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Abstract
Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a
qualitative comparison to experiments. Initially, the fibers are straight, with different orientations
with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratio
A of bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into
the motion out of the shear plane. The numerical simulations of moderately flexible fibers show
that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly becomes
very close to the flow-vorticity plane, on average close to the flow direction, and the fiber remains
in an almost straight configuration for a long time. This ‘ordering’ of fibers is temporary since they
alternately bend and straighten while tumbling. We observe numerically and experimentally that if
the fibers are initially in the compressional region of the shear flow, they can undergo
compressional buckling, with a pronounced deformation of shape along their whole length during
a short time, which is in contrast to the typical local bending that originates over a long time from
the fiber ends. We identify differences between local and compressional bending and discuss their
competition, which depends on the initial orientation of the fiber and the bending stiffness ratio A.
There are two main finding. First, the compressional buckling is limited to a certain small range of
the initial orientations, excluding those from the flow-vorticity plane. Second, since fibers
straighten in the flow-vorticity plane while tumbling, the compressional buckling is transient—it
does not appear for times longer than 1/4 of the Jeffery period. For larger times, bending of fibers
is always driven by their ends.

1. Introduction

Modern technologies have recently enabled the production of flexible microfibers and nanofibers of

controlled length, bending stiffness, and biophysical properties [1–7], and to offer designs for their use in

medical applications [8, 9]. This progress is associated with a rapid development of low-Reynolds-number

theoretical, numerical, and experimental studies of the dynamics of flexible fibers in fluid flows [10–25],

including the motion and shape evolution of biological flexible filaments such as actin [26–29]. Basic

physical mechanisms of the dynamics and deformation patterns of flexible fibers are still a subject of

ongoing research [30–41].

Of particular interest is the compression of flexible fibers caused by the strain of an external fluid flow

[10]. Such deformations of an elastic fiber have been investigated in simple shear [13] and

compressional/extensional [18, 26, 35] flows. Recently these studies have been generalized for compression

of elastic sheets [42, 43] in the same flows; the elastic sheet geometry models, e.g. a graphene platelet

[42, 43]. The compressional buckling has been predicted theoretically using the Euler–Bernoulli beam

model of an elastic slender filament (usually referred to as the elastica) [13], and also for an elastic slender
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sheet [42, 43]. For simple shear flow, such an approximation is limited to very short times, smaller than half
of the Jeffery period, because an infinitely thin object does not tumble in a simple shear flow.

In this paper we account for a non-zero thickness of an elastic fiber in a simple shear flow. We use a
bead-chain model of a fiber. We apply a multipole expansion of the Stokes equations, corrected for
lubrication [44, 45], to determine hydrodynamic interactions between the segments of the fiber. The
elasticity of the fiber is given by the harmonic stretching and bending potentials between pairs and triplets
of consecutive beads [41]. With this theoretical and numerical tool [36, 46], and with the use of
experimental techniques [4–6, 24, 25] that allow fabrication of fibers of specified aspect ratios, and
including flow visualization, we are able to trace the fiber dynamics. We focus on the time scales of the
order of a few Jeffery periods. The outline of our paper begins in section 2, where we describe the
experimental setup and the process of fiber formation. In section 3, we present the theoretical model. Then,
in section 4, we demonstrate experimentally and numerically that fibers undergo a temporal ordering while
performing effective Jeffery orbits: for a long time the fibers are almost straight and almost in the
flow-vorticity plane; moreover, owing to the nature of the Jeffery orbits (see appendix), there are more
fibers inclined at larger angles to the vorticity direction. Then, for a short time, the fibers bend significantly,
and the process repeats. In section 5, we detect the compressional buckling in both experiments and
numerical simulations, and we investigate its properties. We demonstrate that the compressional buckling
happens only once, for time smaller than half of the Jeffery period, and for a very limited range of initial
orientations. In section 6 we show that the most common bending pattern is different—bending originates
locally at the fiber ends [41]. Finally, conclusions are presented in section 7.

2. Experimental setup

2.1. Fiber fabrication in a microfluidic channel
We used a standard microfluidic method to fabricate the fibers, where the properties of the fibers, such as
the length, the diameter, and the modulus of the fibers, are highly reproducible and controllable
[4–8, 24, 25]. In particular, we generated a uniform cylindrical jet of oligomer solution in a microfluidic
channel, then exposed the jet to pulses of UV light to trigger the gelation of the jet and produced the fibers;
see the schematic of the microfluidic device in figure 1(a).

The microfluidic device was fabricated using standard methods of soft lithography [1]. A
polydimethylsiloxane (PDMS, Dow Sylgard 184; Ellsworth Adhesives) channel was plasma-bonded to a
PDMS-coated glass slide using a Corona surface treater (Electro-Technic Products). The width and the
height of the main channel were W = 200 μm and H = 135 μm, respectively. The oil solution (light blue in
the schematic) and oligomer solution (violet in the schematic) were pumped into the microfluidic channel
by syringe pumps (Harvard apparatus) [figure 1(a)]. The oil solution was, by weight, 11% Span 80
(Sigma-Aldrich) in light mineral oil (Sigma-Aldrich). The oligomer solution was composed of, by volume,
54% poly(ethylene glycol) diacrylate (PEG-DA, molecular weight = 575 g mol−1; Sigma-Aldrich), 38%
de-ionized water, and 8% 2-hydroxy-2-methylpropiophenone (photoinitiator; Sigma-Aldrich). The
volumetric flow rates of the oligomer and oil solutions were Q1 = 0.1 ml h−1 and Q2 = 0.6 ml h−1,
respectively. In the main microfluidic channel, the oligomer solution was focused and sheathed by the two
symmetric streams of the oil solution to form a steady and uniform cylindrical jet. The size of the jet was
approximately 40 μm, which is much smaller than the width (200 μm) and the height (135 μm) of the
main channel. Therefore, the jet is cylindrical due to surface tension. Further, in the previous research [24],
the same technique was used to produce the fibers, and their surface was imaged under SEM, and the fibers
were indeed cylindrical. The diameter of the jet D ≈ 44.8 μm. Due to the effect of the surfactant (Span 80)
in the oil solution, the jet of oligomer solution remained steady for several millimeters downstream in the
main channel before it became unsteady and broke up into a series of small droplets (in the absence of UV
light discussed in the next paragraph).

To trigger gelation in the jet of oligomer solution, the jet was exposed to pulses of UV light, which were
generated by an ultraviolet light-emitting diode (LED) (UV LED, wavelength ≈365 nm; Thorlabs) and
focused through a 20× objective. As a result, the UV light spot incident on the jet of oligomer solution was
approximately a circle, 2.3 mm in diameter; see the schematic in figure 1(a) (the gray circle denotes the light
spot). We set the current of the UV LED to 1.3 A, and the corresponding light intensity of the light spot was
approximately 0.03 E/(m2s) [7]. The UV LED was pulsed periodically on for 20 ms and then off for 180 ms.
Fibers with diameter D = 44.8 μm and length L = 1.61 mm were generated and were then collected
downstream at the end of the microfluidic channel. The corresponding aspect ratio of the fibers
r ≡ L/D ≈ 36 and was similar to the value used in the numerical simulations. As estimated in the previous
research [24], the Young’s modulus of the fibers E ≈ 105 Pa. The collected fibers were washed five times in

2



New J. Phys. 24 (2022) 013013 A M Słowicka et al

Figure 1. Schematic diagrams of the experimental setup. (a) A schematic of the microfluidic device for fiber fabrication. (b) A
schematic of the rheo-microscope setup for imaging fibers in shear flow. (c) A characteristic image of the fiber suspension
captured in the rheo-microscope setup. The x-axis denotes the velocity direction of the flow and the y-axis denotes the vorticity
direction.

1 wt% Tween 80 aqueous solution (Sigma-Aldrich) and twice in 0.1 wt% Tween 80 aqueous solution, and
were diluted and suspended in PEG-DA for further experiments (section 2.2). A more detailed discussion of
the effect of different parameters in this setup (such as the period of the pulses of UV light) on the
fabricated fibers can be found in reference [7].

2.2. Observing fiber dynamics in shear flow using a rheo-microscopy setup
A dilute fiber suspension in PEG-DA was placed in a rheometer (MCR 702; Anton Paar) to study the
dynamics of fibers in a shear flow; see the schematic in figure 1(b). The concentration of the fibers in the
suspension was kept at approximately 0.5 wt% in all the experiments, corresponding to a solid volume
fraction about 0.005. The rheometer was equipped with two transparent glass parallel plates, and the radius
of the plates was R = 21.5 mm. To image the fiber suspension between the parallel plates, a white LED was
positioned above the glass plates. Light from the LED illuminated the fibers, was then reflected by a mirror
below the glass plates, and was detected by a high-speed camera (v7.3; Phantom) mounted with an
objective (5×; Mitutoyo) and a corresponding extension tube. The field of view of the images was near the
outer edge of the parallel plates, with a size of 2.57 mm × 3.43 mm (600 pixels × 800 pixels). Since the
composition of the fibers was similar to the ambient solution (PEG-DA), the refractive index of the fibers
was very close to that of PEG-DA, and the fiber suspension was transparent under natural light. In our
rheo-microscope setup, to enhance the contrast of the imaging, the LED was a point source, and the camera
was set slightly out-of-focus, i.e. the focal plane of the imaging was slightly offset from the desired focal
plane, which was in the middle of the fluid in the rheometer. An example of a typical image obtained from
the rheo-microscope setup is displayed in figure 1(c). Initially, in the absence of flows, the fibers are straight
in elastic equilibrium.

To image the dynamics of the flexible fibers, we applied a constant shear flow between the parallel plates.
To track the dynamics of the fibers, we set the parallel plates to be counter-rotating [figure 1(b)], i.e. in the
field of view, the top plate moved from the left to the right, and the bottom plate moved in the opposite
direction, from the right to the left (the horizontal direction in the field of view was aligned with the
velocity direction of the shear flow in the rheometer). The counter-rotating parallel plates created a
stagnation plane in the flow, which was in the middle of the cell, and therefore we could track the fibers that
were near the middle of the rheometer for a longer time. In the experiments, we set the gap size between the
two parallel plates d to be approximately 0.5 or 1.5 mm, and the local average shear rate of the flow in the
field of view γ̇ was, approximately, 375 or 750 s−1. We note that it takes O(10−3) seconds for the rheometer
to accelerate to the desired shear rate. The viscosity of the solution η ≈ 55 mPa s. Therefore, in our
experiments, the corresponding dimensionless stiffness ratio A ≡ E/(64ηγ̇) ≈ 80 or 40, respectively. These
values of A in our experiments were similar to the values used in the numerical simulations below. Note
that the length scale of the fiber (L = 1.61 mm) was comparable with the gap size between the parallel
plates (d ≈ 0.5 or 1.5 mm), so there might be an effect of the confinement of the parallel plates on the
dynamics of the fibers. However, in our experiments, we did not observe a significant difference in the
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dynamics of the fibers between the gap sizes d ≈ 0.5 and 1.5 mm (for a given shear rate γ̇). More discussion
on the effect of confinement and the corresponding drifting of the fibers away from the walls can be found
in reference [25].

Since d/R � 1, the effective Reynolds number in this geometry is

Reeff =
ργ̇d3

2ηR
, (1)

where ρ is the density of the solution. In particular, substituting the characteristic parameters in the
experiments, ρ = 1.12 g cm−3, γ̇ = 375 s−1, d = 0.5 mm, η = 55 mPa s, and R = 21.5 mm, the resulting
Reeff ≈ 0.02 � 1. Therefore the effect of inertia on flow in the gap is small. Note that equation (1) is a
standard estimate of the effect of the inertia on the flow in a thin layer of the liquid between two parallel
plates [47]. Alternatively, it is helpful to estimate the particle-scale Reynolds number by using the scale of
the fiber (the diameter of the fiber, D = 44.8 μm in the experiments), and the corresponding Reynolds
number

ReD =
ργ̇dD

η
≈ 0.2, (2)

which is also small.
Brownian motion is irrelevant. Indeed, the Peclet number estimated based on fiber segments of length D

is much larger than unity; Pe = 3πηD3γ̇/(kBT) = O(109), where kB is the Boltzmann constant and T is the
temperature in Kelvin.

In the recorded image sequence of the experiments, to enhance the contrast (and to remove the noise in
the images), we applied a standard background subtraction process, i.e. each image was subtracted from the
average intensity of the image sequence and was then re-scaled. Also, to qualitatively compare with the
numerical results, we made the time in the experiments dimensionless by t = γ̇τ , where τ is physical time
in the experiments, and t is dimensionless time. The dimensionless time t was reported in all the
experiments, and t = 0 denoted the time when the shear flow was applied.

Note that under shear, due to the density difference between the fibers and the ambient PEG-DA
solution, the fibers migrate toward the center of the rheometer. However, the migration is very slow
compared to our time window of interest. For example, for the shear rate γ̇ = 750 s−1 and gap size
d = 1.5 mm, the fibers drift approximately 1 mm (a third of the field of view in the y direction) in 2 s, and
the corresponding dimensionless time t = 1500. Therefore, the long-time migration of the fibers toward the
center of the rheometer does not affect the short-time observations of the fiber dynamics.

Since the fiber density was very close to, but slightly denser than the density of PEG-DA
(ρ = 1.12 g cm−3), in the absence of shear the fibers sedimented to the bottom plate of the rheometer. The
sedimentation of the fibers in the solution was slow. For example, it took tens of minutes for the fibers to
sediment to the bottom plate; the corresponding sedimentation velocity vsed = O(10−6) m s−1 and was
much smaller than the speed of the shear flow [γ̇d = O(10−1) m s−1]. However, under the shear flow there
was an opposite tendency: the fibers moved to the central plane of the rheometer, as discussed in [25]. We
used this effect to minimize the effect of the confinement in the present study. Namely, prior to recording
the fibers in the shear flow with the desired shear rate, we applied a pre-shear to the fiber suspension, i.e. we
first applied a high local shear rate γ̇ = 1500 s−1 for 10 s, then we waited for 30 s for the fibers to relax (and
straighten), and then started the experiments with the desired shear rate γ̇ and recorded a movie. It is
essential that in this way we kept the fibers initially near the middle plane between the two walls due to the
pre-shear, and mostly in the x–y plane; the z projection of the fiber length was relatively small. Moreover,
the fibers were initially almost straight and their orientations were moderately random, which allowed to
compare with the numerical simulations.

3. Theoretical model and its numerical implementation

The theoretical description of the fiber dynamics is based on the bead model, as in [22, 36, 41, 46, 48, 49].
Each fiber consists of N identical spherical beads of diameter D. The centers of the consecutive beads are
linked by springs of equilibrium length �0, with the Hookean stretching potential energy,

Es=
k̂

2

N∑

i=2

(�i−�0)2. (3)

Here k̂ is the spring constant, �i = |ri − ri−1| is the distance between the centers of beads i and i − 1 and the
time-dependent position of the center of bead i is denoted as ri, as illustrated in figure 2.
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The bending modulus Â is determined by the Young modulus E,

Â=πED4/64. (4)

We assume the harmonic bending potential energy

Eb ==
Â

2�0

N−1∑

i=2

θ2
i , (5)

where θi is the angle between the relative positions ri − ri−1 and ri+1 − ri, with
cos θi = (ri − ri−1) · (ri+1 − ri)/(�i�i+1).

The total external force F i acting on bead i is the sum of the Hookean and bending forces,

F i = − ∂

∂ri
(Es + Eb). (6)

At the elastic equilibrium, the fiber is straight.
The elastic fiber is immersed in the shear flow

v0 = γ̇zex (7)

of a fluid with viscosity η. We neglect Brownian motion. Hydrodynamic interactions between the fiber
beads are obtained from the Stokes equations by the multipole expansion [50, 51]. The equations of motion
for the positions ri of the beads are [36, 41, 46]

ṙi − v0(ri) =
N∑

j=1

(
μtt

ij · F j + μtd
ij : E∞

)
, (8)

with E∞ = 1
2 (∇v0 + (∇v0)T) denoting the rate-of-strain tensor of the external shear flow v0 given by

equation (7). The translational–translational and translational–dipolar mobility matrices, μtt
ij and μtd

ij ,
respectively, are functions of positions of all the beads. Here, they are evaluated numerically by the
Hydromultipole numerical program, based on the multipole expansion corrected for lubrication [44, 45,
52] to speed up the convergence and provide a high precision [44, 45]. The equations of motion (8) are
solved numerically by the fifth-order Runge-Kutta procedure.

We proceed with a dimensionless representation. Lengths are normalized by the bead diameter D and
time by the inverse shear rate 1/γ̇. Values of the dimensionless parameters used in the simulations are:
number of beads N = 40, distance �0/D = 1.02 between the consecutive bead centers at the elastic
equilibrium, aspect ratio r = (N − 1)�0/D + 1 ≈ 40. We assume that the dimensionless elastic resistance
ratio k= k̂/(πηdγ̇) is large, k = 1000, which leads to an almost constant fiber length. We perform
computations for more than 300 values of the dimensionless bending stiffness ratio

A = E/(64ηγ̇), (9)

mostly for 7 � A � 200.

4. Time-dependent orientational ordering

4.1. Initial conditions and early times
In the numerical simulations, the 3D dynamics of a single fiber are evaluated, in contrast to the previous 2D
analysis [41, 46]. Here we focus on short-time transient effects rather than studying the long-time approach
to attracting modes of the dynamics as in [41]. The fiber is initially straight and at elastic equilibrium. The
initial orientations are parameterized by the spherical angles Θ0 and Φ0 as shown in figure 2(a). The time
evolution is determined for the whole range of the angles 0 � Θ0 � π and 0 � Φ0 � π with a grid of 5◦.
Orientations (π +Φ0, π −Θ0) are equivalent to (Φ0, Θ0). Initially, in the experiments, fibers are straight
with different, approximately random, orientations, as illustrated in figure 2(b). The evolution of a dilute
suspension is observed in the xy (flow-vorticity) projection.

When exposed to the shear flow, bending of the fiber ends slowly develops, with a characteristic bending
time τ b that is typically long in comparison to the tumbling time (half-period of the fiber rotation) [41]. At
early times t � τ b, most of the fibers are almost straight and quickly orient close to the flow direction, as
illustrated in figure 3, after which bending occurs. In the next section, we will trace the fiber evolution for
longer times.
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Figure 2. Initially, fibers are straight. (a) The shear flow (7) is parallel to the x axis and has a gradient parallel to the z axis. In the
numerical simulations the initial orientation of a single fiber is given by the spherical angles Θ0 and Φ0. We determine the
three-dimensional evolution of the fiber shape for the whole range of Θ0 and Φ0. (b) In the experiments at a given time instant a
few fibers are seen in the xy projection, with initially random orientations, for A = 40, γ̇ = 750 s−1, and d = 1.5 mm.

Figure 3. Experiments and simulations illustrating that most of the initially straight fibers quickly orient close to the flow
direction and remain almost straight for a long time. (a) Snapshots (xy projections) from an experiment of a fiber with A ≈ 80,
γ̇=375 s−1, and d = 0.5 mm at the indicated times. (b) Snapshots (xy and xz projections) from numerical simulations of a fiber
with bending stiffness ratio A = 80, initially straight with Θ0 = 10◦ and Φ0 = 150◦. The time is normalized using the local shear
rate γ̇. Movies of the experiment and numerical simulation are in the supplementary MovieforFig3a and MovieforFig3b,
respectively (https://stacks.iop.org/NJP/24/013013/mmedia).

4.2. Longer times
In the numerical simulations, we observe that for longer times, the fiber regularly bends and straightens out
while rotating, with a certain characteristic tumbling time that can be interpreted as the dimensionless
half-period TJ/2 of an effective Jeffery orbit [36, 46], with

TJ ≈ 2πs, (10)

where s is a fiber ‘effective’ hydrodynamic aspect ratio (typically close to the geometrical value, N). For most
initial orientations studied in this work, the period TJ weakly depends on the bending stiffness ratio A, with
TJ = 180, 225, 252 for A = 10, 80, 160, respectively, as determined here from the periodic evolution of the
fiber curvature versus time. In figure 3 we illustrate that a typical bending time τ b is a large fraction of TJ;
τ b is larger than TJ/4 and smaller than TJ/2. Indeed, in figure 3 for time t � 70 it is hard to see much
bending at all—the bending time is larger than 70 while the Jeffery period is 225.

In experiments and numerical simulations we observe that for most of the 3D initial orientations
bending starts locally from the fiber ends, by analogy to previously reported experiments and numerical
simulations of fibers initially aligned with the flow [27, 29, 41]. We first focus on our numerical
simulations. To quantify how much the fibers are bent, the local curvature κj+1(t) is calculated as the
inverse of the radius of a circle circumscribed on the centers of three consecutive beads located at rj(t),
rj+1(t) and rj+2(t); the positions are normalized by the bead diameter 2a. The highest possible value of the
local curvature in this model is

√
3, which corresponds to all three beads touching each other. The local

curvature κj+1(t) at the (j + 1)th bead and average curvature κ̄(t) averaged along the entire length of the
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Figure 4. Time-dependence of the ensemble-averaged: (a) mean curvature 〈κ̄〉 and (b) orientational angle 〈Φ〉, based on the
numerical simulations for A = 10 (solid lines red online). Dotted black lines correspond to error bars of one standard deviation.

Figure 5. Snapshots from a single experiment where the images are in the flow-vorticity plane xy. The indicated times are
normalized by 1/γ̇. At some times, most of the fibers are almost straight and orientated close to the flow direction, see (a) and
(c). In between, see panel b, most of fibers are bent. Here A = 80 (γ̇=375 s−1 and d = 0.5 mm). See also the corresponding
supplementary MovieforFig5.

fiber at a given time t are defined by the equations,

κj+1(t) =
2
∣∣(rj(t) − rj+1(t)

)
×
(

rj+1(t) − rj+2(t)
)∣∣

|rj(t) − rj+1(t)‖rj+1(t) − rj+2(t)‖rj+2(t) − rj(t)| , κ̄(t) =
1

N − 2

N−2∑

j=1

κj+1(t). (11)

To study evolution of the fiber orientation, we calculate the fiber inertia tensor Î in its center-of-mass
frame,

Îαβ =

N∑

j=1

(δαβr′j
2 − r′jαr′jβ), (12)

where α = x, y, z,β = x, y, z and r′j = (r′jx, r′jy, r′jz) is the position of jth bead in the center-of-mass reference

frame. Then, we evaluate the eigenvalues I1, I2, I3 of Î, and the corresponding normalized eigenvectors
n1, n2, n3. Without loss of generality let I1 > I2 > I3. Then, the principal axis n3(t) is described by the
spherical angles Θ(t) and Φ(t), in analogy to Θ0 = Θ(0) and Φ0 = Φ(0) shown in figure 2(a).

To analyze the main features of the evolution of the fiber shape, we evaluate numerically the dynamics
for the ensemble of the initial orientations of straight fibers, within the full range of 0 � Θ0 � π and
0 � Φ0 < 2π, with a grid π/36 = 5◦ for both angles. For each case, we evaluate the ensemble-averaged,
time-dependent mean curvature 〈κ̄(t)〉 and angle 〈Φ(t)〉, defined by the following equations,

〈κ̄(t)〉 =

∑
p,q
κ̄(t|Θp,Φq) sin(Θp)

∑
p,q

sin(Θp)
, 〈Φ(t)〉 =

∑
p,q
Φ(t|Θp,Φq) sin(Θp)

∑
p,q

sin(Θp)
, (13)

where κ̄(t|Θp,Φq) is the average curvature at time t for a fiber that at time t = 0 was straight at the
orientation Θ0 = Θp, Φ0 = Φq, and Θp = p · 5◦, Φq = q · 5◦ with p = 0, . . . , 18 and q = 0, . . . , 35. The
results are shown in figure 4. At certain time intervals, 〈κ̄〉, 〈Φ〉 (and also 〈π −Θ〉) are close to zero. The
effect of temporary alignment is visible, where for a long time, fibers are almost straight and close to the
flow direction. Then, rapid bending takes place, and this pattern repeats periodically in time.
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Figure 6. Average curvature κ̄ of a fiber versus time t. In the simulations, A = 10 and the fiber is initially straight and oriented at
Θ0 = 80◦ and Φ0 = 170◦. At early times, there appears a narrow spike of a large amplitude 0.7 (transient mode), which we refer
to as compressional buckling. Shapes at the two consecutive maxima of κ̄ are indicated to illustrate the difference between the
compressional buckling and the local bending.

Figure 7. Initial orientation angles Θ0 and Φ0 that may lead to the compressional buckling (light color (yellow online)), and
other cases (dark color (green online)), for the numerical simulations with (a) A = 10, (b) A = 160.

In the experiments, it is observed in the flow-vorticity plane that at certain times, almost all of the fibers
are straight and with orientations close to the flow direction. Then, almost all fibers are bent, and such a
temporary configuration repeats in time, as illustrated in figure 5.

5. Compressional buckling

Some of the fibers that are initially straight and oriented so that they experience compressive stress from the
flow, after a short time buckle globally along the whole length, with a large average curvature; this response
can be predicted with the use of the elastica model in [13]. The compressional buckling happens only once,
as illustrated in figure 6. Later, the fibers straighten out in the flow-vorticity plane, and slowly develop local
bending at their ends, similarly as in the case of Θ0 = 90◦ described in [41]. Characteristic shapes of fibers
in the compressional buckling and local bending modes differ from each other, and the maximum of the
average curvature is much larger for the compressional buckling.

The compressional buckling can happen only for certain initial orientations Θ0 and Φ0 of the fiber,
indicated in figures 7(a) and (b) as the regions of the light color (yellow online). For A = 10 and A = 160,
the average curvature κ̄(t) of the compressionally buckled shapes reaches a maximum exceeding 0.05 for
short times t � 20, and we used this criterion to determine the range of the initial angles Θ0 and Φ0 where
the compressional buckling can take place. For Φ0 � 175◦ after times t > 20, the fibers are already out of
the compressional regime of the flow. Therefore, for the dark (green online) regions of the initial
orientation angles shown in figure 7, compressional buckling of a sufficiently large amplitude is not
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Figure 8. Snapshots of buckled shapes in (a) the experiments and (b) numerical simulations, both with A = 40, taken at the
indicated times in the xy projection. In the experiments γ̇=750 s−1 and d = 1.8 mm. In the simulations Φ0 = 170◦ and
Θ0 = 60◦. The corresponding movies are the supplementary MovieforFig8a and MovieforFig8b.

Figure 9. Snapshots of buckled shapes in (a) the experiments and (b) numerical simulations, both with A = 40, taken at the
indicated times in the xy projection. In the experiments, γ̇=750 s−1 and d = 1.45 mm. In the simulations, Φ0 = 170◦,
Θ0 = 80◦. The corresponding movies are the supplementary MovieforFig9a and MovieforFig9b.

observed. Also, for large Φ0, equal or very close to 180◦, the compressional buckling does not occur, which
is indicated as a thin dark (green online) vertical stripe in figure 7. This finding explains that compressional
buckling of moderately elastic fibers happens only once because such fibers straighten out again only while
approaching the orientation with Φ = 0. Figure 7 illustrates that for a larger value of the bending stiffness
A, the compressional buckling occurs for a smaller region of the initial orientations.

Compressional buckling is also observed in experiments. In the experiments, the fibers are initially near
the middle plane between the two walls due to the pre-shear, and are mostly in the xy plane. The z
projection of the fiber length is relatively small. Also, the buckling behavior is very rare in the experiments.
We estimate that the ratio of the fibers that buckle is of the order of 1%.

Qualitative comparisons of experiments and simulations for similar parameter ranges are shown in
figures 8 and 9. In figure 9, the influence of the compressional flow is stronger and leads to more curved
shapes than in figure 8. In the numerical simulations shown in figures 9(b), there is a very small (of the
order of 10−6) initial random perturbation εi of the position ri of every bead i in the straight fiber.

In figures 10 and 11 we perform more detailed analysis of the time-dependent xy projection of the fiber
shapes for the experiments and simulations shown in figures 8 and 9, respectively. We measure length Lee of
the xy projection of the end-to-end vector (as shown in figure 10(a)) of the buckling fiber as a function of
time. In figures 10(b)–(e) and 11(a)–(d) this length Lee is normalized by the length of the fiber in a static
fluid, L. We also measured the xy projection of the ‘width’ of the buckling fiber, δ, as illustrated in
figure 10(a). The width δ is normalized by the diameter D of the fiber, and plotted in figures 10 and 11.

9
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Figure 10. Compressional buckling projected on the xy plane for the fiber evolution from figure 8. Vertical lines indicate times of
snapshots in figure 8. The way to determine α, Lee and D are shown in a. Experiments are in (b) and (c) and simulations in (d)
and (e).

Figure 11. Compressional buckling projected on the xy plane for the fiber evolution from figure 9. Vertical lines indicate times of
snapshots in figure 9. Experiments are in (a) and (b) and simulations in (c) and (d).

Also, in the xy projection we determined the angle α of the fiber end-to-end vector to the flow direction, as
illustrated in figure 10(a). With time, the fiber rotates along an effective Jeffery orbit, and the angle α
decreases. The rapid change of α takes place when the fiber orientation is in the compressional regime of
the ambient flow. In this range, the buckling is observed as a sharp minimum of Lee and a sharp maximum
of δ.

Our numerical simulations indicate that the shapes of the fibers during the compressional buckling
significantly depend on the bending stiffness ratios A. The typical pattern of triggering higher modes of the
deformed shapes for decreasing values of the bending stiffness ratio A is illustrated in figure 12. The fiber
curvature grows while the fiber moves in the compressional region of the shear flow, and reaches a
maximum for the angle Φ typically a little larger than 90◦, as shown in the left panels of figure 12. (In
general, the beads are out of the plane of the figure and they can partially cover each other on the xy and xz
projections shown there.)

6. Differences between compressional buckling and local bending

In the numerical simulations we observe two competing scenarios: compressional buckling and local
bending. For a (moderate) fixed value of A, and a fixed, large enough value of the initial polar angle Θ0, a
compressional mode is observed in a certain range of the initial azimuthal angles Φ0. For larger values of
Φ0, very close to 180◦, the fiber has enough time to develop the local bending mode [41]. The main
differences between the modes are illustrated in figures 13(a)–(c), (d)–(f). In the compressional buckling
mode, the fiber deforms along the whole length; as the result, the principal axes of the fiber and of its
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Figure 12. Shape and curvature of a fiber in the compressional buckling mode significantly depend on the bending stiffness ratio
A, as shown in (a)–(e) for the numerical simulations with the indicated values of A and the same initial orientations, Θ0 = 80◦

and Φ0 = 170◦. Every row consists of three panels. The first panel depicts projection of the fiber shape on the planes xz and yz at
the time when the average curvature κ̄ takes the maximum value over t � 20. In the second panel, the curvature κi at different
beads i is shown at the same time. In the third panel, the evolution of κi(t) is presented using the color bar to specify its values.
Three horizontal lines are drawn at the angles Φ = 45◦, 90◦ and 135◦, respectively.

central part have almost the same orientations during the entire bending process. Moreover, positions i of
the maximum local curvature κi do not change with time. In contrast, the local bending originates from the
fiber ends and, with increasing time, the maximum local curvature moves toward the middle part of the
fiber, as visible in figure 13(f) and discussed previously in [27, 29]. During this process, orientations of the
principal axes of the whole fiber and of its central part differ from each other significantly, as shown in
figures 13(d) and (e). The above differences are visible also in figure 14, where typical evolutions of the fiber
shapes showing the compressional buckling and local bending modes are compared with each other.

For larger values of Φ0, the compressional buckling and local bending modes coexist, as illustrated in
figure 15, and their characteristic features can be identified. Even in the local bending evolution shown in
figures 13(d)–(f) and 14(b) a certain (small) influence of the compressional bucking mode can be expected.
The experimental and numerical results of this work indicate that for 3D dynamics of flexible fibers of a
moderate length and a small bending stiffness ratio in shear flow, the dominant physical mechanism of
bending is the local bending originating from the deformation of the fiber ends [41]. In contrast, the

11



New J. Phys. 24 (2022) 013013 A M Słowicka et al

Figure 13. Differences between (a)–(c) compressional buckling and (d)–(f) local bending modes in the numerical simulations
with A = 160, Θ0 = 90◦, and different initial azimuthal angles, (a)–(c) Φ0 = 168◦ and (d)–(f) to 172◦. The first panel in each
row shows a projection of the fiber shape on the shear plane xz at the time when the average curvature κ̄ is maximal. The
principal axes n3 of the whole fiber (blue) and of its central part (red) are shown. In the second panel of each row, the
corresponding azimuthal angles Φ1 and Φ2 of both n3 are plotted versus time. Black dashed vertical lines indicate the time of
maximum κ̄. In the third panel in each row, the evolution of the local curvature κi(t) of each bead i is presented using the color
bar to specify values of κi(t).

Figure 14. Sequence of subsequent fiber shapes in (a) compressional buckling and (b) local bending modes, determined
numerically for A = 160. The fiber is initially straight at Θ0 = 90◦ and Φ0 as indicated. The central part of fiber is shown in red
to emphasize the difference between (a) and (b). See also the corresponding supplementary MovieforFig14a and MovieforFig14b.

Figure 15. Competition between compressional buckling and local bending in the numerical simulation of a single fiber with
A = 10, Θ0 = 90◦ and Φ0 = 175◦. See also the corresponding supplementary MovieforFig15.

compressional buckling [13] is a transient effect limited to short times and a narrow class of initial
conditions.
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7. Conclusions

Short-time dynamics of initially straight fibers in shear flow have been studied numerically and
experimentally. We focused on fibers with the bending stiffness ratio A and the aspect ratio N large enough
to allow fibers, after bending or buckling, to straighten out at later times. The experimental technique
allowed the observation of fibers in the flow-vorticity plane. With this tool, some features of 3D dynamics
of fibers that move or deform out of the shear plane have been measured. In particular, time-dependent
ordering of the fiber orientations has been observed in experiments and simulations. The physical
mechanism of this effect is that flexible fibers follow effective Jeffery orbits and, therefore most of the time
remain almost straight and close to the flow-vorticity plane, with the angle Φ close to zero, as illustrated in
figure 4 for an ensemble of initial orientations studied numerically. Moreover, owing to the nature of the
Jeffery orbits (see appendix), for Φ ≈ 0 there are more fibers inclined at larger angles Θ to the vorticity
direction.

Different fiber bending patterns have been observed in experiments and simulations, depending on the
initial orientation of a straight fiber. For some initial orientations, fibers later undergo a strong compression
along the whole length, followed by a decompression, as shown in figures 8 and 9. We have called this
response the compressional buckling mode. For other initial orientations, this effect is not seen. The
physical mechanism of the compressional buckling is the same as for the elastica, as described for motion in
the shear plane by Becker and Shelley [13] for a small perturbation from a straight configuration. We have
observed that this mode is very rapid (it lasts only a small fraction of the Jeffery period), but it is
characterized by a significant deformation. These features are seen in figure 6 as a sharp peak of the
numerically computed mean fiber curvature. We have shown numerically and experimentally that the
compressional buckling happens only once at the very beginning of the evolution, after which it does not
reoccur. In the numerical simulations, this transient mode can be seen only for a limited range of larger
initial inclination angles Θ0 and Φ0, excluding Φ0 = 180◦ (and Φ0 slightly smaller than 180◦), as shown in
figure 7 as the region marked by the light color (yellow online). For larger values of the bending stiffness
ratio A there are fewer initial orientations that allow for development of the short-time compressional
buckling. It is worth noting that all the fibers that straighten out while tumbling reach the angle Φ = 0◦

(the same as Φ0 = 180◦). Therefore the compressional buckling is a transient effect, limited to times smaller
than one fourth of the effective Jeffery period.

It is important to note that the theoretical model takes into account the non-zero thickness of the fiber,
hydrodynamic interactions between all the fiber beads, and the coupling of the local velocity of each bead
with the rate-of-strain tensor of the ambient flow, as described in equation (8). As the result, the fiber
reaches Φ = 0 in a finite time, and then tumbles, in contrast to the elastica model, for which time to
approach Φ = 0 is infinite. Therefore our model allows us to determine that the buckling does not reappear
after reaching Φ = 0.

For smaller initial orientation angles Θ0 and Φ0, fibers for shorter times practically do not
deform—they rapidly reach Φ close to 0◦ while performing their Jeffery orbits. For the initial orientation
angles Φ0 � 180◦ the fibers bend locally by a different physical mechanism [41]: the fiber bending slowly
develops at the fiber ends and the maximum mean curvature κ̄ is smaller than in the compressional
buckling mode, as visible in the numerical simulations used to construct figure 6, which shows that the
local bending repeats in time periodically. These two mechanisms of bending compete with each other, and
often coexist, depending on the ratio of the characteristic timescales, e.g. as illustrated in figures 13–15.

Depending on the bending stiffness ratio A, the compressionally buckled mode has different but regular
sinusoidal-like shapes. Smaller A yields a larger number of bends along the fiber (the smaller is the
characteristic ‘wavelength’), as depicted in the numerical simulations in figure 12. The wavelength also
depends on the initial orientation angles and can increase with time.
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Figure 16. Time-dependent orientation (Θ,Φ) of the fiber principal axis for A = 40 and two initial orientations marked by red
stars. The times of the maximum average curvature κ̄ are indicated by brown dots. The arrow indicates the direction of time.
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Appendix. Time-dependent orientation of the fiber principal axis

Time-dependent orientation (Θ,Φ) of the fiber principal axis n3(t) follows an effective Jeffery orbit, as
illustrated by two examples in figure 16. Initially, the fiber is straight, with the angle Φ = 170◦. The angle
Φ(t) of the fiber principal axis systematically decreases with time. The compression of the ambient shear
flow acts until Φ(t) reaches 90◦, with the maximum at Φ = 135◦, It is interesting to observe numerically
that deformation of the fiber still increases with time even when the fiber rotates to angles Φ smaller than
135◦, and therefore to smaller compression of the ambient flow. As shown in figure 16, the maximum of the
fiber curvature takes place for an angle Φ smaller than 135◦ and only a bit larger than 90◦ where the
compression of the ambient flow vanishes.

This pattern is observed for all initial angles Θ0 > 0. Fibers out of the shear plane deform in both xz and
xy planes. However, for smaller Θ0, the fiber feels a weaker compression of the ambient flow, and therefore
the amplitude of its buckling decreases with the decrease of Θ0, as visible by comparing figures 8 and 9.
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in Poiseuille flow at low Reynolds number Soft Matter 12 7307–23
[23] Pawłowska S, Nakielski P, Pierini F, Piechocka I K, Zembrzycki K and Kowalewski T A 2017 Lateral migration of electrospun

hydrogel nanofilaments in an oscillatory flow PloS One 12 e0187815
[24] Perazzo A, Nunes J K, Guido S and Stone H A 2017 Flow-induced gelation of microfiber suspensions Proc. Natl Acad. Sci. USA

114 E8557–64
[25] Xue N, Nunes J and Stone H A 2022 Shear-induced migration of confined flexible fibers Soft Matter https://doi.org/10.1039/

d1sm01256h
[26] Kantsler V and Goldstein R E 2012 Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional

flows Phys. Rev. Lett. 108 038103
[27] Harasim M, Wunderlich B, Peleg O, Kröger M and Bausch A R 2013 Direct observation of the dynamics of semiflexible polymers

in shear flow Phys. Rev. Lett. 110 108302
[28] Kirchenbuechler I, Guu D, Kurniawan N A, Koenderink G H and Lettinga M P 2014 Direct visualization of flow-induced

conformational transitions of single actin filaments in entangled solutions Nat. Commun. 5 1–8
[29] Liu Y, Chakrabarti B, Saintillan D, Lindner A and Du Roure O 2018 Morphological transitions of elastic filaments in shear flow

Proc. Natl Acad. Sci. USA 115 9438–43
[30] Du Roure O, Lindner A, Nazockdast E N and Shelley M J 2019 Dynamics of flexible fibers in viscous flows and fluids Annu. Rev.

Fluid Mech. 51 539–72
[31] Witten T A and Diamant H 2020 A review of shaped colloidal particles in fluids: anisotropy and chirality Rep. Prog. Phys. 83

116601
[32] Kanchan M and Maniyeri R 2019 Numerical analysis of the buckling and recuperation dynamics of flexible filament using an

immersed boundary framework Int. J. Heat Fluid Flow 77 256–77
[33] Hall-Mcnair A L, Montenegro-Johnson T D, Gadêlha H, Smith D J and Gallagher M T 2019 Efficient implementation of

elastohydrodynamics via integral operators Phys. Rev. Fluids 4 1–24
[34] LaGrone J, Cortez R, Yan W and Fauci L 2019 Complex dynamics of long, flexible fibers in shear J. Non-Newton. Fluid Mech. 269

73–81
[35] Chakrabarti B, Liu Y, LaGrone J, Cortez R, Fauci L, du Roure O, Saintillan D and Lindner A 2020 Flexible filaments buckle into

helicoidal shapes in strong compressional flows Nat. Phys. 16 689–94
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