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1. Introduction

The aim of the present work is the determination of the field of displacement u(x, t)
and the field of rotations u>(x", t) in an infinite micropolar elastic medium, generated as
a result of the action of body forces and couples. Such a general approach includes the
particular case of the action of concentrated body forces and couples. Displacements and
rotations caused by these actions form the set of basic solutions.

We shall consider an elastic, isotropic, homogeneous and circularly symmetrical medium
in which the state of strain is determined by two nonsymmetrical tensors, the tensor of
deformation y^ and the torsional-bending tensor Xji, which are defined as follows [1-3]:

(1-1) Yji = "i j — e*ji co*, Ku = ca, j .

The state of stresses is determined by two nonsymmetrical tensors, the tensor of stresses o
and the tensor of couple stresses (JL. The dependence between the state of strain and the
state of stress is described by the following relations [1—3]:

The equations of motion are

where ut are the coordinates of the vector of displacements; t»;—the coordinates of the
vector of rotations; Xh Y;—the coordinates of the vector of external forces and the vector
of body couples respectively; €ijk—the unit pseudotensor; a, x, A, |S, y, e are material
constants, Q, J—respectively the density and the rotational inertia. The functions u, to,
X, Y are functions of position x and time t.

Expressing the components of the tensor of stresses and the tensor of couples stresses
in Eqs. (1.3) from the relations (1.2), and considering (1.1), we obtain the following set
of equations for the vector of displacements and the vector of rotation:

(x:+a)V2u+(A+x— a)graddivu+2arotw+X = ga,
(1.4)

(+)V2+(+8—e)graddivto+2arotu—4aco + Y = JO).
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The set of six differential Eqs. (1.4) may be reduced by way of the decomposition of the
vectors of displacement u, rotation to and the vector of external body forces X and the
vector of body couples Y into a potential part and a rotational part to a set of simple
wave equations.

Thus by decomposing the vectors u, to into:

u = grad#+rot¥ , div*F = 0,
(1-5)

to = grad<p-|-rot£2, div£2 = 0,
and the vectors

X = @(grad#+rotx), div^ = 0
(1.6)

Y =/(gradcr+roty)), divir] = 0,

we obtain from the set of Eqs. (1.4) the following equations:

(1.7)

where the following denotations have been introduced:

c

(1.7a)
, _ 4a 2 4a 2 4a2 2a 2a

Equations (1.7)i and (1.7)2 are decoupled, the first one representing the propagation
of longitudinal waves, whereas the second—the propagation of torsional waves. Equa-
tions (1.7)3 and (1.7)4 are coupled and present the propagation of the modified trans-
verse waves. The completeness of these potentials has been proved in the work [6].

In the next section, the general solutions of the equations of motion (1.4) will be pre-
sented for the case in which the causes bringing about the deformation of the body are
body forces and moments. Fourier's quadruple integral exponential transformation
will be used for solutions of problems for the case of the plane state of strain and solu-
tions for the case of the static action of concentrated forces and couples will also be inclu-
ded. In Sec. 3, the solutions for the case of harmonic vibrations will be presented. Next
in Sec. 4, we shall present solutions for the case of axially symmetrical deformation of
the body with the independence of all causes and effects of the angle cp (in the system of
cylindrical coordinates r, <p, z). And finally in Sec. 5 the solutions will be presented for
the axially symmetrical deformation of the body in the case of the action of body forces
and couples harmonically varying in time. •
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2. General Solutions of the Equations of Motion

To solve the set of Eqs. (1.7), we shall use the quadruple Fourier transformation defined
as follows:

If
ft, ft, £3, n) = 4^2 J <P(*i, *2, x3, t)exp[i(xkik+[it)]dV,

(2-1)
0(Xl, x2, x3, t) = -—•

where dV — dxldx2dx3dt and £4 denote the interior of the space xl,x2,x3,t, and dW =
= dt-xd^dCidfi, where W4 is the interior of the space.

From the set of Eqs. (1.7), we obtain, after applying the expressions

<\n EJ \dxj

the following transforms:

c\ T?-aY r ~ c\

(2.3)

where the following denotations have been introduced:

(2.3a) Cl C2 C3

A?,2 = y

After carrying out the quadruple Fourier transformation for the expressions (1.5),
we shall obtain:

Inserting into these relations &, q>, W, Dj denned by the functions (2.3), and considering
that

and since div^ = 0 and divyj = 0, we obtain the following formulae for the transforms:



J72 W. Nowacki and W. K. Nowacki

Next let us perform the quadruple Fourier transform over Eqs. (1.6):

X, = - & £ )
(2 7)

Yj =

From the solution of this set of algebraic equations, we arrive at:

(2.8)

Substituting (2.8) into the formulae (2.5) and (2.6), and after carrying out the inverse
Fourier transformation determined by (2.1)2, we obtain the general solution of the set
of Eqs. (1.4) in the form of a quadruple improper integral:

(2.9) ufa, x2, *i, o - T3 {~zjvhkz^r

(2.10) coj (x,, x2, x3, 0 = -jgp J - j ^ ^ r i

Since the displacements and rotations are known, we can now determine the tensor
of deformation yji and the tensor of rotations xji, and on the basis of the formulae (1.2)
we can determine the tensor of stresses a^ and the tensor of couple stresses ///;.

We shall now consider the particular case in which « = 0. Then (1.4) are independent
of each other and take the form:

xV2u+(«+A)graddivu+X = gu,

(y+e)V2w + (y+j?-e)graddivo)+Y = /oi.
Equations (2.11), are the equations of classical electrokinetics, while Eqs. (2.11)2 de-

scribe the motion in an elastic hypothetical medium in which may occur only rotations
but no displacements. For a — 0, we obtain from (2.9) and (2.10) the following expression
for displacements and rotations:

where

(2.13a)

a , - - i fxm2-M-(s2-i)iĄXk r

y+e
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The formula (2.12) has been derived in the work [4].
We shall assume that we are dealing with a plane state of strain in which all causes

(X, Y) and effects (u, u>) depend only on the variables xlt x2, t.
In this case, the set of Eqs. (1.4) disintegrates into two sets of equations independent

of each other. In the first set, X1,X2,X3 occur as causes and U!,u2,co3 as effects, and
in the second set Y1} Y2, Y3 are the causes and co1,co2, w3 the effects.

Denoting the body forces and couples as functions of x, , x2, t by Xf and Yf, we shall
determine the quantities Xj and Yj occurring in the formulae (2.9), (2.10) in the following
manner:

00

(2.14) Xj(jSlt h, la. M) = 4̂ 2 f *?(*i, x2, O e x p ^ ^ + I ^ + ^ O ] ^ J e'^'dxs.
£3 -co

Here, dS = dxxdx2dt, and E3 is the interior of the space xly x2, t. Since

(2.14a) J e:i^dx3 = 27td(h),
— 00

therefore
(2.15) i}(fe, fe, f,, ju) = <5 (|3) V 7 ^ i ? tf 1, &, ]U),
where

(2.15a) i ; ( f t , fe, M) = - ^ r ^ f ^ ( J C , , x2>

(In) EJ

Substituting (2.15) and the analogous formula for Yj(Su £2>h, n) into (2.9) and (2.10),
we obtain:

ft t y*

Here, dT = dxxdx2dt and I-F3 is the interior of the space | 1 ; £2, t.
It can be noticed from these formulae that U\,u%, co3 might arise from the action of

the body forces Xf,Xf and the body couples Yf. The functions 0^,0)2, W3 are connec-
ted with the action of the body forces Xf and the body couples yf, Yf.

We shall presently consider the following particular case-static loads. We assume that

in the static problem the body forces are functions of xt only, viz.:

(2.18) Xj = P/(*i, x2, x3), Yj = Mjfa, x2, x3).

Fourier's transform of the component of mass force will be:

(2.19)
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where

(2.19a)

where the fact that f e'^'dt — 2nd(ii) has been taken advantage of.
— oo

Here dA = dx± dx2 dx3, and B3 is the interior of the space xux2,x3.
Analogously, for Fourier's transform of the body couple, we obtain the expression:

(2.20) YJ(i1, f2, f3, fi) = j/2rciif/(li, £2, h)^(fO-
Substituting (2.19) and (2.20) into (2.9), we obtain the expression for static displace-

ments caused by the action of the body forces Pj(xls x2, x3) and couples Mj{xx, x2, x3):

(2.21)

and substituting into (2.10), we obtain the following expression for rotations:

iS e S P~\}e-'*k*kdD
Qci k JJ

where dD — d^d^d^, and D3 is the interior of the space | t , | 2 , f3; and
("0 99n"V /) f!M ^2VK2 Ł-2̂

Putting k\ = 0, kl = rfe—v2, we obtain:

(2.22b) Aa •-

When a = 0, we obtain:

where y3 = c2/c|, <52 = l+A/«, c| = «/g, which is the expression known in classical elasto-
kinetics [4] and

where pl = c\jc\, which represents the solution in such a hypothetical medium in which
only rotations and couple stresses may occur.

Applying the previously described method, we shall pass to the two-dimensional static
problem. As a result we obtain



The generation of waves in an infinite micropolar elastic solid 175

QC2

Here Ę 2 = £ ? + ^ and

I | exp[—I(
J)

. j,k= 1,2.

(2.26a) Mj^A-jf M]{xx, x2) «»(*i«i

—00

Let us consider a particular case. We shall assume that in the origin of the system of
coordinates a concentrated force acts along the axis xx:

(2.27) Xk(x, t) = Pod(xj)Ó(x2)6(x3)314, F» = 0.

From the formulae (2.21) and (2.22), we obtain:

(2.28)

After performing the integration and bearing in mind that

f 3 -(2.28a) J J J - — ^ dStd$2dh-2^^-; j J J - i ^ — rf£x
1-00 —«

we obtain the following expressions for displacements and rotations caused by the action
of the concentrated force (2.27):

where
r 4a,

Those results are consistent with the solutions of N. SANDRU [5].
In the case in which in the origin of the system there acts a static concentrated couple

with the vector oriented in the positive direction of the axis xx:

(2.30) Yk(x, t) = MoÓ (x^ 5 (x2) d (JC3) dlk, Xk = 0,

6 Problemy drgań nr 2/69
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then for the displacements and rotations, we obtain from (2.21) and (2.22) the following
expressions:

(2.31)

from which we obtain upon integration:
k*R l

(2.32)

When a -> 0, then from (2.29), we obtain the solution for the classical theory of elasticity
for the action of a static force concentrated in the origin of the system of coordinates
in the direction of the Xi axis:

(2.33) uj

3. Vibration Harmonically Varying in Time

Let us consider vibration harmonically varying in time caused by the action of body
forces and couples:

(3-1) X,(x, t) = Xf(x, )e-'°"', Y;(x, t) = Y*(x)e-"ot

The formulae for the displacements u(x, t) = u*(x)e~''"" and rotations to(x,ć) =
= <i>*(x)e~'"r are obtained from the transformations of the formulae (2.9) and (2.10)
for forces variable arbitrarily in time. The transforms occurring in those formulae are
expressed in the following manner:

(3.2) Xid, n) = -±p jXf(x)eix^dVi f
W3 -to

Since
00

we have:

where

(3.4) Xf(%) = —* f XrW^dVi', dV3 = dxxdx1dxl.
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Substituting (3.4) into the formulae (2.9), (2.10), we obtain the following expressions
for the displacements u(x, t) and rotations io(x, t)

exp(-ixkik)d1V3, dW3 =

- ^ 6JH h-X? 1} exp (-ixJk)diV2.
QC2 JJiu=cu

We shall consider the particular case of the concentrated body force acting in the origin
of the system of coordinates and oriented along the xvaxis:
(3.7) Xk(x, i) = Pd 6{x^)ó{x2j6(x^)dik£~"", Yk = 0.

From (3.4) we obtain
00

P

Substituting the above expressions into the formulae (3.5), (3.6), we obtain the formulae
for the displacements and rotations caused by the concentrated force (3.7):

" 3

="(2^vrJ % 1 J
However, if in the origin of the system there acts a concentrated couple oriented in the
direction of the Xj-axis

(3.11) Y;(x,t) = Modixjo^oix^dne-1"", Xk = 0,

then, from the expression identical with (3.4), we obtain for the couple transform:

tt 1 ?•> Y*CE\ — Ma f)

and next substituting the above values into the formulae (3.5), (3.6), we obtain:

,r. , « , MQe~"°' . f i
(3.13) iij = 3 z eJkl ip

a 14)
(3.14)

- M°e~iat f! {& l
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The integrals occurring in the formulae (3.9), (3.10) and (3.13) (3.14) can be directly
determined as:

1 r CjSitxpi-i

^ J - co?-*?
W^3

where

(3.14b)

Therefore for the displacement wj-̂  and the rotation tuj1} caused by the action of the
concentrated force located in the origin of the system of coordinates and oriented in the
direction of xL axis, we obtain:

p g-

We shall now shift the concentrated force to the point yj and orient it in the direction
of the xi axis. Then for Po = 1, we obtain:

(3.17) „ , = t/y>(x,y,(0 = * L A f l _ + ^ £ _

R ^"2 R

. / , / - 1 , 2 , 3 .

In these equations, we have R = [(xt-??0(^-»?D]1/2- In this way, we have obtained the
displacement tensor C/j()(x, rj, 0 and the tensor of rotations ^ ( x , YJ, t). These tensors
form symmetrical matrices.
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Substituting into the formulae (3.17), (3.18) a = 0, we obtain the transition to classical
elastokinetics [4]:

H, \IZ co I X-\-2K

( 3 . 1 . ,

oy\x, Y), o = o.
Here,

" c2 ' " \Q I ' ' Ci' " \ Q

The formulae (3.17) and (3.18) have been derived in a different way in the work [5].
Let us now pass to the action of the concentrated body couple located in the origin

of the system of coordinates with the vector oriented in the direction of the xx axis and
described by (3.11). Integrating analogously the formulae (3.13), (3.14), we obtain the
following expressions:

R

where

n2\* c xl~al c - Ą~al c ^- x i^
2 4aa,„ = — .

It is noticed that the action of the concentrated couple Yf = <5ij-<5(x) incurs a zero
value of the displacement in the direction of the xt axis (wp = 0) which in turn causes
that the component of deformation yn = 0.

Moving the concentrated couple to the point rj and orienting the vector of couple pa-
rallel to the xi axis, we obtain the displacement tensor V^(x, r\, t) and the tensor of
rotation Wf(x, t\,i). For Mo = 1, we have

(3.22) Ff(x, „, 0 =

(3.23) Wffr Y), 0 = ^[[ ^

The matrix of the tensors V]l) and W\l) is symmetrical. In the case in which a = 0, we
arrive at:

Vf = 0,
(3-24)
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where
a) ft)

The expression (2.4)2 applies to the hypothetical medium in which there may occur only
rotations and couple stresses.

If we now assume that at the point x' there acts a concentrated force. P o = 1 in the
direction of the x,-axis, then from (3.18) the rotation will be expressed as:

se~iwt 8 leIXlR eiX

(3.25) £f(x, *', t) = j—rruZ^ *u> J- - ^ j

If however, we assume that at the point x' acts a concentrated couple Mo = 1 in the
direction of the xj axis, then from (3.22), we obtain:

ne~imt 8 I e'XlR e'*
(3.26) Vf(x, x', t) =

Therefore, by comparing these formulae, we

(3.27) Qf{x, x', t) = Vj'\x', x, t),

since there occurs the equality s/c2 = pjc\. This conclusion might be also taken from the
theorem of reciprocity [6].

In the case in which the displacements u and rotations co are independent of one space
variable—viz., we are dealing with two-dimensional problems—we can obtain the solu-
tion of those problems by performing transitions for the known solutions of (3.15), (3.16)
and (3.20), (3.21). The above transitions to two-dimensional problems for the action
of body forces Xj = d(x1)8(x2)d1Je~i'a' and body couples Yj — d(x1)d(x2)d1je~"ot have
been performed in the work [5].

4. Axially Symmetrical Deformation of a Body

In this section we shall consider the case of the axially symmetrical deformation of a body.
The field of displacements u and rotations w is characterized by an axial symmetry with
respect to the z axis.

In cylindrical coordinates (r, cp, z), and assuming independence of all causes and effects
of the angle y, we obtain from (1.4) two sets of equations independent of each other:

(4.1) («+a)V 2 « z -

r J ę \ dz 8r f v q"
and

(4.2) ( y + £ ) ( v 2 c o r - ^ ) - 4 a f t , r + 0 S + y - £ ) - ^ — 2 a ^ + F r = J&rt
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(«+ a) h\ - -̂ j + 2a fe- - -̂ -1 + Jf, = ^ ,
where the following denotations have been introduced:

u = (ur, uf, uz), to = (cor, coę, coz), X = {Xr, Xv, Xz),

(4 2a) Y = (Y Y Y) e = — — (ru ) + — ^ n = — — (rco ) + S(°x
p* *" r dr 8z r 8r dz '

Let us express the displacements and rotations in Eqs. (4.1) by the potentials 0, W, F:

80 , 8W 80 I 8 I 8W\ 8r

and decompose the body forces and couples into the potential part and the rotational part:

Substituting (4.3) and (4.4) into Eqs. (4.1), we obtain the following set of wave equations:

(4.5)

Let us now express the displacements and rotations in Eqs. (4.2) by the potentials:

, ,. 8w d2w dw 1 8 I 8y>\ 8Q
(4.6) cor = ~ — a „ a l ' Wz==8 irVdl' uf=~~~zr>

and decompose the mass moments into the potential part and rotational part:

Substituting (4.6) and (4.7) into Eqs. (4.2), we obtain the following set of wave equations:

(4.8)
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We shall find the general solution of the wave Eqs. (4.5) and (4.8) by applying the
Fourier-Hankel integral transformation. The Fourier-Hankel integral transformation,
applied to the set of Eqs. (4.5) has the form [7]:

0(V,C,fi)^-2^

(4.9)

0

Analogous expressions are obtained for the functions W, Q. Performing the integral trans-
formations of Eqs. (4.5), we obtain a set of algebraic equations whose solutions are given
by the transforms:

~ 1 &

*-~7jAL 4 %<P+Jcl\' yAl cl + 1Ą
Here

(4.10a) - A = (ot2-A2) (a2-Al), a2 = C2W,

where

(4.10b) X\tl = y (aj+ai+rjl-v2 =F l/(a22-a24-vl+v2f+4a2

2r,l).

Let us conduct the Fourier-Hankel transformation of the relations (4.3) and (4.4).
Assuming that

J
we obtain:

(4.12) ur = -r)0+iCriP, uz = -iC0+rj2lP, 5>9 = fjf,

From the relations (5.13), we obtain:

Substituting (4.10) into (4.12), and taking into account (4.14), we obtain the transforms
of the quantities ur, uz, S>v expressed by the transforms Xr,Xz,Yv.

Performing the inverse Fourier-Hankel transformation, we obtain finally:
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»• - ~in°-''u

(4.17)
2,71 J J J

— 00 °

Knowing the displacements and rotations, we can determine the components of the tensor
of stresses aJt and the tensor of couple stresses nJt from the formulae:

ur 8uz

M e ff 2?<a„ = 2K — — | - / e , ffw = 2 x M e , ff22 = 2?<-^

c r r 2 = 8z 3r

(4.18)
co™ \ / ócow , a>„

^ i — e 1 - '
] \8r

ov

Let us consider the particular case a = 0, for which Eqs. (1.4) become independent of
each other. From the formulae (4.15) to (4.17), we obtain:

J

nfliivr) —. v

 2 dri, 6 = -*—.
J a — cĄ Ci
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The formulae (4.19)li2 apply to the classical elastic medium [4], whereas the formula
(4.19)3 applies to the elastic medium in which only rotations may occur.

We shall now pass to the set of wave Eqs. (4.8). Performing the integral transformation
of them and bearing in mind that

(jp, y>, Ó,S) = ̂  If e'^+^dzdt f r/0(W)(<p, V) Q, a)dr,

(4.20)

t f rS^r)(X9, r,v)dr,

we arrive at the following quantities:

1

(421) 1 IsX,

Let us perform once again the Fourier-Hankel transformation of the relations (4.6)
and (4.7):

(4.22) wr = —rjcp+ityf, tóz = —%ip+ifip, uę = r)Q,

(4.23) Yr = -J(v5-itfv), Yz =

From the formulae (4.23), it results that

(4-24) 5 = J-j- (itt-rjYX fj, = - ^ (r,Y2-iCYr).

Substituting (4.10) into (4.22) and considering (4.24), we obtain the transforms a)r,mz,uv.
Performing the inverse Fourier-Hankel transformation of them, we obtain:

(4.25) „, _ _ £ fj «-*.«

(4.26) a , - - - L .

°
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Knowing beforehand the rotations cor, a>z and the displacement uę, we can determine
the stresses an and the couple stresses \iyt from the formulae:

\ l \ z w
(4.28) crr, - H ( - ^ - i ) + £ ^ (M,

( S i / a w „ \ a d ._ _ £ . __j _____ ( W ? ,

0«
3«p a 5 . .

ffzc. "= « -y^- H - p (ri/p)+2acuf.

In the particular case of classical elastokinetics (a = 0), we obtain from (4.25)-(4.27):

U f i £ m *>• il - f •
-oo! °

The first of these formulae refers to the classical elastic medium, while the two remaining
formulae refer to the hypothetical medium in which only rotations may occur.

5. Harmonic Vibration in the Case of Aiially Symmetrical Deformation of a Body

We shall consider vibration harmonically varying in time caused by the action of body
forces and couples:
(5.1) Xi(r, z , t) - Xf{r, *)«r»-», Y,(r, z, t) = Fftr , _)«-'*.

For the displacements u r, wz and rotation cov, we have the formulae (4.15)-(4.17). The
transforms occurring in them will be expressed as follows:

(5.2)
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where
OO OO

(5.3) JTffo, O = - T L - f e'C l^ f J7fr, z)rĄ(yr)dr
v2n -i i

Analogously, we shall obtain the expression for the transform Y:

(5.4) tjfyi, t , AX) = }/2xd(ii-a>) ff(v, 0,
where

OO CO

(5.5) ff(ri,O—L= f e>bdz f Yf(r,
V2n ii i

Therefore, we obtain from (4.15)-(4.17):

(vX*-iCX?) + -Łg YĄ) dr,,

From the solution of the set of Eqs. (4.2)—namely, from Eqs. (5.25) to (5.27), we obtain
the expressions for the displacements uę and rotations a>r, coz:

(S-9) * - 7 f f r "

We shall now consider two particular cases: (1) the body force concentrated in the
origin of the system of coordinates and oriented along the z-axis; and (2) the couple
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concentrated in the origin of the system of coordinates with the vector oriented in the
direction of the positive z-axis.

1. The action of the concentrated force:

(5.12) X,(r, z, 0 - -A-d(r)8(z)e~iat, Yv=Yr^0,

from which we obtain:

and therefore from the formulae (5.6)-(5.8) we shall have:

(5.14) K, = ~ g U - " «

L} -,.
(5.16) c»9 = -

2. The action of the concentrated couple:

(5.17) Yz(r, z,t) = ~ - d(r)d(z)e-ia", Xv=Yr = 0,

hence

(5-18) Y*(rj, 0 = J ^ V ' ^* = ^* = °>

and therefore from the formulae (5.9)—(5.11), we obtain:

(5.19) « „ = -

(5.20) cor = -

00

It is still necessary to calculate the integrals occurring in the above formulae for the dis-
placements and rotations. Performing the integration, and knowing that

where i? = (r2+z2)1/2, and applying Bessel's equation

(5.21b) **g£l + | ^ ^ + » ) = 0,



188 W. Nowacki and W. K. Nowacki

after numerous transformations, we obtain:
1. In the case of the action of a concentrated force in the origin of the system of co-

ordinates oriented in the direction of the z-axis:

_ Poe-ia" J?
R

P0e-ilot \o>2 eia'R I 82 1 8 \l eiX'R e " ' * eia'R

(5.22) 4TZQCO2 I ci R \Sr2 r dr J \ R R

LJL/iYl

Poje-10" 52

^f-Af) 3r3z \ i? R ) ' R *•' + Z -* "

Substituting a = O into the formulae (5.22), we obtain the transitions to classical elasto-
kinetics:

_Poe-:°>[ 82 leia'R eia*R\

43*QCO2 drdz \ R R }'

P„e~ia" ID2 eia'R I 82 1 8 \ Ie'°*R e1aiR\ 1 82 I 1 W
(5 231 u —— li—z. l - i i_ II — - I g I l \\
[p.M) u*~4ne0J2\c2 R '-\Sri

+T~87)\R R }~'2~dzr\R~ll'

2. In the case of the action of a body couple concentrated in the origin of the system
of coordinates with the vector oriented in the direction of the positive z-axis:

ua = lj-%)cl ar\ R R '

a>2 ea*R Id

4nJco2 | cl R

For a = 0, we obtain from (5.24):

(5.25) cor =
4nJa>2 drdz

Moe-i<a<

I cf \ J? / \ 8r2 ^ r 8r) \ R R ) 2 8z2 \ R / ) '

We shall pass to static loads. We assume that in the problem of static loads the body
forces and couples are functions of r and z only—viz.:



The generation of waves in an infinite micropolar elastic solid 189

The Fourier-Hankel transforms of the component of body force and body couple will
have the form:

(5.27) X, = l/2stP,(y], Qd(ii), Y, = ]/2^M,(v, Q6(ji),

where

(5.27a) (/,, Mi) = —L= f e'l*dC f r/l(rjr) (i>,, MJdr.
yln J J
' - C O 0

Therefore, the expressions for static displacements and rotations caused by the concen-
trated force Pz, Pr and the couple Mę will be given by:

1 r _, f tur — ._— e c
V2TC J
' - 0 0

r Jc2 » ,

CO CM ~ ~

' —oo 0

» —co O

The displacements caused by the action of the force Pv and the couples Mr and Mt

will be given by:
CO

ft), = —
1 C -KM* C
2TI ^ J

0
I/2TI ^ J 1 /cfo2(a2+vg)
' — 0 0 0

where

(5.29a) Ao = a2(a2-A-2), a 2 = C2+??2, A:2 = ^ - v 2 .

Let us consider here two particular cases: (1) the action of a concentrated force in the
origin of the system of coordinates in the direction of the positive z-axis:

(5.30) Pz(r, z) = -^d (r)d{z), P , = Pr = 0;
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and (2) the action of a couple concentrated in the origin of the system of coordinates,
whose vector coincides with the positive z-axis:

(5.31) Mz(r, z) = -2k-d<r)d(z), Pę = P, = 0.

After performing the appropriate integrations, we obtain from (5.28) the expressions for
the static displacements ur, ux and rotation m9 in the case of the action of the concentrated
force (5.30):

Ur~~ 8nx L 2* dr8z \ R RJ + A+2x i? 3J'

(5 32) u- Po (*+3K 2 + "+X *\+P*<*+A\[JL + l.l\[*?( 5 l 3 2 ) Uz~ to7l"H^I+l+27iri&?^ l\3rl+ r 3rf\ R

R

R R

For the displacement uv and rotations cor, coz caused by the action of the concentrated
couple (5.31), we obtain from (5.29) the following expressions:

8**1*

R Rf
A/f-

(5.33) cor =

Moa>.= — - ±±\I
r drj\ R

TIF} \1 a?"U/Jr
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S t r e s z c z e n i e

ROZPRZESTRZENIANIE SIĘ FAL W NIEOGRANICZONYM MIKROPOLARNYM
OŚRODKU SPRĘŻYSTYM

W pracy podano rozwiązanie ogólne równań ruchu dla nieskończonego ośrodka sprężystego, mikro-
polarnego. Przyczynami powodującymi deformację ciała są momenty i siły masowe. Rozwiązań dokonano
przy użyciu transformacji całkowej wykładniczej Fouriera. Przedstawiono ogólne rozwiązania dla sił i mo-
mentów masowych zmieniających się dowolnie w czasie; zmieniających się harmonicznie w czasie oraz nie-
zależnych od zmiennej czasowej. Rozważono zagadnienia trójwymiarowe i dwuwymiarowe. Określono
również przy użyciu transformacji całkowej Fouriera-Hankela pole przemieszczeń, obrotów i pole na-
prężeń w przypadku osiowo symetrycznej deformacji ciała.

P e 3 10 M e

PACIIPOCTPAHEHHE BOJIH B HEOrPAHJMEHHOH MHKPOnOJTOPHOfł

ynpyrofł CPEJTE

B paSoTe #ae-rcH oSmee peuiemie ypaBHeHHH ABioKeHHH HJIJI 6ecKOHe*ffloń, MHKponojMpHoK., ynpyroK
l. npHIHHaiHH, BBI3bIBaK>mHMH fledwpMaU.HK> Tejia, HBJI5IIOTCH MaCCOBBie MOMeHTŁI H CHJIbl. Pe- •

pH HcnojiŁ3OBaHHH HHTerpajiBHoro SKcnoHeHUHaJiBHoro npeo6pa3OBaHHH 4>yp&e.
o6m;He pemeHHH PJIK MaccoBtix CHJI H MOMCHTOB, H3MCHJIK)IHHXC« npoH3B0HBHO BO

H, MeHHioimixcH rapMOHH^ecKH BO BpeiweHH, a TaioKe He3aBKCHmax OT BpeMeHHofi nepeMemiofi.
PaccMoipeHBi TpexMepHtie H flByMepHBie npo6neMbi. OnpeflejieHti Towcej npH HcnoJiB30BaHHH HHTer-
panBHoro npeo6pa3OBaHHH cpypbe-XaHKejia, none nepeMerqeHHH, BpameHHH H nojie Hanpa>KeHHH
B cjiy^ae ocecuMMeTpH^Hoft fledpopMaqHH
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