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A B S T R A C T

In this paper, we propose a novel deep learning method for joint classification and segmentation of breast
masses based on radio-frequency (RF) ultrasound (US) data. In comparison to commonly used classification and
segmentation techniques, utilizing B-mode US images, we train the network with RF data (data before envelope
detection and dynamic compression), which are considered to include more information on tissue’s physical
properties than standard B-mode US images. Our multi-task network, based on the Y-Net architecture, can
effectively process large matrices of RF data by mixing 1D and 2D convolutional filters. We use data collected
from 273 breast masses to compare the performance of networks trained with RF data and US images. The
multi-task model developed based on the RF data achieved good classification performance, with area under
the receiver operating characteristic curve (AUC) of 0.90. The network based on the US images achieved AUC
of 0.87. In the case of the segmentation, we obtained mean Dice scores of 0.64 and 0.60 for the approaches
utilizing US images and RF data, respectively. Moreover, the interpretability of the networks was studied using
class activation mapping technique and by filter weights visualizations.
1. Introduction

Breast cancer is the most frequent cancer among women world-
wide [1]. Ultrasound (US) imaging is commonly used by diagnosticians
for breast mass characterization. US imaging is inexpensive and ac-
cessible, however, analysis of B-mode US images is time-consuming
and associated with high inter-rater reliability due to large variations
in breast mass US image characteristics. Various computer aided di-
agnosis systems have been proposed to aid the radiologists in breast
mass diagnosis, which is commonly related to the problems of breast
mass segmentation and classification [2]. The aim of the segmentation
models is to help accurately outline breast mass regions, while the
classification methods usually aid with the differentiation of malignant
and benign breast masses.

Methods for breast mass diagnosis are usually developed using B-
mode US images. In comparison to US images, radio-frequency (RF)
US data (data before envelope detection and dynamic compression)
include information related to tissue physical properties coded in am-
plitude and phase of backscattered RF signals [3]. While B-mode US
images can be used to localize tissues and assess relative echogenicity,
the information on specific tissue physical properties is only partially
present in US images due to lossy compression necessary to reconstruct
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US images and make them visible to human eye. Quantitative US (QUS)
methods have been proposed to utilize RF data to extract parameters
related to various physical properties of tissues, such as the backscat-
tering or attenuation coefficients [4]. Stochastic modeling of RF data
has been applied to determine local spatial distribution of tissue micro-
structures [5]. These methods, for example based on the Nakagami and
Homodyned K distributions, have been successfully applied for breast
mass classification in several papers [6–11].

Nowadays, deep learning methods based on convolutional neural
networks (CNNs) are gaining momentum in breast mass segmentation
and classification (see the Related Works section). In comparison to
standard approaches to image recognition, requiring feature engineer-
ing, deep learning algorithms can automatically process input data to
extract efficient features for recognition. However, the usefulness of
machine learning methods for the processing of RF data has not yet
been fully understood. QUS techniques, originating from US physics,
have been devised based on specific tissue models [3]. In practice,
researchers have to estimate many different QUS parameters and de-
termine the useful ones for the investigated tissue characterization
problem. Data driven machine learning models have the possibility to
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directly extract information from RF signals and automatically provide
useful features for tissue characterization. Uniyal et al. proposed a
machine learning approach to analysis of small 2D patches of RF data
manually extracted from breast mass area [12]. The authors extracted
various handcrafted features, like the Higuchi fractal dimension, and
used them to classify breast masses. Jarosik et al. proposed to uti-
lize CNNs to automatically process 2D patches of RF data manually
extracted from breast masses to differentiate malignant and benign
masses [13]. Although not directly related to breast mass characteri-
zation, Han et al. used US RF data to develop a deep learning model
for liver fat level assessment in patients with non-alcoholic fatty liver
disease [14]. The authors utilized 1D RF signals manually extracted
from liver area to develop 1D CNNs for the investigated tasks. Sanabria
et al. used small patches of 2D RF data manually extracted from human
liver tissue to assess liver fat [15]. Nguyen et al. developed 1D CNNs
based on RF data collected from rabbits to quantify liver fat [16]. Inter-
estingly, the authors presented that the RF based network outperformed
QUS techniques. Moreover, RF data have been utilized for displacement
estimation in quasi-static and dynamic US elastography [17–20].

The main aim of this work is to utilize RF data to develop a deep
learning model for breast mass diagnosis. In comparison to the previous
approaches, utilizing small patches of RF data, we propose a method
that can automatically process large 2D volumes of RF data. Moreover,
the proposed model can jointly perform breast mass segmentation and
classification. In literature, these two tasks are commonly investigated
separately, but they are in fact closely connected. Gomez-Flores et al.
presented in a review paper that the shape descriptors are the better
performing features for breast mass classification [21]. This suggests
that a deep learning model developed for the automatic breast mass
segmentation should be also able to provide shape features for dif-
ferentiation of malignant and benign masses. In this work, we use
Y-Nets, a modification of the popular U-Net segmentation CNN, to
perform joint segmentation and classification of breast masses [22,23].
We develop the multi-task model based on RF data, and compare it
with the model trained using US images. Moreover, previous papers
utilizing RF data for deep learning based tissue characterization did
not investigate the problem of model interpretability. Here, we also
present several insights suggesting how the RF based deep learning
models conduct decisions.

2. Related works

Methods for the joint segmentation and classification have been
utilized in literature, for example for microscopy images and liver
US images [23,24]. Nevertheless, to the best of our knowledge, this
is the first paper addressing the problem of joint segmentation and
classification of breast masses with deep learning methods based on US
RF data. Below we describe the previous contributions related to the
problems of mass segmentation and classification based on US images.

2.1. Classification networks

Several deep learning methods have been proposed for breast mass
classification, commonly based on transfer learning with networks pre-
trained on the ImageNet dataset [25]. In this case, pre-trained networks
such as the VGG19 or InceptionV2 were used to either perform fine-
tuning or extract features for classification [26–31]. Qi et al. proposed
a region enhance mechanism to help better localize masses in US
images and improve classification accuracy [32]. Moon et al. developed
an ensemble of neural networks for mass classification [33]. Zhang
et al. proposed a deep learning based approach to mass classification
utilization both US images and Breast Imaging-Reporting and Data
System (BI-RADS) categories [34]. Cao et al. investigated negative
effects of noisy labels on deep learning based mass classifiers [35].
Similarly, Byra et al. investigated the robustness of deep learning based
mass classifiers to adversarial attacks [36].
2

2.2. Segmentation networks

Various deep learning models, usually based on fully convolutional
networks (FCN), have been devised for breast mass segmentation. Yap
et al. proposed a FCN model for mass segmentation in US images [37].
To improve the performance, the authors utilized weights from VGG
network trained on the ImageNet dataset. Moreover, Yap et al. also
investigated the usefulness of different deep learning models for breast
mass detection [38,39] Xu et al. compared the performance of FCN,
U-Net, and dilated residual network in breast mass classification [40].
Similarly, Gomez-Flores et al. investigated the usefulness of several
deep learning models, including U-Net and FCNs, for breast mass
segmentation. Byra et al. proposed a selective kernel U-Net CNN, a
modified version of the U-Net, to take into account large variability
in mass sizes in automatic segmentation [41]. Han et al. proposed a
semi-supervised breast mass segmentation model [42]. The author used
generative adversarial networks to improve performance of FCNs and
improve segmentation performance.

3. Materials and methods

3.1. Ultrasound data

This retrospective study was approved by the Institutional Review
Board. RF data were collected by an experienced radiologist using Ul-
trasonix research US scanner (Ultrasonix Medical Corporation, Canada)
equipped with L14-5/38 linear probe. Standard beamforming was ap-
plied to acquire US data, with the focal point set on breast mass
area, We collected 546 RF data matrices from 273 breast masses (one
mass per scan, two perpendicular scans per mass). 124 masses were
malignant and 149 masses were benign. All masses were assessed
either by biopsy or a two year follow up in the case of the benign
masses. Dimensions of each RF data matrix were equal to 2048 × 256
(42 mm × 38 mm), corresponding to 256 RF signal scan lines sampled
at 40 MHz. Imaging pulse center frequency was equal to around 6 MHz.

Breast mass B-mode US images were reconstructed based on RF
data. First, RF data amplitude was computed using Hilbert trans-
form. Second, amplitude samples were logarithmically compressed and
mapped to gray scale US image pixel intensities (8 bits) using typical
threshold level of 50 dB. To generate US images, the compressed and
thresholded data, size of 2048 × 256, were resized to 256 × 256 using
bi-cubic interpolation method, and processed with a 3 × 3 median
filter. Fig. 1 presents several US images of malignant and benign breast
masses. US image reconstruction scheme is depicted in Fig. 2. In the
next step, the reconstructed US images were used by the radiologist to
manually outline regions of interest (ROIs) presenting breast masses.

3.2. Deep learning methods

Architecture of the proposed Y-Net is illustrated in Fig. 3. U-Net
segmentation CNN, consisting of contraction (encoder) and expansion
(decoder) paths, served as the backbone for the multi-task network. In
a standard U-Net, input image is first compressed with convolutional
layers to a compact representation (central block), and used to generate
segmentation mask with transposed and regular convolutional layers.
Additionally, skip connections are used to concatenate feature maps
from the contraction and expansion blocks to improve the training. In
the case of the Y-Net architecture, U-Net is equipped with an additional
classification branch, utilizing features from the central block of the U-
Net [23]. In our case, we also decided to include features extracted from
the expansion path. The rationale for this was that these features should
include information related to breast mass shape, presumably useful for
the classification. Moreover, this way we also utilized features from the
contraction path propagated through the skip connections. To extract
features for classification, global average pooling was applied. Next, the
features were concatenated and a fully connected layer with a sigmoid



Ultrasonics 121 (2022) 106682M. Byra et al.
Fig. 1. US images presenting malignant and benign breast masses (red arrows).

Fig. 2. General scheme presenting reconstruction of an ultrasound image scan line
based on radio-frequency signal.

activation function was used to calculate a posteriori probability related
breast mass malignancy. Each convolutional block (CB) of the Y-Net
included two sub-blocks, each consisting of a 3 × 3 convolutional filters,
batch-normalization layer and rectified linear unit (ReLU) activation
function. The first CB included 16 convolutional filters, the number of
filters was doubled with every block to the maximal number of 256
filters in the central block. For the blocks of the expansion path, the
number of filters were consequently divided by two with each CB.

In this work, we developed two Y-Nets. Input and output dimensions
of the first network were equal to 256 × 256, and this model was
trained using US images, manual segmentations and malignant/benign
labels. The second network was trained based on RF data. However,
to be able to process 2048 × 256 RF data matrices, we additionally
equipped the network with a STEM layer, which aim was to down-
sample RF data in longitudinal direction with 1D convolutional filters,
see Fig. 3. The first block of the STEM included 32 convolutional
filters (stride parameter equal to 2, size of 48 × 1 corresponding to
length of around 1 mm) followed by a batch-normalization layer, ReLU
function and 2 × 1 max-pooling layer. The second block included 32
convolutional filters (stride parameter set to 1, size of 24 × 1) followed
by a batch-normalization layer, ReLU function and 2 × 1 max-pooling
layer. The output of the STEM block, size of 256 × 256 × 32 was next
processed by with the blocks corresponding to the Y-Net contraction
path.
3

3.3. Training and evaluation

The dataset of 273 breast masses was randomly divided into train-
ing, validation and test sets with a 150/41/82 split. Horizontal flipping
was applied to generate more data for training. The ratio of malig-
nant and benign masses was maintained for each set. The Y-Net was
trained to jointly minimize segmentation and classification loss, given
as follows:

𝐽 (𝐴,𝑀, 𝑝, 𝑐) = 𝐽𝐷𝑖𝑐𝑒(𝐴,𝑀) + 𝛼𝐽𝑐𝑙𝑎𝑠(𝑝, 𝑐), (1)

where 𝐴, 𝑀 , 𝑝, 𝑐 are the automatic segmentation, manual segmen-
tation, probability score (Y-Net’s classification branch) and reference
label (malignant/benign). 𝐽𝑐𝑙𝑎𝑠 stands for the standard binary cross-
entropy loss, 𝛼 is the weighting factor and 𝐽𝐷𝑖𝑐𝑒 is the Dice score based
loss function defined in the following way:

𝐽𝐷𝑖𝑐𝑒(𝐴,𝑀) = 1 − Dice(𝐴,𝑀), (2)

where Dice(𝐴,𝑀) indicates the soft Dice score [43,44]. Both networks
were trained using Adam optimization method to minimize the loss
given by Eq. (1) [45]. Optimal learning rates were selected based on
the validation set. The weighting factor 𝛼 was set to 0.5, as deter-
mined based on the validation set. To address the class imbalance,
we additionally weighted the binary cross-entropy loss with weights
inversely proportional to class frequencies in the training set. Batch
size was equal to 12. The learning rate was exponentially decreased
every 4 epochs by a factor of 0.9 if no improvement was observed on
the validation set, and the training was stopped if no improvement
in respect to the loss was observed on the validation set after 15
epochs. Training was repeated five times for each network, and the
better-performing model on the validation set was selected for further
evaluation. Segmentations calculated for the test set were additionally
processed. First, morphological operators were applied to fill the holes
in binary ROIs. Second, the largest ROI was selected as the candidate
for the mass region.

We used standard metrics to evaluate performance on the test set. In
the case of the classification task, we calculated the receiver operating
characteristic curve (ROC) and the area under the ROC curve (AUC).
Accuracy, sensitivity and specificity values were calculated based on
the point on the ROC curve closest to curve upper left corner [46].
DeLong test was applied to compare AUCs obtained for the models
trained with RF data and US images [47]. In the case of the seg-
mentation task, we calculated the Dice scores, pixel-level accuracy
and detection rate as the ratio of correctly detected breast masses.
Breast mass was considered correctly detected if the centroid of the
automatic ROI was within the manual ROI. Additionally, we used the
metric proposed by Yap et al. and calculated mean Dice score for the
cases that obtained Dice score above 0.5 (Dice > 0.5) [38]. Standard
deviations of all employed metrics were calculated with the bootstrap
technique. Calculations were performed in Matlab (Mathworks, USA)
and in Python using TensorFlow [48]. The networks were trained on a
computer equipped with a GeForce RTX 2080 Ti graphics card.

3.4. Interpretability

To better understand how the proposed network conducts decisions,
we performed two experiments. First, following the training, we visu-
alized the weights of the first convolutional filters of the STEM, which
were directly used to process RF data. We applied the Fourier transform
to calculate the mean frequency of each convolutional filter. Second, we
generated class activation maps (CAMs) based on feature maps utilized
by the Y-Net classification branch [49,50]. We qualitatively analyzed
the maps, examined what regions were highlighted by the technique,
and also compared CAMs generated for the RF data and US image
based Y-Nets. Feature maps extracted from each block of the Y-Net (see
Fig. 3) were resized to match US image dimension, and weighted using

classification layer weights to yield the activation maps.
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Fig. 3. Architecture of the Y-Net convolutional neural network used for joint classification and segmentation of breast masses. In our study, we compared performance of Y-Nets
trained using two different ultrasound data types: ultrasound images and radio-frequency data. The only difference between the networks was that the STEM layer was used in
the case of the RF data to perform down-sampling in the longitudinal direction.
Fig. 4. Receiver operating characteristic (ROC) curves presenting good performance
of the developed breast mass classification methods. The areas under the ROC curves
were equal to 0.874 and 0.901 for the networks trained using US images and RF data,
respectively.

4. Results

4.1. Classification

Classification performance is presented in Table 1. Generally, we
obtained good performance for both deep learning methods. Network
trained with RF data achieved higher AUC value, 0.901, than the model
utilizing reconstructed US images, AUC of 0.874. However, while the
AUC value was higher for RF data based network, DeLong test showed
that there was no statistical difference between the models (𝑝-value
>0.05). ROC curves calculated for both methods are depicted in Fig. 4.

4.2. Segmentation

Table 2 presents segmentation scores obtained for each network.
The model trained with US images generally achieved better results,
Dice score of 0.644, than the RF data based model, Dice score of 0.601.
Similarly, the US image based model achieved higher detection rate
of breast masses. However, when it comes to the correctly detected
breast masses, the performance of both models was similar, which
is illustrated by approximately the same values of the median Dice
scores and Dice > 0.5 metric. Moreover, although the detection rates
4

were higher for the malignant masses, we found that the automatic
segmentation of the malignant masses was generally more difficult for
the networks, which is depicted by lower median Dice scores in Table 2.

Representative segmentations obtained for each network are pre-
sented in Fig. 5. We found that automatic segmentations were usually
more smooth than the reference ROIs prepared by the radiologist. In
contrary, Fig. 6 presents cases for which the networks failed to provide
good segmentations, for example due to the presence of shadowing
artifacts.

4.3. Interpretability

Weights of several 1D filters from the first convolutional layer of the
STEM block are depicted in Fig. 7. To process RF signals, the network
developed filters presenting different oscillating patterns. Additional
analysis, Fig. 8, showed that the average frequencies of these filters
were close to the center frequency of the imaging pulse, equal to 6
MHz. This result suggests that the network learned to decompose RF
signals in the frequency domain to process RF data. Fig. 9 presents
CAMs obtained for test cases classified with high confidence, a posteriori
probability of malignancy above 0.8 and below 0.2 for the malignant
and benign masses, respectively. We found that for these examples the
networks worked in a similar way, both highlighting approximately
the same image areas. For the malignant masses, the region of strong
positive activation overlapped with the breast mass area and its sur-
roundings. For the benign cases, the networks similarly highlighted
mass area in CAMs, but in these cases the positive activation was lower
and accompanied by higher negative activation.

5. Discussion

We presented that US RF data can be used for the joint classification
and segmentation of breast masses. In comparison to the previous
papers utilizing RF data and machine learning methods for mass classi-
fication, our approach could automatically process large volumes of RF
data to yield decisions. We equipped the Y-Net with a STEM layer that
effectively down-sampled RF data with 1D convolutional filters. In our
study, the RF data based network provided similar AUC score, 0.901,
to the B-mode US image based model, 0.874. Due to the differences in
approaches and datasets, it is difficult to directly compare this result to
those from the previous papers on machine learning models utilizing RF
data. Method proposed by Uniyal et al. utilized small 2D patches of RF
data extracted from mass area to calculate features and train support
vector machine classifiers [12]. The study was performed based on a
set of temporal sequences of RF data collected from 22 subjects with
the same research US scanner as in the case of our work. The better
performing approach presented by the authors achieved AUC value of
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Fig. 5. Representative segmentation results (Dice score around test set median) obtained with the networks trained using US images and RF data.
Table 1
Breast mass classification performance scores (plus standard deviation) achieved by the Y-Net on test US images and RF data.

Training data type AUC Accuracy Sensitivity Specificity

US images 0.874 (±0.034) 0.865 (±0.033) 0.820 (±0.043) 0.906 (±0.042)
RF data 0.901 (±0.027) 0.829 (±0.029) 0.820 (±0.047) 0.837 (±0.045)
Table 2
Breast mass segmentation performance scores (plus median and standard deviation) achieved by the Y-Net on test US images and RF data.

Training data type Mass type Dice Dice > 0.5 Accuracy Detection rate

US images
Benign 0.660 (0.786 ± 0.300) 0.795 (0.818 ± 0.114) 0.950 (0.962 ± 0.040) 0.791
Malignant 0.626 (0.705 ± 0.263) 0.746 (0.758 ± 0.115) 0.901 (0.914 ± 0.074) 0.846
All 0.644 (0.747 ± 0.283) 0.772 (0.795 ± 0.117) 0.927 (0.947 ± 0.064) 0.817

RF data
Benign 0.602 (0.805 ± 0.354) 0.819 (0.838 ± 0.102) 0.964 (0.979 ± 0.048) 0.721
Malignant 0.599 (0.679 ± 0.277) 0.748 (0.755 ± 0.109) 0.920 (0.939 ± 0.068) 0.846
All 0.601 (0.746 ± 0.319) 0.785 (0.812 ± 0.111) 0.943 (0.967 ± 0.062) 0.780
0.82. In the previous paper from our group, Jarosik et al. built on the
method proposed by Uniyal et al. and used convolutional networks to
process small 2D patches of RF data and classify breast masses [13].
The networks were developed using the OASBUD, a publicly available
subset of our dataset, including RF data from 100 subjects [51]. The
better performing model achieved AUC value of 0.772. Therefore, the
model presented in this paper achieved better performance than the
previous methods, but was also developed using a larger set of RF data.
5

In our study we compared the performance of RF data and US
images based models. However, detailed comparisons between differ-
ent classification and segmentation methods based on US images was
beyond the scope of this work, especially given the small volume
of our dataset. Nevertheless, we can compare the results presented
in previous papers on US images based models with ours. Several
deep learning based approaches have been proposed for breast mass
classification in US images. Authors utilized different transfer learning
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Fig. 6. Test set examples presenting poor segmentation performance. In the case of the first malignant mass, the networks presumably failed to segment the mass due to its large
area and shallow position. In the case of the second mass, the network trained using ultrasound images over segmented the mass due to the shadowing artifact. Ultrasound images
of the benign masses present cases where the networks missed the masses and segmented deeper dark areas instead.
Fig. 7. Weights of the 1D convolutional filters (48 × 1) from the first layer of the
network trained to process RF data. Filters present different oscillating patterns.
6

Fig. 8. Distribution of mean frequencies of the 1D convolutional filters (48 × 1) from
the first layer of the network trained to process RF data. Mode of the distribution
approximately matched the center frequency of the imaging pulse, equal to around 6
MHz.
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Fig. 9. Class activation maps (CAMs) obtained for the cases classified with high confidence by both networks. In this case, the a posteriori probability of malignancy was above
0.8 and below 0.2 for the malignant and benign masses, respectively. CAM generated for both networks and malignant masses presented strong positive activation (red color) in
the mass areas. For the benign masses, the mass regions were occupied by lower positive activation combined with negative activation (blue color).
strategies to develop deep learning models, and commonly achieved
good performance with AUC values above 0.85. For example, Han
et al. developed a deep learning network based on a set of 7408 US
images and achieved high AUC value of 0.96 [27]. Qi et al. trained and
evaluated a network using a set of over 8145 US images and achieved
high AUC value of 0.98 [32]. Additionally, CAMs calculated by the
authors presented that the network highlighted mass areas to conduct
classification decisions. Transfer learning techniques were investigated
in several studies to devise deep models for breast mass classification.
Antropova et al. used features extracted from pre-trained networks to
train support vector machine classifiers [26]. The authors achieved
AUC value of 0.9, based on a set of 2393 US images. In our previous
work, we developed a deep transfer model based on a set of 882 US
images and evaluated in on US images reconstructed using RF data
from the OASBUD, the model achieved AUC value of 0.881 [29]. The
network proposed in our study achieved AUC value of 0.874, which is
a similar result. Nevertheless, we obtained a much lower score than the
deep models proposed in previous studies, where much larger datasets
of US images were used for training [26,27,32].

As far as we know, we used the RF data for the first time to address
the problem of mass segmentation. Automatic segmentations calculated
7

by the RF based network were compared with the manual segmenta-
tions prepared based on US images. Generally, Y-Nets achieved good
segmentation scores, with the mean Dice scores of 0.64 and 0.60 for
the US image based network and the RF data based model, respectively.
While the US image based model achieved higher detection rate, the
performance of the networks in respect to median Dice scores was
similar and equal to around 0.746. However, while the biopsy served
as the reference for the classification, segmentation was assessed based
on manual segmentations provided by a single radiologist. Moreover,
since the RF data cannot be used directly to outline breast masses,
the manual segmentations were prepared based on US images, which
could favor the US image based network. This issue raises a question
how to assess the segmentations models trained with data that require
processing to be visualized. Since there are no RF based deep learning
models for the segmentation, we can only compare the performance of
the US images model with the previous studies. Byra et al. developed
a modified U-Net model and evaluated it on several publicly available
datasets, including the US images from OASBUD [41]. Segmentation
model trained without transfer learning on a set of 632 breast mass
US images achieved median Dice score of 0.783 and detection rate of
0.78, performance similar to the reported for our method. However,
due to the additional fine-tuning with OASBUD US images, the authors
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achieved median Dice score and detection rate of 0.837 and 0.860,
respectively. When it comes to the segmentation models based on U-
Net, as the method in our paper, the following results were obtained
in previous papers. Yap et al. developed a U-Net breast mass detection
model based on two datasets and reported true positive rate of 0.87
(we averaged the results for both datasets). In another paper, Yap et al.
utilized U-Net for breast mass segmentation and achieved mean Dice
scores of 0.763 and 0.548 in the case of the malignant and benign
masses [38]. Gomez-Flores et al. investigated the usefulness of several
pre-trained CNNs for breast mass segmentation [52]. The U-Net model
developed by the authors on a set of over 3000 US images achieved
median intersection over union score of 0.804, translating to high Dice
score of around 0.891.

To the best of our knowledge, there are no studies addressing
the problem of the interpretability of deep learning models trained
based on RF data. In the past, neural networks were commonly purely
perceived as ‘‘black-box’’ models, but in the last few years various
methods have been proposed to help understand how the neural net-
works work [53,54]. The results presented in our study show that
the first block of the RF based Y-Net utilized convolutional filters
presenting different oscillating patterns. Additional analysis revealed
that the mean frequencies of the filters matched the frequency band
of the imaging pulse of our research scanner. However, it remains to
be investigated whether the filters extracted information from RF data
that could be related to specific physical properties of tissues. Another
visualization tool we used was the CAM method, which highlighted
areas in input data important for the classification decision. We found
that both deep learning models provided similar activation maps when
it comes to cases classified with high confidence. This result suggests
that the network conducts decisions based on characteristics of RF data
extracted from breast mass region and its surroundings.

There are several issues with our study. First of all, the results
presented in our study were obtained based on a relatively small set
of RF data. The main issue with the RF data is that they are difficult
to acquire. Standard US images can be collected as a part of routine
clinical protocols, but the acquisition of RF data requires a research
US scanner. Moreover, RF data, unlike US images, are not stored in
hospital databases as a part of patient records. Therefore, large sets
of RF data are difficult to assemble. In our study, the difference in
performance between the RF data and the US image based models
was small and insignificant statistically, suggesting that the US images
can be efficiently used for the development of deep learning models
when the RF data are not accessible. Presumably, the process of the B-
mode US image reconstruction from the RF data did not remove the
information required for the efficient breast mass diagnosis. Second
issue is related to the robustness of the RF based network. Generally,
QUS methods are considered to be more robust than the US image
based methods, which can only provide approximate estimates of tis-
sue physical properties, such as backscattering or attenuation. QUS
methods may be used to assess physical properties for a large range
of imaging frequencies. However, presented weights of the filters from
the first convolutional block of the RF based network suggest that
our approach may not be as robust as the QUS techniques. Since the
mean frequencies of the filters matched the frequency band of the
imaging pulse, modification of the imaging pulse frequency could result
in extraction of worse performing features by the first convolutional
filters and consequently undermine the processing of the data in deeper
layers leading to worse classification and segmentation. This issue,
however, remains to be studied. Third issue is that we did not assess
the activation maps in a quantitative way. Ideally, a radiologist should
review the CAMs and confront them with the established medical
knowledge on characteristic US image features related to malignant
and benign breast masses. For example, it would be interesting to take
into account features listed in the Breast Imaging Reporting and Data
System (BI-RADS) lexicon. This would provide more insight into the
8

decision process conducted by the deep learning models. Classification
decisions provided by networks, but supported by chaotic and noisy
activation maps, should probably be interpreted with care. Our results
on model interpretability presented in this work should be considered
as preliminary.

Our future work will benefit from the further acquisition of RF data.
We plan to investigate the usefulness of other US data types for the
development of deep models. In this work, we compared RF data and
US images based models, but it would be also feasible to include maps
of QUS parameters or RF data spectrograms. The main aim of our work
was to present the feasibility of using RF data for the deep learning
based breast mass classification and segmentation. We did not focus
on the engineering and evaluation of different deep learning models
for these tasks. Our Y-Net model was based on the U-Net architecture,
but several improvements of the U-Net have been proposed recently,
such as the U-Net++ or attention-gated U-Net, which might be worth
studying [55,56]. Moreover, in this work we trained the networks from
scratch, but it would be also interesting to investigate the usefulness
of various pre-trained models for the RF data processing [18]. For
example, we could pre-train a network with computer vision data or
simulated US data, and subsequently adjust it to process breast mass
RF data.

6. Conclusions

In this work, we proposed a deep learning based approach for
joint classification and segmentation of breast masses in US imaging.
The proposed method utilized RF data to effectively address these
two challenging tasks. Our results indicated that the RF data based
network provided similar performance to the model based on the B-
mode US images. We provided several interesting insights about the
interpretability of the investigated networks. The methods proposed
in this study, when fully developed, have the potential to help the
radiologists with breast mass characterization in US.
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