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Analytical solution of the nonlinear equations of acoustic in the form of 
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A B S T R A C T   

The nonlinear acoustics equation for a dissipative medium is analytically solved. Continuous wave stimulation 
and an axisymmetric Gaussian spatial profile of the boundary conditions were assumed. The approximation of 
the D’Alambert operator by the wave diffusion operator was applied and justified. In this approximation and 
assuming classical absorption (dispersion), the equation to be solved is presented by the Khokhlov-Zabolotskaya- 
Kuznetsov model. 

A sequence of functions describing the spatial distribution of the harmonic components of the disturbance was 
determined. They are the form of spatially modulated Gauss functions for harmonic wave numbers (frequencies). 

For a lossless medium a universal numerical sequence describing non-linear interactions and harmonic gen-
erations was determined. In other cases, the description of the cooperation of dispersion and non-linear in-
teractions in the harmonic generation process is given by a sequence of functions dependent on the dispersion 
coefficient and with boundary values given by the universal sequence mentioned above. 

It was unexpectedly discovered that the influence of geometrical parameters of the beam on nonlinear in-
teractions depends on dispersion, and component of the dispersion, absorption may strengthen harmonic gen-
eration. In general, dispersion spatially modulates the amplitude and phase of nonlinear interactions. This is not 
against the law of conservation of energy. The energy exchange between the fundamental (initiating) component 
and other harmonics is described. 

The analytical solution was compared with the numerical one. The numerical solution was obtained in the 
scheme implementing the full Helmholtz operator (no axial - wave diffusion- approximation).   

1. Introduction 

We cannot analytically solve most of the realistic boundary value 
problems for the nonlinear equations of acoustics, so we use numerical 
analysis tools. However, the knowledge of solving a suitably complex 
problem or an accurate concept of the general structure of the solution 
allows for the improvement of these tools [1], their testing and inter-
pretation of the results. When looking for analytical solutions, we also 
count on a final or deeper understanding of the phenomenon. 

Formulation of mathematical models of nonlinear acoustics and the 
search for their solutions took place in parallel. An extensive historical 
outline of the formation of contemporary nonlinear acoustics on the 
basis of isotropic medium models along with reprinted works by Pois-
son, Riemann, Stokes and others can be found in books [2–5]. 

The first work that transformed a nonlinear differential description 
of sound propagation, or more precisely the motions of a one- 
dimensional lossless medium, into a functional description was Pois-

son’s work from 1808 [2]. The functional description is obtained as a 
result of the single integration of the equations of motion and has the 
form v(z, t) = V(v(z, t), z, t), where v is the solution to be found (acous-
tical velocity), depending on the z coordinate and time t, V() is a given 
function resulting from the boundary conditions. 

In 1860, Riemann, adopting more general assumptions and methods 
than Poisson, transformed the system of differential laws of conservation 
of matter and the momentum of the one-dimensional Euler fluid (ideal 
isotropic medium in Euler coordinates) into a functional problem for one 
dependent variable - velocity [2–4,6]. Earnshaw (1860) obtained an 
analogous result in the Lagrange coordinates [3,7]. In 1935, Fubini 
solved the Earnshaw equation for the sinusoidal boundary condition 
V(v(0, t), 0, t) = sin(ω0t) and presented v as a Fourier time series with 
respect to harmonics ω0 [2,3,5]. The Riemann method, with the given 
equation of state, resulted in the remaining relationships between the 
dependent variables (most often an adiabatic transformation is assumed, 
it may be polytropic). Riemann’s solution describes the nonlinear 
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evolution of border disturbances moving to the right or left (there is also 
an isentropic mode). They are commonly called simple waves. The so- 
called Riemann invariants are related to simple waves - constant quan-
tities in these waves in the whole area of motion [2,8]. The ideas con-
tained in Riemann’s solution still play a key role in the theoretical and 
numerical study of fluid dynamics, including non-linear dynamics of 
wave motions, the formation, properties and the interactions of shock 
waves [9,10]. 

In this paper, we present non-trivially analytical solution of the 
boundary problem for nonlinear acoustics equations of dissipative me-
dium, corresponding to real situations. The problem is physically three- 
dimensional but axisymmetric, i.e. mathematically two- dimensional. 
The solution is a very good approximation of the NAE (Nonlinear 
Acoustics Equation) solution [5,11,12]. For a classically absorbing me-
dium, the NAE is sometimes called the Westervelt equation. The 
approximation results from the fact that the basic linear evolutionary 
operator in this equation is D’Alembercian, i.e. a strictly hyperbolic 
operator, and the proposed solution is based on Gaussian beam (Lager 
polynomials of the 0th order). 

In a description using variables with retarded times, fast spatial 
changes in the direction of propagation are compensated by fast tem-
poral changes of the perturbation. The disturbance slowly changes with 
respect to the coordinate in the direction of propagation and the second 
derivative in the D’Alambert operator with respect to this coordinate 
can be omitted. We get the so-called parabolic or paraxial approxima-
tion. Gaussian beams satisfy a homogeneous wave equation with a 
parabolic approximation of this operator. Sometimes, especially in the 
space-Fourier frequency coordinates, the approximate operator is called 
the wave diffusion operator. The use of this approximation in the Kuz-
netsov equation [13] or NAE leads to the Khokhlov-Zabolotskaya- 
Kuznetsov (KZK) equation [5,12,14]. Hence, the presented solution is, 
in particular, due to the classic absorption model, a strict KZK solution. 

An attempt to solve the KZK equation for Gaussian boundary con-
ditions and sinusoidal excitation in time (as in this work) was made in 
[15]. The method of successive approximations was used. Its computa-
tional complexity in nonlinear wave problems grows rapidly. Therefore, 
it was limited to obtain a description of the generation of the first har-
monic. The fact that the fundamental component is a solution of the 
linearized equation was not used and it can be selected so as to satisfy 
the boundary condition. The equation was solved “from the beginning” 
using the Green function method. This leads to a more complex notation 
of the result, which is to be expected to be a Gaussian beam. The 
Gaussian form of the first harmonic was obtained from a complex in-
tegral expression as a result of approximations supported by numerical 
calculations. 

So far, only in the one-dimensional case, analytical solutions of the 
NAE boundary problems in the dissipative medium are known (the case 
of classical absorption). In this case, it convey to the Burgers equation 
[5,12] and after Cole-Hopf substitution, it becomes linearized to the 
form of a thermal conductivity equation [2,3,16]. 

A method for the integration time fractional Burgers-Hopf equation 
is presented in [17]. The orders of derivatives with respect to time from 
the interval (0,1] were considered. The obtained solutions are of a 
highly a periodic kink type. Solutions for the derivatives of 1/2 and 0.95 
were demonstrated. The most important case of integer derivatives (the 
base case) was omitted in the discussion. It should be noted that these 
solutions do not have a linear asymptotic with respect to the nonline-
arity parameter (or Mach number), and unlike conventional solutions, 
they tend to infinity when this parameter tends to zero. Such a situation 
may take place in the description of non-linear phenomena, see e.g. [18] 
where such a non-physical branch of the solutions of the boundary 
problem was indicated for the Burgers equation. The same work [17] 
also presents the class of exact solutions of fractional KZK equations, and 

in particular the “normal” KZK equation. In general, the features of these 
solutions are identical to those described above for the Burgers equation. 
Contrary to the authors, it should be stated that the solutions they ob-
tained represent the non-physical branch of solutions of the Burgers and 
KZK equations and have nothing to do with acoustics. However, they are 
an interesting and important supplement to the description of the 
mathematical properties of equations. 

Due to the order of non-linearity with respect to the disturbance, we 
have two branches of solutions (like the roots of a quadratic equation) 
that are significantly separated from each other due to the acoustic Mach 
number. One physical one represents the usual solutions of boundary 
problems with determined parameters, the other one concerns free space 
with a slightly limited set of dispersion parameters. 

Symmetry group of the KZK equation, was determined in the work 
important from the point of view of investigating the properties of the 
KZK equation [19]. The set of invariant transformations allows for the 
determination of successive (infinite number), in other words, solution 
trajectories from the existing solution. Unfortunately, the paper does not 
explicitly provide any non-trivial solution. Although for a given 
boundary condition, a new non-linear system of equations has been 
proposed. Its solution would constitute the solution of the KZK. 

By skillful substitutions and approximations, the cases of spherical 
and cylindrical symmetry (as well as flat one-dimensional symmetry) 
were included in one universal propagation model described by the so- 
called generalized Burgers equation. These are spatial cases, however, 
mathematically 1D + t with coefficients dependent on coordinates. This 
model, together with approximate solutions, is discussed e.g. in 
[3–6,20,21]. 

A number of works (e.g. [22–25]) announce solutions of the KZK 
equation in the title or in the introduction. At the same time, reference is 
made to source works, publications [14] or other publications (e.g. 
[2,5]) which duplicate the result [14] which is the source of the equation 
form. It should be noted that the KZK equation from the source work and 
the aforementioned work differ significantly primarily in the differen-
tiation operation of the non-linear term. In the KZK equation, it is dif-
ferentiation with respect to retarded time and not with respect to the 
coordinate of slow changes in the direction of propagation. In the KZK 
equation, time is defined as retarded time in the sense described above. 
Moreover, the equations from these works cannot be transformed by 
coordinate transformations in KZK equation. In work [23] there is not 
even the “parabolic approximation” characteristic for KZK equation. The 
equations in these works correspond to the Kadomtsev-Petviashvili (KP) 
model equation. 

The role of absorption, or more generally dispersion, in the 
description of nonlinear interactions and generation of harmonic beams 
is surprising. Then in Chapter 2 we recalled the basic facts for describing 
this phenomenon. This may be useful to the reader less familiar with the 
problem or in further research. Furthermore, we note that the classical 
absorption model is not analytic (fully dispersive) even though it was 
derived from the analytic dispersion model for the Navier-Stokes 
equations. These issues are developed in Appendix A using examples 
of a Maxwell-type medium (remembers dispersive stresses) and a me-
dium with absorption characteristic of biological substances (e.g., 
blood). 

Then we introduce a normalized system of variables so that the Mach 
number appears explicitly in the equations. We present a solution in the 
form of a Fourier series. We transform NAE into a system of nonlinear 
equations on the series coefficients. We analyze the order of equations 
and the Fourier components. We show that in each equation (for the 
disturbance component) there are two types of nonlinear terms. They 
differ by two orders respect the Mach number. They are components of 
two vectors whose sum constitutes a complete non-linear description. 
One of them, for a complete disturbance, is of the first order respect to 
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the Mach number. The second is of the second order. NAE was derived 
with precision of the first order terms. The above observations resulting 
from the analysis of orders in chapter 2 constitute the basis of the 
adopted method of solving the NAE and the KZK equation. In chapter 3 
we solve a nonlinear system of equations and obtain an analytical and 
explicit description of nonlinear interactions. In chapter 4 we present 
visualizations of the obtained analytical solution and compare them 
with numerical solutions. Chapter 5 discusses the results. 

In contrast to optics, Gaussian boundary conditions and Gaussian 
beams are rare in acoustics. However, they have sufficiently realistic 
features, which also characterize the most common limited sources, that 
the presented results can be considered as common to a wide class of 
boundary problems of practical importance. 

2. Basic equations and relations 

2.1. Solution form and order analysis 

In the normalized system of variables the NAE describing the prop-
agation of an acoustical disturbance in a lossy and nonlinear medium 
has the form [1] 

2∂τzP − ΔP+ 2∂τAP = q∂ττP2 + o
(
q2) (1) 

where Δ is the Laplace operator; Δ := Δ⊥ + ∂zz, where Δ⊥ is the 
transverse component of the Laplacian. In this work only axisymmetric 
case of propagation in the cylindrical coordinates is considered then, 
Δ⊥ = ∂rr + (1/r)∂r; (r, z) denotes the normalized space coordinates; τ :=

(t − z) is normalized retarded time; t is normalized time; P = P(r, z, τ) is 
the normalized acoustic pressure; q is the coefficient of nonlinearity. 

Generally A is the convolution-type operator with kernel A(x, t)
describing an dispersion Ax,tP := A⊗

x,t
P. Generalized Fourier transform of 

the kernel A, ̂aς,ω
(ς, ω̂) = Fx,t [A] is a function of dispersion, where ς is the 

complex wave number, ω̂ is the complex pulsation. That is âς,ω is the 
eigenvalue of A corresponding to the eigenfunction f = exp( − iςeK⋅x +

iω̂t), Af = âς,ωf ; K = ςeK is the complex wave vector; i is the imaginary 
unit. Using [26] we obtain the analytical form of the dispersion coeffi-
cient âω

(ω̂) = âς,ω
(ς(ω̂), ω̂), where ς(ω̂) is the solution to the dispersion 

equation. On the real axis ω = Re(ω̂) we get ̂a(ω) = a(ω) + ih(ω), where 
a(ω) is the weak-signal absorption coefficient, nI = (c0/ω)a, 1 − nr =

(c0/ω)h; nI, nr := c0/cf (ω) imaginary and real part of the refraction 
coefficient, cf (ω) is the phase velocity. As is known a i h related by 
Kramers-Kronig relations (Hilbert transforms). We note that the pro-
cedure presented here in brief allows us to replace the time-dependent 
(mixed) model of dispersion by a time-dependent (homogeneous) 
model since the transition from âς,ω→âω corresponds to Ax,t→At (details 
in [26]). We also have Atf(ω̂,t) = âωf(ω̂,t), f = exp(iω̂t). Moreover, the 
integro-differential operations with respect to time and retarded time 
are identical. Because of the relatively easy measurement of the ab-
sorption coefficient, it is usually the basis for the determination of the 
full dispersion, i.e. h. However, analytical determination of using the 
Kramers-Kronig formulae is difficult or impossible. Similarly, in the case 
of experimental data because they are available only from a limited 
frequency band and not in the required range ω ∈ [0,∞). In [27], a very 
good approximate solution to this problem is presented. In Appendix A, 
two dispersion models, specific to acoustics, are presented. The first 
represents the Maxwell medium. In the zero relaxation time limit, the 
dispersion operator of this medium corresponds to the Navier-Stokes 
viscous stress model which is the source of the classical absorption 
model. In the second model we follow the opposite direction. For the 
absorption coefficient characteristic of many organic media, we deter-
mine the full dispersion. Eq.(1) was normalized according to 

P :=
P’

P’
0

τ := Ω’
0τ’ = Ω’

0(t’ − z’/c’
0), (r, z) := K’

0⋅(r’, z’) (2)  

∂τ :=
1

Ω’
0
∂τ’ ,∇ :=

1
K’

0
∇’,ω :=

ω’

Ω’
0
, k :=

k’

K’
0
,K’

0c’
0 = Ω’

0 

Where P′

0 is the characteristic pressure (here the peak of the absolute 
pressure value at the source surface);ω′ is the angular frequency; c′

0 is the 

equilibrium sound velocity; g′

0 is the equilibrium density; q
⌢
:= P′

0/g′

0c2
0 is 

the acoustical Mach number, q is the nonlinearity coefficient; γ is the 
exponent of the adiabate, for the empirical state equation γ := (B/A)+1 
where (B/A) is the nonlinearity parameter of the medium. The 
normalization of small signal coefficient of absorption and dispersion 
coefficient â(ω) was performed as follows a(ω) = a′

(ω′

/Ω′

0)/K′

0. Usually 
coefficient of the absorption is given in the form a′

(ω′

) = α′

χ ⋅(ω′

/2π)χ 

where α′

χ is the parameter of the absorption (Np/(m⋅Hzχ)); χ is the power 
of the growth of the absorption, χ = 2 for classical absorbing media 
(water, glycerine), χ ≃ 1 for the blood and many other organic media. 
Then in this cases a(ω) = αχ |ω|χ αχ := α′

χ ⋅(Ω′

0/2π)χ
/K′

0 . The imposition of 
the relation K’

0c’
0 = Ω’

0 for the values K′

0 and Ω′

0 causes that the 
fundamental dispersion relation ω′

(k′

) = ∓k′c′

0 for lossless linear and 
unbounded medium (no dispersion) takes the form ω(k) = k, k(ω) =

±ω, where k′

= ±|k′

| k′

(ω′

) is the wave number. Thus, we introduced a 
common measure of time and distance in space in which the equilibrium 
speed of sound c0 = 1. For Fourier series representations of the distur-
bances ω and k are discrete variables which numerate the components of 
the series for k = ω = 1, ω′

= Ω′

0,k′

= K′

0 . In not normalized units k′

=

k⋅K′

0, ω′

= ω⋅Ω′

0, k,ω = 1,2,.... For continuous sinusoidal stimulations of 
the medium, it is natural to adopt the normalization, in which Ω′

0 is the 
pulsation of the excitation and K′

0 = Ω′

0/c′

0 is the wave number corre-
sponding to it. 

We look for the solutions of Eq. (1) in the half-space z ≥ 0 in the form 
of a Fourier series 

P(r, z, τ) =
∑K

k=1
Pk =

1
2
∑K

k=1
Fk(r, z)e− ikτ + c.c (3) 

In the coordinates with retarded time, the functions Fk(r, z) are 
slowly varying spatial envelopes of the quickly varying factor exp(ikz)
(in non-normalized units exp(ik′z′

) = exp(i(ω′

/c′

0)z
′

)), c.c denotes com-
plex conjugation. 

After substituting Eq. (3) into Eq. (1) and using the orthogonality of 
the set of functions exp(∓ikτ), l = 1, 2, ..., k, ... we obtain the system of 
equations 

(2ik∂z + 2ikâ(k) + Δ⊥ + ∂zz )Fk =
1
2

qk2

(
∑k− 1

l=1
Fk− lFl + 2

∑K

l=k+1
F*

l− kFl

)

k

= 1, 2, 3, ...,K (4) 

Theoretically K→∞. In numerical calculations, the effective dimen-
sion of the Fourier representation is used according to the increasing or 
decreasing intensity of nonlinear interactions K = K(z) (see 
[1,11,28,29]). In the case of an infinite dimensional representation of Fk, 
the non-linear term in Eq.(4) is a correct form of the reduction of the self- 
convolution Fk to a given dimension K. Therefore, K can be arbitrarily 
enlarged without changing the structure of the description of nonlinear 
interactions. Fundamental component F1(r, z) satisfies the boundary 
condition, F1(r, z = 0) = F1(r), F1(r = 0) = 1 such that P(r, z = 0, τ) =

F1(r)exp(− iτ) + c.c. So the remained components must meet the con-
ditions Fl(r, 0) = 0, l ≥ 2. So F1(r, z) is the field that initiates the gen-
eration of the other components. 
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To better illustrate the generation cascade, we have presented Eq. (4) 
in the matrix form Eq. (5). The first summations in the system of 
equations in Eq.(4) are created by rows in triangle matrices below di-
agonal and in sequence l = 1,2,...,k − 1 , k = 2,..,K − 1. By o(f) we denote 
the order of magnitude of f with respect to the nonlinearity coefficient 
(Mach number). Especially o(q0) ∼ 1, o(qk) ∼ qk, o(ql1 + ...+ qlS + ...+

qlmx ) ∼ qminlS . Because o(F1) ∼ q0 = 1 then nonlinear term in Eqs.(4),(5) 
of the lowest order with respect to q, determining evolution F2 is o(F2) =

o(qF1F1) ∼ q. Hence, based on the terms on the right side of the diagonal 
in Eq.(5), or on the second sum in Eq.(4), we still have 
o(F1) ∼ 1+o(qF*

1F2) ∼ 1 + o(q2). Then, the lowest-order “source” term 
for F3 is o(F3) = o(qF2F1) ∼ q2. Wherein, determined on this basis the 
correction to the terms on the right-hand side of the diagonal in Eq. (5) 
in the lowest row is o(qF*

1F3) ∼ q3. Moreover, the initial evolution 
(initialization) of the mode FK (as well as the previous Fk, k = 2,3, ...) 
depends solely on all existing K − 1 (k − 1) and does not depend on FK, 
(Fk). Generally, denoting the first term by NL(1)

k and the second term with 

NL(2)
k on the right hand side of Eq.(4) and assuming that o(Fl) = ql− 1, we 

get 

o
(
NL(1)

k

)
= o

(

q
∑k− 1

l=1
Fk− lFl

)

∼ qk− 1 (6)  

o
(
NL(2)

k

)
= o

(

2q
∑K

l=k+1
F*

l− kFl

)

= o

(

2q
∑K− k

l=1
F*

k+lFl

)

= o

(

qk+1
∑K− k

l=1
q2(l− 1)

)

∼ qk+1

(7) 

It means o(Fk) = (qk− 1)NL(1) + (qk+1)NL(2) , which is consistent with the 
assumption and the previous specific considerations. Thus o

(
NL(2)

k

)
=

q2o
(
NL(1)

k

)
. It should be stressed that from the analysis of orders Fk with 

respect to q does not automatically result |Fl| >> |Fk| for l < k and 
q << 1. This is shown, for example, by the numerical solutions of the 
system Eq.(4), where for close l and k we observe |Fl| > |Fk| rather than 
the strong inequality and Fk ∼ Fl for q ∼ 0.0001, and also Fk ∼ 1 for 
small k. However, we assume that q is small enough so that for the above 
relations |Fl| >> q|Fk|. The term NL(2)

k is two orders of magnitude with 
respect to q smaller than NL(1)

k . From a formal point of view it could be 
omitted in the system Eq.(4) (triangular matrix over the diagonal in Eq. 
(5)). The first term is the source term for the equation on Fk and does not 
depend on Fk. If NL(2)

k is omitted, all previous modes provide energy to Fk 

but they do not change themselves. For example, F1 generates F2 

(without losing energy), further and similarly F1 and F2 generate F3 

without losing energy. The change in the amplitude of the Fk mode due 

to the loss of energy on the generation of the remaining modes is 
described by NL(2)

k . Thus, omitting NL(2)
k means breaking the law of en-

ergy conservation. 
Summarizing Eq.(1) is a nonlinear equation of order q with respect to 

the full perturbation P (vector F := [.., Fk, ..]). Nonlinear “source” vector 
NL(1) :=

[
..,NL(1)

k , ...
]

with respect to the full disturbance F is of the same 

order. The non-linear “source” vector NL(2) :=
[
..,NL(2)

k , ...
]

is of the 
order of q2 with respect to the full perturbation. That is, o(NL(2)) = q⋅ 
o(NL(1)) and for components of the same order k o

(
NL(2)

k
)
= q2o

(
NL(1)

k
)
. 

A schematic picture of the relationship between the orders of the non- 
linear interaction vectors and between the components of these vec-
tors is shown in Fig. 1. 

Equation (1) was derived from the general equations of the isotropic 
medium, omitting the terms of the order q2 with respect to the full 
disturbance (of the q order with respect to the nonlinear term in Eq. (1)). 
Formally, this means that NL(2) is out of the range of precision for which 
Eq. (1) was derived and o(NL(2)) = q⋅o(q∂ττP2). According to the above 
considerations, the solution of the system Eq.(4) is presented in the form 

Fk = e− â(k)z(Ck + Dk) (8) 

where o(Dk) = q2o(Ck). Substituting Eq. (8) into Eq. (4) and dividing 
by 2ik we get 
(

∂z +
1

2ik
Δ⊥ +

1
2ik

∂zz

)

Ck = q
k
4i

∑k− 1

l=1
Ck− lCleâg(k,l)z (9)  

(

∂z +
1

2ik
Δ⊥ +

1
2ik

∂zz

)

Dk = q
k
2i

(
∑K− k

l=1
Ck+lC*

l e− âd (k,l)z +
∑k− 1

l=1
DlCk− l êag(k,l)z

)

(10) 

where âg(k, l) := â(k) − â(k − l) − â(l), Re(âg) ≥ 0, âd(k, l) := â(k+
l) + â(l) − â(k)Re(âd) ≥ 0. For the non dissipative media âg(k,l) = âd(k,
l) ≡ 0. Examples âg and âd for classical absorption and some biological 

Fig. 1. Relations between nonlinear “source” vectors extracted on the basis of 
Eq. (5) and between components of these vectors (horizontal arrow). 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(2i∂z + 2iâ(1) + Δ⊥ + ∂zz)F1
(4i∂z + 4iâ(2) + Δ⊥ + ∂zz)F2

⋮

⋮
(2ik∂z + 2ikâ(k) + Δ⊥ + ∂zz)Fk

⋮

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
q
2
k2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2F*
1 2F*

2 2F*
3 ⋯ 2F*

k− 1 ⋯ 2F*
K− 1

F1 0 2F*
1 2F*

2 ⋮ ⋮
F2 F1 0 2F*

1

F3 F2 F1 0
⋮ ⋱

Fk− 1 Fk− 2 ⋯ F2 F1 0(k,k) 2F*
1 2F*

2 ⋯ 2F*
K− k

⋮ ⋱ ⋮
⋮ 0 2F*

1

FK− 1 FK− 2 ⋯ FK− k ⋯ F2 F1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1
F2
F3
F4
⋮
Fk
⋮

FK

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)   
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substances see Appendix A. On the basis of Eq.(9,10), it can be seen that 
the dispersion modulates spatially, amplitude and phase non-linear in-
teractions. The influence of âg is stronger because it concerns the 
equations Eqs. (9) of lower order respect q. 

The right side of Eq. (10) is of the order qk+1. Terms of the order qk+3 

and higher are omitted. However, for l ≥ 2 the first sum in Eq.(10) 
generates terms of the order qk+2⋅l− 1 and as a consequence only the 
Ck+1C*

1 term should be kept. 
In the case that there were o(Dk) = q⋅o(Ck)(not o(Dk) = q2⋅o(Ck)) 

and we limited ourselves only to determine Ck, we could talk only about 
an asymptotically strict solution Ck→Fk, q→0,q ∕= 0. Relation o(Dk) = q2⋅ 
o(Ck) is much stronger. Therefore, according to the above order analysis, 
it can be concluded that the exact solution of the system Eq. (5) is also 
one that is based only on Ck satisfying Eq. (9), it means Fk tends to Ck 
very quickly when q→0, q ∕= 0. We will call the Ck coefficients the “core” 
of the solution, while coefficients Dk “supplement”. Nevertheless, C1 
should be considered an exception as it is a solution of a linear problem. 
The harmonics are generated at a cost of the energy of the fundamental 
component. It is therefore necessary to add an explicit form to the 
description of the solution, at least D1 so to get F1 and a description of 
the basic process of energy transfer from the fundamental mode to the 
remaining ones. Next we present the solutions for Dk in particular, in the 
explicit form for D1 and D2. 

2.2. The basic properties of Gaussian beams 

The Lager polynomials of the order 0 (popular Gauss) are of the form 

Ψk(z, r) =
zN

ς(z)exp
(

−
kr2

2ς(z)

)

, ς(z) := z0 + i(z − ze) (11)  

=
zN

ς(z)exp

(

−
r2

d2
k (z)

)

exp
(
− ikr2

2Rk(z)

)

(12) 

where, zN := |ς(0)| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2

0 + z2
e

√
is the normalization constant that 

|Ψk(0,0)| = 1, z0 is the Rayleigh length which characterize convergence- 
divergence of the beam, ze is the position of the maximum and the waist 
of the beam Ψk(ze,0) = zN/z0, ς(z) is the Kogelnik parameter [30], d2

k(z) :
= |ς(z)|22/z0k = d2

0k|ς(z)|
2
/z2

0, R(z) := |ς(z)|2/(ze − z). The waist of the 
beam is d0k := dk(ze) =

̅̅̅̅̅̅̅̅̅̅̅̅
2z0/k

√
= d0/

̅̅̅
k

√
, d0 =

̅̅̅̅̅̅̅
2z0

√
. In dimensional 

units d′

0k = d′

0/
̅̅̅
k

√
, d′

0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2z′

0/K′

0

√

. Although z0 is the basic parameter, 
we can set it for all k through task d0, which is intuitively more palpable 
and it makes easier to make the beam similar to other types of beam. The 
Gaussian beam satisfies the equation (wave diffusion) 
(

∂z +
1

2ik
Δ⊥

)

Ψk = 0 (13) 

in hemi space z ≥ 0, assuming a boundary value Ψk(0,r), |Ψk(0, 0)| =
1. For the same boundary conditions (Gaussian) the function 

ΨH
k := −

1
2π

∫∞

0

∫2π

0

Ψk(0, s)
z
R

∂R
eik(R− z)

R
dϕsds (14) 

where R :=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2 + r2 + s2 − 2rscos(ϕ)

√
, is the Rayleigh-Sommerfeld 

solution of the Helmholtz Eq.(15) for Dirichlet boundary conditions, 
(

∂z +
1

2ik
Δ⊥ +

1
2ik

∂zz

)

ΨH
k = 0 (15) 

It means that Ψk(z, r) ∕= ΨH
k (z, r) and Ψk don’t satisfy Eq.(15). How-

ever if kz0 = (d0k)2
/2≫1 then Ψk ≅ ΨH

k and Gaussian beams are very 
good approximations of the solution of the Eq.(15) see Appendix B. For 
k = 1, this condition occurs even for highly focused (converging - 
diverging) beam. In non-normalized units, for k = 1, k′

= K′

0 , supposing 

d′

0 = 2π/K′

0 we obtain z0 = K′

0z′

0 = (d′

0K′

0)
2
/2 = 2π2≫1. A large relative 

phase error occurs in an area where the Gaussian beam amplitude is 
negligibly small. 

Even more so, under the described conditions, for k > 1 the 
approximation of Eq.(13) of the Helmholtz operator is justified. Typi-
cally, replacing the Helmholtz operator Eq. (15) with the wave diffusion 
operator Eq. (13) is called a paraxial or parabolic approximation. The 
omission ∂zz averages the spatial distributions of the disturbance along 
the axis z (ie “elimination” of the Fresnel zones between the boundary 
condition surface and the far zone). Hence, for smooth boundary con-
ditions, in Helmholtz’s description, these zones are poorly manifested, 
and in the case of Gaussian conditions not at all, and the approximation 
describes well the convergent-divergent beams. 

For classically absorbing media in approximation Δ ≅ Δ⊥, from Eqs. 
(1), (4) we get the so-called KZK model [5,12,14]. Here we assume that, 
1/kz0 is a small parameter and z0 = K′

0z′

0 ≥ π2 holds. We will use the 
following properties of Gaussian beams 

Ψk− lΨl =
zN

ς(z)Ψk (16)  

Ψk+lΨ*
l =

ς(z)
zN

Ψk|Ψl|
2
=

zN

ς(z)*Ψkexp

(

−
2r2

d2
l (z)

)

=
z2

N

|ς(z)|2
exp

(

− r2⋅
kς(z)*

+ 2z0l
2|ς(z)|2

)

(17)  

3. Solutions 

3.1. Solution for Ck 

We search the solutions of the system Eq. (9) in the form 

Cl(z, r) = Wl(z)Ψl(z, r)W1(z) = 1Wl(0) = 0 (18) 

After substituting Eq.(18) into Eq.(9), using of Eq.(16) we obtain 

∂z

(

1 +
1

2ik
∂z

)

Wk = Sk :=
− iqzN

4
k

ς(z)
∑k− 1

l=1
Wk− lWleâg(k,l)z (19) 

The solution of this equation is 

Wk = 2ik
∫z

0

e− 2ik(z− z′ )W̃kdz′ W̃k(z) :=
∫z

0

Sk(z
′

)dz
′ (20)  

Wk = W̃k −

∫z

0

e− 2ik(z− z′ )∂z′ W̃kdz′

= W̃k −
∂z′ W̃k

2ik
+ ... (21) 

Due to the form of W1 and S2, it is reasonable to assume that all 
∂z′ W̃k = Sk are slowly varying functions with respect to the quickly 
varying exponential factor. Then we will show that |∂zWk/2k| ∼
o(1/z0)|Wk| or |∂zzWk/2k| ∼ o(1/z0)|∂zWk|. So we have 
Wk = W̃k +o(1/z0) and 

Wk =
− iqzNk

4

∫z

0

∑k− 1

l=1
Wk− lWleâg(k,l)z

′ dz′

ς(z′
)
k = 2, 3, ..., (22)  

Wk =
− qzNk

4

∫z

0

(
∑k− 1

l=1
Wk− lWleâg(k,l)z

′

)

∂z′ ln
(ς(z′

))

ς(0)

)
dz′ (23) 

The system of integral equations Eq.(22), (23) is also a recursive 
solution of the differential system formed from Eq.(9). Knowing the 
previous Wl, l < k allows to calculate Wk. Equations Eq.(20), (21) are 
exact solutions in the NAE model. For a medium with classical absorp-
tion, Eq.(22), (23) are strict solutions of the parabolic approximation of 
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NAE, in particular of the KZK model. Below we present examples of 
unraveling this recursion, that is, determining the Wk without referring 
to the previous ones. Strictly speaking, we reduce functional recursion to 
a series of recursively determined constants. 

Eq.(23) suggests changing the measure from dz′ to dw = dln[⋅], w =

ln[ς(z)/ς(0)] . In the case of a medium that is lossless or has an absorption 
coefficient a(k) = α1k, and Im

(
âg(k, l)

)
zpr≪π, where zpr is the propa-

gation range along z axis. Eq.(23) takes the form 

Wk =
− qzNk

4

∫w

0

∑k− 1

l=1
Wk− l(w

′

)Wl(w
′

)dw
′k = 2, 3, .... (24) 

It is easy to see that the system Eq.(24) has a solution in the domain 
of monomials with respect to w. Omitting details, substitution into Eq. 
(24) expressions 

Wl = bl(qzNw)l− 1l = 2, 3, ..., k, ...W1 = 1 (25) 

shows that they are solutions of the system Eqs. (23), (24) if 

bk =
− k

4(k − 1)
∑k− 1

l=1
bk− lblb1 = 1 (26) 

Where bk, k = 1,2,…, is an alternating sequence of numbers 1, 
− 1/2, 3/8, − 1/3, 125/384,… with initially decreasing and then for k >

5 increasing absolute values. For k→∞, |bk/bk− 1| < 3/2. In fact, it is Eq. 
(26) that is the basic element of the description of the nonlinear gen-
eration of harmonics (in the case of excitation with a continuous wave). 

Wk(z) = bk⋅(qzN ⋅w(z))k− 1k = 1, 2, 3, .... (27)  

w(z) = ln
[ς(z)
ς(0)

]
= ln

[

1 +
i⋅z

ς(0)

]

(28) 

In Appendix C, the range of the applied approximations allowing the 
omission of ∂zzWk was determined. In order to solve the recursion of Eq. 
(23) in the general case of the loss medium we proceed as above. We use 
substitutions 

Wl(z) = b̃l(qzNw(z))l− 1 (29) 

where now b̃l = b̃l(z). From Eq. (23), we get a recursive solution on 
b̃k 

b̃kw(z)k− 1
=

− k
4(k − 1)

∫z

0

∂z′
(
w(z′

)
k− 1)

(
∑k− 1

l=1
b̃k− lb̃leâg(k,l)z

′

)

dz′ (30) 

Integrating by parts we get ̃bk in the form corresponding to Eq. (26), 

b̃k +
k

4(k − 1)
∑k− 1

l=1
b̃k− lb̃lêag(k,l)z =

k
4(k − 1)

∫z

0

(
w(z′

)

w(z)

)k− 1

∂z′
∑k− 1

l=1
b̃k− l b̃leâg(k,l)z

′

dz′

(31) 

b̃1(z) = b1 = 1. Now, dispersion has a significant influence on the 
description of non-linear interactions and the generation of harmonics, 
and ̃bk(z) is a sequence of complex functions with real boundary values. 
For z = 0, the term on the right of Eq.(31) is zero, hence b̃k(0) = bk +

0⋅i. Further discussion of Eq. (31) is provided in the conclusions. For the 
above-discussed case ag(k, l) = 0, Eqs.(30), (31) change into Eq.(26). 

The functions Ck(z, r) have the form, 

Ck(z, r) = Wk(z)Ψk(z, r) = (qzNw(z))k− 1⋅b̃k(z)⋅Ψk(z, r)

= (q⋅w(z)⋅ς(z))k− 1⋅b̃k(z)⋅Ψ1(z, r)k  

=
(

q⋅zN ⋅ln
[ς(z)
ς(0)

] )k− 1
⋅b̃k(z)⋅

zN

ς(z)exp
(

−
kr2

2ς(z)

)

k = 1, 2, 3, ... (32) 

The Ck functions satisfy the required boundary conditions. 

3.2. Solution for Dk 

After substituting Eq.(32) into Eq.(10), we obtain a recursive system 
of equations on Dk. In the wave diffusion equation approximation, the 
solution is of the form Dk = DC

k + DD
k , where D1 = DC

1 . The explicit parts 
of Dk, are given below 

DC
k =

(qzN)
k+1zNk
2i

∫z

0

w(s)k

|ς(s)|2
∑K− k

l=1
(qzN |w(s)|)2(l− 1)b̃k+l(s)b̃

*
l (s)e

− âd (k,l)sGk,l(z,s,r)ds

(33)  

Gk.l(z, s, r) :=
|ς(s)|2

ξk,l(s)Zk,l(z, s)
exp
(

− r2k
Zk,l(z, s)

)

(34)  

ξk,l(s) = (ς(s)*
+ 2z0l/k),Zk,l(z, s) =

|ς(s)|2

ξk,l(s)
+ i(z − s) (35) 

while DD
k is a solution of the following recursive system for zero 

boundary conditions 
(

∂z +
1

2ik
Δ⊥

)

DD
k = q

k
2i

∑k− 1

l=1
DlCk− l êag(k,l)zk = 2, 3, ...,K, ... (36)  

DD
k (z, r) = q

k
2i

∫z

0

∫∞

0

Gk(z − s, r, ρ)
∑k− 1

l=1
Dl(s, ρ)Ck− l(s, ρ)eâg(k,l)sρdρds (37)  

Gk(z, r, ρ) := k
iz

exp
(

ik
2z
(
r2 + ρ2)

)

J0

(
krρ
z

)

(38) 

As one can easily see, sequentially for each k, the integration with 
respect to ρ can be done based on equation 11.4.29 in [31]. From the 
above, it follows that all Dk have a Gaussian transverse profile and are k- 
fold integrals with respect to the coordinate z. 

Since the dependence of DC
l on r is explicitly defined by Eqs.(33),(34) 

then the part of the integral Eq.(37) with respect to ρ can be calculated. 
Particularly, the explicit form of DD

2 is obtained. The result is shown in 
Appendix D. Thus we have F2 = C2 + D2 = C2 + DC

2 + DD
2 . 

The quantity D1 = DC
1 is important for the description of nonlinear 

interactions because it determines the change in amplitude of the 
fundamental component resulting from the generation and transfer of 
energy to the harmonics. In general, the energy exchange between the 
fundamental and the harmonics is proportional to the difference be-
tween the power intensity of the solution of a linear and a nonlinear 
problem, i.e. 

δI(z, r) = |C1|
2
− |F1|

2
= − 2Re(C1D1) − |D1|

2 (39) 

The importance of D1 for the solution F1 and the energy flow direc-
tion map (fundamental component ↔ harmonics) are illustrated in the 
next section. According to the remarks after Eq.(10), for consistency, 
only the l = 1 component should be preserved in Eq.(33). 

3.3. Convergence of the solution 

Based on the considerations in Chapter 2, we have 

|Fk| = exp( − a(k)⋅z)|Ck + Dk|

≤ exp( − a(k)⋅z)⋅(|Ck| + |Dk| ) (40)  

= exp( − a(k)⋅z)⋅|Ck| + o
(
q2)

Mathematically rigorous demonstration that |Fk| ≤ |Ck| if possible is 
very difficult or tedious. From the considerations in Chapter 2, the 
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“supplement” Dk, o(Dk) = q2⋅o(Ck) describes the transfer of energy from 
Fk to the others, especially the newly generated ones. So, based on 
physical considerations it should be |Fk| ≤ |Ck|. Also, the results of nu-
merical calculations, presented below, confirm this inequality. That is, 
the terms of the series Eq. (3) are majorized by |Ck|exp( − a(k)⋅z) and the 
convergence of the series Eq.(3) is characterized by the quotient εk of the 
sequence Ck⋅exp(− a(k)⋅z) in Eq.(8) for k→∞ 

εk(z) = q⋅zN ⋅|w(z)|⋅

⃒
⃒
⃒
⃒
⃒
⃒

b̃kexp( − a(k)⋅z)
b̃k− 1exp( − a(k − 1)⋅z)

⃒
⃒
⃒
⃒
⃒
⃒

(41) 

For εk(z) < 1, (k→∞) the series Eq.(3) converges to a regular func-
tion. At points z where εk(z) ≥ 1, the solution on P“blows up” that is, it 
takes a distributional character. The form εk based only on Ck is 
particularly simple and overtly shows the factors that determine the 
nature of convergence of a strict series based on Fk. Defining εF

k :=

|Fk+1/Fk| with overtly typed Dk does not mean that we obtain an 
expression that is more quantitatively accurate or that brings new 
qualities to the analysis. Rather, we obtain an expression that is not clear 
with large sizes. It can be shown that εF

k = εk(1+ o(q2)). The core Ck of 
the solution is therefore the carrier of the analytical properties of solu-
tion Fk. 

4. Numerical calculations and solutions comparison. 

In the following, we present the numerical solutions of Eqs.(1),(4), 
(5) and compare them with the obtained analytical solution. The nu-
merical algorithm to solve the above equations is based on the full 
Helmholtz operator [1,28,29]. We recall that the analytical solution on 
Fk of the form Eq.(8), Eq.(32) was obtained by approximating the 
Helmholtz operator in Eqs.(4,5,9,10) with the wave diffusion operator 
Eq.(13) (quasi parabolic). 

A medium with material parameters similar to water, speed of sound 
c′

0 = 1500 m/s, density g′

0 = 1000 kg/m3, nonlinearity parame-
terγ − 1 = B/A = 5, absorption parameter α′

2 ≅ 2.8⋅10-14 Np/m was 
assumed. Based on the data in Appendix A, dispersions of the speed of 
sound were omitted. The following boundary conditions corresponding 
to a Gaussian beam Eq.(12) were used for k = 1, z′

e = 80 mm, z′

0 = 12.47 

mm which gives a beam width at the boundary d′

1(0) ≅ 9.147 mm and 
at the waist d′

1(z
′

e) ≅ 1.41 mm, z′

N = |ς′

(0)| = 80.97 mm. The excitation 
frequency was equal to ω′

/2π = Ω′

0/2π = 3 MHz, K′

0 = 12.57 1/mm. 
After normalization α2 ≅ 2.01–10-5, ze = K′

0z′

e=1005.31, z0 =

K′

0z′

0=156.7, zN =z′

NK′

0 ≅ 1017. Calculations were performed for two 
cases of boundary pressures P′

0 = 0.18 MPa and P′

0 = 0.20067 MPa, 
corresponding to q = 2.8⋅10-4 and q = 3.122⋅10-4, and in a limited range 
for P′

0 = 0.22 MPa, q = 3.422⋅10-4. 
The plots of the function w(z) := ln[ς(z)/ς(0)] and for example w2, 

w5, w10 are shown in Fig. 2 
It should be noted that all ̃bk(z)⋅exp(− a(k)z) are decreasing. It can be 

seen that with increasing z the index of the minimal function 
⃒
⃒
⃒
⃒b̃k

⃒
⃒
⃒
⃒ in the 

Fig. 2. Harmonic’s generation. Example solution factors of Eq.(19) forming the harmonic form of Eqs.(29,30,31,32) along the z axis w(z) = ln(ς(z)/ς(0))

Fig. 3. Harmonic’s generation. Solutions of Eq.(31) describing harmonic gen-
eration in the case of classical absorption. Subsequent numbers (1)…(8) denote 
the moduli of the functions b̃k(z), bk = b̃k(0), k = 1, ...,8, of the solution in the 
case of either an ideal medium or one with absorption linearly dependent 
on frequency. 
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set b̃k, decreases. In the range z in Fig. 3, from k = 5 to k = 3. 
Plots of the function ε(z) = ε∞(z) ≅ ε(z)k=50 Eq.(41) for the 

applied pressures are shown in Fig. 4.a. The approximation follows from 
the number of b̃k(z) calculated and the numerically observed rapidly 
decreasing changes in ε(z)k for k > 30 Fig. 4.b. Of course, such ap-
proximations are reasonable if the last factor in Eq.(41) is bounded for 
k→∞. 

As can be seen in Fig. 5.(b) in the limit of classical convergence, the 
Fourier spectrum does not go to zero. For this case Fig. 6 showes the 
spatial distribution of the first few Fourier components of pressure. 

A comparison of axial and radial distributions of Fourier coefficients 
of the analytical and numerical solution is shown in Fig. 7. and Fig. 8, for 
pressures P′

0 = 0.18 MPa and P′

0 = 0.20067 MPa. 
We take the numerically obtained solution F1 as reference. We find 

from Fig. 7,8. that the supplement D1 = DC
1 of Eq.(33) leads to an 

analytical solution F1 = C1 +DC
1 consistent with the numerical one. This 

confirms the correctness of Eq.(33). For k ≥ 2 in the range z to ∼ ze, DC
k 

although not a complete addition to the solution improves it bringing 
Fk = Ck +DC

k closer to the numerical Fig. 7,8. For P′

0 = 0.18 MPa k ≥ 3 
and z > 0.1 m considering only DC

k even worsens the solution relative to 
the “core”Ck. This is all the more evident for P′

0 = 0.20067 MPa. 
The comparison of pressure time profiles on the propagation axis at 

different distances from the source at z = 0, for pressures P′

0 = 0.18 MPa, 

Fig. 4. Convergence conditions. Convergence of series Eq.(32) and convergence characteristics of series Eq.(3). (a) - Dependence of the series quotient on pressure 
and coordinate. (b) - Stabilization of the quotient of the series εk for increasing wave number k as a function of pressure and at a distance for which the limit of 
classical convergence εk = 1 occurs. 

Fig. 5. Fourier spectra Ck in focus ze and in maximum of the function ε(z)k=50(Fig. 4.a.), for pressure (a) -P′

0 = 0.18 MPa and (b) -P′

0 = 0.20067 MPa. On axis, 
normalized amplitudes versus normalized frequencies. 

Fig. 6. Spatial distributions (axial z- radial r) of numerically calculated of the 
fundamental and the harmonics components of the Gaussian beam for the 
pressure P′

0 = 0.20067 MPa. 

J. Wójcik                                                                                                                                                                                                                                          



Ultrasonics 122 (2022) 106687

9

and P′

0 = 0.20067 MPa is shown in the Fig. 9. and Fig. 10. 
In Fig. 9, we observe very good agreement between the analytical 

and numerical results, even though ε50 ≅ 0.9 and no DD
k applications. 

The Fig. 10. corresponds to the situation where the limit of classical 
convergence ε50 = 1 is reached. We observe a very good agreement of 
the wave profiles in the range z ≤ ze. In the z ∈ (90,100)mm range ε50 is 
very close to or equal to 1 what is marked by characteristic peaks visible 
on the wave profiles. The solution not including DD

k , significantly de-
viates from the numerical one in terms of the mapping of the rising edge. 
These edges are formed by the high frequency components of the 
spectrum. Although the occurrence of Blow up in Fig. 10 for the 
analytical solution is due to omission of DD

k , this effect is present in 
numerical solutions and is observed experimentally, however, for higher 
pressures. Fourier spectra of such time profiles are of the type presented 
in Fig. 5.b. down. 

The sign map of Eq.(39) is shown in the Fig. 11. Although it is not 
visualized, the intense energy transfer to the harmonics takes place in a 
narrow region along the propagation axis and in the focal area. 

5. Conclusions and discussion 

A exact solution of the parabolic approximation of NAE equation for 
any dispersive (dissipative) medium was determined. The approxima-
tions used were justified. In particular, for classical absorption it is a 
exact solution of the KZK equation. Gaussian boundary conditions and 
time excitation of the medium with a sinusoidal continuous wave form 
were assumed. 

The solution has the form of a Fourier series Eq.(3) with coefficients 
Fk = exp(− â(k)z) ⋅(Ck + Dk) Eq.(8). Where the dominant “core” of the 
solution, the components of Ck, has been determined in explicit form. It 
was shown that for the “supplement” Dk of the solution gives o(Dk) =

q2⋅o(Ck). That is, the properties of the “supplement” Dk (e.g., amplitude) 
decay q2 times faster than the core Ck when q→0. As stated at the end of 

chapter 2.1, Fk tends to Ck very quickly when q→0, q ∕= 0. Formally, the 
forms of Dk = DC

k +DD
k including “explicitly” all DC

k have been deter-
mined (by which we mean that the integral with respect to ρ in the 
formal solutions has been calculated). In the important case k = 1 this 
gives D1 = DC

1 , DD
1 ≡ 0. On this basis, the energy flow between the 

fundamental and harmonic components is described - see Eq.(39) and 
Fig. 11. Until now, this effect could only be analyzed numerically. It has 
also been explicitly determined DD

2 that is D2 = DC
2 + DD

2 . However we 
obtained factorization for DD

2 we did not use it to demonstrate the effect 
on the solution. It does not have the same important descriptive and 
quantitative meaning as DC

1(or DC
2). 

As shown by the relation between εF
k and εk in section 3.3, and also 

due to the asymptoptic properties of the solution (F⇒C for q→0, q ∕= 0) 
the analytic and essential properties of the presented solution Fk are 
concentrated in the “core” Ck and in D1 = DC

1 describing the total energy 
transfer from F1 to the remainder and the marginal off-axis energy re-
turn transfer as seen in Fig. 11. 

Of course, if we are interested in a more precise description of the 
energy exchange between Fk and the others (not only the explicitly 
available description DC

k ) then a recursive complement DD
k for k ≥ 2 Eq. 

(37), Eq.(D1) is necessary. In principle, however, a deeper analysis of 
DD

k k ≥ 2, due to the high complexity of Eq.(D1), requires a separate work 
with a large numerical contribution. Moreover, the visualization of the 
influence DC

k on the solution was intended to check the correctness of the 
derivation of these complex analytical formulas since only in the small 
range k the numerical solution can be considered as a reference. If for 
k = 1 no consistency was obtained it means that an error was made for 
all k. 

From the numerical calculation and also from the effect of the 
correction on the total sum it follows that |Fk(z,0)| ≤ |Ck(z,0)| and the 
convergence characteristic determined on the basis of the series Ck also 
applies to the full solution of Fk(z,0). 

In the compared numerical and analytical solutions, we applied 

Fig. 7. Comparison on-axis Fourier components of the normalized pressure distributions without correction (a) and with correction (b), for boundary pressures P′

0 =

0.18 MPa on the top figer and P′

0 = 0.20067 MPa on the down. The boundary values for z = 0 corresponds to 1 
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pressures that give large or borderline values of the classically under-
stood convergence condition of the solving series Eq.(41). The analysis 
of the spectrum in Fig. 5.b (down) and the time profiles in Fig. 10 (the 

borderline case of classical convergence) suggests that the solution in 
the spatial regions where εk→∞ > 1 can be represented as a sum of the 
regular functions and distribution. The obtained results show that, due 

Fig. 8. Comparison radial Fourier components of the normalized pressure distributions in the focal plane z′

= z′

e = 80 mm, without correction (a) and with 
correction (b), for boundary pressures P′

0 = 0.18 MPa on a top figures and P′

0 = 0.20067 MPa on the down. The boundary values for z = 0 corresponds to 1. 

Fig. 9. On-axis Waveforms for boundary pressure P′

0 = 0.18 MPa (=1 in normalized units). Analytical solutions - continuous lines, numerical solutions - dashed lines.  
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to the relations between the orders of Ck and Dk, even the complete 
omission of Dk leads to a stronger solution than the asymptotically 
analytical one. That is C⇒F for q→0,q ∕= 0 (instead of C→F). 

Equation (31) (recursive solution) describing the generation of new 
harmonics from existing ones, reveals a new surprising aspect of the 
influence of dispersion. We can speak of external absorption finally 
suppressing the beam (real part of the exponential factor in Eq.(8)) and 
internal absorption expressed by the coefficient ag(k, l) = Re(âg(k, l)), 
enhancing the harmonic generations by amplifying the coefficients 
b̃k(z). According to the results of work [11], an increase in the number of 
harmonics increases the dissipation of the acoustic field energy. 
Dispersion, in addition to influencing the harmonic generation level it-
self, incorporates, through w(z) functions, the geometric parameters of 
the beam z0 and ze into the description. In the case of linear frequency- 
dependent absorption, characteristic or similar to the absorption of a 
number of organic substances, intrinsic absorption does not occur ag(k,
l) ≡ 0(as in a lossless medium). However, there is a spatial modulation 
of the phase of the components describing nonlinear interactions in Eq. 
(31). 

It is interesting that ̃bk(z) Eqs.(26),(31) have a minimum with respect 
to the index (wave number), which with increasing z shifts towards 

smaller k. Note that Eqs.(26),(30), (31) are invariant due to trans-

formations b̃k(z) = b̃
′

k(z)⋅ck, c ∕= 0+i0 is a complex constant. 
The transverse sizes of the harmonic beams are given by d0k :=

dk(ze) = d0/
̅̅̅
k

√
, which follows from the property of Gaussian beams. 

Nevertheless, the property of d0k := dk(ze) ∼ 1/
̅̅̅
k

√
for other types of 

beams seems to be preserved, which is confirmed by the results of nu-
merical harmonic calculations. 

In the case of impulsive boundary conditions, the form of the solution 
and the procedure for its factorization are identical to those presented 
above. However, the sense of the indices in Eq.(3) change, since the 
boundary spectrum is composite due to the limited duration and the 
relationship between pulse duration and repetition time. The harmonic 
bars are similarly complex. The index corresponds to the pulse repetition 
frequency (ω′

1/2π). The carrier frequency (envelope filling) corresponds 
to some index k = kc (pulsation ω′

c = kcω
′

1 in not normalized units). The 
time spectrum of the excitation and the initiating pulse is centered 
around kc. The harmonic bars are clustered around k = km := m⋅kc, m =

1,2,3, ..., although these are not necessarily local maxima of the spec-
trum see [11] (overtone generation). 
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I sincerely thank Dr. Norbert Żołek for help in editing this work. 
Thank you very much to the anonymous reviewers. Fragments of this 
work appeared thanks to their suggestions and comments, enhancing the 
value of the work.  

Fig. 10. On-axis waveforms for boundary pressure P′

0 = 0.20067 MPa (=1 in normalized units). Analytical solutions - continuous lines, numerical solutions - 
dashed lines 

Fig. 11. Map of energy exchange between the fundamental component F1 

(initiating) and harmonics. Green - area of energy transfer to harmonics; deep 
blue - from harmonics to fundamental component. 
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Appendix A 

In the following formulas, we can either assume that the dependent and independent variables are dimensional or, for c0 = 1, assume that they are 
normalized as shown in Chapter 2. 

For a Maxwell medium that remembers viscous stresses, we have  

AP =
− η

2c0tr

∫t

− ∞

e− (t− t′ )/tr ΔP(x, t′ )dt
′ A(x, t) := − η

2c0tr
e− t/tr Δδ(x). (A.1) 

For tr→0, (1/tr)exp(− t/tr)→δ(t) . By calculating the generalized Fourier transform Eq.(A.1) 

Fx,t[A] =âς,ω
(ς, ω̂) =

η
c0

ς2

1 − iω̂tr
(A2) 

The dispersion equation for the D’Alambert wave equation with dispersion has the form 

ς2 −
ω̂2

c2
0

[

1 + i2
c0 âς,ω

ω̂

]

= 0 (A3) 

Its solution ς(ω̂)
2 for âς,ω of the form Eq.(A.2) is 

ς(ω̂)
2
=

ω̂2

c2
0

1
1 − i2c0α2⋅ω̂/(1 − iω̂tr)

α2 := η
/

c3
0 (A.4) 

Thus 

âω
(ω̂) := âς,ω

(ς(ω̂), ω̂) =
α2 ω̂2

1 − iω̂(2c0α2 + tr)
(A.5) 

and 

â(ω) = α2ω2(1 + iω(2c0α2 + tr))

1 + ω2(2c0α2 + tr)
2 (A.6) 

Based on Eq.(A.1) for tr = 0 operator Ax,t→Ax = − (η/c0)Δ is local in space and corresponds to the Navier-Stokes model with hybrid kinematic 
viscosity η, (accounting for thermal conductivity) and thermo viscous stress c0Ax = − ηΔ. While the operator At corresponding to âω is not local in 
time. However, the nonlocality and full dispersion associated with the h(ω) coefficient is of order α2 and can almost always be neglected. This justifies 
(for tr = 0) the commonly used model of classical absorption At := α2∂tt + o(α2), which is in fact not analytically correct. For the expressions defined 
below Eq.(10), in normalized units c0 = 1, ω→k, l, we obtain from Eq.(A.6), âg := ag + ihg, âd := ad +ihd where: ag(k, l) ≅ α22l(k − l), hg(k, l) ≅

6α2
2kl(k − l), hg/ag ≅ 3α2k, ad(k, l) ≅α22l(k+ l), hd(k, l) ≅2a2

2l(3k2 + 3kl+ l2), hd/ad ≈ 3α2k, l < k. For water α2 = 2.5⋅10− 14Np/(m⋅Hz2) 2c0α2 ≃ 7.5⋅ 
10− 10 s. In normalized units and for Ω′

0/2π = 3MHz α2 = 1.79⋅10− 5. Thus, in the band up to 100 MHz (k ≅ = 35) h(g,d)/a(g,d) ≅ 3α2k≤ 5.4⋅10− 3 and the 
amplitude modulation effects of nonlinear interactions far outweigh those of phase modulation. On this basis, the calculations for water omit hg and hd. 

For many organic (biological) media, the following interpolation of the absorption coefficient is assumed from measured data a(ω) = α1|ω|, ω ∈ [0,
∞). We will determine the full dispersion using the method of analytical extensions (see [32]). We have |ω| = ω⋅sig(ω) = ω(− H(− ω)+ H(ω)), H(⋅) is 
the Heaviside distribution. Based on [32] Ĥ(ω̂) = − (1/2πi)ln(− ω̂) and Ĥ(ω̂) = (1/2πi)ln(ω̂) are analytic extensions of H(ω) and H( − ω) respectively. 
Thus analytical form of a(ω) = α1|ω| is 

âω
(ω̂) = − α1(ω̂/2πi)(ln(ω̂) + ln( − ω̂)) (A.6) 

The real and imaginary part of the dispersion coefficient is obtained by determining the jump of the dispersion function on the real axis (see [32]), 

a(ω) = lim
ε→0

(âω
(ω + iε) − â(ω − iε)) = α1|ω| (A.7)  

h(ω) = lim
ε→0

(âω
(ω + iε) + â(ω − iε)) = (2α1/π)ωln(|ω|) (A.8) 

In the works [11,26] it was shown that the absorption operator in spatial coordinates, (corresponding to âς
(ς)) has the form Ax =

(α1/π)∇⋅
[(

x/|x|4
)
⊗
x
...
]
. 

Analogously to classical absorption we have âg = 0 + ihg, where taking into account Eq.(A.7) and Eq.(A.8) hg(k, l) =

α1(2/π)ln
[
(k/k − l)k⋅(k − l/l)l

]
≤ α1(2/π)kln(2), âd(k, l) = 2α1l+ i(2α1/π)ln

[
(k + l)k+lll/kk

]
, hd < (2α1/π)⋅(2k − 1)ln(2k − 1), 1 ≤ l < k. For blood 

α1 ≅ 5⋅10− 6 Np/(m⋅Hz). In normalized variables α1 ≅ 1.2⋅10− 3. 
Finally, note that dispersion is a linear phenomenon. However, it occurs under non-linear propagation conditions and one should speak rather 

about quasi-dispersion. Solutions of the quasi-dispersion equations corresponding to NAE are of the form ς = ς(ω̂)+o(q) [11,26]. So if the dispersion is 
not a given function of only frequencies, then an attempt to go to such a description in the indicated manner may require the omission of non-linear 
terms. However, please note that it may be o(â) ∼ o(q) . 

Appendix B 

For finite radius rg of circular area integration (cut beam) and for on the axial distributions r = 0 the Eq.(14) takes the form 

ΨH
k (z) := ΨI

k(z) − ΨII
k (z)
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= −
zN

ς(0) ze− ikzexp
(

kz2)

2ς(0)

)

⋅

⎛

⎜
⎝

∫∞

z

−

∫∞

zg

exp
(
− kR2

2ς(0)

)

∂R
eikR

R
dR

⎞

⎟
⎠ (B.1) 

where zg = zg(z) :=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2 + r2

g

√
. Integrating by parts we obtain for the first integral in Eq.(B.1) 

ΨI
k(z) :=

zN

ς(0)

(

1 −
zk

ς(0)exp
(

kz2

2ς(0) − ikz
))∫∞

z

exp
(
− kR2

2ς(0) + ikR
)

dR (B.2)  

=
zN

ς(0)

⎛

⎜
⎜
⎝1 −

zk
ς(0)

̅̅̅̅̅̅̅̅̅̅̅
2ς(0)

k

√

exp
(
− kς(z)2

2ς(0)

) ∫∞

− i
̅̅̅̅̅̅̅̅̅
k/ς(0)

√
ς(z)

exp
(
− ξ2)dξ

⎞

⎟
⎟
⎠dξ  

=
zN

ς(0)

(

1 − z

̅̅̅̅̅̅̅̅̅̅̅
k

2ς(0)

√

exp
(
− kς(z)2

2ς(0)

)
̅̅̅
π

√
⋅erfc

(

− i

̅̅̅̅̅̅̅̅̅
k

ς(0)

√

ς(z)
))

Similarly for ΨII
k (z)

ΨII
k (z) =

zN

ς(0)

(
z
zg

exp
(

k
(
ς
(
zg
)2

− ς(z)2)

2ς(0)

)

− z

̅̅̅̅̅̅̅̅̅̅̅
k

2ς(0)

√

exp
(
− kς(z)2

2ς(0)

)
̅̅̅
π

√
⋅erfc

(

− i

̅̅̅̅̅̅̅̅̅̅̅
k

2ς(0)

√

ς
(
zg
)
))

(B.3) 

For finite rg = rt := dk(0) = |ς(0)|
̅̅̅̅̅̅̅̅̅̅̅̅
2/z0k

√
the Eq.(B.1) represents realistic on axis field distribution generated by source radius rt, appodized by 

parabolic phase lens with focal length R(0). With growth of rg, the function ΨII
k (z) quickly disappears and for rg > 2rt, ΨII

k (z) ≅ 0. Using asymptotical 
expansion [31] 

erfc( − iξ) =
2̅
̅̅
π

√ exp
(
ξ2) 1

− 2iξ

(

1 +
∑

l=1

(2l − 1)!
ξ2l2l(l − 1)!

)

(B.4) 

we obtain for |ξ|2≫1 

ΨH
k (z) = ΨI

k(z) =
zN

ς(z)

(

1 +
ς(0)

kς(z)2 + ...

)

= Ψk(z)
(

1 +
ς(0)

kς(z)|ς(0)|Ψk(z) + ...

)

(B.5)  

ΨII
k (z) =

zNz
ς
(
zg
)
zg

exp
(

k
(
ς
(
zg
)2

− ς(z)2)

2ς(0)

)(

1 +
ς(0)

kς
(
zg
)2 + ...

)

(B.6) 

It follows from Eq.(B.5) that the difference and relative difference (on the axis) between the solutions of the Helmholtz and “wave diffusion” 
equations of Eq.(13) have estimation 
⃒
⃒ΨH

k (z) − Ψk(z)
⃒
⃒ ≤

zN

kz2
0
|Ψk(z)| (B.7)  

⃒
⃒
⃒
⃒
ΨH

k (z) − Ψk(z)
ΨH

k (z)

⃒
⃒
⃒
⃒ ≤

⃒
⃒
⃒
⃒

ς(0)Ψk(z)
|ς(0)|kς(z)

⃒
⃒
⃒
⃒ ≤

1
kz0

|Ψk(z)| (B.8) 

for every z. The maximum of the deviation of Ψk(z,0) from ΨH
k (z,0) is reached at z = ze and quickly goes to zero for z→0 and z→∞. 

Appendix C 

Based on the relation |∂zWk/2k| ∼ o(1/z0)|Wk| we request that z0⋅|∂zWk/2k| ≤ |Wk|. Hence, based on Eq.(28) we have 
⃒
⃒
⃒
⃒
(k − 1)z0

2kς(z)

⃒
⃒
⃒
⃒ ≤

⃒
⃒
⃒
⃒ln
[

1 +
iz

ς(0)

] ⃒
⃒
⃒
⃒ (C.1) 

It is easy to see that for sufficiently small z this inequality will not be satisfied. Using the expansion of the logarithm with respect to iz/ς(0) we have 
(for sure) for z/zN = z/|ς(0)| < 1 

z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2

0 + z2
e

√ <

⃒
⃒
⃒
⃒ln
[

1 +
iz

ς(0)

] ⃒
⃒
⃒
⃒ (C.2) 

Hence, if 

(k − 1)z0

2k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

z2
0 + (z − ze)

2
√ ≤

z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z2

0 + z2
e

√ (C.3) 

then all the more Eq.(C.1). Assuming the equality in Eq.(C.3), we obtain an equation that allows us to determine the limiting value of zb for which it 
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is satisfied. This equation can be strictly solved, however, it misses the point. It can be seen that inequality (C.3) is satisfied for z = z0. Thus we 
consider small values of z compared to zN. For 0 < z < z0 the left-hand side of Eq.(C.3) is almost constant compared to the right-hand side. By 
substituting z = 0 into the left-hand side of Eq.(C.3) we obtain, as a first and very good approximation 

z ≡ zb =
(k − 1)z0

2k
≤

z0

2
(C.4) 

The inequality (C.3) is thus satisfied for zb < z. Accordingly, for the second derivative of z0⋅|∂zzWk/2k| ≤ |∂zWk| we obtain 
⃒
⃒
⃒
⃒
((k − 2) − ln(1 + iz/ς(0)))z0

2kς(z)

⃒
⃒
⃒
⃒ ≤

⃒
⃒
⃒
⃒ln
[

1 +
iz

ς(0)

] ⃒
⃒
⃒
⃒ (C.5) 

For k = 2, the inequality Eq.(C.5) is satisfied for each z > 0. For k ≥ 3 we obtain the problem which was solved above for the first derivative. 
We can calculate the integral in Eq.(21) analytically for the above-used expansion of the logarithm power with respect to iz/ς(0). Leaving aside the 

details we obtain a very good estimation 
⃒
⃒
⃒
⃒
⃒
⃒

∫z

0

e− 2ik(z− z′ )∂z′ W̃kdz
′

⃒
⃒
⃒
⃒
⃒
⃒
≤

k − 1
2kz

⃒
⃒
⃒
⃒W̃k

⃒
⃒
⃒
⃒k > 2 (C.6) 

Hence if z0 is a large parameter (however if z0≪zN = |ς(0)|) then for z > z0/2 the integral in Eq.(21) can be neglected and Wk = W̃k + o(1/z0). 
According to the introduced normalizations, z0 := K′

0z′

0 is the number of wavelengths of the fundamental disturbance (k = 1) k = 1 with pulsation 
Ω′

0 = c′

0K′

0 on the section z′

0 multiplied by 2π. It should be noted, however, that the restrictions on the magnitude of the second derivative of the 
function Wk are not significant because in the region 0 ≤ z ≤ z0/2 in which they are not satisfied, for k > 2,Wk ∼ (z/zN)

k− 1 are close to zero and do not 
differ much from each other see Fig. 2. . 

Appendix D 

After substituting Dl = DC
l +DD

l into Eq.(37) and calculating the integral with respect to ρ of the expression containing DC
l , we obtain 

DD
k (z, r) = q

k
2i

∫z

0

∫∞

0

Gk(z − s, r, ρ)
∑k− 1

l=1
DD

l (s, ρ)Ck− l(s, ρ)eâg(k,l)sρdρds (D.1)  

−
(qzN)

k+1

4i

∫z

0

exp
(

ikr2

2(z− s)

)

z − s

∑k− 1

l=1
l⋅b̃k− l(s)w(s)k− l− 1

∫s

0

w(s′

)

|ς(s′
)|

2⋅  

⋅
∑K− l

m=1
(qzN |w(s

′

)| )
2(m− 1)b̃k+m(s

′

)b̃
*
m(s

′

)e− âd (l,m)s
′

Gk,l,m(z, s, s
′

, r)ds′ds  

G
⌢

k,l,m(z, s, s
′

, r) := k2
∫∞

0

Gk(z − s, r, ρ)Ψk− l(s, ρ)Gl,m(s, s
′

, ρ)ρdρ (D.2)  

G
⌢

k,l,m(z, s, s
′

, r) =
zN

ς(s)
|ς(s′

)|
2

Zl,m(s, s′
)ξl,m(s

′
)
⋅

k2

2κ(z, s, s′
)

2exp
(

− k2r2

4(z − s)2κ(z, s, s′
)

2

)

(D.3)  

κ(z, s, s′

)
2
:=

(
k

Zl,m(s, s′
)
+

k − l
2ς(s) −

ik
2(z − s)

)

(D.4) 

Since, DD
1 (s, ρ) ≡ 0 then for k = 2, the first integral in Eq.(D.1) is equal to zero and we obtain the factorization D2 = DC

2 +DD
2 where DD

2 depends on 
two integrals. Of course, writing out the explicit forms of Eq.(D.1) for k > 2 makes no sense due to the rapidly increasing size of the expressions. 
Moreover, explicitly o(DD

k ) = qk+1. 
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