

~ 1 1 . s -
;= a [C_f (E*—0a3) ’?j_?%‘ & Ejk:xt] s

where the following denotations have been introduced:

g = #! 02‘_ Ju! 0y = 'u; 0‘4_ 5 .u's A_(gz j‘f)(gz 12)1
(5] Cy Cy Cy
(2.32)

M= % [3+03+ni—v2 L V[~ F—mi+vP+4psol], B> = &+E+E.

After carrying out the quadruple Fourier transformation for the expressions (1.5),
we shall obtain:
2.4) ?j = —{5’;?—?& Ejkt%vn
@j = —if;p—ifx Epath.

Inserting into these relations @, @, W, 0 ; defined by the functions (2.3), and considering
that

Eljk Eimn = ajm Opn— a}n Okm s
and since divy = 0 and divn = 0, we obtain the following formulae for the transforms:

” i&; 9 1 L .

(2.5 iy = — —_ﬁ‘cf(%zj—-a}) + T [“%Ez"?i— r (E*+v*—0d) €1 x.] ;
o £ 6 1 | e i 5

= A LT L P |
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Next let us perform the quadruple Fourier transform over Egs. (1.6):
,17_,- = '_Q(ifj'g“‘i'i‘fkejklil)’

};j = —J(i&;0+iExEjua)-

From the solution of this set of algebraic equations, we arrive at:

@7

(2.8) : :
» i o - i -
¥=— o7 gubiXi, M=— T €ute Y.
Substituting (2.8) into the formulae (2.5) and (2.6), and after carrying out the inverse
Fourier transformation determined by (2.1),, we obtain the general solution of the set
of Egs. (1.4) in the form of a quadruple improper integral:

(2.9  w(xg, X2, X3, 1) = _lz f{ Eb4X

4 96252@2—01
E}+v .
_;, 7 % (8,6, KB + —ejmesm exp [—i (§x i+ un)laW,
‘ _ _"I_’ __dijkYk
(210) wj (xls KXo, X3, f) = 4x2 " .k.;gZ(Ez_l_-rﬂ__gi)
2 or2 5 ; P
[E ZE: (1 ka—Ezlﬁ)‘*-&:—gg*ejkl §le]} exp[—i(§x X+ ut)ldW.

Since the displacements and rotations are known, we can now determine the tensor
of deformation y;; and the tensor of rotations #%;;, and on the basis of the formulae (1.2)
we can determine the tensor of stresses o;; and the tensor of couple stresses p;.

We shall now consider the particular case in which « = 0. Then (1.4) are independent
of each other and take the form:

%xV*u+(x+A)graddive+X = pii,
(y+&) Vi +(y+p—e)graddivew+ Y = Ji.

Equations (2.11), are the equations of classical electrokinetics, while Eqs. (2.11), de-
scribe the motion in an elastic hypothetical medium in which may occur only rotations
but no displacements. For o = 0, we obtain from (2.9) and (2.10) the following expression
for displacements and rotations:

@12) w=—2L_ X8 — ) — (P&, X,
S R (T o T

2.11)

exp[-—f(nka,+ .ut)]dW.

Y 5 2 4 0 1 J Sk :
(2:25) = 4n2(y+s) f J(g = "i/j))@;fi_p?fzf T el G -1,
where
(2.132) P AT o A B IR

2 3 Qo = y+5
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The formula (2.12) has been derived in the work [4].

We shall assume that we are dealing with a plane state of strain in which all causes
(X, Y) and effects (u, w) depend only on the variables x;, x,, £.

In this case, the set of Eqgs. (1.4) disintegrates into two sets of equations independent
of each other. In the first set, X;, X,, X5 occur as causes and u;, u,, ws as effects, and
in the second set Y,, Y5, Y; are the causes and w,, w,, u3 the effects.

Denoting the body I‘orccs and couples as functions of x,, x,, by X} and Y}, we shall
determine the quantities X and Y} occurring in the formulae (2.9), (2. 10) in the following
manner:

Q1) X b i) = s [ XHGu %, DexpliCEinct bt unlas [ oS,
Es =

Here, dS = dx,dx,dt, and Ej; is the interior of the space x|, x,, t. Since

(2.14a) [ ey = 2m6 (&),

therefore -

(2.15) Xt &, &5, @) = 0(&) V2R XF (4, &, ),
where

~ 1
(2.15a) Xf(gl s 62, ) = W‘z‘ fo(-‘fl s X2, 1)exp[i (& x+ & x,+ i) dS.
Ej

Substituting (2.15) and the analogous formula for 17,-({-'1, E,, &5, 1) into (2.9) and (2.10),
we obtain:

(emxk —EXY)

B Ei5 X} B =
@216) =7 =m Wf lchE’(E'—al)_j[ eci®

+ _—% Eji ng’;"‘]} exp [—i(xy &+ po)dT,

N o HEYY 1| g—0 ;
(2]7) w; = W Wf {JC%EZ(E2+TZ_G'§) _Z[ zgz (‘EJE& Yk Ez}’f)

i Qf—jz' Ejklfkf?]} exp [—i(xy &+ un)]dT,
2

Bk=1,2, E=E&+8.
Here, dT = dx,dx,dt and W; is the interior of the space &, &, 1.

It can be noticed from these formulae that u,, u,, w; might arise from the action of
the body forces X7, X* and the body couples Y§. The functions @,, ®,, u; are connec-
ted with the action of the body forces X¥ and the body couples Y, Y¥.

We shall presently consider the following particular case-static loads. We assume that
in the static problem the body forces are functions of x; only, viz.:

(2.18) X = Pi(xy, X3, X3), Y;= Mj(x1, X5, X3).
Fourier’s transform of the component of mass force will be:

(2.19) Xi(Ey, &, &, 1) = V2R P&, &, E)0(w),
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where
. 1 =
(2.192) P61 2,80 = g [ Pilos 3, %)
By

where the fact that [ e''dr = 2nd(p) has been taken advantage of.

Here dA = dx, dx, dx;, and Bs is the interior of the space xy, X;, X3.

Analogously, for Fourier’s transform of the body couple, we obtain the expression:
(2 20) Yj(&] 3 EZ: 53: .u) VQR MJ(E] 3 EZ: ES)a (ﬂ)

Substituting (2.19) and (2.20) into (2.9), we obtain the expression for static d:splace-
ments caused by the action of the body forces P;(x;, x,, ;) and couples M;(x,, x,, x;):

1 E&P, 1 [ ip -
221)  wy(xy, X2, X3) = Qn) f{ gc%‘E;" A, [J_ci €ja & M,
N LB
15
and substituting into (2.10), we obtain the following expression for rotations:

1 £ & M, 1
222)  wi(x, X2, %) = (2;".':)3 D! { chgz(‘éz+,rz) Ao [ Jc2 (Ej‘f&Mk_E MJ)

(& &Py _quﬁj)]} e~ k*kdD,

o+ —Ifz‘ Ejki‘skf’l]} e "k kdD,
ecz

where dD = d&, d&,d&;, and D, is the interior of the space &, &, &; and

(2.22a) 4y = B—k)E—KY), KB+K=nt—»> Kki=0.
Putting 4} = 0, k3 = n§—+*, we obtain:
(2.22b) Ay = BX B —75+).
When o = 0, we obtain:
1 B 865\
(2.23) i = f{_z___i—u— e gkx.deB,
e ) & 5

where f = c3[c2, 8 = 1-4A[x, ¢3 = #/p, which is the expression known in classical elasto~
kinetics [4] and '

(2.24)

£&6(1—B) -~ ﬁ'fb} g
w; = My — - ek dW;,
T @At W[ { F :
where f; = ¢3/ci, which represents the solution in such a hypothetical medium in which
only rotations and couple stresses may occur.
Applying the previously described method, we shall pass to the two-dimensional static
problem. As a result we obtain

1 Fr P 1 ?
@25) w=- f f {5"5“ L Ao [E‘:z-gz (&6 P —EP)

ociE*

=+ Jpz €jki EkM:]} exp[—i (& x1+&x,)1dé  dEs,
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i iR i, 2.1 .2
e = [[ {5 -4 [Se cam—ein

ﬁl]}exP[_i('fi Xy +&2 %)) dE, dEs, Shk=1,2,

Here 2 = £14-£3 and

o
(2263) Jﬁrj = —2L'ff M,-(x,,, xg)e’(“{l*‘*"‘dxl dxz.
=7
Let us consider a particular case. We shall assume that in the origin of the system of
coordinates a concentrated force acts along the axis x;:

(2.27) Xi(x, 1) = Pod(x))6(x2)0(x3) b1, Y = 0.
From the formulae (2.21) and (2.22), we obtain:

“}1) - (Zi‘t)s f f f { 9?1%‘ E'(E* E?]-:_':wz) 03 (&6— gz)} e~k dE, dE, d&s,

(2.28)

) e —i&yx
wj (2“)3 fff £ — 7?0+1’2)ch Epa &y e "W kdE dE, dEs.

After performing the integration and bearing in mind that

(2.28a) f f f dsldgzdez—znz 2cal f [ [ Y by dE, = —nR,

j—@

we obtain the following expressions for displacements and rotations caused by the action
of the concentrated force (2.27):

B2 0 [Abe, phelent 1)

7T Bap \9xy ax, | A2 20 \ R R
200 ekR 2
(2.29) —i—(m R —E) ‘ju},
P o [eR 1
(O T & g 2
@) e E”".axk( R R)’

where

Ao i
e = [(y+s) (a+x)] :

Those results are consistent with the solutions of N. SANDRU [5].
In the case in which in the origin of the system there acts a static concentrated couple
with the vector oriented in the positive direction of the axis x;:

(2.30) Yi(x, 1) = Myb(x,)0(x2)0 (x3) 0y, Xie =0,

6 Problemy drgafd nr 2/69
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then for the displacements and rotations, we obtain from (2.21) and (2.22) the following
expressions:

“5” = (2?’!)3 J.fj E_pllg":}'_!—e_ukxkd'fld’gzd‘fh

w§h = (231:)3 f ff .;csg%i} 5 e~k dk, dE, dEs,

from which we obtain upon integration:

M, d _(e“‘z“ 1 )

(2.31)

6 5 | i
W) = — €
& 8 X ax,

My [ & @ [[e® 1 AV 1)] 4oeitaR }
O oy H0 p B S S L] f PRl S, SRR I8
“1" = T6na {8;:_,— ax, [( R .R) (H" p)( ® R/ TRoFe OV

When « — 0, then from (2.29), we obtain the solution for the classical theory of elasticity
for the action of a static force concentrated in the origin of the system of coordinates
in the direction of the x, axis:

Py(A+%) L = x;) 2
(1 0 e Gl o) I | 1 —
(2.33) uf) = ~ BepGit2d ( 5 R dyj, of 0.

R R
(2.32)

3. Vibration Harmonically Varying in Time

Let us consider vibration harmonically varying in time caused by the action of body
forces and couples:

G.1) Xi(x, ) = X¥(x,)e '™ Yi(x, 1) = Y¥(x)e .

The formulae for the displacements u(x, r) = u*(x)e~"® and rotations w(x,?) =
= w*(x)e~'*" are obtained from the transformations of the formulae (2.9) and (2.10)
for forces variable arbitrarily in time. The transforms occurring in those formulae are
expressed in the following manner:

G.2) TAE = # f X*(x) eV, f ei1tn-o) gy,
Wi -

Since
-]

f et gt = 2 (u—w),

-0

we have:

(3.3) Y€ W) = Y22 X E) (1—w),

where

(3.4) XHE) = (zn)m f X}(x)e™kdlVy;  dVy = dxydxydxs.
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Substituting (3.4) into the formulae (2.9), (2.10), we obtain the following expressions
for the displacements u(x, ¢) and rotations w(x, 1)

—fw? v 2
69 w=s [ {eatey | e @aFT—EED

e ) Vocte@—ob 3
2 e,,,‘,e,‘y,]} oxp(—inb)dWs, AW, = dédEsdEs,
p=w
. gt EEYR 1| 8—a} Tk g2y
69 o= | Vet — | S @aiE7

=} QL:—: Ejkl Ek-f:*]} exp (—ix, &) dWs.

We shall consider the particular case of the concentrated body force acting in the origin
of the system of coordinates and oriented along the x,-axis:

(3.7) Xi(x, 1) = Pyd(x,)8(x)8 (x3)dye™", ¥, = 0.
From (3.4) we obtain

-~

38)  X* (21)3;2 f f f 0 (x1)0 (420 (v Vs = 5 )3,2 by, Tr=0.

Substituting the above expressions into the formulae (3.5), (3.6), we obtain the formulae
for the displacements and rotations caused by the concentrated force (3.7):

_m= ol ]
(3.9) uy= Ga)y Wf{oclnggz_cl a [ T oclEr (&5

‘-—Ezé‘u)]} exp (—ix &) dWs,
- p=e
Poe” ' { iEgexp (—ixi&x)

(310) oy = m SEjr1 p A

dWs.

However, if in the origin of the system there acts a concentrated couple oriented in the
direction of the x,-axis

(3.11) Yi(x, 1) = Mo (x1)0 (%) 8 (x3) dye=", X, =0,
then, from the expression identical with (3.4), we obtain for the couple transform:

(3.12) YrE) = (2“"{)‘;;2

and next substituting the above values into the formulae (3.5), (3.6), we obtain:
J‘ Ekexr:(;-"xkh) AW,

61(;

—iwt

M,
(3.13) U= On )Ucl €jx1ip

L

— ot - ST
(.14 o= Mo# f{ 5 ~i[g (&
Wi

@ny’ JeB(E P —03) A | JeiB

—E_,zdl_,)]} exp (—ixy &) dWs.
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The integrals occurring in the formulae (3.9), (3.10) and (3.13) (3.14) can be directly
determined as:

io R
1

BE—) TR
B S G e )71 WP
L= o o B (E—20) (B2—2) exp (—ixy &) dW,
2?‘52 ef}.lR ]. eusz I
_ £ 203
= cio f E—1)E—1) exp(—ixié) dWs
27> iaR u\zn
where
2 L
(3.14b) A4, = z: iz y Ay= —3.%—;%-, (x x4,
z_

Therefore for the displacement u{" and the rotation w§" caused by the action of the
concentrated force located in the origin of the system of coordinates and oriented in the
direction of x, axis, we obtain:

Fyer'oF e ok
(3.15) = 431!9502 (Allz +Azﬂ~2 )51}
Pyeiot 7] eiMR g}R  gloR _
) 4mpw?® 9x, 9x; ( R +4, R R I’ =123,
~iw ILR__LidsR
(1 PPe™™ 0 [ehR—e® .
(3-16) m 49:903 (Az 2%) Ijk axk R 3 J 1’ 2’ 3-

We shall now shift the concentrated force to the point v and orient it in the direction
of the x; axis. Then for P, = 1, we obtain:

! e—iot e MR MR
(B17) wu=UP(xn1)= Aon (A A3 -i'Aziz R )51!

R
e—imr P a e!l,R et’l;R en‘a;R
dmpe?® Ix; ox ( : AR R )'
e—rms a el.ﬂ.lﬂ ema_R
(318) WJ=95'}(X, s I) -———-4ﬂec2(22 AZ) Clk—— ax ( —-——R ),
1 1=1,9.8,

In these equations, we have R = [(x;—#;)(x;—%;)]'2 In this way, we have obtained the
displacement tensor U{"(x,n, f) and the tensor of rotations QM (x,n, t). These tensors
form symmetrical matrices.
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Substituting into the formulae (3.17), (3.18) & = 0, we obtain the transition to classical
elastokinetics [4]:

—{wt itgR io\R__ pitgR
U0, 1) = —— [r%—e%- Gl (LL)]

(3.19) 4dmpm* T ax; dx, R
o 2P, m, ) = 0.
ere,
12 12
w a % w A-+23 )
3.19 ey = |— 5 = —, pa— .
( a) Ty = Cy (9 ) o1 P Cy ( 0

The formulae (3.17) and (3.18) have been derived in a different way in the work [5].
Let us now pass to the action of the concentrated body couple located in the origin
of the system of coordinates with the vector oriented in the direction of the x; axis and

described by (3.11). Integrating analogously the formulae (3.13), (3.14), we obtain the
following expressions:

PMa e—:'wl d en‘l, R e:‘a\;R
) e s i MRl | e SRR S
(320) P = Ty Sk g ( R _R)

— it 4R ilaR
(G21) o) = e {(A%Cle 4 RBE )61;

dncl R R
el MR iR gihaR
+8,9\Ci——+C—F—+C— )} =123,
where
1—d} 23—} o3 w?*—a} |
.. = 99 7Fa2 13 2 C:—'——-—-—, =_-__: =ale—re—— El
G2a) G=gm_m “=ga—n S~ ~m@ * 2
o 4o
wu=__

7
It is noticed that the action of the concentrated couple Y¥ = 6,;6(x) incurs a zero
value of the displacement in the direction of the x; axis (u{") = 0) which in turn causes
that the component of deformation y; = 0.
Moving the concentrated couple to the point y and orienting the vector of couple pa-
rallel to the x; axis, we obtain the displacement tensor V{)(x, n, ?) and the tensor of
rotation W{(x, n, 7). For M, = 1, we have

—iwt iR ilaR
(3.22) . e g (e__ d ),

0] — e
e = ram— ) |\ R

: e—iot elMR e'#2R
(23) W) = o (| BG G+ BC )by

o 9 o MR etk el MR _
+§x—,_5—xj(q R +G R +G; R )}9 hl=123.

The matrix of the tensors V{ and W{" is symmetrical. In the case in which « =0, we
arrive at:

(3.24)

V}? = 0 2

e~ T efﬂR a a e:’qR eh‘;R
WP ) = g [ﬁ R (T —T)]
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where
- (e . w
= ' %3 _c:
The expression (2.4); applies to the hypothetical medium in which there may occur only

rotations and couple stresses.
If we now assume that at the point x’ there acts a concentrated force. Py, = 1 in the

direction of the xj-axis, then from (3.18) the rotation will be expressed as:

— oot 8 [eMR em;a)
O R e e E )
(3:28) OO X, ) = ged =) 5xk( R TR

If however, we assume that at the point x" acts a concentrated couple M, = 1 in the
direction of the x; axis, then from (3.22), we obtain:

—iewt 5 iR 23R
(U] A AR Y IR e
(3.26) VPO X D) = e =) o, ( R RJ

Therefore, by comparing these formulae, we
(3:27) QP x, x', 1) = VP, x, 1),

since there occurs the equality s/c®> = p/c3. This conclusion might be also taken from the
theorem of reciprocity [6].

In the case in which the displacements u and rotations w are independent of one space
variable—viz., we are dealing with two-dimensional problems—we can obtain the solu-
tion of those problems by performing transitions for the known solutions of (3.15), (3.16)
and (3.20), (3.21). The above transitions to two-dimensional problems for the action
of body forces X; = 8(x;)8(x;)d;;¢~"" and body couples Y; = (x;)d(x,)8;;e~™ have
been performed in the work [5].

4, Axially Symmetrical Deformation of a Body

In this section we shall consider the case of the axially symmetrical deformation of a body.
The field of displacements u and rotations w is characterized by an axial symmetry with
respect to the z axis. '

In cylindrical coordinates (7, ¢, z), and assuming independence of all causes and effects
of the angle ¢, we obtain from (1.4) two sets of equations independent of each other:

dw, . .
2y T Xr = Qlir,

By Ui .\ oe
(x+a)(V Uy r2)+(a+u @) —-— 2«

de  2ua 0 -~

@.1) (t+0) V2 (A+-2— “)Fz*+—r— 5 o)+ X, = oiiz,
) ou,  ou, )

(+e) (Viwp - T-;_) — dawy4-20 (8—2 - W’) + Y, = Jiy,

and

4.2) (y+e) (Vzw, —%’2—) —dow,+ (,3+y—g)‘;—’: —2a % + ¥, =Ty,
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4.2 20t 3
. (r+6) Voo, w0+ B+y—e) o+ 22 2 ()Y, = i,
u, o, dw,
(et) (Vgu.r — —r!}-) + 20 ( T )+X = Olly,
where the following denotations have been introduced:
u= (Hr: Up, u:): w = (wn Wy w:)’ X = (Xr: Xqu: Xz):

(422) Y=(,,Y,,Y), e= % o (v )+ auz

1 &
= T'a—r'(fw,.)

] 2
s O 1 ¢ 5'
Vo= T T
Let us express the displacements and rotations in Egs. (4.1) by the potentials @, ¥, I':
o Y o 1 ¢ ( agl) or
== )

FtmE “mm T )
and decompose the body forces and couples into the potential part and the rotational part:

(a0 oy, a0 1o,
(4 K_JEFE% &—4a4?aw4-

(4.3) 0, =

Substituting (4.3) and (4.4) into Eqgs. (4.1), we obtain the following set of wave equations:

<]

(vz——li-af)quizea:o,
¢ e

_ 9 |y L 2) Lo
.5) - [(v = 5{1-1-;;1’]-1- S 2%=0,
3 r 2 1 2 T o 2 Y‘p =
—W[(V — _ci 3,)F SVT +'l}-_c?—0.

Let us now express the displacements and rotations in Eqs. (4.2) by the potentials:

dp | Py _ Op 13(33») R
48  e=gitgan e=gi—— g lrg) w=—7

and decompose the mass moments into the potential part and rotational part:

_ (90 _ on, I I
@7 o J(& %z )’ n—’hy+7iﬁmm}
Substituting (4.6) and (4.7) into Egs. (4.2), we obtain the following set of wave equations:
ﬁhﬁ-%&ﬁ+,o—m
€3

48) -~
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——

We shall find the general solution of the wave Egs. (4.5) and (4.8) by applying the
Fourier-Hankel integral transformation. The Fourier-Hankel integral transformation,
applied to the set of Egs. (4.5) has the form [7]:
=iz 4z iy f r o) B, 2, )dr,

n

B, Lo 1) =
4.9)

Oz, =5 [ [y [ 1 oeny B, £, .

g, Bl
—ls Sl—]s

Analogous expressions are obtained for the functions ¥, 2. Performing the integral trans-
formations of Egs. (4.5), we obtain a set of algebraic equations whose solutions are given
by the transforms:

s 1 &
4.10 K
b w_ 1 [@+P—ad) . | oY, Q'—_l_ o257y 4+ (a®>—0} )7]
T pd c2 Xot Jez |’ Ty c3 Jci ol b
Here
(4.10a) A= (@) (®—2), ="+
where
(4.10b) Ba= 5 (B F Y @i PP 4k

Let us conduct the Fourier-Hankel transformation of the relations (4.3) and (4.4).
Assuming that

o

e'C=+10) gz it f rF1(rm) (s X, gg)dr,

0

S 1
(ur&Xr: xq:) . "2;

D P

@.11)
o
@, X,) = ~21? elC=+10) gz gy Bf rZ o(rn) (9, X,)dr,
we obtain:
(4.12) &, = —yb+itn?, i, = —ikd+n¥, &, =l
(4.13) X, = —ond+oilty, X. = —oitl+ong,.

From the relations (5.13), we obtain:
5 1 - ~ Lo -
. 14 '{9’ = — (i e & = == =— o
fde) oo Kk, G =" (Rl

Substituting (4.10) into (4.12), and taking into account (4.14), we obtain the transforms
of the quantities #,, i, @, expressed by the transforms X,, X,, Y}.
Performing the inverse Fourier-Hankel transformation, we obtain finally:
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1
@4.15)  u, = _TL ’“’“‘"d(:dpf ?h(f?;tr){ (;EHBX—;-)—
2 ~
[(‘“ —;" %W (%, —iLX)+— ]} dn,
4.16) wu, = 2i L eI C=+1) dr dy B]- nfo(nr){%
-2 [ atieta+ L5
'—l I4-ut nfl(??r) S(T?X _ICXr) (az_o.%)}";¢
D e L

Knowing the displacements and rotations, we can determine the components of the tensor
of stresses o;; and the tensor of couple stresses p;; from the formulae:

= D 3“’ + Je, aw=2x—‘:i+ze, ay; = 2xﬁt+a
du, du, au, du,

""“"(Tﬁfﬁ)* = ar)‘”‘*“’w
du., . ou, ou,  ou,

""z"(dr + az)+°‘(az - ar)_z““’“”

(4.18)

dw, w dw, w

P'w:?’( a:__rt)+3( arw _l_Tw),

[, o dw, | @y
Ko (Br _T)_s( T

Wy

oz '

Let us consider the particular case « = 0, for which Egs. (1.4) become independent of
each other. From the formulae (4.15) to (4.17), we obtain:

o @—BE D it @D,
i(Lztnt) r
= T3 f [ "C""‘! wan | G e |

D B ¥ @G48 — @2l X ity (DX,
IV = et ﬂ G s |ty

i o a~
o 7 .
= - —i(z-+ut) [ _ 5
o0 = gagg | [ s [ nsion) o p . =3
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The formulae (4. 19)',‘_2 apply to the classical elastic medium [4], whereas the formula
(4.19); applies to the elastic medium in which only rotations may occur.

We shall now pass to the set of wave Egs. (4.8). Performing the integral transformation
of them and bearing in mind that

|8

""—-a

o W I f G0 iy iy f r 2o (@, v, Q, 0)dr,
. 27 J o b
(4.20) °

( s M) = %ff '“’*‘”"dzdtof rf,(:a;rr)(X.,qP)dr,

we arrive at the following quantities:
1 a

P=3 @)’
| (a®—03) )
(4.21) P = ‘Yj[] (ng +T7?-p y
1 [a*v*—0f o pa®
0= (T T 0

Let us perform once agam the Fourier-Hankel transformation of the relations (4.6)
and (4.7):

(4.22) @, = —nG+-ilnp, @, = —iG+n"p, Uy =92,
(4.23) Y, = —J@me—itii,), Y.= —J(Lti—ni,).

From the formulae (4.23), it results that
5 j = b 1 o
(424) ¢ = g @E—nT), iy = Tt T,

Substituting (4.10) into (4.22) and considering (4.24), we obtain the transforms &,, @,, i,.
Performing the inverse Fourier-Hankel transformation of them, we obtain:

1 i— o0 . o . =
(4.25) o, = — Eff e"“c““')didpf ﬂf,(qr){ n (Y. —nY,)
o 0

e3Jo(a*+95—03)

i [ T 2 (p¥.—ity, ]}dn,

(4.26) w.= —2—l.f_ '(C"""”dgdchf ??fo(ﬂ"){ iL(iLY,—nY,)

c3Jo (o +v5—a3)

a?.

_nfed=ad o .o & }
A I:Jciﬂz (??Yz ICY,) ch] df},

1 =% Fafin) | +i—a? s
it (L2 4pt) N1\ 4 P 5
(4.27) Up = -~ Ife dpdé“f 7 { o X"’_—ch (nY,—iCY,){dy.
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Knowing beforehand the rotations w,, @, and the displacement u,, we can determine
the stresses oy; and the couple stresses u;; from the formulae:

Bcuz

+ fx,

Hep =

#r:=7}(awz Qw_r +£(3mr_'iu',i)s

‘:’ Bt p =2y

0z ar

| do. n dw, L dw, _ Cw,
#n ar dz gz ar
_ duy Uy o @
(4.28) Orp =% ( o -r) 4= = (upr)—200,,
o e ) & 8 s
=%\ . P Uy r)+2o0w,,
du, o -
Og: = # W '-—T -'a? (J‘ Ugﬂ)——Z{Iw”
Buw

o= %

—|- 3 (rug)+-20w, .

In the particular case of classical elastokinetics (o = 0), we obtain from (4.25)-(4.27):

o E e n(@l.—n¥) it @¥—it¥,)
il Eife i((z-+u ]dpdCI nfl(??r)[.féuz(az—dg) T zj]d

it (itY.—nY, ) O A
R I I [ T Y

Y= o f f —r(czwnd#d,:f n# i) Go(e? - ;rz) d, G= §°

—001
The first of these formulae refers to the classical elastic medium, while the two remaining
formulae refer to the hypothetical medium in which only rotations may occur.

5. Harmonic Vibration in the Case of Axially Symmetrical Deformation of a Body

‘We shall consider vibration harmonically varying in time caused by the action of body
forces and couples:

(5.1) Xir,z,) =X¥r. e, Yz, 0=YHr, )™,
For the displacements u,, u, and rotation w,, we have the formulae (4.15)—(4.17). The
transforms occurring in them will be expressed as follows:

w

A""J(q, o= _219:_ ff el‘(C:+m)dzdtf r,f,(nf)i’}"(r, P ]/5:,;5 (t—w) ff(ﬂ, 0),
e 0

(5.2)
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where

(5.3) X"’}“(q, L)'= —E: f edz | X} (r, 2)rJ\(r)dr.

]/251 g
Analogously, we shall obtain the expression for the transform ¥
(5.4) ¥y, ¢, 1) = V22 0(u—) ¥}, ),
where
" 1 o . o

5.5 P, =— | etdz f Y, 2)rf () dr.
( ) J (} ) ]/27‘ ) ! J 1

Therefore, we obtain from (4.15)-(4.17):

EX*—nX* j T )
(5.6) p,=— n(iLXE —nX7) LC_[m—I-v o

1 ' o . a0 i~
it —its e e s (X
= e f e dﬁaf-??fl(??"){ o (@—oh)? A oci a? (nX

—ED)+ 57 1"';:]} &y,
H=w

o

61 m= =g [ea [ v | oS b

x(XF—iLX¥) + j;g f’:]} dn,
]

=

(58) o=

3 ~i0z wi s(X*—ilX¥) (>—) V¥ '
e _:[e d(;!df.(nr)[ TRl M.

From the solution of the set of Egs. (4.2)—namely, from Eqgs. (5.25) to (5.27), we obtain
the expressions for the displacements u, and rotations w,, w,:

1 i o i o R S
o) = . _}[‘e it ng %f{qr){“__cg_g_i X;‘-%(’?Yz —tCYr"‘)L=wdn,
1 i 7 _ r (I'Ci;*'_ I‘;r*)
5.10 e it ilz n 5 1
(. ) o, ]/E e u.! e dg{f ﬂfx(ﬂr){c§Jaz(mz+rz_u§)
[P0  =p o sKe }
- -_"Z-[ JC%IIZ (nYzf—ICX:)“l_ ch 31=wd17’
I F v ~ ;‘C(:‘Cf*—n?*)
5.11 = el fes .
GL) e ]/Ee __£ ¢ dff ﬁ"%(nr){cg.fuz(azﬁ-tz—d%)

o E'_zlai V__iry* SJ?; }
A [ J%mz (nYz IEYr)'{' C%Q ”=°d’7'

_“{e shall now consider two particular cases: (1) the body force concentrated in the
origin of the system of coordinates and oriented along the z-axis; and (2) the couple
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concentrated in the origin of the system of coordinates with the vector oriented in the
direction of the positive z-axis.
1. The action of the concentrated force:

(5.12) X (r,z, 1) = Zf:r i, Y,=Y =0,
from which we obtain:

- P . .
(5.13) X:(’?,C)=(2—n;37s Yy =X!=0,

and therefore from the formulae (5.6)—(5.8) we shall have:

_ Pl] ot —i’;z 2 'C TC ul_i_,pZ__o—i
(514)  u.= prald _;{ dc f 7 f:(’)"){ —)e? A pcia® o L
P o i n 2 U
(515) w= e _!0 e df:nfﬁ?fu(nf){m'* A4 gaPcd ,,=,,,d17’

P ‘ w0 _ @0 5
i =

o

2, The action of the concentrated couple:

(5.17) Y.(r, z, f) = ‘2”:; 8()0@)e", X,=Y,=0,
hence

V% M, Yk Y" -0
(5.18) Y¥(n,0) = @ v )

and therefore from the formulae (5.9)-(5.11), we obtain:

o o 2
619) o= —gre [eea [{Z0) s,

Mo ... i ¢ (> —03
G20) w,=— 45;; g-io f —:;zdcf,?Zf (nr){ 7 z(a;—l—rz—ﬁ) _ ’J(:%azdﬂ} dn,

-0

M — [t e~z Cz nZ(GZ__O-;-)
G21) o.=ze f ‘dCf "’ °(’?"){Jc§u=(u2+ﬁ—a§) T s }wd”‘

-0

It is still necessary to calculate the integrals occurring in the above formulae for the dis-
placements and rotations. Performing the integration, and knowing that

= —:yqz_uz 1
(5:214) e f G nar)dy = e
where R = (r*+2%)'7, and applying Bessel’s equation
d*Fomr) | 1 dfr) | , _
(5.21b) e e G R
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after numerous transformations, we obtain:
1. In the case of the action of a concentrated force in the origin of the system of co-
ordinates oriented in the direction of the z-axis:
Pyeiet % ol 1R ei*aR  pioiR
Ur = ZIngat o0z \1 R T4 R )
—iwt 2 ioR 92 1 9 el*iR eihR elmR

]|l B AR | PR Lo R R A

(5.22) 4mpw ¢t R ar roor R R R

R= (T2—|—22)”2.

POSE“‘”' &P el MR eu;n)
dmoci(22—73) dréz “ R/
Substituting o« = 0 into the formulae (5.22), we obtain the transitions to classical elasto-
kinetics:

Wy = —

Pu e—.‘mt al et‘cr. R er‘u;R
Taneo® 0\ R R )

Pge_'“’r Pz eia,k 32 1 3)(3'@‘1 elolk) 1 32 1 }
(5.23) u, = i {"E R \er "ra)]\R R | 28 \R/

w,=0.

2. In the case of the action of a body couple concentrated in the origin of the system
of coordinates with the vector oriented in the direction of the positive z-axis:

o M, e—iwr d (eu.k gih2R
" 4= or 'R R )
Moe—fmt b)) ei).;R e:le eM;R s
e I e = 2__ 2
(524) w, dnio: droz ( R + A4, R + A, R )’ Aa (03 T ) s
Moe—' of [ 2 @idaR & 1. 3 ( el R el%aR PALER S
“ = T hnde? { ¢ R (r?}il"2 e\ 7 TG R R

For a = 0, we obtain from (5.24):
u, =0,
Mue—iml &2 (eitzn iR )

5.25 —_
(Q53) (o dnJw?® droz R

o — Mye~iot { o2 ( eitaR 2 1 9 iR Gtk i 3 1 }
e |G\VR )\ o)\ R TR )T 22 \R)N
We shall pass to static loads. We assume that in the problem of static loads the body

forces and couples are functions of r and z only—viz.:
(5.26) Xi= Pi(r, 2), Y: = Mi(r, 2).
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The Fourier-Hankel transforms of the component of body force and body couple will
have the form:

(5.27) Xi=V22 Pi(n, 0)o(n), Yi = y2m My, £)d(n),
where
(5.27a) (P, M) = ?lﬁ _i e“zdl uf rf1(r) (P, M) dr. -

Therefore, the expressions for static displacements and rotations caused by the concen-
trated force P, P, and the couple M, will be given by:

M My f |1t L [ LR g

Von ) do | ocia
+ oy fjan
(5.28) u;=7%- _i et f oo} 2 itds f?fi-- j[":_,f (P.—itP)
+7i§—ﬂ7z‘w]}dn,
ww—— _ f _i.;zdé.fnf (ﬂr)[S(nPe;tCP') +7§ﬂ?¢]dn.

The displacements caused by the action of the force P, and the couples M, and M,
will be given by:

w, = ._..__1_._ f e—l;zdchfﬂjl(ﬂr){'}'(fCMg_?}M,) i ['}?M —ICM

1/2—3'; A Jeiol (o +5) Ao Jei
sP,
I
! fewal it GeM,—nit,) _ o [nM.—itM,
(529) Wy = V_S‘_';: :c[ € GZ'J- 7?;0(??’){ JCEGZ(“_Z_{_.’.%) Ao [ Jci
2% |t dn,
i 529]} i
U, = ?: f _;’dCf '?j (T'”){ ﬁ — 5 (:;M.. iﬁﬂ,)}d?},
where
(5.292) Ao = P(e®—K), o =0+ K=np—2.

Let us consider here two particular cases: (1) the action of a concentrated force in the
origin of the system of coordinates in the direction of the positive z-axis:

(5.30) P.(r,z) = -% d(r)é6(2), Py=P =0;
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and (2) the action of a couple concentrated in the origin of the system of coordinates,
whose vector coincides with the positive z-axis:
M,

(5.31) M(r,z) = S

8(r)d @), P,=P,=0.

After performing the appropriate integrations, we obtain from (5.28) the expressions for
the static displacements u,, «, and rotation w,, in the case of the action of the concentrated

force (5.30):
Py [}h{-s a% (e‘*‘R_l)+ Py | zr]

"= 8mx | 22 odroz \ R R) ' itz R
Py [A43x 1 #t+d 22 Po(y+s)[_32— j_i)(em)
C3D == g (ﬂ+2x R 7722 &) T 162 o2 T ar )\ R

& .1
+a—(i)]
_ P e‘*"‘_L)
O Tem\ BRI

For the displacement u, and rotations w,, w, caused by the action of the concentrated
couple (5.31), we obtain from (5.29) the following expressions:

__P ﬂ’i_l_)
““=T6au\'R _R)’

2 itR ik R
(533) =M 9 [?’“(e __1_)+J_(e _i)],

4n(y+4e) dréz | 4 \ R R

R
M @ 13 "-"'*‘R) > i)]
= =R N T w )\ R ) T2 \R

M, gitR ﬁ+2'}’ ( PL 1 8 eitR) o (1 )]}
T an (B+2) {T_  W\or T )\ xR ) e \R)S
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Streszczenie

ROZPRZESTRZENIANIE SIE FAL W NIEOGRANICZONYM MIKROPOLARNYM
OSRODKU SPREZYSTYM

W pracy podano rozwigzanie ogdlne réwnan ruchu dla nieskonczonego osrodka sprezystego, mikro-
polarnego. Przyczynami powodujacymi deformacje ciala sa momenty i sily masowe. Rozwiazan dokonano
przy uzyciu transformacji catkowej wykladniczej Fouriera. Przedstawiono ogélne rozwiazania dla sit i mo-
mentéw masowych zmieniajacych sie dowolnie w czasie; zmieniajacych sig harmonicznie w czasie oraz nie-
zaleznych od zmiennej czasowej. Rozwazono zagadnienia tréjwymiarowe i dwuwymiarowe. Okre$lono
réwniez przy uzyciu transformacji calkowej Fouriera-Hankela pole przemieszczen, obrotéw i pole na-
prezen w przypadku osiowo symetrycznej deformaciji ciata.

Peaome

PACIIPOCTPAHEHHUE BOJIH B HEOIPAHMYEHHOM MMKPOIIOJISIPHOM
VIIPYTOM CPEIE

B paGore gaercs obiiee pelueHHe YpaBHEHMI ABMIKEHHS 1A GECKOHEUNO0iT, MUKPOIONIAPHOIL, yIpyroii
cpeanl, IlpHunHaMy, BRISEIBAIOMUMY NehOpMaIHio Tena, ABJIATOTCA MAcCOBBLIE MOMEHTBI M CHIbI. Pe- -
[IeHHe MPOM3BEIEHO MPH MCHOIB30BAHHH HHTErPajbHOrO SKCHOHEHIMaNsHoro npeobpasosanus dypee.
IlpeacraBnensl ofIMe PENIEHHs [IA MACCOBBIX CHJI M MOMEHTOB, H3MEHSIIOIMXCA IPOH3BOJILHO BO
BpeMeHH, MEHAIOLHXCA TAPMOHMYECKH BO BPEMEHH, A TAKYKE HE3aBHCAIIMX OT BPEMeHHOM mepeMeHHol .
Paccmorpens! TpexXMmepHbIe M JABYMepHBIe mpobnembl. OnpepeneHsl ToyKe, [IPH UCMOJIL30BAHME HMHTETr-
pansHoro mpeobpasoBanmst Dypne-XaHKens1, HOJNe MEpPeMelleHuli, BpalleHuit M Ioje HaupmeHHit
B Clyuae ocecCHMMeTpHuHoil jedopmanmu Tena.

INSTITUTE OF FUNDAMENTAL TECHNICAL RESEARCH
POLISH ACADEMY OF SCIENCES

Received December 13, 1968

7 Problemy drgad nr 2/69



