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Abstract: We investigate qualitatively a uniform non-Brownian sedimenting suspension in a station-
ary state. As a base of our analysis we take the BBGKY hierarchy derived from the Liouville equation.
We then show that assumption of the plasma-like screening relations can cancel some long-range
terms in the hierarchy but it does not provide integrable solutions for correlation functions. This
suggests breaking the translational symmetry of the system. Therefore a non-uniform structure can
develop to suppress velocity fluctuations and make the range of correlations finite.
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1. Introduction

Sedimentation is a process of falling of particles in a fluid due to gravity (the particles
are more dense then the fluid). Considerations in this paper are restricted to the limit of
vanishing Reynolds number and infinite Peclet number. Reynolds number is given by

Re = aη−1ρlUS, (1)

where a is radius of a particle, η is dynamic viscosity coefficient of the fluid, ρl is density
of the fluid and US is the Stokes velocity of a single particle falling in unbounded fluid
motionless at infinity. When Re → 0, the fluid flow instantly adjusts to the boundary
conditions. Peclet number is given by

Pe = aD−1US, (2)

where D is diffusion coefficient of a single particle in a fluid. In case of Pe → ∞, Brow-
nian motion is negligible compared to the motion caused by gravity and hydrodynamic
interactions. In such a system there are difficulties with divergent expressions due to
hydrodynamic field disturbance slowly decaying over distance (inversely proportional to
distance—same as electric potential produced by an isolated charge in a vacuum). Chal-
lenges of theoretical approach to system with vanishing Reynolds number (and divergent
Peclet number) are known for more than hundred years. In 1911, Smoluchowski [1,2]
investigated a particle surrounded by other particles suspended in a Newtonian fluid. His
observation was that, considering larger and larger systems leads to a divergent expression
for the particle falling velocity, caused by the long-range velocity disturbance produced by
other particles. Now this is known in literature as the Smoluchowski paradox [3]. Solution
of this paradox was given by Batchelor [4] sixty years after the work of Smoluchowski and
then reanalyzed by Beenakker and Mazur [5].

Batchelor’s main idea was to calculate the average velocity of suspended particles 〈U〉
relative to the flow 〈v〉 of the whole suspension which resulted in 〈U〉 − 〈v〉 where cancel-
lation of divergent terms secures that the average relative velocity is finite. Nevertheless
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there is another problem within physics of such a system: calculation of the sedimentation
velocity variance. This one was noticed by Caflisch and Luke [6] in 1985. They showed that
fluctuations in general should grow with linear dimension L of a system which is again a
result of a slowly decaying flow disturbance around a particle. One can spot that if this
flow disturbance is inversely proportional to distance then integrating square of it leads
to linear divergence with L. To solve that conundrum, Koch and Shaqfeh [7] proposed in
1991 that pair probability has to obey the screening relation like in plasma (as it is with
the Debye–Hückel screening), namely that it has to reflect a net deficit of one particle in
the vicinity of each particle. This condition corresponds to vanishing structure factor for
vanishing k wave vector, S(k → 0) = 0. The idea of screening is that hydrodynamic
interaction between particles results in lower probability of finding a close pair of particles.
When screening occurs this effect is finely tuned in such a way that effective hydrodynamic
interaction between particles within a pair has a much faster decay with the inter-particle
distance—a power law is replaced by an exponential decay. Moreover, the change is such
that integral of the correlation function reflects the average lack of exactly one neighboring
particle around a test particle. This leads to cancellation of the leading long-range terms
and results in convergent expressions for velocity fluctuations. An example of such a
cancellation owing to the screening effect will be provided in Section 3.1.

Nevertheless, the idea of the screening condition being satisfied was a subject of a
substantial critique [8–11] which was mainly focused on showing no evidence of screening
in simulations of a sedimenting suspension. In order to cope with fluctuations many ideas
were given. Some were pointing to the crucial role of walls [12], some were focusing on
stratification [13] or its critique [14,15], some were considering additional shear flow [16],
and others even tried to look for a solution in non-zero Re number [17]. Good scope of
troubles with finding solution to fluctuation problem is given in review articles [18–20].

In this paper, the screening idea is analyzed and it is shown that the BBGKY (Bo-
goliubov, Born, Green, Kirkwood, Yvon) hierarchy for the correlation functions between
sedimenting particles [21] in a uniform stationary state has no screening solutions at all.
This is a significant problem since BGGKY hierarchy is derived straightforwardly from the
Liouville equation which cannot be violated.

In the Section 2, the theoretical framework is presented. In Section 3 it is shown that
even if some of long range terms in hierarchy are regularized by screening conditions,
there are still other ones which cannot be screened at all. This leads to contradiction since
assuming screening still leads to equations which give non-integrable solutions for the
correlation functions. This suggests that the system becomes non-uniform and symmetry
with respect to translations is broken. As pointed out in Section 4, this finding gives a novel,
unique theoretical explanation of a non-uniform structure of non-Brownian sedimenting
suspensions, previously reported in experiments and numerical simulations [13,19,22–32].

2. Methods
2.1. System and Its Theoretical Description

System consists of N identical rigid spherical particles (mono-disperse suspension)
immersed in a Newtonian fluid of viscosity η. Particle radius a is small enough and
viscosity of fluid is sufficiently large to ensure Reynolds number (Re) is much smaller than
unity. Then one can set Re = 0 which reduces Navier–Stokes equations for the fluid flow
to the Stokes equations [33]. Simultaneously a is large enough to keep Peclet number (Pe)
much larger then 1 so Brownian motion can be neglected. Particles are uniform, spherically
symmetric and their density ρp is larger than the density ρ f of the surrounding fluid, which
results in settling of those particles under gravity. Macroscopically system is assumed to be
uniform and stationary.
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The fluid flow is governed by the Stokes equations. The Green tensor for an un-
bounded system, with condition that fluid velocity is zero at infinity, is represented by the
Oseen tensor T of the form [34]:

T (r) = 1
8πηr

(I+ r̂r̂). (3)

Velocities of the fluid and particles are determined by external forces (By external
forces one should understand those which are not a result of an interaction with the fluid)
and boundary conditions at infinity and at the particles. It is important to solve the so-called
mobility problem which is stated as below: determine velocities of the particles given their
positions and total external forces acting upon them, in the absence of any external torques
on the particles. The solution is represented by 3×3 Cartesian mobility matrices µij, with
the particle labels i, j = 1, ..., N [35],

U i(X) =
N

∑
j=1

µij(X)F j, (4)

where
X = {R1, . . . , RN} (5)

is the set of positions Ri of all the particle centers, U i is the velocity of i-th particle, F j
is the external force, e.g., gravity, acting on particle j. In this paper all the forces are
identical, F j = F. In general, mobility matrices µij depend on positions of all the particles
X. Although µij have many-body character, they can be expressed as an infinite sum of
sequences of two-particle interactions. Such a scattering expansion [36–39], analogous to
the reflection method [33], can be written as,

µij =

(
µ0 + µ0Z0G

[
∞

∑
k=0

(
−Ẑ0G

)k
]
Z0µ0

)
ij

. (6)

At the RHS of the above equation, we use the operators, defined, e.g., in [38,40,41]
and briefly described below. The single particle operators: mobility µ0, friction Z0 and
convective friction Ẑ are diagonal in the particle labels i, and identical for each value of i
because the particles are identical. Their meaning is the following,

µ0 : force on a particle 7→ velocity of that particle (7)

Z0 : incoming fluid velocity field at a particle

7→ force density induced on that particle (8)

Ẑ0 : incoming fluid velocity field at a freely moving particle

7→ force density induced on that particle (9)

The difference between the operators Z0 and

Ẑ0 = Z0 −Z0µ0Z0 (10)

is that in case of Z0, the particle translational and rotational velocities are given, while in
case of Ẑ0, the particle moves freely, what by definition means that the total induced force
and torque on that particle vanish [38,40,41].

The off-diagonal operator G contains as its elements propagators based on the Oseen
tensor given by Equation (3). The elements Gij are propagators between different particles
i 6= j, and they represent single hydrodynamic interactions. The element Gij depends only
on the relative position Rij = Ri − Rj, and it acts in the following way,

Gij(Rij) : force density on j-th particle at Rj 7→ generated fluid velocity at Ri (11)
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In general, the operators µ0, Z0, Ẑ0 and G are complicated but one can simplify
description by expressing those elements in terms of vector solid harmonics [34] as base
functions given by irreducible representations of the SO(3) group. It results in multipole
expansion of hydrodynamic interactions [33,42–45] which is one of among other successful
applications of multipole formalism like in electromagnetism [46] or gravity [47]. The base
multipole functions are characterized by three indices l, m, σ, with l = 1, 2, . . . , m = −l, . . . , l
and σ = 0, 1, 2. Using them, one can represent each operator as a large matrix with the
particle labels and the multipole indices, ilmσ. In this way, superposition of the operators in
Equation (6) should be understood as multiplication of the corresponding large matrices. In
particular, Gilmσ,jl′m′σ′ describes the coupling between l′m′σ′ force multipole on j-th particle
and lmσ velocity multipole on i-th particle. Using the multipole representation is very
convenient for asymptotic analysis since the dependence of G elements on distance is very
simple [44],

Gilmσ,jl′m′σ′ ∝ R−l−l′−σ−σ′+1
ij . (12)

To proceed with further analysis it is needed to point out the crucial difference between
the multipole elements of Z0 and Ẑ0. Both operators are diagonal in pairs of indices l, l′,
and m, m′. For l ≥ 2 their multipole elements are identical. However, they are different
for l = 1. In this case, the operator Ẑ0 has the only non-zero element for (σ, σ′) = (2, 2),
determined by the relation (10).

Therefore, when Gij is between operators Ẑ0 in a scattering sequence given by
Equation (6), the slowest possible decay of the interaction is for (l, l′) = (2, 2) and
(σ, σ′) = (0, 0) which, according to Equation (12), scales as 1/R3

ij. This specific term
corresponds to coupling between symmetric vector dipole moments (l = 2, σ = 0) so it can
be called a dipole-dipole interaction.

Using the multipole representation, it is now easier to understand the scattering
expansion (6). Taking into account that the large matrices representing the single particle
operators µ0, Z0 and Ẑ0 are diagonal in the particle labels, and the diagonal elements
are identical for each particle, from now on we will redefine the symbols µ0, Z0 and Ẑ0
to denote the corresponding diagonal elements, which are matrices in the space of the
multipole indices. In the new notation, the first term in the bracket at the RHS of (6) is µ0δij.
The second term is the single-scattering sequence µ0Z0GijZ0µ0, with multiplication of the
consecutive multipole matrices. The third term is the sum of the two-scattering sequences,
−µ0Z0GimẐ0GmjZ0µ0, with respect to m 6= i and m 6= j, and so on.

2.2. BBGKY Hierarchy of Equations for Correlation Functions

To derive the BBGKY hierarchy of equations for the correlation functions of sediment-
ing particles one needs to consider the Liouville equation for the system. For a stationary
state it reads [21]:

N

∑
i=1

∂

∂Ri
· [U i(X)ρ(X)] = 0. (13)

where ρ(X) is the probability distribution function for particle positions. To proceed further
one needs to introduce m-particle microscopic density operator

n̂m(m, X) =
,

∑
j1,j2,...,jm

m

∏
i=1

δ(ri − Rji ), (14)

where m is set of positions
m = {r1, . . . , rm}, (15)

also abbreviated to {1, . . . , m}. The sum
,

∑ is taken over all m-particle subsets and their

permutations which results in sums with respect to ji where i = 1, . . . , m and there is no
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duplicating indices ∀i,k ji 6= jk (see equation (3.1.20) in [48]). When averaged over positions
X one obtains m-particle density functions

nm(m) =
∫

dXρ(X)n̂m(m, X) = 〈n̂m〉, (16)

with
〈. . . 〉 =

∫
dXρ(X) . . . (17)

In case of identical particles one can also recover the well-known formula,

nm(m) =
N!

(N −m)!

∫
dXρ(X)δ(r1 − R1) · · · · · δ(rm − Rm). (18)

Averaging for m = 1 one gets concentration n1(1) = n = N/V where N is the number
of particles and V is the volume of the system. Following [48], we introduce k-particle
correlation functions hk(k), defining them by the relations,

n2(1, 2) = n2(1 + h2(1, 2)) (19)

n3(1, 2, 3) = n3(1 + h2(1, 2) + h2(2, 3) + h2(1, 3) + h3(1, 2, 3)) (20)

n4(1, 2, 3, 4) = n4(1 + h2(1, 2) + h2(1, 3) + h2(1, 4) + h2(2, 3) + h2(2, 4) + h2(3, 4)

+h2(1, 2)h2(3, 4) + h2(1, 3)h2(2, 4) + h2(1, 4)h2(2, 3)

+h3(1, 2, 3) + h3(1, 2, 4) + h3(2, 3, 4) + h4(1, 2, 3, 4)) (21)
...

Now multiplying the Liouville Equation (13) by density operator n̂m and averaging
over all positions X results in generation of the following BBGKY hierarchy of equations for
m-particle density functions (It can be transformed to connected hierarchy for correlation
functions [21], but for the purpose of this work it is enough to consider this hierarchy as
it is.):

m

∑
i=1

∂

∂ri
· 〈U in̂m〉(m) = 0, with m = 2, 3, . . . . (22)

Explicitly,

∂

∂r1
· 〈U1n̂2〉(2) +

∂

∂r2
· 〈U2n̂2〉(2) = 0 (23)

∂

∂r1
· 〈U1n̂3〉(3) +

∂

∂r2
· 〈U2n̂3〉(3) +

∂

∂r3
· 〈U3n̂3〉(3) = 0 (24)

∂

∂r1
· 〈U1n̂4〉(4) +

∂

∂r2
· 〈U2n̂4〉(4) +

∂

∂r3
· 〈U3n̂4〉(4) +

∂

∂r4
· 〈U4n̂4〉(4) = 0 (25)

...

For two identical particles, the LHS of Equation (23) is always zero due to the symmetry
with respect to interchanging the particle labels, and the translational symmetry of the
system. In case of two different particles, Equation (23) was solved by Batchelor [49,50],
with the use of the expansion in powers of the concentration n. In case of three particles
Cichocki and Sadlej [51] proposed a scheme to deal with the long range terms, but limited
to mono-disperse case. The problem of long-range terms in Equations (24) and (25), and
also higher order equations, will be discussed in the next section.



Symmetry 2022, 14, 63 6 of 10

3. Results
3.1. Long-Range Terms and Screening

Hierarchy of the Equations (22) describes the conditions for particle current diver-
gences which represent the law of mass conservation. By considering an increasing number
of particles and performing the cluster analysis [21,39] one can obtain equations for the
correlation functions. In these equations, there appear long-range terms which scale with
the inter-particle distances r as 1/r, 1/r2 and 1/r3 which makes them non-integrable in
the thermodynamic limit, defined as N, V → ∞ and n = N/V = const. Without imposing
additional conditions, this would lead to non-integrable correlation functions. However,
integrability of the correlation functions is necessary for stability of the system. As it is
mentioned in the introduction, Koch and Shaqfeh proposed a screening mechanism for
the system under consideration, similar as in a one component plasma, as condition (2.14)
in [7]. This condition, formulated in terms of the pair probability g, can be written in terms
of the two-particle correlation function h2 = g/n− 1 as:

n
∫

drh2(r) = −1, (26)

For the higher order correlation functions this should be generalized to [52]:

n
∫

drk+1hk+1(r1, r2, . . . , rk+1) = −khk(r1, . . . , rk), k = 2, 3, ... (27)

Those conditions will lead to finite velocity fluctuations in the thermodynamic limit.
One can try to apply the conditions (26) and (27) to eliminate (regularize) long-range terms
also in the BBGKY hierarchy. However, as it will be shown below, the screening conditions
eliminate many but not all long-range terms in the hierarchy. Nevertheless, the screening
conditions (26) and (27) can be satisfied only if all the correlation functions have a finite
range. Therefore, we will face a contradiction.

In the following, we will first provide an example how the screening condition (26)
leads to cancellation of some long-range terms. Then we will show another example of
long-range terms which remain unaffected by screening.

Equations (24) and (25), . . . of the BBGKY hierarchy for three, four and more particles
contain long-range terms. We will focus on Equation (24) and identify such terms. To this
goal, one should do substitutions using the expressions (4) for the particle velocities U i in
terms of the mobilities µij, given as the series (6) of scattering sequences. Each sequence
linking particles i and j consists of a certain number of scatterings, generated by the
force F acting on particle j. The scattering sequences are next averaged, what leads to
multiplication by certain correlation functions. It is useful to remember that the density
operator n̂m sets positions of particles 1, 2, . . . , m regardless whether they are included in
a particular scattering sequence for U i or not, with U i given by Equations (4) and (6). It
means that if there are particle positions in a certain BBGKY hierarchy term 〈U in̂m〉(m)
which are being integrated then they must appear in a scattering sequence of U i.

We will now provide the first example. In the expression (24) there exists a term with
the single interaction G12 between particles 12, the single interaction G23 between particles
23 and the pair correlation h2(r12) between the particles 12. This term can be written as
follows,

n3 ∂

∂r1
·
[
µ0Z0G12Ẑ0G23Z0µ0Fh2(r12)

]
. (28)

The slowest decaying part of this term is proportional to r−2
23 since it is between opera-

tors Z0 and Ẑ0, and we know how G23 can vary with distance given (12). If n
∫

drh2(r) =
−1 holds then the expression (28) can be screened by another term from Equation (24),
involving in addition a fourth particle and containing integration with respect to its position
r4. This term contains the single interaction G12 between particles 12, the single interaction
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G24 between particles 24, the pair correlation functions h2(r12) and h2(r34) between pairs
of particles 12 and 34,

n4 ∂

∂r1
·
[∫

dr4µ0Z0G12Ẑ0G24Z0µ0Fh2(r12)h2(r34)

]
. (29)

In this term G24 can be expanded in the following way,

Gik = Gij + r jk ·
∂

∂rij
Gij + . . . , (30)

with i, j, k = 2, 3, 4. Such an expansion, when plugged into Equation (29), is justified since,
according to our assumption, the correlation function h2(r34) has short range. When taking
into account the first term of (30), the expression (29) reads

n3 ∂

∂r1
·
[

µ0Z0G12Ẑ0G23Z0µ0Fh2(r12)n
∫

dr4h2(r34)

]
. (31)

with the screening condition (26), the expressions (28) and (31) cancel each other. The second
term of (30) gives no contribution to expression (29) because, due to symmetry of correlation
function,

∫
rh2(r)dr = 0. The correlation function has to obey general symmetry of the

system, first one with respect to the rotation around vertical axis and second one with
respect to parity in the direction of that axis. Higher order terms in (30) lead in Equation (29)
to the hydrodynamic interaction between particles 2 and 3 which decays at least as fast as
r−4

23 so it is then of a short range. Ability to construct a screening pair of terms is based on the
fact that those screened interactions are the first from the right in the scattering sequence.

Such a construction is not possible otherwise which gives rise to examples contradict-
ing the possibility of screening of all terms. An example of such term can be found in the
hierarchy Equation (25) for 4 particles. This term is written below,

n4 ∂

∂r1
·
[
µ0Z0G12Ẑ0G23Ẑ0G34Z0µ0Fh(r12)h(r34)

]
. (32)

Above, the expression Ẑ0G23Ẑ0 decays as r−3
23 and therefore corresponds to infinite

range of interaction as it was explained below Equation (12). In analogous way to formation
of the pair (28) and (31) the term (32) can be paired with the following one,

n5 ∂

∂r1
·
[∫

dr5µ0Z0G12Ẑ0G25Ẑ0G54Z0µ0Fh(r12)h3(r34, r35)

]
. (33)

In this case, one has to expand two hydrodynamic interaction propagators, G25 and
G54 using (30), with i, j, k equal to 2, 3, 5 and 5, 3, 4 respectively. However, this operation
together with the screening condition (27) for k = 2 does not lead to cancellation of infinitely
long range interactions like it was with a pair of (28) and (31).

In general, such a dipole–dipole part of the hydrodynamic interaction Gij inside
a scattering sequence, which gives rise to long range behavior of correlations, cannot
be screened by the plasma-like screening conditions (27). This is due to the fact that
construction of a screening pair requires also expanding preceding interaction which is
on the right side of Gij. This situation results in an inability to cancel the slowest r−3

ij
term because one gets integrals which contains both correlations and interactions and they
cannot be reduced by screening conditions. It means that screening can only affect first
from right interaction in the scattering sequence. Therefore, only some long range terms
are canceled by (27). Other ones still remain, as illustrated in the above example. This leads
to a contradiction with the assumption that correlation functions are integrable.

This means that one will not obtain for correlations an integrable solution of the
BBGKY hierarchy. This contradicts screening relations leading to instability of a uniform
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system due to divergent expressions for velocity fluctuations in the thermodynamic limit.
It suggest that system has to break the translational symmetry and that it has to develop
some non-uniform structure like stratification or swirls [22] which can change the velocity
fluctuations magnitude [13]. However, for numerical simulations of small systems in
periodic boundary conditions [9,53] fluctuations are small enough to keep the stationary
state uniform. In those systems mechanism proposed by Cichocki and Sadlej [51] to
regularize long range interactions may be a hint to find a solution for correlation functions.

4. Conclusions

In this article, it has been shown that in the BBGKY hierarchy [21] for the correlation
function in a sedimenting uniform non-Brownian suspension there is no solution that
obeys plasma-like screening relations. This was done by assuming validity of screening
conditions and showing that this hypothesis cannot eliminate all long-range terms in the
BBGKY hierarchy, and therefore it leads to a contradiction with our assumption. Our results
suggest that there is no uniform steady state in the thermodynamic limit. The problem
cannot be solved by a system invariant to translations. Our finding is that the uniformity is
broken at least on a certain length scale [19,22,23]. This seems to be in an agreement with
experimental and numerical investigations. They show that non-uniform structures like
swirls [13,24–29] or stratification [30–32] are likely to develop in sedimenting suspensions.
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