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A B S T R A C T

This work presents a novel scheme to couple the Discrete Element Method (DEM) and the Boundary Element
Method (BEM) for the multi-scale modelling in the time domain. The DEM can model discontinuous material
at micro scale very well, but it cannot represent infinite domains. Hence, coupling with the BEM is proposed.
A formulation employing the DEM and BEM in different subdomains of the same body is presented. There
is no overlap between the sub-domains, and the system of equations is derived based on strong equilibrium
and compatibility conditions at the interface. The proposed coupling scheme is based on monolithic time
integration. The conducted numerical experiments of one-dimensional wave propagation show excellent
agreement with the analytical solution. Some spurious wave reflections are observed at the interface, but
their effect is quantified and deemed not critical for infinite domains, which are of main interest. Even though
the applications for one-dimensional wave propagation are of limited practical engineering interest, this work
represents a significant theoretical breakthrough. This paper establishes a reference for future coupling schemes
for two- and three-dimensional multi-scale analysis.
1. Introduction

The numerical modelling of wave propagation is of great prac-
tical engineering interest. It can be applied to predict the dynamic
behaviour of elastic bodies [1], analyse damage detection and deter-
mine the elastic properties of the materials [2]. Several continuous
and discontinuous based numerical methods are available to solve
such problems. While discontinuous methods have the capabilities to
represent a model on the micro-scale, continuous methods are more
suitable to capture the macroscopic behaviour. Among the methods
that treat the domain as a continuous media, it is worth mentioning
the Finite Difference Method (FDM), the Finite Element Method (FEM),
and the BEM, whereas the main method that models the domain
discontinuously is the DEM [3].

The coupling between the DEM and a continuous method allows
for multi-scale modelling, employing various material models at dif-
ferent scales in different parts of the same domain. This coupling also
improves the computational efficiency of the DEM, which is critical to
real-life problems [4–6]. DEM is a suitable tool for modelling geometric
and physical non-linearities [7–11]. The FEM is the most common
continuous method used for multi-scale modelling. One of the first
attempts in that direction seems to be the work of Oñate and Rojek
[12], who defined a contact model between the Discrete Element (DE)
particle and the Finite Element (FE) edge. Since then, much work
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has been developed on the coupling of DEM and FEM. It is worth
mentioning the work by Azevedo and Lemos [13], who coupled the
two methods using an interface coupling approach. However, Rojek
and Oñate [14] realised that the interface approach produces spurious
wave reflection at the interface and, consequently, proposed a coupling
method, extending the work of Xiao and Belytschko [15], with an
overlapping region also called bridging domain.

A large number of DEM-FEM coupling techniques are presented in
the scientific literature. Rousseau et al. [5] used a bridging domain
approach to study impact analysis on concrete structures. Elmekati and
Shamy [16] presented a staggered interface coupling using different
time steps to model geotechnical systems, such as piles installed in
granular soil. Li and Wan [17] used the bridging scale method to couple
the DEM with a Cosserat continuum modelled by the FEM. Wellmann
and Wriggers [18] coupled the DEM with the FEM using an elasto-
plastic constitutive model whose parameters are determined from the
particles via homogenisation. Dang and Meguid [19] used coupled
DEM-FEM to model quasi-static nonlinear soil–structure interaction
problems. Xu and Zang [20] proposed a methodology to couple the
rotations of DE particles with the FEM and applied it to modelling the
brittle fracture of laminated glass. Tu et al. [21] proposed a generalised
bridging domain method and showed that several overlapping coupling
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Table 1
Coupling methods for DEM and continuous methods.
Source: Modified after Tu et al. [22].
Method Derivation of governing

equations
Width of the coupling
domain

Compatibility condition Avoiding spurious
reflections

Bridging scale
decomposition method
[17,25]

Energy-based Finite Weak and strong
mixed, mutually
prescribed

Yes

Bridging domain
method
[5,14,15,18,26,27]

Energy-based Finite Weak, mutually
prescribed

Yes

Edge-to-edge coupling
method [13,16,19,20]

Energy-based or
force-based

Zero Weak or strong,
mutually prescribed

No

Separate domain
coupling method [21]

Force-based Finite Weak, separately
prescribed

Yes

Separate edge coupling
method [21,22]

Force-based Finite Weak, separately
prescribed

Yes
techniques are particular cases of that general formulation. Later, Tu
et al. [22] investigated further the separate edge method to couple
DEM and FEM. More recently, Tu et al. [23] studied stress continuity
in DEM-FEM multi-scale coupling.

The main differences among coupling approaches can be distin-
guished based on three aspects: (i) formulation, (ii) coupling domain,
and (iii) compatibility condition. There are two possible formulations,
the energy-based, derived from the minimisation of an energy func-
tional, and the force-based, where equilibrium equations are explicitly
satisfied [24]. The coupling takes place either at the interfacing bound-
ary or over a finite overlapping domain. The compatibility condition
can be enforced in either a strong or a weak sense. In addition, this
condition can be imposed separately, as in the iterative coupling, or
simultaneously, as in the direct coupling. Table 1 lists a summary of
existing literature on coupling DEM with continuous methods.

Although the DEM-FEM coupling is a well-developed multi-scale
modelling technique, its application to practical dynamic problems is
limited because many real-life applications involve infinite domains,
which are difficult to model with DEM and FEM. Among real-life prob-
lems involving an infinite or semi-infinite domain, one could list the
radiation of heat from a point source into space and the propagation of
waves in the ground due to an earthquake or blasting. In such problems,
the strength of the heat radiation and the amplitude of the waves
vanish at infinity. In static and quasi-static analyses, one can truncate
the infinite domain and study the area of interest. That is possible
using DEM, FEM and both coupled. However, in dynamic simulations,
truncation results in wave reflections that alter the response of the area
of interest.

The BEM is an established numerical method that performs excep-
tionally well in infinite domains problems [28] since its formulation
uses fundamental solutions that allow for domain integrals to be elim-
inated [29]. It reduces the order of discretisation by one compared to
other continuous numerical methods, hence, it is very efficient. BEM
application to dynamic analyses is a more recent yet promising field,
being successfully applied to dynamic simulations of infinite domains
[30,31]. Therefore, coupling the DEM with the BEM allows for multi-
scale coupling with improved modelling capabilities. However, only a
few attempts have been made to couple the two methods, mainly due to
the complexity of the BEM formulation. To the authors’ best knowledge,
the few existing approaches for coupling the DEM with BEM consider
a quasi-static formulation for the BEM [32,33]. These approaches are
not able to correctly predict the dynamic response of the BEM domain.
Moreover, the only paper available in the literature for time-domain
DEM-BEM coupled analysis relies on a FEM interface layer [34].

The main contribution of the current paper is to overcome this
limitation by presenting a coupled multi-scale DEM-BEM formulation
entirely in the time domain. Herein a formulation is proposed to suc-
cessfully couple the aforesaid methods. This formulation does not rely
27

on any other method. The multi-scale coupling uses the DEM and the
BEM to model the microscopic and the macroscopic behaviours, respec-
tively. This coupling technique excels by employing groundbreaking
BEM formulations in the time domain [35,36]. An interface approach
is employed, and a force-based formulation is used, i.e. the system of
equations is derived by direct imposition of the equilibrium equation
at the interface. Moreover, the coupling takes place at the interfacing
boundary only so that no overlap region is required. Furthermore, the
compatibility conditions are imposed strongly and mutually in both
methods.

In order to present the formulations and findings of this paper,
firstly, the differential equation for one-dimensional wave propagation
is introduced (Section 2). The solution of such equation by DEM and
BEM, independently, is shown in Section 3. After enunciating the main
equations of each numerical method, Section 4 presents how to modify
them so that it is possible to perform the coupling. With the complete
framework, some benchmark problems are solved to analyse the ac-
curacy and nuances of the coupled DEM-BEM solution. These results
are reported in Section 5. Lastly, the discussions about the results and
conclusions of what was presented are available in Section 6.

2. One-dimensional wave propagation

The study of wave propagation in one-dimensional media (Fig. 1(a))
comprehends the understanding of how waves propagate within an
elastic body. Elastic waves are caused by dynamic effects, such as
dynamic loading, and are governed by the following differential equa-
tion [1]

𝜕2𝑢
𝜕𝑥2

= 1
𝑐2

𝜕2𝑢
𝜕𝑡2

, (1)

where 𝑢, the axial displacement, is a function of space 𝑥 and time 𝑡 and
𝑐 is the scalar wave velocity of the material defined as

𝑐 =
√

𝐸
𝜌
. (2)

where 𝐸 and 𝜌 are the Young’s modulus and mass density of the
material, respectively. Therefore, Eq. (1) can be rewritten as

𝜌 𝜕
2𝑢
𝜕𝑡2

− 𝐸 𝜕2𝑢
𝜕𝑥2

= 0 , (3)

in which the first term relates to the kinetic energy, while the second
relates to strain energy. The axial internal force 𝑁 , resulting from axial
stresses acting over the cross section area 𝐴, is given by

𝑁 = 𝐸𝐴 𝜕𝑢
𝜕𝑥

. (4)

The solution of the wave propagation problem needs to satisfy
not only the differential equation in Eq. (1) but also the boundary
conditions. The boundary conditions can be either an applied displace-
ment or an applied force. For instance, the cantilever example shown
in Fig. 1(b) has the following boundary conditions: 𝑁 0, 𝑡 = −𝑃 (𝑡)
( )
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Fig. 1. Wave propagation in an one-dimensional rod under compression: (a) general problem of wave propagation in one-dimension, (b) cantilever problem and (c) its analytical
solution.
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and 𝑢 (𝐿, 𝑡) = 0. The corresponding analytical response is depicted in
ig. 1(c), where

𝑠 =
𝑃𝐿
𝐸𝐴

(5)

is the static solution of the displacement of the free-end node. The
analytical solution presented in Fig. 1(c) is used for validating the
numerical models presented in the following sections.

3. Numerical framework

In this section, the classical formulation of both the DEM and BEM
are described. In both methods, and in the coupled solution presented
hereafter, a constant time step 𝛥𝑡 is used throughout the analysis. The
otal time of analysis ranges from 0 to 𝑇 , i.e. 𝑡 ∈ [0, 𝑇 ]. Employing the

time stepping procedure, one may write 𝑇 = 𝑁𝛥𝑡 and 𝑡 = 𝑛𝛥𝑡 with
= 0,… , 𝑁 . In addition, it shall be pointed out that the displacement

ield 𝑢(𝑥, 𝑡) is replaced by nodal displacements, in the DE particles or
EM nodes. They are grouped in the displacement vector 𝒅(𝑡), whose
erivative with respect to time furnishes the nodal velocity vector
(𝑡) = d𝒅(𝑡)

d𝑡 . Consecutively, the nodal acceleration vector is given by
𝒂(𝑡) = d𝒗(𝑡)

d𝑡 = d2𝒅(𝑡)
d𝑡2 .

3.1. Discrete Element formulation

The DEM is a suitable method for modelling the microscopic be-
haviour since its formulation consists on discretising the domain in
particles that interact through contact laws on the micro-scale. Particles
can be any closed subset of the domain. Commonly, spheres and
discs are used for three and two-dimensional analyses, respectively,
28

𝑚

as they simplify contact detection. In one-dimension, the domain can
only take the form of an interval, so DE particles are consequently
intervals or segments. Furthermore, the segments can be represented
as mass points, which in the following are referred to as particles. In
the classical DE formulation, particles and interactions are taken into
account at each time step to form the differential equation of motion

𝑴𝒂(𝑡) = 𝒇R(𝑡) , (6)

where 𝑴 is the diagonal mass matrix, 𝒂 is the acceleration vector and
𝒇R is the resultant force vector, all at time 𝑡. Furthermore, the resultant
force vector is composed of applied forces 𝒇 and contact forces 𝒇C,
i.e. 𝒇R = 𝒇C + 𝒇 . The contact forces 𝒇C, here only acting in normal
direction, follow a cohesive model and can be calculated as a function
of the displacement vector 𝒅 as

𝒇C = −𝑲𝒅(𝑡) , (7)

where 𝑲 is the stiffness matrix based on a linear normal contact law.
Thereby, Eq. (6) can be written as

𝑴𝒂(𝑡) +𝑲𝒅(𝑡) = 𝒇 (𝑡) . (8)

In order to simulate a problem governed by Eq. (1) using DEM,
he mass of each particle and the stiffness of each interaction must
eflect its macroscopic parameters. The first terms in Eqs. (3) and (6)
re related to kinetic energy, while the second terms are related to
eformation energy. Therefore, to best simulate a problem governed
y Eq. (1) the mass of each particle 𝑝 should be taken as
𝑝 = 𝜌𝐴𝓁𝑝 , (9)
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Fig. 2. DE particles (i.e. segments) and interactions among them.

here 𝓁𝑝 is the length of the particle. Furthermore, the stiffness of an
nteraction between particles 𝑝 and 𝑖 is given by

𝑝𝑖 =
𝐸𝐴
𝐷𝑝𝑖

, (10)

where 𝐷𝑝𝑖 is the distance between the centre of the two particles, as
chematically shown in Fig. 2.

Another topic of discussion is how to properly discretise the domain
nto particles. Fig. 3 shows three different possible discretisations:

• Model A (Fig. 3(a)): Particles are actual subsets of the rod’s
domain, i.e. particles are enclosed in the rod’s domain. Therefore,
the total mass of the model is exactly equal to the rod’s mass,
however, the effective length for wave propagation is smaller than
the rod’s length.

• Model B (Fig. 3(b)): Particles are centred on the rod’s endpoints as
well as in its interior. In that way, the effective length is exactly
equal to the rod’s length but the total mass is higher since half
of the particles on the endpoints are located outside the rod’s
domain.

• Model C (Fig. 3(c)): The same as Model B but the mass of
the endpoint particles are reduced by half in order to achieve
consistency with the mass of the rod.

Model A seems the most logical choice since particles are indeed
subset of the domain. However, since the mass of the particles are

umped in their centre and all forces are applied in those points, the
ffective length 𝐿̃ within which the wave propagates is smaller than the
od’s actual length 𝐿. Model B eliminates this issue as the centres of the
irst and last particle correspond to the end nodes of the rod. However,
articles whose centre correspond to the end-nodes of the rod contain
ass that is not in the original domain. Moreover, the total mass of the
iscrete model 𝑀̃ exceeds the mass of the original model 𝑀 . In order

to correct this, the mass of those particles can be taken as half of the
one in Eq. (9), which corresponds to Model C.

Intuitively, all three models should converge to the same response as
the discretisation gets finer. In Model A, the effective length approaches
to the original one as the particles get smaller. In Model B and C, the
mass outside the original domain tends to zero as particles become
smaller. Section 5.1.1 will discuss this in more detail.

After completely defining the spatial discretisation, another key
aspect of the DEM is the time integration scheme applied to it. The
most used explicit time integration method is a variant of the Central
Difference (CD) method. This method is called the Verlet time integra-
tion scheme or the ‘‘leapfrog’’ method. In this method, the acceleration
vector 𝒂 is calculated from the known forces (external and contact
forces) at time 𝑡. From that, the velocity vector 𝒗 is determined for
an intermediate step 𝑡 + 𝛥𝑡∕2. Finally, the displacement vector 𝒅 is
computed at time 𝑡 + 𝛥𝑡, in other words,

𝒗
(

𝑡 + 𝛥𝑡
2

)

= 𝒗
(

𝑡 − 𝛥𝑡
2

)

+ 𝛥𝑡𝒂 (𝑡) ,

𝒅 (𝑡 + 𝛥𝑡) = 𝒅 (𝑡) + 𝛥𝑡𝒗
(

𝑡 + 𝛥𝑡
2

)

.
(11)

Since this is an explicit time integration scheme, the time step
chosen plays a fundamental role. Namely, the time step cannot exceed
a so-called critical value. Beyond this value, the integration scheme
will no longer be numerically stable. The work of Otsubo et al. [37]
29
presents a compilation of theoretical values of critical time steps as well
as numerical experiments. The critical time step can be found solving
the generalised eigenvalue problem
(

𝑲 − 𝜔2𝑴
)

𝝓 = 𝟎 , (12)

where, 𝜔 is a natural frequency of the system (square root of the eigen-
value), associated with the vibration mode (eigenvector) 𝝓. The critical
ime step is then calculated from the maximum natural frequency 𝜔max
s

𝑡crit =
2

𝜔max
. (13)

Fig. 4 shows the critical time step 𝛥𝑡crit, calculated using Eq. (13), for
each DE model varying the number of particles. It can be seen that the
critical time step decreases with the increase of the number of particles
for all three models. The critical time step for Model B is always bigger
than the one for Models A and C. For less than 15 particles, Model A
and C have a similar critical time step. For a discretisation with more
than 15 particles, the time step of Model A converges to the one of
Model B and Model C becomes the one with the smallest critical time
step.

3.2. Boundary Element formulation

The BEM employs macroscopic models based on the continuum
theory. The formulation used in this paper follows the one presented
by Moser et al. [35], which is based on the Duhamel integral. The
Duhamel integral allows the dynamic response of a linear system to be
evaluated as a convolution integral [38,39]. The concept was employed
to formulate dynamic equilibrium equations in terms of displacements.
Therefore, the force vector at time 𝑡, 𝒇 (𝑡), may be calculated as

(𝑡) = ∫

𝑡

0
𝑲 (𝑡 − 𝜏)𝒅 (𝜏)d𝜏 , (14)

hich is the convolution integral between the forces per displacement
nd time 𝑲(𝑡 − 𝜏) at time 𝑡, resulting from the application of a unit
mpulse displacement at time 𝜏, with the applied displacements 𝒅 (𝜏)
t time 𝜏. Some elastodynamic formulations of the BEM try to solve
his equation by applying a time interpolation [30,40]. However, these
echniques are very numerically unstable [31].

To work around this issue, the Convolution Quadrature Method
CQM) can be used [31,41,42]. The CQM allows the integral in Eq. (14)
o be computed as a weighted summation. By doing so, Eq. (14)
ecomes

(𝑛𝛥𝑡) ≈
𝑛
∑

𝑘=0
𝒘𝑛−𝑘

(

𝑲̂ , 𝛥𝑡
)

𝒅 (𝑘𝛥𝑡) . (15)

he weights 𝒘𝑛−𝑘
(

𝑲̂ , 𝛥𝑡
)

are calculated based on the solution of the
nit impulse in the Laplace domain 𝑲̂, the time step 𝛥𝑡 adopted in the
umerical solution, the number of steps 𝑛 taken until 𝑡, since 𝑡 = 𝑛𝛥𝑡,
nd the number of steps 𝑘 in the convolution integral, since 𝜏 = 𝑘𝛥𝑡.
ence, 𝑡−𝜏 = (𝑛 − 𝑘)𝛥𝑡. Thereby, the solution for the unit impulse in the

ime domain is not necessary and the solution in the Laplace domain is
elatively easy to determine [35].

Schanz [31] noted that the adopted time step plays a critical role
n the stability of the numerical solution. On the one hand, the time
istory might not be properly captured with large time steps and
ignificant numerical damping may appear. On the other hand, if the
ime step is chosen too small, numerical instabilities arise.

As only the boundary (i.e. end-nodes for the one-dimensional case)
s considered in the BEM, the calculation of results at internal points
ecomes a post-processing task. It can be carried using the Duhamel
ntegral, as

int (𝑡) =
𝑡
𝑯 (𝑡 − 𝜏)𝒅 (𝜏)d𝜏 , (16)
∫0
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Fig. 3. Different discretisation approaches for a three-particle example: (a) Model A: particles are enclosed in the rod’s domain (𝐿̃ < 𝐿 and 𝑀̃ = 𝑀), (b) Model B: particles are
centred on the rod’s endpoints as well as in its interior (𝐿̃ = 𝐿 and 𝑀̃ > 𝑀), and (c) Model C: particles at both ends have corrected masses (𝐿̃ = 𝐿 and 𝑀̃ = 𝑀).
a

𝒂

r

𝑲

Fig. 4. Critical time step varying the number of particles, using different modelling
approaches. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

where, 𝑯 (𝑡 − 𝜏) is the response of the system at a internal point caused
by unit impulse displacements of the boundary’s nodes. The evaluation
of Eq. (16) can also be carried out through the CQM, thus

𝒅int (𝑛𝛥𝑡) ≈
𝑛
∑

𝑘=0
𝒘𝑛−𝑘

(

𝑯̂ , 𝛥𝑡
)

𝒅 (𝑘𝛥𝑡) , (17)

where the internal point displacement caused by the boundary node
displacements is calculated in the Laplace domain 𝑯̂ .

4. Coupling

In this work, the BEM and DEM are coupled to simultaneously
model Eq. (1) on different scales. The challenge in making such cou-
pling feasible relies on two different fundamentals. From the modelling
point of view, the DEM describes the domain as a discontinuous media
30
while the BEM follows a continuous approach. From the mathematical
point of view, the DEM integrates the differential equation of motion,
whereas the BEM performs a convolution integral. Due to these dif-
ferences, the coupling between the two methods in the time domain
is quite complex and modifications are necessary in both methods to
make this possible.

The modifications proposed consist of writing the equations of both
methods for each time step as a stiffness like equation, i.e. for the BEM

𝑲̃B𝒅
(𝑛)
B = 𝒑(𝑛)B + 𝒑̃(𝑛)B , (18)

and for the DEM

𝑲̃D𝒅
(𝑛)
D = 𝒑(𝑛)D + 𝒑̃(𝑛)D , (19)

where 𝑲̃ is a dynamic stiffness matrix, 𝒅(𝑛) and 𝒑(𝑛) are the displacement
and the force vectors at time step 𝑛, respectively, and 𝒑̃(𝑛) is the force
vector accounting for the effects of the previous time steps. In addition,
the subscripts B and D stand for BEM and DEM, respectively. Writing
the equation in such way for both methods allows a straightforward
coupling via stiffness matrices. Hence a global system of equations can
be assembled as

𝑲̃𝒅(𝑛) = 𝒑(𝑛) + 𝒑̃(𝑛) . (20)

As mentioned in Section 3.1, time integration for the DEM is gen-
erally carried out using the explicit ‘‘leapfrog’’ or Verlet scheme. In the
current formulation, this scheme is substituted by the CD algorithm
[43]. Using the CD algorithm, it is also possible to write an equation
like Eq. (19) with a dynamic stiffness relation between displacements
and forces at instant 𝑡 = 𝑛𝛥𝑡.

The CD method is based on the finite difference approximation of
the time derivatives of displacements. Therefore, the central differences
for velocity and acceleration are given by

𝒗(𝑛) =
𝒅(𝑛+1)

D − 𝒅(𝑛−1)
D

2𝛥𝑡
, (21)

nd

(𝑛) =
𝒅(𝑛+1)

D − 2𝒅(𝑛)
D + 𝒅(𝑛−1)

D

𝛥𝑡2
, (22)

espectively. Substituting Eq. (22) in Eq. (6) leads to

̃ D = 𝑴 , 𝒑(𝑛) = 𝟎 , (23)

𝛥𝑡2 D
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Fig. 5. Different approaches for modelling the DEM-BEM interface: (a) coupling the displacement of the DE particle centre with BE end-node displacement (lighter grey indicates
overlap, reason why the particle must have half the mass) and (b) coupling through an interaction model between the DE particle and the BE region.
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and

𝒑̃(𝑛)D = 𝒑(𝑛−1)D +
(

2𝑴
𝛥𝑡2

−𝑲
)

𝒅(𝑛−1)
D − 𝑴

𝛥𝑡2
𝒅(𝑛−2)

D . (24)

For the BEM, a simple reordering is needed in order to cast Eq. (15)
into Eq. (18). It is possible to write

𝑲̃B = 𝒘0
(

𝑲̂ , 𝛥𝑡
)

, (25)

and

𝒑̃(𝑛) =
𝑛−1
∑

𝑘=0
𝒘𝑛−𝑘

(

𝑲̂ , 𝛥𝑡
)

𝒅 (𝑘𝛥𝑡) . (26)

From the DE modelling discussions (Fig. 3), two possibilities arise
o model the interface between DEM and BEM. The first is to place

particle with half the mass at the interface, i.e. at the end-node of
he Boundary Element (BE) region (Fig. 5(a)). The half-mass approach
s used to account for the fact that half of the DE particle overlaps
ith the BE region. The second possibility is to make the intersection
etween the particle and the BE region a single point – the BE region
nd-point – and add a DE interaction between the particle and the BE
egion end-node (Fig. 5(b)).

The modelling alternative shown in Fig. 5(a) couples DEM with BEM
n an interface approach. Therefore, the contribution to the dynamic
tiffness matrix of the BE and the DE particle at the interface is summed
p. Hence, if an assembly of 𝑃 particles is coupled in that fashion with
finite BE region, the global matrix of the system will be

̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1
𝛥𝑡2

0 … 0 0
0 𝑚2

𝛥𝑡2
… 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝑚𝑃

𝛥𝑡2
+
(

𝑘̃B
)

1,1
(

𝑘̃B
)

1,2
0 0 …

(

𝑘̃B
)

2,1
(

𝑘̃B
)

2,2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

The modelling option shown in Fig. 5(b) defines a contact coupling.
In this kind of coupling, a specific interaction (i.e. contact model)
needs to be defined between the DE particle and the BE region. Hence,
the dynamic stiffness matrix does not have terms correlating these
elements, and the only effect of the particle on the BE domain appears
in the computation of the force vector. It is worth pointing out that
the interface modelling option presented in Fig. 5(b) furnishes a global
system of equations with one more degree of freedom than the one
obtained using Fig. 5(a). Therefore, the global matrix found from
contact coupling between a 𝑃 -particle assembly and a finite BE region
s

̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1
𝛥𝑡2

… 0 0 0
⋮ ⋱ ⋮ ⋮ ⋮
0 … 𝑚𝑃

𝛥𝑡2
0 0

0 … 0
(

𝑘̃B
)

1,1
(

𝑘̃B
)

1,2
0 … 0

(

𝑘̃B
)

2,1
(

𝑘̃B
)

2,2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (28)

. Results

.1. Finite homogeneous rod

A finite rod with a length 𝐿 = 10m and a cross-section area
= 1 cm2 made of homogeneous material with Young’s modulus
= 210GPa and mass density 𝜌 = 7850 kg∕m3 is considered. The rod

s fixed on the right-hand side and subjected to a Heaviside load of
31
agnitude 𝑃0 = 21 kN on the left-hand side (Fig. 1(b)). The rod is used
s a benchmark problem for carrying out a convergence study on the
iscretisation on both time and space.

The analytical solution shown in Fig. 1(c) is dependent on both
ime and space. Therefore, a dimensionless scalar error measurement is
ntroduced to investigate the performance of both numerical methods.
he overall relative error 𝜖 is defined as

=
∫ 𝐿
0 ∫ 𝑇

0 |𝑑 − 𝑢|d𝑡d𝑥

∫ 𝐿
0 ∫ 𝑇

0 𝑢d𝑡d𝑥
, (29)

where 𝑑 and 𝑢 are the numerical and analytical solutions respectively,
and 𝑇 is the total time of analysis assumed to be 25ms. Eq. (29) takes
into account errors throughout the rod’s domain and observation time
in an integral form. Hence, it is a better error indicator than evaluating
the difference on a single point at a specific instant.

5.1.1. Pure DEM analysis
The three different discrete element discretisations shown in Fig. 3

are used to model the rod problem. First, the convergence of space dis-
cretisation is analysed and the time step is kept fixed. The convergence
curves for the three models are depicted in Fig. 6. For all analyses, i.e.
for all discretisation models and refinement, the time step is kept fixed
at 𝛥𝑡 = 1 × 10−5 s. This time step is lower than the critical time step, as
can be seen from Fig. 4. The results of Model A are plotted as a solid
blue line, whereas the results for Model B and Model C are plotted as
a dashed red line and a dotted green line, respectively. It can be seen
that Model C converges faster than Model A and B, as it preserves the
effective length and overall mass of the original problem.

The error map of the numerical solution using pure DEM with Model
C, 151 particles and 𝛥𝑡 = 1 × 10−5 s is shown in Fig. 7. In this case, the
overall relative error, as defined in Eq. (29), is 𝜖 = 1.29×10−3. The error
map shows the absolute difference between the analytical solution and
the numerical prediction for each position 𝑥 and time 𝑡 using a colour
map. It can be seen that the difference is higher where the derivative
of the analytical solution of the displacements with respect to time is
discontinuous, i.e. where the velocity jumps. Moreover, it is clear from
Fig. 7 that this difference increases as the analysis time increases.

5.1.2. Pure BEM analysis
Analysing the problem of Fig. 1 using the BEM requires no domain

discretisation. Therefore, only a convergence study on the time step
is required. The error, as described in Eq. (29), demands a domain
integration, which is carried out using the trapezoidal integration rule
after the computation of forces and displacements at internal points.
The overall relative error for simulations with different time steps is
plotted in Fig. 8(a) and Fig. 8(b) for a single BE region and two BE
regions, respectively. It can be inferred that the smaller the time step
the smaller the error.

However, from Fig. 8(a), it can be understood that for a single
BE region the time step cannot be lowered beyond 1.12 × 10−2 ms. If
a smaller time step is chosen, the programme simply crashes due to
the presence of numbers greater than the floating-point capacity in the
computation of the CQM weights. On the other hand, large time steps
lead to a lack of stability. It can be seen in Fig. 8 that the response
becomes unstable for 𝛥𝑡 > 1ms.

The time step of the analysis can be lowered using a multi-region

technique, i.e.by splitting the rod in several BE sub-regions. Therefore,
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Fig. 6. Discretisation convergence study for different DE models using 𝛥𝑡 = 1 × 10−5 s.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. Error map of pure DEM results using Model C with 151 particles and 𝛥𝑡 =
1 × 10−5 s.

the same time step convergence study is carried out using two sym-
metrical BE regions. The plot of the overall error versus time step is
shown in Fig. 8(b). It can be observed that the error is the same for
one and two BE regions when the same time step is used. However, an
advantage in using two BE regions can be noticed: the minimum time
step required for numerical stability can be lowered from 1.12 × 10−2 ms
to 5.62 × 10−3 ms which results in a lower overall relative error.

The error map of the pure BEM analysis using two BE regions
is shown in Fig. 9. The results were obtained using a time step of
32
1 × 10−5 s, which is within the range of stability. This time step is
chosen to make the pure BEM and pure DEM results comparable. The
overall error found for this model is 6.08 × 10−3, which is in the same
rder of magnitude as the error observed in the pure DEM analysis.
s in pure DEM, the most substantial errors occur in the vicinity of

he analytical response’s discontinuities and the errors increase as the
nalysis progresses in time.

.1.3. Coupled DEM-BEM analysis
The proposed coupled DEM-BEM algorithm is employed in the finite

omogeneous rod problem (Fig. 1(b)). Both approaches are shown in
ig. 5 for modelling the interface between the two domains are tested.
he main aim of this analysis is to compare the performance of each
pproach for different numbers of particles in the DEM domain. The
nd-node of the DEM domain is modelled using the effective end-node
ith the half-mass correction (Fig. 3(c)).

The results obtained by modelling the loaded half of the domain
ith DEM and the supported half with BEM are plotted in Fig. 10(a).
he number of particles in Model A (Fig. 5(a)) is increased by one so
hat the number of degrees of freedom in both models is the same. In
rder to perform further investigations, the methods are swapped – i.e.
he loaded half is modelled with BEM and the supported with DEM –
nd the convergence in this configuration is depicted on Fig. 10(b).
t can be seen that in both cases the error has the same order of
agnitude. Note that all analyses have been performed with a time

tep 𝛥𝑡 = 1 × 10−5 s, which is lower than the critical time step of the
EM (Fig. 4) and is within the range of numerical stability for the BEM

Fig. 8).
It can be seen that the relative error is almost identical for both

nterface models. Both solutions converge to a relative error of about
.01 × 10−2. The two convergence curves have similar shapes, either
sing BEM or DEM on the loaded half of the domain. It is interesting
o note that the error is one order of magnitude bigger than the ones
btained with pure BEM and pure DEM, using an equivalent number of
articles.

The error map for the coupled DEM-BEM analysis using DEM on the
oaded part of the domain is shown in Fig. 11(a), while the one using
EM on the loaded part of the domain is shown in Fig. 11(b). In both
ases, Model A was used at the interface. 76 particles were used and
he time step was set to 1 × 10−5 s. In both error maps in Fig. 11, it is
ossible to observe that the error distribution is significantly different
etween the pure DEM and pure BEM results. The errors in the coupled
EM-BEM analyses are much higher where the analytical solution is
ontinuous and these errors increase over time.

Apart from the approximation errors introduced by each method,
nother critical source of error is the spurious wave reflection at the
nterface. The presence of this phenomenon is evidenced in Fig. 12.
he time response obtained with the coupled DEM-BEM approach using
odel A (Fig. 5(a)) is shown alongside the difference from the response

btained with pure DEM. 151 particles were used in the pure DEM anal-
sis, while 76 particles were used in the coupled DEM-BEM analysis. In
oth analyses the time step used was the same (𝛥𝑡 = 1 × 10−5 s).

The response is plotted from the initial configuration to half of the
irst period of oscillation, 2𝐿

𝑐 . This time range is enough to observe the
spurious wave reflection. The displacement of the end-node is plotted
as a solid blue line, while the mid-span displacement is plotted as a
dash-dotted red line. The difference between DEM-BEM and pure DEM
is plotted as a dashed black line for the end-node and dotted green line
for the mid-span.

From Fig. 12 it can be inferred that the error on both nodes is zero
until the mid-span node starts to move, i.e. when the dash-dotted line
starts to increase. That point is exactly at the interface between the two
domains. The difference of the mid-span response (green dotted line)
immediately jumps from zero, showing that an error occurs when the
wave reaches the interface. The error of the end-node response (black

dashed line) stays at zero for a little longer. It can be seen that the
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Fig. 9. Error map of pure BEM results using two regions and 𝛥𝑡 = 1 × 10−5 s.

ime to make it jump from zero is equal to twice the time to make
he dotted line jump. This is due to the fact that a reflected spurious
ave is originated at the interface and it takes the same time to reach

he end-node as the original wave takes to reach the interface. That
purious wave will eventually reach the interface when some of it will
gain reflect. The original wave, in turn, will reflect at the end of the
od and reach the interface again on its way to the end-node. At that
oment, part of it will once again reflect into another spurious wave.
hat process deteriorates the response of the coupled solution over the
ime of the analysis.

To highlight the presence of spurious wave reflections on the cou-
led solution even further, the displacement configurations at three
33
different instants are shown in Fig. 13. These instants lie in the third
oscillation cycle when the wave is travelling towards the free end-
node, moving towards reestablishing the rest configuration. Fig. 13(a)
shows the moment when the wave is approaching the interface. In
Fig. 13(b) it can be seen that part of the incident wave reflects and
travels backwards (Fig. 13(c)).

5.2. Semi-infinite homogeneous rod

The second benchmark problem is similar to the first one, with the
same material and cross-section. The differences are the applied load
and the fact that the domain extends towards infinity. The load is a
rectangular impulse of 21 kN with 1ms duration applied after 1ms from
he beginning of the analysis. A sketch of the example is shown in
ig. 14. DEM is employed in the first five metres of the rod, denoted as
1 and BEM is used to model the remaining infinite part of the domain,

eferred to as 𝛺2. The problem is also analysed by modelling the entire
omain with BEM to have a reference solution for comparison.

The displacement of the end-node 𝑢 (0, 𝑡) obtained by the coupled
EM-BEM is plotted as a solid red line in Fig. 15, while the pure BEM

olution is plotted as a dotted blue line. From the zoomed inset, it can
e seen that the coupled DEM-BEM solution oscillates around the pure
EM solution with good agreement. The zoom inlet in Fig. 15 shows
he moment when the reflected spurious wave finds the rod’s end-node.
hat affects the end-node displacement briefly and then the spurious
ave travels towards infinity again. Part of the spurious wave will
gain reflect on the interface giving birth to a second spurious wave.
owever, the amplitude of the second wave is much smaller and its
ffects so small that they cannot be seen in the plot.

The effect of the spurious wave reflection can be quantified by
ooking at the evolution of the total energy in the DEM domain. The
otal energy is composed of kinetic energy 𝐸kin and strain energy 𝐸strain.
he kinetic energy 𝐸kin is calculated as

kin =
∑

𝑝

1
2
𝑚𝑝𝑣

2
𝑝 (30)

here 𝑚𝑝 and 𝑣𝑝 are the mass and absolute velocity of the particle 𝑝.
he strain energy 𝐸strain is given by

strain =
∑ 1𝑘𝑖𝛿2𝑖 (31)

𝑖 2
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Fig. 10. DEM-BEM convergence for different interface models varying the number of DE particle with 𝛥𝑡 = 1 × 10−5 s: (a) using DEM on the loaded part of the domain and (b)
using BEM on the loaded part of the domain.
Fig. 11. DEM-BEM error maps using 50 DE particles and 𝛥𝑡 = 1 × 10−5 s: (a) using DEM on the loaded part of the domain and (b) using BEM on the loaded part of the domain.
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where 𝑘𝑖 is the stiffness of the interaction 𝑖 and 𝛿𝑖 is the relative
isplacement of the two particles of interaction 𝑖. Hence, if particles

𝑝 and 𝑞 are interacting through interaction 𝑖, 𝑘𝑖 = 𝑘𝑝𝑞 , as defined in
Eq. (10), and 𝛿𝑖 = |𝑑𝑝 − 𝑑𝑞|.

Fig. 16 shows the evolution of the energy in the DEM domain. The
total energy of the DEM domain is shown by a solid blue line, while its
components, the kinetic and strain energy are shown in dashed red and
34

dotted green lines, respectively. The total energy theoretically has to z
drop to zero as the wave travels from the DEM into the BEM domain at
around 4ms. Nevertheless, it can be seen that a small amount of energy
of about 1.2 J is still in the DEM domain at 4ms. This residual energy
esults from the spurious wave reflection. The amount is less than 0.7%

f the total 178 J energy of the system. This confirms that the effect of
purious wave reflection is indeed negligible. It can also be seen that
his effect decreases over time, i.e. the energy asymptotically tends to

ero as the wave travels to infinity in the BEM domain.
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Fig. 12. Difference between coupled DEM-BEM and pure DEM solutions. The coupled
DEM-BEM approach uses 76 particles with interface Model A. The pure DEM model
uses 151 particles. In both analyses the time step is 𝛥𝑡 = 1 × 10−5 s. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Displacement configuration calculated using 75 DE particles and 𝛥𝑡 = 1 × 10−5 s
at: (a) 𝑡 = 22.46ms, (b) 𝑡 = 22.71ms and (c) 𝑡 = 22.96ms. See Appendix online version
for video.

5.3. Semi-infinite non-homogeneous rod

The third benchmark problem is a non-homogeneous rod composed
of two different materials as also discussed in Moser et al. [35]. One
of the materials extends to infinity, as shown in Fig. 17. The problem
is modelled with the coupled DEM-BEM approach modelling 𝛺 (finite
35

1

Fig. 14. Semi-infinite homogeneous rod loaded with a rectangular impulse.

Fig. 15. End-node displacement of semi-infinite homogeneous rod: comparison be-
tween coupled DEM-BEM and pure BEM solution, using 76 particles in the DEM domain
and 𝛥𝑡 = 1 × 10−2 ms in both analyses. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

domain) with DEM and 𝛺2 (infinite domain) with BEM. The problem
is also modelled with BEM on both domains for comparison.

The responses of the end-node displacement using the coupled
DEM-BEM and the pure BEM approaches are plotted in Fig. 18. The
displacement initially tends to the solution as though the rod was made
only of the first material since all the deformation is in the first rod.
When the wave reaches the interface, a normal reflection occurs which
makes the end-node displacement drop. The reflected wave reflects
at the end-node and travels back to the interface where part of it
passes on to the other domain and another part reflects. That cyclic
behaviour keeps going until the reflection tends to zero, at which point
the displacement is as though the rod was entirely made of the second
material, as the majority of deformation, waves are within this media
travelling towards infinity.

On top of that behaviour, which is expected, there is the spurious
wave reflection phenomenon, which is evidenced in Fig. 18. Com-
pared with the pure BEM approach, the DEM-BEM coupled solution
introduces more noise. In other words, the coupled solution oscillates
around the pure BEM solution. But yet, that influence can be neglected
as the dynamic response of the system is captured very well.

6. Conclusions

In this paper, an interface DEM-BEM coupling approach in the
time domain for multi-scale modelling is presented. The modifications
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Fig. 16. Energy evolution in the DEM domain, using 76 particles in the DEM domain
nd 𝛥𝑡 = 1 × 10−2 ms. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Fig. 17. Semi-infinite non-homogeneous rod loaded with a rectangular impulse.

equired in both methods to make the coupling possible are discussed.
he CD time integration scheme is proposed for the DEM instead of the
ost commonly used ‘‘leapfrog’’. This allows for the formulation of a
ynamic stiffness equilibrium equation. On the BEM side, the dynamic
tiffness equilibrium equation is written as a convolution integral,
hich is solved employing the CQM.

The proposed interface coupling approach has proven itself to be
f simple formulation. The phenomenon of spurious wave reflection
lso reported by other authors for DEM-FEM coupling [14,22] was
lso observed in the current DEM-BEM coupling. In the finite rod
xample, the spurious wave is confined, and as the analysis goes on
ore spurious waves are generated. Nevertheless, it is shown that the

ffect of spurious wave reflection is negligible for semi-infinite domain
roblems. The wave travels towards infinity and does not disturb the
olution cumulatively over time. A quantitative analysis of the effect
hows that the energy reflected at the interface is less than 0.7% of
he total energy and it tends to decay quickly over time. Hence, the
resented approach is very suitable for handling applications with semi-
nfinite and infinite domains which is the main motivation for coupling
EM with BEM.

Another key finding of this work is related to the time step. The
ime step in the explicit DEM formulation has an upper bound, the
ritical time step, so that the numerical analysis is stable. This time
36

tep depends not only on the parameters of the problem but also on the
Fig. 18. End-node displacement of semi-infinite non-homogeneous rod: comparison
between coupled DEM-BEM using 76 particles and pure BEM solution, both using
𝛥𝑡 = 1 × 10−2 ms.

spatial discretisation used. The finer the discretisation the smaller the
critical time step. The BEM has a range of time steps within which the
simulations are stable. This paper shows that subdividing the problem’s
domain into multiple BEM regions, using the same time step, does not
change the method’s accuracy. However, the multi-region approach
allows decreasing the lower bound of the time step. Thus, higher
accuracy can be achieved by lowering the time step. An inquiry that
hung over this research before it started was whether there would be
an intersection between the time step required for the stability of the
two methods. This intersection is vital for the coupled solution to be
numerically stable. This paper shows that such intersection indeed ex-
ists. Additionally, it can be concluded that whenever the DEM requires
a time step lower than what can be used in the BEM, the multi-region
BEM approach can be used to make the coupling feasible.

Although this paper is focused on one-dimensional analyses, its find-
ings led to important knowledge as to what can be expected for analyses
in two- and three-dimensions. The latter will be considered in future
research with focus on geomechanics problems where the infinite and
discontinuous nature of the ground is of paramount importance.
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