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Abstract This paper complements the analysis of geomet-
ric properties of the Hencky nets within the Michell can-
tilevers constructed in the trapezoidal domains by providing
the analytical formulae for the force fields. The force field
analysis introduces a new division of the cantilever domain
and enables an alternative method for computing the optimal
weights.

1 Introduction

Geometric and kinematic analyses of the Michell cantilevers
designed within the trapezoidal domains, given in the pre-
vious parts of the paper, do not exhaust the problem. The
concentrated force applied introduces force fields within
the cantilevers and in the reinforcing bars. Our aim now
is to find these fields, prove that they fulfil all equilibrium
requirements—both differential and algebraic—and provide
the analytical formulae for the function h representing the
density of fibres, see (I.2.13). By integration in (I.2.7) one can
find the total weight of the lightest cantilevers. On the other
hand, the same result should be provided by (I.2.12) or by
the dual formula involving the trial displacement fields. Only
upon proving the equivalence of both the formulae can one
be sure that the solution is correct. Appropriate checks will
be reported in part IV. Thus, the formulae for stress fields (or,
rather, force fields, since the quantities T1, T2 considered here
are of dimension of force) are indispensable for a thorough
verification of the final formulae for the optimal weights.

The concentrated force applied introduces a new division
of the optimal design into subdomains of a static division.
The aim of the present paper is to show the interfaces be-
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tween these subdomains and disclose possible jumps of the
force fields. The force fields are found either by Riemann’s
method or by solving appropriate Volterra-like integral equa-
tions. Thus, the mathematical methods used are characteris-
tic for the problems of mathematical physics governed by the
hyperbolic equations.

The Riemann method leads to integral formulae. One of
the main tools to make them explicit is the integral formula
(B.1); its non-trivial proof is reported in Appendix B.

We adopt here the conventions already used in the pre-
vious parts of the paper. For instance, (B.1) of Appendix B
in part I or in Graczykowski and Lewiński (2006a) will be
referred to as (I.B.1). (10) and (166) of the papers Lewiński et
al. (1994a,b), will be labelled (a.10) and (b.166), respectively.

2 Equilibrium equations of Michell’s cantilevers

The state of stress in the Michell cantilevers considered is de-
scribed by the tensor field N =

(
N γ δ

)
, γ, δ = 1, 2, within the

interior of the cantilever, by the longitudinal force FC=FC(s)
in the compression reinforcing bars and by the longitudinal
force FT=FT(s) in the tension bars; here, s is a natural para-
meter of the neutral axes of the reinforcing bars.

The variational equation (I.2.5) comprises all the condi-
tions of equilibrium: of the node of application of the force
P, of the reinforcing bars and of the fibrous interior of the
cantilevers [see the conditions (a, b, and c) in Section I.2].

The Hencky net (α, β) forms the trajectories of virtual
strains, and the same net forms the trajectories of principal
stress resultants NI, NII. Because, by convention, NI≥NII, we
note that NI≥0 are stress resultants in the tension fibres, while
NII≤0 refer to the compressed fibres.

The explicit form of the abstract equation div N=0 (see
I.2.3) is as follows (see Novozhilov 1962, chap. II, (2.2)):

−
∂(B NI)

∂α
+
∂B

∂α
NII = 0, −

∂(ANII)

∂β
+
∂A

∂β
NI = 0. (2.1)
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Following Hemp (1973) we introduce now the fields

T1 = B NI, T2 = ANII (2.2)

of force dimension [T1]=[T2]=N. Thus, the fields T1, T2 will
be called the force fields or internal force fields and not the
stress fields. They satisfy the equilibrium equations in the
form

−
∂T1

∂α
+

1

A

∂B

∂α
T2 = 0, −

∂T2

∂β
+

1

B

∂A

∂β
T1 = 0. (2.3)

In the regions where φ(α, β )=β−α, these equations assume
a remarkably simple form:

T2 =
∂T1

∂α
, T1 =

∂T2

∂β
, (2.4)

which follows from (I.6.2). Thus, the equilibrium equations
(2.4) do not involve Lamé coefficients. Moreover, both the
fields T1, T2 satisfy the hyperbolic equations LT1=0, LT2=0,
with L given by (I.6.3). This property paves the way for the
Riemann method of integrating the given system (2.4) of dif-
ferential equations.

To perform the static analysis of a cantilever, we start with
the point of application of the concentrated force and find the
values of the longitudinal forces in the reinforcing bars at this
node. Because the bars do not resist to bending and transverse
shearing, one can say that they are cables, yet they are capable
of transmitting compression. Then, by using the boundary
conditions, one can find one of the unknown force fields T1
or T2. Not in all the cases can this be done directly; in some
cases, an auxiliary integral equation of Volterra type has to
be solved to make further progress. Fortunately, this equation
can always be analytically solved, as will be shown later. The
second force field can be found by one of the (2.4). Having
the formulae for both the force fields, one can compute the
effective thickness h within the cantilever by using (I.2.13)
and then compute the volume of the cantilever by appropriate
integration. This process is postponed to part IV. The present
paper is confined to the force fields analysis, the emphasis
being put on casting all the fields in all the subdomains into
the analytical formulae expressed in terms of Lommel–Chan
functions Gn, Fn (see Chan 1967 and Lewiński et al. 1994a,b).

3 The force applied within RAN

If the concentrated force P acts within the domain RAN, the
optimal cantilever consists of two orthogonal bars with an
empty interior (see Section I.4). The values of the longitudinal
forces in the bars are

FT = P cos (ϕ − γ2) - the upper bar ;

FC = P sin (ϕ − γ2) - the lower bar, (3.1)

where P=|P| and

γ2 = arctan
(
κ−1/2

)
, γ1 = π

/
2 − γ2, (3.2)

ϕ being an angle, measured in a counterclockwise direc-
tion, between the force and the vertical line of the support
(see Fig. I.4).

4 The force applied within the fan domains

4.1 Fan NAC

Assume that the point load is applied at P=C′ within the
domain NAC. Then the optimal cantilever consists of the
straight tension member R′A′, curved tension bar A′C′,
straight compression member NC′ and the compressed cir-
cular fan (see Fig. 1).

By using the equilibrium conditions of the node P of ap-
plication of the force P, one can find the forces in both the
reinforcing bars

FT = P sin
(
γ1 + αp + ϕ

)
,

FC = −P cos
(
γ1 + αp + ϕ

)
, (4.1)

where γ1 is an angle between the compression bar and the
support; the angle is given by (I.4.2); αp, βp are coordinates
of point P=C′.

The fibres go orthogonally to the reinforcing bars; the
tangent loading is absent. Thus, according to (I.2.2), the lon-
gitudinal force in the bar is constant along the bar. To find
the internal force T2 within the compressed fan we make use
of (I.2.2) and take into account that the normal load Nn(s) is
linked with the internal force T2 by

T2(s) = Nn(s)R(s), (4.2)

where R(s)=r1. We find

T2(s) = −FT = −P sin
(
γ1 + αp + ϕ

)
, (4.3)

This value is independent of s=r1α. The force does not vary
also in the β1 direction because there are no bars in the
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Fig. 1 Optimal cantilever composed of straight members and a circular
fan. ψ=γ1+αp; here, ϕ<0
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circumferential direction. To make the analysis complete we
check now the global conditions of equilibrium. The reac-
tions at the upper node are

Hg = FT sin γ2, Vg = FT cos γ2. (4.4)

The horizontal reaction is directed opposite to axis x0, and
the vertical reaction is directed along y0. This convention
holds in this and in the next part of the present paper; index
g means “upper,” and index d means “lower.” The reactions
at the lower node are computed as follows:

Hd =

αp∫
0

T2(s(α)) sin (α + γ1)dα + FC sin
(
αp + γ1

)
= FT cos

(
αp + γ1

)
− FT cos γ1 + FC sin

(
αp + γ1

)
Vd = −

αp∫
0

T2(s(α)) cos (α + γ1)dα − FC cos
(
αp + γ1

)
= FT sin

(
αp + γ1

)
− FT sin γ1 − FC cos

(
αp +γ1

)
. (4.5)

It is easy to check that the global equilibrium conditions

Vg + Vd = P cosϕ, Hg + Hd = P sin ϕ (4.6)

and the condition of the total moment at N being zero are
fulfilled identically.

4.2 Fan RBA

Let the point load be applied within RBA at P=B′(α1, βp).
The optimal structure consists of the straight tension bar RB′,
curved compression bar B′A′ , the straight compression bar
A′N′ and the circular fan in tension (see Fig. 2).

N 
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2r

1γ

2γ

β
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P=B'

P 

Fig. 2 Optimal cantilever composed of straight members and a circular
fan

The longitudinal forces in the reinforcing bars do not vary;
they can be found by equilibrium conditions of point P=B′.
Their values are

FT = P sin
(
π

/
2 − γ2 − βp + ϕ

)
,

FC = −P cos
(
π

/
2 − γ2 − βp + ϕ

)
. (4.7)

We shall assume that the point load is directed such that the
upper bar is in tension and the lower is compressed. Within
the circular fan the only internal force present is T1 going
in the radial direction. The value of this force can be found
similarly as for the lower fan by (I.2.2). The force found
this way occurs to be equal (up to a sign) to the force in
the reinforcing bar and does not depend on the coordinates
parameterizing the fan:

T1 = −FC = P cos
(
π

/
2 − γ2 − βp + ϕ

)
. (4.8)

The reader can check now that the force field found satisfies
the global conditions of equilibrium.

5 Prager–Hill domain ABDC

Let the point load be applied within domain ABDC. The op-
timal cantilever consists of the upper tension bar RD, lower
compression bar ND, the upper tension fan RBA, the lower
compression fan NAC and the fibrous domain ABDC, in
which one family of fibres is in compression and one in
tension (see Fig. 3). We assume that γ2+βp≤γR, γ1+αp≤γN
(see Fig. I.1).

First, let us compute the forces in reinforcing bars from
the equilibrium condition of the node P=D(αp, βp). We find
FC=FC(P), FT=FT(P), where

FC(P) = −P · cos (ψ + ϕ), FT(P) = P · sin (ψ + ϕ),

(5.1)

where ψ is an angle between the compression bar and the
vertical direction

ψ = γ1 + αp − βp. (5.2a)

The conditions FC<0 and FT>0 imply

0 ≤ ψ + ϕ ≤
π

2
, 0 ≤ γ1 + αp − βp + ϕ ≤

π

2
(5.2b)

and only then further analysis applies.
The longitudinal forces in the reinforcing bars are con-

stant because the fibres go to the bars orthogonally or are ab-
sent. The static boundary conditions for the domain ABDC
follow from (I.2.2). Thus, we find the value of T1 along the
lower line β (α=αp) and the value of T2 along the upper line
α(β=βp):

T1
(
αp, β

)
= −FC, T2

(
α, βp

)
= −FT. (5.3)

Let us define new functions

T γ (x, y) = Tγ
(
αp − x, βp − y

)
, γ = 1, 2.
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Fig. 3 Cantilever consisting of two circular fans and fibrous Prager–Hill domain. The coordinates of depicted points are: A=(0,0), B=(0, βp),
C=(αp, 0), D=(αp, βp)

They are linked by

T 2(x, y) = −
∂T 1(x, y)

∂x
, T 1(x, y) = −

∂T 2(x, y)

∂y

and satisfy the equation LT γ = 0, with L given here by L =

∂2

∂x∂y − 1. Let us rewrite (5.3) in the form

T 1
(
0, β

)
= −FC, T 2(α, 0) = −FT,

where β = βp − β, α = αp − α. Thus, we have

T 1(0, 0) = −Fc,
∂T 1(0, β)

∂β
= 0

∂T 1(α, 0)

∂α
= −T 2(α, 0) = FT. (5.4)

This makes it possible to apply Riemann’s formula (see a.23)
for finding T 1

(
α, β

)
within ABDC:

T 1
(
λ,µ

)
= −FCG0

(
λ,µ

)
+

λ∫
0

G0
(
λ− α,µ

)
FTdα (5.5a)

or

T 1
(
λ,µ

)
= −FCG0

(
λ,µ

)
+ FTG1

(
λ,µ

)
,

the final result being found by using the property (a.4) for
H=G, n=1. Coming back to the original parameterization
we find

T1(α, β) = −FCG0
(
αp − α, βp − β

)
+FTG1

(
αp − α, βp − β

)
. (5.5b)

The Riemann formula can also be applied for finding T2
(α, β). However, it is easier to use the differential rule (2.4)
to get

T2(α, β) = −FT G0
(
αp − α, βp − β

)
+FC G1

(
βp − β, αp − α

)
. (5.6)

In the circular fans the hoop internal force vanishes. This
follows from the equilibrium (I.2.2) under the condition of
the reinforcing bar being straight. Thus, the internal radial
force is constant along the radial direction and equal to that
on the line adjacent to the domain ABDC. In the lower circular
domain we have

T2(α, β1) = T ABDC
2 (α, 0). (5.7)

In the upper circular domain,

T1(α1, β) = T ABDC
1 (0, β). (5.8)

The formulae (5.5b) and (5.6) are common for all Michell
cantilevers in which the Hencky net is characterized by φ=

φ0+β−α. They describe force field distribution caused by a
concentrated load. In particular, these formulae are valid if
the cantilever is supported around the circular boundary (see
Graczykowski and Lewiński 2005, (26), cited in part I).

6 The upper Chan’s domain BDH

Assume that γ2+θ2=γR and γ1+αp≤γN (see Fig. I.1) and
Fig. 4. Moreover, assume that the point P of application of
the force P lies within Chan’s domain BDH. Two cases should
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Fig. 4 Michell cantilever with the force applied on the straight boundary. Here the α, β coordinates of depicted points are A=(0,0), D=(αp, θ2),
B=(0, θ2) and C=(αp, 0)

be considered separately. First, we consider the case of point
P lying on the straight boundary BH and then the case of P
within the domain. These two cases result in different divi-
sions of the cantilever called static divisions.

Consider now the case of P lying on BH, which corre-
sponds to αp≤θ1, θ1=γN−γ1, and βp=αp+θ2. The feasible
domain will be shrunk appropriately, the notation of points
C,D,H being kept (see Fig. 4). Within the cantilever one can
indicate three subdomains of the static division: one com-
prising the geometric division-based domains III = BDH and
IV = ABDC, and two subdomains on the upper and lower

circular domains: IIg = RBA and IId = NAC. The force in the
compressed bar is constant; it can be found from the equilib-
rium equation of the node P. The tension bar is straight, and
the characteristic lines of the fibrous domain go tangentially
to this bar. Thus, the longitudinal force in the tension bar
varies along the bar and cannot be determined from purely
algebraic analysis of equilibrium.

The force field T2 satisfies the hyperbolic equation
LT2=0, with L given by (I.6.3). Thus, this field can be found
by Riemann formula (A.6) referred to the domain QFE (see
Fig. 5) for T=T2:

( )μθ μ ,E 2−
( )2,F θλλ +

( )μλ,Q

2θμ − λ

α
μ

2θλ +

β

E
Q 

F 

Fig. 5 Triangular domain for which Riemann formula (A.6) is applied

T2(λ, µ) =
1

2

(
T2|F + T2|E

)
+

1

2

λ∫
µ−θ2

[
T2(α, α + θ2)

(
∂G

∂β
−
∂G

∂α

)
|β=α+θ2

+ G(α, α + θ2)

(
∂T2

∂α
−
∂T2

∂β

)
|β=α+θ2

]
dα. (6.1)
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Within QFE we have α≤λ and µ≤β, and we see that the
arguments of the function G(α, β)=D0(λ−α, β−µ) are non-
negative. The force T2 vanishes on the straight segment EF
lying within the boundary BH

T2(α, α + θ2) = 0. (6.2)

Thus, the formula (6.1) reduces to

T2(λ, µ) =
1

2

λ∫
µ−θ2

D0(λ− α, α + θ2 − µ)χ(α)dα, (6.3)

where the function χ(α) is defined on the straight segment
BH as follows:

χ(α) =

(
∂T2

∂α
−
∂T2

∂β

) ∣∣
β=α+θ2 . (6.4)

This function will be an unknown in the integral equation
(6.3) specified for the line β(α=αp). The equilibrium equa-
tions of the boundary provide the values of the force T1 along
the line β(α=αp)

T1
(
αp, β

)
= −FC, (6.5)

where FC=FC(P) is given by (5.1). The argument P is omitted
for brevity. By using the equilibrium equation (2.4) one finds

T2
(
αp, β

)
= −FCβ + C. (6.6)

The constant C will be determined by the condition of the
force T2 being zero at point H, where the point load is applied,
or forαp=βp−θ2. Thus, the force T2 on the lineα=αp equals

T2
(
αp, β

)
= −FC

(
β − αp − θ2

)
. (6.7)

Now we can write (6.3) for λ=αp:

T2
(
αp, µ

)
=

1

2

αp∫
µ−θ2

D0
(
αp − α, α + θ2 − µ

)
χ(α)dα; (6.8a)

hence, we find the integral equation

− FC
(
µ− αp − θ2

)
=

1

2

αp∫
µ−θ2

D0
(
αp − α, α + θ2 − µ

)
χ(α)dα (6.8b)

with the function χ(α) as an unknown. We concentrate now
our attention on solving this equation. First, we change the
variables

α̃ = α − µ+ θ2, θ2 + αp − µ = t,

χ(α) = χ̃(α − µ+ θ2) (6.9)

to arrive at the integral equation of the form

FCt =
1

2

t∫
0

D0(t − α̃, α̃)χ̃ (̃α)dα̃. (6.10)

We perform the Laplace transform (see a.25) of both the sides:

FC

p2
= L t

1

2

t∫
0

D0

(
t − α̃,

a
α
)

· χ̃ (̃α)da
α

. (6.11)

We rearrange the left-hand side

FC

p2
=

FC

p2 − 1
−

FC

p2
(

p2 − 1
) (6.12)

and recall the result (see b.167, b.171 and b.176) for n≥0:

L t


t∫

0

D0(x, t − x)Gn(x, x)dx

 =
1

pn
(

p2 − 1
) (6.13a)

or

L t


t∫

0

D0(x, t − x)Gn(t − x, t − x)dx

 =
1

pn
(

p2 −1
) .

(6.13b)

Thus, the left-hand side of (6.11) can be expressed as Laplace
transform

FC

p2
= L t

FC ·

t∫
0

D0(̃α, t − α̃)[G0(t − α̃, t − α̃)− G2(t − α̃, t − α̃)]dα̃

 (6.14a)

or

FC

p2
= L t

FC ·

t∫
0

D0(̃α, t − α̃)[G0(̃α, α̃)− G2(̃α, α̃)]dα̃

.
(6.14b)

By equating the right-hand sides of (6.11) and (6.14a, b), one
obtains two possible solutions:

1

2
χ̃ (̃α) = FC · G0(t − α̃, t − α̃)− FCG2(t − α̃, t − α̃)

(6.15a)
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and

1

2
χ̃ (̃α) = FCG0(̃α, α̃)− FCG2(̃α, α̃). (6.15b)

Let us discuss now the solution (6.15a). Taking into account
that t − α̃ = αp − α we find

χ(α) = χ̃(α − µ+ θ2)

= 2FCG0
(
αp −α, αp −α

)
− 2FCG2

(
αp −α, αp − α

)
.

(6.16)

To have T2(λ, µ) within BDH we insert (6.16) into (6.3) and
obtain

T2(λ, µ) = FC

λ∫
µ−θ2

D0(λ− α, α + θ2 − µ) ·
[
G0

(
αp − α, αp − α

)
− G2

(
αp − α, αp − α

)]
dα. (6.17)

We change the variables

α̃ = α − µ+ θ2, t = αp − µ+ θ2,

tλ = λ− µ+ θ2; (6.18)

hence, t − α̃ = αp − α, tλ − α̃ = λ− α , and we rewrite
(6.17) as

T2(λ, µ) = FC

tλ∫
0

D0(tλ − α̃, α̃) · [G0(t − α̃, t − α̃)− G2(t − α̃, t − α̃)]dα̃. (6.19)

Now we are ready to use the result (B.1) for θ=0 and n=0,
which gives

T2(λ, µ) = FC[G1(t, t − tλ)− G1(t − tλ, t)]. (6.20)

We substitute the original variable

t − tλ = αp − λ (6.21)

and find

T2(λ, µ) = FC
[
G1

(
αp + θ2 − µ, αp − λ

)
−G1

(
αp − λ, αp + θ2 − µ

)]
(6.22)

Recalling that αp=βp−θ2 we rearrange the above result to
the form

T2(λ, µ)= FC
[
G1

(
βp −µ, αp −λ

)
−G1

(
αp −λ, βp −µ

)]
.

(6.23)

By using (2.4) one finds

T1(λ, µ)= FC
[
−G0

(
βp −µ, αp −λ

)
+G2

(
αp −λ, βp −µ

)]
.

(6.24)

Let us look more closely at the solution (6.15b). Changing
the variables by (6.9) one finds the function

χ(α) = χ̃(α − µ+ θ2)

= 2FCG0(α − µ+ θ2, α − µ+ θ2)

−2FCG2(α − µ+ θ2, α − µ+ θ2) (6.25)

depending on µ, which contradicts the definition of function
χ(α) defined on the line BH, where β=α+θ2. If one inserts
this value into (6.25) one obtains the wrong result χ(α)=0.

Let us consider this solution further. One can insert now the
function (6.25) into (6.3) to find the field T2(λ, µ). We apply
the change of variables

α̃ = α + θ2 − µ, tλ = λ− µ+ θ2 (6.26)

and find T2(λ, µ) = f (tλ), with

f (tλ) =

tλ∫
0

D0(tλ − α̃) · [G0(̃α, α̃)− G2(̃α, α̃)]dα̃.

By performing the Laplace transform one finds

LT [ f (tλ)] =
1

p2 − 1
−

1

p2
(

p2 − 1
) =

1

p2
; (6.27)

hence, f (tλ) = tλ, which gives

T2(λ, µ) = λ− µ+ θ2, T1(λ, µ) =
∂T2

∂µ
= −1. (6.28)

This solution is not statically admissible because the second
equilibrium equation is not satisfied; the solution (6.25) must
be rejected. Thus, the correct solution for the ABHC domain
is given by the formulae (6.23) and (6.24).

In the circular domains only the radial internal forces are
present: T2 in the lower domain and T1 in the upper circu-
lar domain. These forces are equal to their boundary values
adjacent to ABHC.
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For the lower circular domain we have

T1(α, β1) = 0

T2(α, β1) = FCG1
(
βp, αp − α

)
− FCG1

(
αp − α, βp

)
,

(6.29a)

while in the upper circular region,

T1(α1, β) = −FCG0
(
βp − β, αp

)
+ FCG2

(
αp, β − βp

)
T2(α1, β) = 0. (6.29b)

The case of the point load being applied within the domain
BDH (see Fig. 6) is more complicated.

This position of the point load is described by the in-
equalities 0<αp<θ1, θ2<βp<αp+θ2. The compression bar
lies entirely along the parametric line, while the tension bar
lies partly on a parametric line and is partly tangent to other
parametric lines of the same family. Thus, we have two kinds
of boundary conditions along the tension bar: the condition
T2=0 along the straight segment and the condition T2=−FT
along the curved part. Thus, the domain ABPC is divided
into two domains of static division, separated by the line
ZM along which the force field T2 suffers a jump. Let us
emphasize that the static division does not coincide here
with the geometric division. Along the line BD the geometry
of the net changes, while the force fields do not change. On
the contrary, along the line ZM perpendicular to the previous
line, the force fields change while the geometrical charac-
teristics remain unchanged. The following domains occur:
III2

= ABQM, III1
= MQDC, IV2

= BQZ and IV1
= ZPDQ.

The longitudinal forces in the compression bar NCP and
in the tension bar on the segment PZ are computed from the
equilibrium equations of the node P

FPN
C = FC(P) = −P cos (ψ + ϕ),

FPZ
T = FT(P) = P sin (ψ + ϕ), (6.30)

where ψ=γ1+αp−βp.
The force fields in the domain MZPC are determined di-

rectly from Riemann’s formula by using the values of T1, T2
being known along appropriate curved boundaries. We find
the results (5.5b and 5.6) in the same manner as for the ABDC
domain.

Now we shall find the force fields in the domain ABZM.
We start from finding T2 along the line ZQ, by using the
known values of T1 on this line, using the boundary condition
of vanishing of T2 at point Z and by using (2.4). We find

T2
(
βp − θ2, β

)
= FCG1

(
βp − β, αp − βp + θ2

)
−FTG0

(
αp − βp + θ2, βp − β

)
+ FT;

(6.31)

here, FC=FC(P), FT=FT(P). We omit the argument P for
brevity. We write the integral (6.3) on the line λ=βp−θ2

1

2

βp−θ2∫
µ−θ2

D0
(
βp − θ2 − α, α + θ2 − µ

)
χ(α)dα

= −FTG0
(
αp − βp + θ2, βp − µ

)
+FCG1

(
βp − µ, αp − βp + θ2

)
+ FT (6.32)
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Fig. 6 Michell cantilever with the force applied within Chan’s domain. Here M=(βp−θ2, 0), Q=(βp−θ2, θ2) and D=(αp, θ2)
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and change the variables

α̃ = α − µ+ θ2 , t = βp − µ, θ = αp − βp + θ2; (6.33)

hence, t − α̃ = βp − α − θ2 , t − α̃ + θ = αp − α, which
rearranges (6.32) to the form

1

2

t∫
0

D0(t − α̃, α̃)χ̃(t − α̃)dα̃ = FT − FTG0(θ, t)

+FCG1(t, θ), (6.34)

whereχ(α) = χ̃(t − α̃). The alternative substitutionχ(α) =

χ̃ (̃α) leads to incorrect results; hence, it is now rejected. We
perform the Laplace transform with respect to t on both sides
of (6.34); by using (b.174), we find

1

2

1

p
· χ̃∗

(
p +

1

p

)
=

FT

p
−

FT

p
eθ/ p

+
FC

p2
eθ/ p. (6.35)

We multiply both sides by p and change the variables

p +
1

p
= s ;

1

p
=

2

s + R
;

R =
√

s2 − 4 ; p =
1

2
(s + R) (6.36)

to obtain

1

2
χ̃∗(s) = FT − FT exp

(
2θ

s + R

)
+

2FC

s + R
exp

(
2θ

s + R

)
.

(6.37)

We introduce a new variable as follows:

h =
1

s + R
;

dh

ds
= −

h

R
, (6.38)

which rearranges (6.37) to the form

1

2
χ̃∗(s) = FT − FT exp (2θ · h)+ FC2h exp (2θ · h) (6.39)

Now we differentiate both sides with respect to s:

1

2

dχ̃∗(s)

ds
= 2FC

(
dh

ds
e2θh

+ h · 2θ
dh

ds
e2θh

)
−FT · 2θ

dh

ds
e2θh, (6.40)

and by using (6.38), we get

1

2

dχ̃∗(s)

ds
= −FC

21

R(s + R)
exp

[
θ

2
(s − R)

]
−FCθ

22

R(s + R)
exp

[
θ

2
(s − R)

]

+FTθ
21

R(s + R)
exp

[
θ

2
(s − R)

]
. (6.41)

Now we perform the Laplace transform with the use of
(b.164) and of the known rule for the transform of a derivative
to have

−
1

2
L t [t · χ̃(t)] = −FC · L t [G1(t, t + θ)]

−FCθ · L t [G2(t, t + θ)]

+FTθ · L t [G1(t, t + θ)], (6.42)

which implies

−
1

2
χ̃(t) = −

FCG1(t, t + θ)

t
−

FCθ · G2(t, t + θ)

t

+
FTθ · G1(t, t + θ)

t
. (6.43)

By using χ(α) = χ̃(t − α̃) and coming back to the original
variables we get

1

2
χ(α) =

FCG1
(
βp − θ2 − α, αp − α

)
βp − θ2 − α

+
FC

(
αp − βp + θ2

)
G2

(
βp − θ2 − α, αp − α

)
βp − θ2 − α

−
FT

(
αp − βp + θ2

)
G1

(
βp − θ2 − α, αp − α

)
βp − θ2 − α

.

(6.44)

The expression above can be simplified by using the identity
(a.10).

We omit the derivation and report the final result

χ (α) = 2FCG0
(
βp − θ2 − α, αp − α

)
−2FCG2

(
βp − θ2 − α, αp − α

)
−2FTG1

(
αp − α, βp − θ2 − α

)
+2FTG1

(
βp − θ2 − α, αp − α

)
. (6.45)

To find now the force field T2(λ, µ) we substitute (6.45)
into (6.3), use (a.121) and obtain a complicated integral
expression:

T2 (λ, µ) =
1

2

λ∫
µ−θ2

D0 (λ− α, α + θ2 − µ)

·
[
2FCG0

(
βp − θ2 − α, αp − α

)
−2FCG2

(
βp − θ2 − α, αp − α

)
−2FTG−1

(
βp − θ2 − α, αp − α

)
+2FTG1

(
βp − θ2 − α, αp − α

)]
dα.

(6.46)
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This integral can be put in terms of Lommel functions. To
show this we change the variables

α̃ = α − µ+ θ2 ;

θ = αp − βp + θ2,

t = βp − µ ,

tλ = λ− µ+ θ2; (6.47)

hence,

tλ − α̃ = λ− α ,
t − α̃ = βp − α − θ2,
t − α̃ + θ = αp − α,

and rewrite (6.46) in the form

T2 (λ, µ) =

tλ∫
0

D0 (tλ − α̃, α̃) · [FCG0 (t − α̃, t − α̃ + θ)

−FCG2 (t − α̃, t − α̃ + θ)

− FTG−1 (t − α̃, t − α̃ + θ)

+FTG1(t − α̃, t − α̃ + θ)] dα̃. (6.48)

The rule (B.1) is crucial here; it gives directly the following
result:

T2 (λ, µ) = FCG1 (t, t − tλ + θ)− FCG1 (t − tλ, t + θ)

−FTG0 (t, t − tλ + θ)+ FTG0 (t − tλ, t + θ) .

(6.49)

Now we recall the formulae

t − tλ = βp − λ− θ2,

t − tλ + θ = αp − λ,

t + θ = αp − µ+ θ2 (6.50)

and arrive at

T2 (λ, µ) = FCG1
(
βp − µ, αp − λ

)
−FTG0

(
βp − µ, αp − λ

)
−FCG1

(
βp − θ2 − λ, αp + θ2 − µ

)
+FTG0

(
βp − θ2 − λ, αp + θ2 − µ

)
,

T1 (λ, µ) = FTG1
(
αp − λ, βp − µ

)
−FCG0

(
βp − µ, αp − λ

)
+FCG2

(
βp − θ2 − λ, αp + θ2 − µ

)
−FTG1

(
βp − θ2 − λ, αp + θ2 − µ

)
, (6.51)

the latter formula being obtained by (2.4). Above formulae
determine force fields within the domain ABZM.

In the case of βp=αp+θ2 the integral equation assumes
the form (6.8b), whilst (6.51) assumes the forms (6.23)
and (6.24). Then the subdomain ZNP of the static division
disappears.

The force fields within the circular domains can be found
by continuity conditions of the force field T1 along the arc
AB and of the force field T2 along the arc AC. The final
results are as follows

The lower circular domain NMC

T1 (α, β1) = 0

T2 (α, β1) = FCG1
(
βp, αp −α

)
− FTG0

(
βp, αp −α

)
;

(6.52)

The lower circular domain NAM

T1 (α, β1) = 0

T2 (α, β1) = −FCG1
(
βp, αp − α

)
−FCG1

(
βp − θ2 − α, αp + θ2

)
−FTG0

(
βp, αp − α

)
+FTG0

(
βp − θ2 − α, αp + θ2

)
; (6.53)

The upper circular domain RBA

T1 (α1, β) = −FCG0
(
βp − β, αp

)
+FCG2

(
βp − θ2, αp + θ2 − β

)
+FTG1

(
αp, βp − β

)
−FTG1

(
βp − θ2, αp + θ2 − β

)
T2 (α1, β) = 0. (6.54)

Within the compression bar BZ, where the fibres α are
joined tangentially with the reinforcing bar (not shown in
Fig. 6), the longitudinal force varies according to the rule

F BZ
T = FT(P)+

βp−θ2∫
α

T BQZ
1 (α, α + θ2)dα. (6.55)

The tension force in the segment RB is constant:

F RB
T = F BZ

T (B). (6.56)

The compression force FC is constant in the reinforcing bar
NCP and equals FC(P) (see 6.30).

7 The lower Chan’s domain CDG

Two different cases of the point load applied at the boundary
and in the interior of the domain CDG (see Fig. I.19 and
Fig. 7) will be considered simultaneously. The application
point is parameterized by 0<βp≤θ2, θ1<αp≤βp+θ1. Along
the tension bar NP two types of the boundary conditions are
present: T1=0 along the straight boundary NZ′ and T1=−FC
along the curved boundary Z′P. On the line RM′Z′ the force
field T1 undergoes a jump. Thus, this line divides the domain
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Fig. 7 Optimal cantilever with the force applied within lower Chan domain. Here ϕ<0

into two subdomains of the static division. Along the line
RM′Z′ the force field T2 is continuous.

The vertices of the domains have curvilinear coordinates
(α, β):

B
(
0, βp

)
,M′(0, αp − θ1),D

(
θ1, βp

)
,Q′

(
θ1, αp − θ1

)
,

Z′
(
αp, αp − θ1

)
,C(θ1, 0).

The forces in the tension bar RBDP and in the compression
bar along PZ′ are determined by

FT = P sin (ψ + ϕ), F P Z
′

C = −P cos (ψ + ϕ) (7.1)

with

ψ = γ1 + αp − βp. (7.2)

The force fields inside M′BPZ′ are computed directly from
the Riemann formula, which gives the results (5.5b) and (5.6).
Further computation needs the formula for T1 along the line
Q′Z′, where β=αp−θ1. First, note that the force field T2 is
known along this line. By using the equilibrium (2.4) and the
condition of vanishing of T1 at point Z′, one finds

T1
(
α, αp − θ1

)
= FTG1

(
αp − α, βp − αp + θ1

)
−FCG0

(
βp − αp + θ1, αp − α

)
+ FC,

(7.3)

where FC=FC(P), FT=FT(P) (see 5.1) and argument P is
omitted for brevity.

The following subdomains occur: III1
= BM′Q′D, III2

=

AM′Q′C, IV1
= Q′DPZ′ and IV2

= CQ′Z′.

The distribution of the force field T1 within AM′Z′C will
be found by Riemann formula in the form (see Appendix I.B,
(I.B.5) and Fig. 8)

T1 (ξ, η) =
1

2

(
T1|F + T1|E

)
−

1

2

η+θ1∫
ξ

[
T1(α, α − θ1)

(
∂G

∂β
−
∂G

∂α

)
|β=α−θ1

+ G(α, α − θ1)

(
∂T1

∂α
−
∂T1

∂β

)
|β=α−θ1

]
dα

(7.4)

for the domain QFE adjacent to the straight line CZ′. The
force T1 vanishes on the straight boundary CZ′, where
β=α−θ1. Thus, the formula (7.4) reduces to

T1(ξ, η) = −
1

2

η+θ1∫
ξ

G(α, α − θ1)

(
∂T1

∂α
−
∂T1

∂β

)
|β=α−θ1

dα

(7.5a)

or

T1(ξ, η) =
1

2

η∫
ξ−θ1

G(β + θ1, β)

(
∂T1

∂β
−
∂T1

∂α

)
|α=β+θ1

dβ

(7.5b)

or

T1(ξ, η) =
1

2

η∫
ξ−θ1

D0(η − β, β + θ1 − ξ)χ(β)dβ. (7.5c)
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Fig. 8 Application of Riemann formulae for deriving distribution of internal force within CDG domain

The function χ(β) determined on the straight edge CZ′ is
defined by

χ(β) =

(
∂T1

∂β
−
∂T1

∂α

) ∣∣
α=β+θ1 . (7.6)

The formula (7.5c) will be written for the line Q′Z′ or for
η=αp−θ1

T1
(
ξ, αp −θ1

)
=

1

2

αp−θ1∫
ξ−θ1

D0
(
αp −θ1 −β, β+θ1 −ξ

)
χ(β)dβ.

(7.7)

By equating the right-hand sides of (7.3) (for α=ξ) and (7.7),
one finds

1

2

αp−θ1∫
ξ−θ1

D0
(
αp − θ1 − β, β + θ1 − ξ

)
χ (β) dβ

= −FCG0
(
βp − αp + θ1, αp − ξ

)
+FTG1

(
αp − ξ, βp − αp + θ1

)
+ FC. (7.8)

The integral equation obtained above is equivalent to (6.32),
which can be shown upon substitution:

α → β, µ → ξ, αp → βp, θ2 → θ1, FT → FC
λ → η βp → αp FC → FT

. (7.9)

The physically correct solution of (7.8) is similar to (6.45)
and reads

χ(β) = 2FTG0
(
αp − θ1 − β, βp − β

)
−2FTG2

(
αp − θ1 − β, βp − β

)
−2FCG1

(
βp − β, αp − θ1 − β

)
+2FCG1

(
αp − θ1 − β, βp − β

)
. (7.10)

The function χ(β) thus found should now be inserted
into (7.5c). By virtue of (B.1) the integration can be per-
formed analytically to find

T1(ξ, η) = FTG1
(
αp − ξ, βp − η

)
−FCG0

(
αp − ξ, βp − η

)
−FTG1

(
αp − θ1 − η, βp + θ1 − ξ

)
+FCG0

(
αp − θ1 − η, βp + θ1 − ξ

)
. (7.11a)

By (2.4) one can find now the second force field

T2(ξ, η) = FCG1
(
βp − η, αp − ξ

)
−FTG0

(
αp − ξ, βp − η

)
+FTG2

(
αp − θ1 − η, βp + θ1 − ξ

)
−FCG1

(
αp − θ1 − η, βp + θ1 − ξ

)
. (7.11b)

The formulae (7.11a, b) correspond to the formulae (6.51)
concerning the upper Chan’s domain upon the change of the
variables by (7.9). (7.11a, b) determines values of the force
fields within the domain AM′Z′C.

In the circular domains the force fields are constant and
are directed radially; they are equal to the forces in the arcs
lying on the boundaries between the fan domains and the Hill
domain.

Within the compression bar CZ′, where the fibres β are
joined tangentially with the reinforcing bar, the longitudinal
force varies according to the rule

FC Z ′

C = FC(P)+

αp−θ1∫
β

T CQ′ Z ′

2

(
β + θ1, β

)
dβ. (7.12)

The compression force in the segment NC is constant:

F NC
C = FC Z ′

C (C). (7.13)

The solution above holds for the case of the force being ap-
plied at the lower boundary of the feasible domain or for
βp≤θ2, αp=βp+θ1. The curve RM′Z′ is then the upper edge
of the cantilever domain, whilst the domain RM′Z′PBR does
not occur in the cantilever.
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8 The force applied within the domain DHJG

The vertices of the domains have the following curvilinear
coordinates:

A(0, 0),B(0, θ2),M′(0, αp − θ1),D(θ1, θ2),

Q′
(
θ1, αp − θ1

)
,Z′

(
αp, αp − θ1

)
,C(θ1, 0),Sg

(
θ1, βp

)
,

M
(
βp − θ2, 0

)
,W

(
βp − θ2, αp − θ1

)
,Q

(
βp − θ2, θ2

)
,

Z
(
βp − θ2, βp

)
,Sd

(
αp, θ2

)
In the case of the point load being applied within the do-
main DHJG corresponding to the intervals θ1<αp≤θ1+θ2,
θ2<βp≤θ1+θ2, both along the reinforcing tension bar and the
compression bar, two types of the boundary conditions occur.
The internal force orthogonal to the bar lying along the para-
metric line is equal to the force in the reinforcing bar, with the
opposite sign, whilst the internal force normal to the straight
reinforcing bar vanishes. The lines NZ and RZ′ starting
at the points of a discontinuity of the boundary condition are
the lines of the static division of the cantilever. On these lines
the forces T2 or T1 suffer jumps. We note that the cantilever
is now divided into eight domains of static division separated
by thin lines in Fig. 9. Some of the force fields have already
been found while analyzing the force fields in the previously
considered domains. The following subdomains occur:

III = AM′WM , III1
= WQDQ′, III2

d = CMWQ′,

III2
g = BM′WQ, IV2

g = BQZ, IV2
d = CQ′Z′,

IV1
g = QZSgD, IV1

d = Q′DSdZ′, V = DSgPSd.

The force field within the domain WZPZ′ can be found by
applying the standard Riemann formula, making use of the
values of the force fields being known along the boundaries,
thus arriving at (5.5b) and (5.6).

In the upper Chan’s domain IV2
g the force field T2 can be

determined from the integral equation using the known value
of this force along the straight edge BZ and on the arc ZQ.
Computations shown in Section 6 lead to the result (6.51).
This result is valid in the domain III2

g. In the lower Chan’s
domain IV2

d the force field T1 can be found from the integral
equation by using the known value of this force along the
straight segment C Z′ and on the arc Z′Q′. This analysis has
been performed in Section 7, leading to the result (7.11a, b),
which can be applied also in the domain III2

d. Hence, the force
fields within the domain BZWM′ are determined by formula
(6.51) and within the domain CMWZ′ by formula (7.11a, b).

As can be easily noted the formulae (6.51) and (7.11a, b)
have the same first two terms, the difference between them
lying in the last two terms. If the solution referring to the up-
per Chan’s domain is augmented with two additional terms
referring to the lower domain, then the boundary conditions
concerning the force field T1 along the line M′W and the
boundary conditions concerning the force field T2 along MW
will be satisfied. The formula for the force fields within
AM′WM becomes

T1(α, β) = −FCG0
(
βp − β, αp − α

)
+FTG1

(
αp − α, βp − β

)
+FCG2

(
βp − θ2 − α, αp + θ2 − β

)
−FTG1

(
βp − θ2 − α, αp + θ2 − β

)
+FCG0

(
αp − θ1 − β, βp + θ1 − α

)
−FTG1

(
αp − θ1 − β, βp + θ1 − α

)
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Fig. 9 Static division of the optimal cantilever while load is applied within DHJG domain (see Fig. I.19)
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T2(α, β) = FCG1
(
βp − β, αp − α

)
−FTG0

(
βp − β, αp − α

)
−FC G1

(
βp − θ2 − α, αp + θ2 − β

)
+FT G0

(
βp − θ2 − α, αp + θ2 − β

)
−FC G1

(
αp − θ1 − β, βp + θ1 − α

)
+FT G2

(
αp − θ1 − β, βp + θ1 − α

)
, (8.1)

where FC=FC(P), FT=FT(P). The equations above can be
found by using Riemann formula, knowing the values of the
corresponding functions along the lines MW and M′W.

In both the circular domains we note two domains of static
division separated by the lines RM′ and NM. The force in the
tension bar is constant along ZP and RB and increases on
BZ according to (6.55). The force in the compression bar is
constant along NC and Z′P and varies on CZ′ according to
(7.12).

9 The force applied within HJH2, GJG2 and JH2J2G2

Let us consider the point load applied within the domain
HJH2 (see Fig. I.19). The position of the force is determined
by the inequalities θ1<αp<θ1+θ2, θ1+θ2<βp<αp+θ2. The
whole cantilever is divided into eight domains of static divi-
sion, four of them lying within the circular fans. The force
fields within the domains of upper indices 1–4 have been
found in Section 8; thus, we confine our analysis to the do-
main IVd

5 (see Fig. 10).

The vertices of the domains have the following
coordinates:

A(0, 0), B(0, θ2), M′
(
0, αp − θ1

)
, D(θ1, θ2),

M1
(
θ1, βp − θ1 − θ2

)
, C(θ1, 0) ,Z

(
βp − θ2, βp

)
,

A1
(
0, βp − θ1 − θ2

)
, Z1

(
βp − θ2, βp − θ1 − θ2

)
,

D3
(
θ1, αp − θ1

)
, D4

(
βp − θ2, αp − θ1

)
, H(θ1, θ1 + θ2),

D2
(
βp − θ2, θ2

)
, B1

(
αp, θ2

)
, D5

(
αp, θ1 + θ2

)
,

D1
(
βp − θ2, θ1 + θ2

)
.

The following subdomains occur:

III5
= AA1M1C, III4

= A1M′D3M1, III2
= M8BDD3,

IV2
g = BDH , IV2

d = D3DD2D4, IV4
d = M1D3D4Z1,

IV3
d = Z1D4Z′, IV1

d = D4D2B1Z′, IV5
d = CM1Z1,

V1
= D2D1D5B1, V2

= DHD1D2,

VI2
g = HD1Z, VI1

g = ZD1D5P.

We shall find the field T1 within CM1Z1 by setting the integral
equation on the line β=βp−θ1−θ2 or A1M1Z1; along this
line, the function T2 is continuous. By (2.4) we have

T (5)
1

(
α, βp − θ2 − θ1

)
=

∫
T2

(
α, βp − θ2 − θ1

)
dα

= T (4)
1

(
α, βp − θ2 − θ1

)
+ C,

(9.1)

where the upper index (5) indicates the subdomain IV5
d of sta-

tic division. The constant C is computed from the conditions

III2

dH N 

dV

),(H 211 θθθ +

A 

M'

),(' 1θαα −ppZ

D 

IVg
2

IVd
3

III4

V1

IVd
1

VIg
1

P 

gH R 

gV

),(Z 2 pp βθβ −

)

,(

12

2

θθβ
θ β

−−

−

p

p

IVd
2

IVd
4

IVd
5

VIg
2

V2

III5

2θ

1θ C Z1
B1

D2

B 

A1

M1

D1

D3

D4

D5

),(P pp βα

Fig. 10 Michell cantilever with the force applied within upper Chan domain of the second rank
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T1
i (βp−θ2,βp−θ1−θ2)=0, for i=4,5. Hence, C=0. The terms

corresponding to the domain no IV3
d satisfy the condition of

the force T1 being zero along the straight boundary. Conse-
quently, these terms will be still valid in domain no IV 5

d . The
integral equation (7.5c) will be written only for the terms
appearing at the passage from domain IV3

d to domain IV4
d

(see 6.51):

1

2

βp−θ2−θ1∫
ξ−θ1

D0
(
βp − θ2 − θ1 − β, β + θ1 − ξ

)
χ(β)dβ

= −FTG1
(
βp − ξ − θ2, αp − βp + θ1 + 2θ2

)
+FCG2

(
βp − ξ − θ2, αp − βp + θ1 + 2θ2

)
,

(9.2)

where FT=FT(P), FC=FC(P). Function χ(β) determines the
solution T1 as follows:

T1(α, β) = T I V d4
1 (α, β)+ T̂1(α, β), (9.3a)

where T1
IVd4 is given by (7.11a) and

T̂1(ξ, η) =
1

2

η∫
ξ−θ1

D0(η − β, β + θ1 − ξ)χ(β)dβ (9.3b)

To solve (9.2) we change the variables

β̃ = β − ξ + θ1, t = βp − θ2 − ξ , θ = αp − βp + θ1 + 2θ2;

hence, t − β̃ = βp − θ2 − θ1 − β, t − β̃ + θ = βp + θ2.
The integral equation assumes the form

1

2

t∫
0

D0
(
t − β̃, β̃

)
χ̃

(
t −β̃

)
dβ̃=−FTG1(t, θ)+FCG2(t, θ),

(9.4)

where χ(β) = χ̃
(
t − β̃

)
. By the result (B.21) one finds

1

2
χ̃

(
t − β̃

)
= −FTG0

(
t − β̃, t − β̃ + θ

)
+FTG2

(
t − β̃, t − β̃ + θ

)
+FCG1

(
t − β̃, t − β̃ + θ

)
−FCG3

(
t − β̃, t − β̃ + θ

)
(9.5)

The solution χ̃
(
t − β̃

)
will now be substituted into (9.3b).

We introduce the variable tη = η − ξ + θ1 and write

T̂1(ξ, η) = −FT

tη∫
0

D0
(
tη − β̃, β̃

)
·
[
G0

(
t − β̃, t − β̃ + θ

)
−G2

(
t − β̃, t − β̃ + θ

)]
+FC

tη∫
0

D0
(
tη − β̃, β̃

)
·
[
G1

(
t − β̃, t − β̃ + θ

)
−G3

(
t − β̃, t − β̃ + θ

)]
dβ̃ (9.6)

The above integrals are computed now by (B.1) to get

T̂1 (ξ, η) = −FTG1
(
t, t − tη + θ

)
+ FTG1

(
t − tη, t + θ

)
+FCG2

(
t, t − tη + θ

)
− FCG2

(
t − tη, t + θ

)
.

(9.7)

We make use of the relations

t − tη = βp − θ2 − θ1 − η, t − tη + θ = αp + θ2 − η,

t + θ = αp − ξ + θ1 + θ2 (9.8)

and arrive at the final form of the solution

T̂1(ξ, η) = −FTG1
(
βp − θ2 − ξ, αp + θ2 − η

)
+FTG1

(
βp − θ2 − θ1 − η, αp − ξ + θ1 + θ2

)
+FCG2

(
βp − θ2 − ξ, αp + θ2 − η

)
−FCG2

(
βp − θ2 − θ1 − η, αp − ξ + θ1 + θ2

)
.

(9.9)

The solution found consists of terms corresponding to the
domain IVd

2 and of two new terms. The complete solution
for the domain IVd

5 consists of the terms giving function
T̂1(ξ, η) and the terms of the domain IVd

3 of the static division
(see 9.3a):

T1(α, β) = −FCG0
(
βp − β, αp − α

)
+FTG1

(
αp − α, βp − β

)
+FCG0

(
αp − β − θ1, βp − α + θ1

)
−FTG1

(
αp − β − θ1, βp − α + θ1

)
−FTG1

(
βp − α − θ2, αp − β + θ2

)
+FCG2

(
βp − α − θ2, αp − β + θ2

)
+FTG1

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
−FCG2

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
(9.10a)
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and by (2.4)

T2(α, β) = −FTG0
(
αp − α, βp − β

)
+FCG1

(
βp − β, αp − α

)
−FCG1

(
αp − β − θ1, βp − α + θ1

)
+FTG2

(
αp − β − θ1, βp − α + θ1

)
+FTG0

(
βp − α − θ2, αp − β + θ2

)
−FCG1

(
βp − α − θ2, αp − β + θ2

)
−FTG2

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
+FCG3

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
.

(9.10b)

In the upper circular domain we note three domains of the
static division in which the radial force is constant, and thus,
equal to the force measured along the boundary with Hill’s
domain. In the lower fan domain we note only one domain
of static division. The force in the tension bar is constant
along the curved boundary, whilst its values along the straight
boundary vary according to the rule

F Z H
T = FT(P)+

βp−θ2∫
α

T (2)
1 (α, α + θ2)dα, (9.11)

where T1
(2) is given by (6.51).

The force in the compression bar is constant along the
curvilinear boundary. Along the boundary of domain IV3

d this
force varies by the rule

F Z1 Z ′

C = FC(P)+

αp−θ1∫
β

T (3)
2

(
β + θ1, β

)
dβ, (9.12)

where T (3)2 is given by (7.11b). Along the boundary of domain
IV5

d it can be computed by

FC Z1
C = FC(P) +

αp−θ1∫
βp−θ2−θ1

T (3)
2

(
β + θ1, β

)
dβ

+

βp−θ2−θ1∫
β

T (5)
2

(
β + θ1, β

)
dβ, (9.13)

where T (5)2 is given by (9.10b).
The formulae for the force fields within the fans and in

the reinforcing bars hold for the case of the point load being
applied at the upper straight segment of the boundary of the
feasible domain or for θ1<αp<θ1+θ2, βp=αp+θ2. Then the
domains VIg

1, V1, IV1
d, IV3

d and IV4
d disappear (see Fig. 10).

(6.51) is replaced with (6.23), whilst (9.10a, b) reduce to the
form

T1(ξ, η) = −FCG0
(
αp − ξ, βp − η

)
+FCG0

(
αp − θ1 − η, βp + θ1 − ξ

)
+FCG2

(
αp − ξ, βp − η

)
−FCG2

(
αp − θ1 − η, βp + θ1 − ξ

)
T2(ξ, η) = FCG1

(
βp − η, αp − ξ

)
−FCG1

(
αp − θ1 − η, βp + θ1 − ξ

)
−FCG1

(
αp − ξ, βp − η

)
+FCG3

(
αp − θ1 − η, βp + θ1 − ξ

)
,

(9.14)

where FC=FC(P).
The force fields for the case of the point load applied

within GJG2 can be found from (9.14) by interchanging T1
with T2 and using the change of variables (7.9).

Consider now the case of the force P applied within do-
main JH2J2G2 (Fig. 11).

Position of the point load in the domain JH2J2G2 is de-
scribed by θ1+θ2<αp<2θ1+θ2, θ1+θ2<βp<θ1+2θ2. The

),( 121 θαθθα −−− pp ),( 2 pp βθβ −

),( 122 θθβθβ −−− pp

),( 1θαα −pp

P 

B 

C 

R 

1θ
N 

2θ

),(P pp βα

Fig. 11 Static division of the optimal cantilever while load P is applied within JH2J2G2 domain
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cantilever is divided into 11 subdomains of static division.
The equations describing domains 1–5 have been derived
previously. To find the field T1 in domain 6 we use the for-
mula (9.10b) for the force T2 and change the variables by
(7.9)

T (6)
1 (α, β) = −FCG0

(
βp − β, αp − α

)
+FTG1

(
αp − α, βp − β

)
−FTG1

(
βp − α − θ2, αp − β + θ2

)
+FCG2

(
βp − α − θ2, αp − β + θ2

)
+FCG0

(
αp − β − θ1, βp − α + θ1

)
−FTG1

(
αp − β − θ1, βp − α + θ1

)
−FCG2

(
αp − θ1 − θ2 − α, βp + θ1 + θ2−β

)
+FTG3

(
αp − θ1 − θ2 − α, βp + θ1 + θ2−β

)
.

(9.15a)

The second force is found by (2.4):

T (6)
2 (α, β) = −FTG0

(
αp − α, βp − β

)
+FCG1

(
βp − β, αp − α

)
+FTG0

(
βp − α − θ2, αp − β + θ2

)
−FCG1

(
βp − α − θ2, αp − β + θ2

)
−FCG1

(
αp − β − θ1, βp − α + θ1

)
+FTG2

(
αp − β − θ1, βp − α + θ1

)
−FCG1

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
−FTG2

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
,

(9.15b)

where FC=FC(P), FT=FT(P).
The formulae for the force fields within domain 7 will

be guessed in the manner similar to that concerning domain
III, corresponding to the case of the point load applied within
DHJG. The formulae for T1

(7), T2
(7) include the terms corre-

sponding to the domain 4 and new terms concerning domains
5 and 6:

T (7)
1 (α, β) = T (4)

1 (α, β)

+FTG1
(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
−FCG2

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
−FCG2

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
+FTG3

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
(9.16a)

T (7)
2 (α, β) = T (4)

2 (α, β)+

−FTG2
(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
+FCG3

(
βp − θ2 − θ1 − β, αp + θ1 + θ2 − α

)
+FCG1

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
−FTG2

(
αp − θ1 − θ2 − α, βp + θ1 + θ2 − β

)
,

(9.16b)

where T (2)1 is given by (6.51) and where T (4)1 , T (4)2 are given
by (8.1), where FC=FC(P), FT=FT(P).

The longitudinal force in the tension bar is constant along
the boundary of domain 1 and along the fan, while it varies
along the edges of the domains 2 and 6. We have

F (2)
T = FT(P)+

βp−θ2∫
α

T (2)
1 (α, α + θ2)dα (9.17a)

F (6)
T = FT(P) +

βp−θ2∫
αp−θ1−θ2

T (2)
1 (α, α + θ2)dα

+

αp−θ1−θ2∫
α

T (6)
1 (α, α + θ2)dα. (9.17b)

The force in the compression bar is constant along the bound-
ary of domain 1 and along the fan, while it varies along the
boundary of domains 3 and 5:

F (3)
C = FC(P)+

αp+θ1∫
β

T (3)
2

(
β + θ1, β

)
dβ (9.18a)

F (5)
C = FC(P) +

αp+θ1∫
βp−θ1−θ2

T (3)
2

(
β + θ1, β

)
dβ

+

βp−θ1−θ2∫
β

T (5)
2

(
β + θ1, β

)
dβ, (9.18b)

where T (3)2 is given by (7.11b) and T (5)2 by (9.10b).

10 Final remarks

The derivation presented can be continued and all the re-
sults put in terms of Lommel-like functions. The graphs of
the fields T1, T2 will be shown in part IV for selected ex-
amples. Although the cantilevers are composed of infinite
number of members, the problems turn out to be statically
determinate. In all the cases the boundary conditions suf-
fice to solve the equilibrium problem directly by equilibrium
equations. It is noteworthy to recall that in solid mechanics
there are only two commonly known two-dimensional stati-
cally determinate problems: axisymmetric torsion of annular
plates and selected static problems of membrane shells. Other
known statically determinate problems are one-dimensional;
they concern frames, grillages and trusses. Now we see that
Michell structures, being neither continuum nor discrete, con-
stitute the third large class of two-dimensional statically de-
terminate structures.
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Appendix A. Formula of Riemann referred to the domain
QFE

Assume that the function T satisfies: LT=f within a domain�, parame-
terized by (α,β), with L defined by (I.6.3) and with an arbitrary function
f given in this domain. Let G be defined by G (α, β)=D0(λ−α, β−µ)
(see I.7.7). Then, according to Appendix (I.B), (I.B.2), the following
identity holds:

2
∫
�

f Gdαdβ =

∫
∂�

(
−G

∂T

∂α
+ T

∂G

∂α

)
dα

+

∫
∂�

(
G
∂T

∂β
− T

∂G

∂β

)
dβ. (A.1)

Assume now that �=QFE (see Fig. 5). By integration by parts, using
the property G(α, µ)=1, we compute the boundary integral

∫
E Q

(
−G

∂T

∂α
+ T

∂G

∂α

)
dα

= −

λ∫
µ−θ2

G(α, µ)
∂T (α, µ)

∂α
dα + T (α, µ)G(α, µ)

∣∣λ
µ−θ2

−

λ∫
µ−θ2

G(α, µ)
∂T (α, µ)

∂α
dα

= −T (α, µ)
∣∣λ
µ−θ2

+ T (α, µ)
∣∣λ
µ−θ2

− T (α, µ)
∣∣λ
µ−θ2

= −T (λ, µ)+ T (µ− θ2, µ) = TE − TQ . (A.2)

Taking into account that G(λ, β)=1, one finds∫
QF

(
G
∂T

∂β
− T

∂G

∂β

)
dβ

=

λ+θ2∫
µ

G(λ, β)
∂T (λ, β)

∂β
dβ − T (λ, β)G(λ, β)

∣∣λ+θ2
µ

+

λ+θ2∫
µ

G(λ, β)
∂T (λ, β)

∂β
dβ

= T (α, µ)
∣∣λ
µ−θ2

− T (α, µ)
∣∣λ
µ−θ2

+ T (α, µ)
∣∣λ
µ−θ2

= T (λ, λ+ θ2)− T (λ, µ) = TF − TQ . (A.3)

The integral along FE is computed as follows:

∫
F E

(
−G

∂T

∂α
+ T

∂G

∂α

)
dα +

∫
F E

(
G
∂T

∂β
− T

∂G

∂β

)
dα

=

µ−θ2∫
λ

[
T (α, α + θ2)

(
∂G

∂α
−
∂G

∂β

)
|β=α+θ2

+G(α, α + θ2)

(
∂T

∂β
−
∂T

∂α

)
|β=α+θ2

]
dα. (A.4)

We rewrite (A.1) in the form

2
∫
�

f Gdαdβ = −2T (λ, µ)+ TF + TE

+

λ∫
µ−θ2

[
T (α, α + θ2)

(
∂G

∂β
−
∂G

∂α

)

+G(α, α + θ2)

(
∂T

∂α
−
∂T

∂β

)]
dα. (A.5)

Assuming that f=0 we find the formula sought

T (λ, µ) =
1

2
(TF + TE )

+
1

2

λ∫
µ−θ2

[
T (α, α + θ2)

(
∂G

∂β
−
∂G

∂α

)
|β=α+θ2

+G(α, α + θ2)

(
∂T

∂α
−
∂T

∂β

)
|β=α+θ2

]
dα. (A.6)

Appendix B. An important integral formula

The following equality will be proven (n≥−1):

tλ∫
0

D0(tλ − α̃, α̃)
[
Gn(t − α̃, t − α̃ + θ)− Gn+2(t − α̃, t − α̃ + θ)

]
dα̃

= Gn+1(t, t − tλ + θ)− Gn+1(t − tλ, t + θ) (B.1)

This will be proven not by a direct integration but by showing that the
function

χ(w, α) = Gm−1(w − α,w − α + θ)− Gm+1(w − α,w − α + θ)

(B.2)

is a solution of the integral equation:

t∫
0

D0(t −α, α)χ(w, α)dα = Gm(w,w− t + θ)− Gm(w− t, w+ θ).

(B.3)

Let us introduce the Laplace transform in two forms:

Lw{ f (w)} =

∞∫
0

e−wr f (w)dw (B.4)

L t { f (t)} =

∞∫
0

e−tp f (t)dt. (B.5)

According to (a.164) we recall here the result:

Lw{Gm(w,w − ξ1)} =

2m exp

(
−

1

2

(
r −

√
r2 − 4

)
ξ1

)
√

r2 − 4
(

r +
√

r2 − 4
)m , (B.6)
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and consequently,

Lw{Gm(w− t, w− t −ξ2)}=

2m exp

(
−

1

2

(
r −

√
r2 −4

)
ξ2 −r t

)
√

r2 −4
(

r +
√

r2 −4
)m .

(B.7)

We put ξ1=t−θ, ξ2=−t−θ, S =
√

r2 − 4 and find

Lw {Gm(w,w − t + θ)− Gm(w − t, w + θ)}

=

2m exp

(
θ

2
(r − S)

)
S(r + S)m

(
e−a1t

− e−a2t ), (B.8)

where

a1 =
1

2
(r − S), a2 =

1

2
(r + S). (B.9)

Let us perform the Laplace transform of both sides of (B.8) using (B.5):

L t Lw {Gm(w,w − t + θ)− Gm(w − t, w + θ)}

=

2m exp

(
θ

2
(r − S)

)
S(r + S)m

(
1

p + a1
−

1

p + a2

)
. (B.10)

We transform both sides of (B.3) using (B.4) to find

t∫
0

D0(t − α, α)χ∗(r, α)dα

= Lw{Gm(w,w − t + θ)− Gm(w − t, w + θ)} (B.11)

with

χ∗(r, α) = Lw{χ(w, α)}. (B.12)

Then, making use of (b.174), we transform both the sides of (B.11)
according to (B.5):

1

p
χ∗∗

(
r, p +

1

p

)
= r.h.s. of (B.10), (B.13)

where

χ∗∗(r, p) = L t
{
χ∗(r, t)

}
. (B.14)

We take into account notation (6.36) and use the identity

1

p + a1
−

1

p + a2
=

S

p(r + s)
. (B.15)

The equality (B.13) is equivalent to

χ∗∗(r, s) =

2m exp

(
θ

2
(r − S)

)
(r + S)m

1

s + r
. (B.16)

We replace s by p and rewrite (B.16) in the form

L t
{
χ∗(r, t)

}
=

2m exp

(
θ

2
(r − S)

)
(r + S)m

L t
(
e−r t )

; (B.17)

hence,

χ∗(r, t) =
2m exp(−r t)

(r + S)m−1

exp

(
−

1

2
(r − S)(−θ)

)
r + S

. (B.18)

We use the decomposition

1

r + S
=

1

2S
−

2

S(r + S)2
(B.19)

and write

χ∗(r, t) = 2m−1
exp

(
−

1

2
(r − S)(−θ)− r t

)
S(r + S)m−1

−2m+1
exp

(
−

1

2
(r − S)(−θ)− r t

)
S(r + S)m+1 . (B.20)

The formula (B.7) gives the desired result (B.2), which ends the

derivation.
Substitution of tλ = t into (B.1) gives

t∫
0

D0(t − α, α)
[
Gn(t − α, t − α + θ)− Gn+2(t − α, t − α + θ)

]
dα

=

{
G0(t, θ)− 1 for n = −1

Gn+1(t, θ) for n ≥ 0 . (B.21)
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