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Abstract
The aim of this study is to analyse the joint effect of reinforcement shape and packing on the effective behaviour of particulate 
composites. The proposed semi-analytical modelling method combines the Replacement Mori–Tanaka scheme, by means of 
which the concentration tensors for non-ellipsoidal inhomogeneities are found numerically, and the analytical morphologi-
cally representative pattern approach to account for particle packing. Five shapes of inhomogeneities are selected for the 
analysis: a sphere, a prolate ellipsoid, a sphere with cavities, an oblate spheroid with a cavity as well as an inhomogeneity 
created by three prolate spheroids crossing at right angles. Semi-analytical estimates are compared with the results of numeri-
cal simulations performed using the finite element method and with the outcomes of classical mean-field models based on 
the Eshelby solution, e.g. the Mori–Tanaka model or the self-consistent scheme.
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1 Introduction

For years, new materials had been developed using the 
empirical approach [1]. Recently, however, this approach has 
been challenged by micromechanical modelling and simula-
tion strategies [2], which aim to reduce the development time 
and cost of novel composite materials. A composite material 
is a combination of two or more constituent materials hav-
ing markedly different chemical or physical properties. The 
combined matrix and reinforcement materials can produce 
a particulate composite of unique characteristics different 
from those of the constituent elements [3]. These materials 
may reveal remarkable structural and mechanical proper-
ties such as improved resistance to wear, chemicals or fire, 
and high strength to weight ratio [4]. Their heterogeneous 
microstructure can be very complex: the filler material may 
have the form of fragments, particles, or fibres of a natural 

or synthetic material; the matrix is generally seen as a rela-
tively soft phase with specific properties such as formability, 
high/low thermal conductivity, and ductility; the bonding 
between phases affects the macroscopic material behaviour 
[4]. Understanding of the relationship between morphologi-
cal features of the microstructure and overall macroscopic 
properties of heterogeneous materials is essential from the 
point of view of reliable micromechanical modelling [2].

The classical mean-field micromechanical models (e.g. 
the standard Mori–Tanaka (MT) or self-consistent (SC) 
model) are not able to describe the impact of the details of 
the distribution of components in the representative volume 
element on the overall properties. As a result, the quality of 
predictions obtained with such models decreases with an 
increasing volume fraction of phases and growing contrast 
in phase properties [5]. Moreover, since those models are 
based on Eshelby’s solution [6], only ellipsoidal shapes of 
heterogeneities are usually accounted for. To overcome these 
shortcomings of the available mean-field approaches, some 
extensions of the existing formulations were proposed for 
elastic composites. As concerns the effect of particle dis-
tribution, among analytical models one can distinguish: (i) 
variational bounds with n-point correlation functions of elas-
tic moduli [7], e.g. of cracked media [8], or as an application 
to isotropic dispersions [9]; (ii) the morphologically repre-
sentative pattern (MRP) approach, e.g. in linear elasticity 
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with the size effect [10], in comparison with numerical 
homogenization [11], in linear viscoelasticity [12], in the 
non-linear elastic–plastic response [13]; (iii) n-site versions 
of mean-field [14], or far-field theories c.f. [15], e.g. clus-
ter models in elastic–viscoplastic composites [16]. A more 
detailed review of these approaches was presented in [11]. 
An MRP strategy for describing packing is pursued in the 
present paper.

In the literature, there are also full-field numerical anal-
yses of representative volume elements of heterogeneous 
materials by means of the finite element method, e.g. stud-
ies of particle spatial distribution  [17], particle clustering 
in the plastic deformation [18], or fast Fourier transform 
method [19]. The influence of particle shapes on damage 
properties of composites has been studied in this fashion in 
[20]. Compared to analytical models, such studies are much 
more time-consuming, in particular, when a detailed repre-
sentation of the microstructure is required. Most of the full-
field analyses have indicated that packing of particles has a 
negligible influence on the effective elastic or elastic–plastic 
response; however, it becomes vital when damage initiation 
and evolution are involved [18].

To correctly estimate the shape effect on the overall 
response of heterogeneous materials by means of an ana-
lytical model, first it is necessary to accurately describe the 
effect of a single inhomogeneity on the macroscopic prop-
erties of the composite. The shapes of inclusions used in 
composite materials have a wide spectrum: from the geo-
metrically simplest spheres, through fibres, to the form 
of complex skeletons. It has been shown in the literature 
[21] that the uniformity of strain and stress fields proved 
by Eshelby [6] does not hold for non-elliptic inclusions. 
Three strategies have been identified in the literature [22] 
for estimating the composite response in the presence of 
non-elliptical heterogeneities. The first strategy is to employ 
analytical procedures for estimating position-dependent 
Eshelby tensors. In this manner, standard mean-field meth-
ods, and especially two approaches: the so-called effective 
self-consistent scheme [23] and its simplified version—
the interaction direct derivative estimate [24], are used in 
combination with analytical expressions for the Eshelby 
tensor based on its irreducible decomposition. The effec-
tive self-consistent scheme is based on Christensen’s work 
[5], namely on the generalized self-consistent method and 
its further modification to a three-phase model. The sec-
ond approach is the Mori–Tanaka method used in combi-
nation with the replacement tensor, called the replacement 
Mori–Tanaka method (RMTM). It uses numerical models 
of one isolated inhomogeneity embedded in a large region 
of the matrix material. This procedure was used by Nogales 
and Böhm [25] in combination with the Mori–Tanaka model 
to predict the thermal conductivity of diamond-reinforced 
composites. The technique is an alternative approach to the 

compliance contribution formalism of Kachanov et al. [26]. 
The final strategy is to directly discretize the microstruc-
ture’s domain using, e.g. the finite element method (FEM). 
Usually, the computation of the macroscopic behaviour is 
performed for a representative volume element (RVE) which 
is defined as the smallest region of the composite that accu-
rately describes the material response. The calculation of 
the minimum RVE size is a non-trivial task (e.g. [27]). In 
several papers, estimations of effective properties obtained 
using RVEs for periodic (e.g. [28]) and non-periodic struc-
tures (e.g. [29]) have been presented.

The focus of the present study is on the extension of the 
MRP approach to account for the combined effect of parti-
cles’ shape and packing. The standard MRP approach was 
extensively verified for elastic [11] and elastic–plastic [13] 
composites with spherical inhomogeneities, where MRP 
results were confronted with outcomes of computational 
homogenization by FEM. The present research is a continu-
ation of these studies and addresses the issue of applicability 
of the MRP approach to describing the effect of the inhomo-
geneities’ shape on the response of particulate composites. 
It is shown that an important modification of the standard 
formulation of the MRP scheme is required to this end. The 
calculated estimations are evaluated through comparison 
with the results of corresponding FE simulations. The FE 
analyses are performed using periodic unit cells with face-
centred cubic (FCC) arrangements of particles and RVE 
with randomly placed inhomogeneities. In the latter case, 
the applied algorithm for generating RVEs is an extended 
version of the procedure presented in [11].

The paper is constructed as follows. In the next section, 
we briefly outline the theoretical foundations of the devel-
oped MRP mean-field model: first, we provide a descrip-
tion of the proposed micromechanical mean-field approach, 
then we introduce inclusions of complex shape to the model. 
In Sect. 3, we discuss the numerical finite element method 
applied to this problem and the procedures used for generat-
ing periodic unit cells and RVEs involving random particle 
distributions with varying inclusion shapes and values of 
the packing ratio. In Sect. 4, we present a comparison of the 
results obtained using the mean field and the FE methods 
for two-phase composites in the case of both unit cells and 
RVEs. Finally, in the last section, we summarize the main 
results presented in this paper.

2  Micromechanical MRP model

2.1  Morphologically representative pattern 
approach

The morphologically representative pattern approach [13] 
studied in this paper originates from the composite sphere 
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model formulated in [30] for a two-phase material, and its 
further modification to the generalized self-consistent (GSC) 
scheme in [5]. Within the GSC model, also referred to as a 
three-phase model, a single composite sphere is considered 
which, similarly to the inhomogeneity in the self-consistent 
model, is embedded in an equivalent homogeneous medium 
with effective properties. In the succeeding years, the GSC 
3-phase configuration was extended to the n-phase version by 
Herve and Zaoui [31], who solved the problem of the compos-
ite sphere with n coatings and formulated the n-phase general-
ized self-consistent (n-GSC) scheme. In [11], the n-GSC and 
SC schemes were combined with the MRP model in the case 
of spherical inhomogeneities. The present study focuses on 
the effect of particle shape on the overall material response, 
and this will be analyzed using the RMTM. Thus, the MRP 
approach is reformulated here by employing the Mori–Tanaka-
like model, instead of the GSC scheme as in [11]. The MRP 
model reformulated in this way is significantly different from 
the MRP approach presented in the previously mentioned 
papers [10–13].

The MRP approach postulates a subdivision of the RVE 
with some morphological features into M representative pat-
terns � with specified volume contributions c� to the overall 
RVE volume V. Within each pattern � , the volume fraction 
of phase k is assumed to be f �

k
 , with fk being the volume 

fraction of phase k in the entire RVE, so that

where V� is the volume of pattern � , Vk
�
 is the volume of 

phase k in pattern � , and N is the number of phases in the 
composite. Let us emphasize that c refers to the volume frac-
tion of patterns in the composite material’s volume and f to 
the volume fraction of composite phases or their portions. 
We used the two different symbols, c and f, to emphasize the 
difference between the two mentioned quantities.

In the case of a linear problem (i.e. elasticity, viscosity), 
the average strain ��

k
 in the phase k of pattern � is approxi-

mated by using the auxiliary far-field strain �0 and a fourth-
order concentration tensor ��

k
 , namely

The far-field strain �0 is the same for all patterns and in 
general is not equal to the overall average strain � in the 
RVE. The relation between the two quantities is as follows:

(1)

c� =

V�

V
,

M
∑

�=1

c� = 1 , f �
k
=

Vk
�

V�

,

M
∑

�=1

c�f
�
k
=

Vk

V
= fk ,

N
∑

k=1

fk = 1 ,

(2)�
�
k
= �

�
k
⋅ �0 .

(3)� = ⟨�⟩V =

M
�

�=1

c�

N
�

k=1

f �
k
�
�
k
=

M
�

�=1

c�

N
�

k=1

f �
k
�

�
k
⋅ �0 ,

where � is the strain field in the representative volume V 
and ⟨⋅⟩V  is the volume averaging operation defined as 
1∕V ∫

V
(⋅)dV  . Using the above condition, the average strain 

�
�
k
 is specified by the strain concentration relation of the form

Utilizing the constitutive law ��
k
= �

�
k
⋅ �

�
k
 and the expression 

for the overall average stress � = ⟨�⟩V , the overall constitu-
tive law is obtained:

in which the fourth-order tensor � is the effective material 
stiffness. In this analysis, the basic configuration of the MRP 
approach is verified for two-phase isotropic particulate com-
posites (Table 1) against the outcomes of numerical homog-
enization. This simplest case, in which the microstructure is 
represented by only two patterns ( M = 2 , see Fig. 1), allows 
us to explore packing and shape effects, namely:

• To account for the shape effect, the first pattern is 
treated with the replacement Mori–Tanaka model, i.e. 
the concentration tensor of the inclusion is calculated 
via the fast numerical method described in the next 
section (Sec.2.2), combined with the double-inclusion 
framework of [32].

• To account for the packing effect, in the RMTM pattern, 
the volume fraction of the matrix coating f� is specified 
by the minimum distance between nearest-neighbour 
particles ( 2�k in Fig. 1). In other words, �k is half of the 
distance between inclusion k and its nearest neighbour (if 
they are in contact, �k = 0 ). f�k is the volume fraction of 
the matrix material lying within a distance �k of inclusion 
k, so f�k depends on the distance between particles, i.e. 
their packing. For example, in the case of spherical par-
ticles and assuming a unit material volume, we have 
f�k = 4∕3 �

(

(

Rk + �k
)3

−
(

Rk

)3
)

 , where Rk is the radius 
of inclusion k. f� is the volume fraction of all inclusion 
coatings f�k in the RVE, which is f� = Σ

Ni

k=1
f�k and Ni is 

the number of inclusions. Thus, when all inclusions are 
in contact, all �k are 0 and so f� = 0 in the RMTM pat-
tern.

At variance with the previous analyses [11], to addition-
ally take into account the influence of the inclusion on 
the surrounding matrix beyond the f� region, a second 

(4)

�
�

k
=��

k

(

M
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N
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�
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coating with a volume fraction fi
(

fm − f�
)

 is added to the 
RMTM pattern. The second pattern (denoted by MT*) is 
a Mori–Tanaka-type problem applied to the remaining 
matrix material fm

(

fm − f�
)

 (see Fig. 1). In other words, 
in the simplest case of a two-pattern system four domains 
are distinguished:

• in the RMTM pattern: inclusions fi ; the first matrix coat-
ing f� , which describes the packing of inclusions; the 
second matrix coating fi

(

fm − f�
)

 , which represents the 
inclusions’ influence on the matrix outside the � domain;

• and in the MT-like pattern: the rest of the matrix 
fm
(

fm − f�
)

 , which is treated as a spherical inhomogene-
ity surrounded by a medium having the composite inclu-
sion (RMTM) properties. Since the roles played by the 
matrix and inclusion phases are inverted by such treat-
ment, we refer to this pattern shortly as the inverse MT 
and denote it by MT*.

In such a two-pattern system, the volume fractions of the 
patterns of the RMTM and MT* type, respectively, are

where fi is the volume fraction of inclusions in the compos-
ite, and fm = 1 − fi is the volume fraction of the matrix in a 
two-phase composite.

(6)cRMTM = fi + f� + fi
(

fm − f�
)

, cMT = 1 − cRMTM ,

For the basic two-pattern MRP approach as in Fig. 1, the 
effective stiffness � of the composite (Eq. 5) is specified as

The range of the second coating specified by fi
(

fm − f�
)

 in 
the RMTM pattern resulted from multiple trials and compar-
ison with numerical data, and it provides the best predictions 
for the considered non-spherical shapes. We remark that, in 
the present context of the RMTM treatment of the composite 
inclusion in the first pattern and linear elastic properties, 
the approach is equivalent to taking a single coating with a 
volume fraction f� + fm

(

fm − f�
)

 . This will change if elas-
tic–plastic response is analysed and the n-GSC pattern is 
used instead. The remaining matrix fm

(

fm − f�
)

 in the MT* 
pattern is assumed as spherical because the matrix is sur-
rounded by the composite inclusions in an isotropic manner.

For a fixed fi , the MRP model predictions depend on the 
volume fraction f� , determined by the minimum distance 
between nearest-neighbour particles � , and the total volume 
fraction of the matrix fm = 1 − fi . The smallest distance � 
between the surfaces of inclusions was computed numeri-
cally. Let us define the matrix packing ratio f�∕fm . Two limit 
cases for the ratio f�∕fm equal to 1 and 0, respectively, can 
be considered. In the first limit, all matrix material is used 
to form the coating of the inclusion in the RMTM pattern, 
f� = fm , thus the packing ratio is 1. In the second one, each 
particle k touches its nearest neighbour, so �k = 0 , and thus 
f� = 0 and the packing ratio is 0. In the first case, the vol-
ume fraction of the MT* pattern is zero, so the MRP solu-
tion reduces to the RMTM estimate. In the second case, the 

(7)

� =fi�i
�

RMTM

i
+ f��m

�
RMTM,1stcoat

m

+ fi
(

fm − f�
)

�
m
�

RMTM,2ndcoat

m

+ fm
(

fm − f�
)

�
m
�

MT∗

m
.

Fig. 1  The microstructure of a two-phase composite reinforced with 
non-ellipsoidal inclusions k = 1,… , 5 of the same size and shape, 
represented in the MRP approach by two patterns: RMTM and 
MT*. Above, �k equals half the distance between inclusion k and 
its nearest neighbour, f�k is the volume fraction of the matrix mate-

rial lying within a distance �k of inclusion k, f� is the volume frac-
tion of all inclusion coatings f�k in the RVE, which is f� = Σ5

k=1
f�k in 

the presented example, fi is the volume fraction of all inclusions, and 
fm = 1 − fi is the volume fraction of the matrix

Table 1  Assumed material parameters of the metal matrix composite 
(MMC) reinforced with ceramic particles [33]

Phase Ceramic Metal

Young’s modulus, E [GPa] 400 75
Poisson’s ratio, � 0.2 0.3
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influence of the RMTM pattern is reduced to the inclusion 
fi and the second coating fi ⋅ fm , and the MRP estimate lies 
between the standard MT and reverse MT solutions. The 
reverse MT solution is obtained by considering a composite 
of the same microstructure geometry as the original one, but 
for which the matrix and inclusion materials are reversed. 
Without the second coating fi

(

fm − f�
)

 in the RMTM pattern, 
for f� = 0 the MRP equals the reverse MT.

This article presents numerical results for two sets of 
tests. In the first set, a metal-matrix composite (MMC) rein-
forced with ceramic inclusions of various volume fractions 
and particle arrangements is studied, with phase properties 
kept constant. In the second set, the material parameters of 
the two-phase composite are varied to demonstrate the effect 
of phase contrast on the agreement between predictions of 
the proposed variant of the MRP model and the results of 
FE simulations.

To illustrate the impact of the matrix packing ratio in the 
proposed variant of the MRP model on the effective prop-
erties of composites, results for the MMC composite with 
spherical inclusions are presented first in this section.

Figure 2 shows the variation of MRP estimates induced 
by changing the matrix packing ratio f�∕fm , using the 
example of the effective shear modulus G . The value is 

scaled by the shear modulus of the softer phase Gs . The 
material parameters are listed in Table 1. We study two 
configurations of the particulate composite: (I) with a 
soft matrix reinforced with a hard (stiffer) phase fi = fh 
(marked by black dots), or (II) with the matrix stiffer than 
inclusions, where fm = fh (marked by circles). Fig. 2a pre-
sents the effective shear modulus G as a function of the 
matrix packing ratio f�∕fm . The classical micromechanical 
models: Mori–Tanaka, mean MT calculated as the aver-
age � of two composite configurations (i.e. with hard or 
soft particles, respectively), self-consistent scheme and its 
extension to the three-phase generalized self-consistent 
scheme (3-GSC) do not depend on the packing ratio, so 
they are represented by horizontal lines in Fig. 2a. Moreo-
ver, mean MT and SC estimates do not distinguish between 
the composite configurations with hard vs soft inhomo-
geneities. Among the presented estimates, only the MRP 
approach takes into account the influence of the packing 
ratio f�∕fm . The previous formulation of the MRP model 
from [11] based on the 3-GSC and SC schemes for two 
patterns, denoted by grey curves (Fig. 2a), starts from the 
SC solution for f�∕fm = 0 and approaches the 3-GSC one 
for f�∕fm = 1 . The present modified MRP model, based 
on the RMTM (equivalent to MT for spheres) and MT* 

(a) (b)

Fig. 2  The effective shear modulus G vs a the packing ratio f�∕fm , 
b the volume fraction of the hard phase fh . The value is scaled by 
the shear modulus of the softer phase Gs . Notation: MRP the present 
variant of the MRP model based on two MT-type patterns, MT the 
Mori–Tanaka method, Mean MT the average � of two configurations 
(hard or soft particles) by the MT model, MRP(3-GSC,SC) the pre-

vious variant of the MRP model [11] based on the 3-GSC and SC 
schemes, 3-GSC the 3-phase generalized self-consistent scheme, SC 
the self-consistent scheme, FEM numerical homogenization. A two-
phase composite as in Table 1 with a continuous matrix and spherical 
particles. In b, the packing ratio varies with the volume fraction as for 
the particles in the face-centred cubic arrangement [in FEM results, G 
is calculated for the shear deformation specified by �(2) in Eq. (19)]
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schemes, denoted by blue lines (Fig. 2a), approaches the 
MT estimate for f�∕fm = 1 and displays a smaller packing 
effect compared to the previous version towards f�∕fm = 0 
for the hard inclusions case.

Let us now consider the spherical particle arrangements 
as in the periodic face-centred cubic lattice (Fig. 9a). In this 
case, when the positions of particles are fixed, the matrix 
packing ratio f�∕fm depends on the inclusion volume frac-
tion fi and attains its limit f�∕fm = 0 for fi ≈ 0.74 . Fig. 2b 
shows the effective shear modulus G as a function of the 
volume fraction of the hard phase fh . As fi tends to 0.74 (for 
hard inclusions fh → 0.74 , and for a hard matrix fh → 0.26 ), 
the MRP results and the MT scheme predictions diverge. 
Thus, similarly to the former variant of the MRP model, 
for the hard (respectively soft) inclusion case, an additional 
increase (respectively decrease) in stiffness is observed when 
the packing ratio increases, compared to the standard MT 
model. However, this stiffening (or softening, respectively) 
is smaller compared to the previous MRP variant. For the 
sake of validation, corresponding results obtained using 
numerical homogenization (FEM) are also presented. It is 
worth emphasizing that the reliability of the FEM simulation 
depends on the quality of the mesh. As discussed in [11], the 
effective stiffness obtained numerically for an FCC-type unit 
cell has cubic symmetry, therefore, in general, two different 
shear moduli are found depending of the loading conditions. 
The presented value of G corresponds to the shear deforma-
tion of the form given by �(2) in Eq. (19). Nevertheless, it 
was found in [11] that for the FCC unit cell a similar varia-
tion of results is obtained for the second shear modulus—the 
one corresponding to the shear deformation given by �(1) in 
Eq. (19).

2.2  Accounting for the shape of inhomogeneities 
in the RMTM method

In [22], a method of finding concentration tensors for inho-
mogeneities of a non-spherical shape was proposed within 
the context of the Mori–Tanaka averaging scheme. We 
briefly recall the resulting scheme referred to as the replace-
ment Mori–Tanaka method. The described procedure is next 
used to find �RMTM

i
 required for the present variant of the 

MRP approach when the shape of the inhomogeneity is not 
ellipsoidal.

The Mori–Tanaka method [34] approximates the response 
of an inhomogeneous material for a non-diluted volume frac-
tion of inhomogeneities via diluted ones that are loaded by 
the effective or averaged matrix stress or strain, respectively. 
Mori and Tanaka [34] assumed that each inhomogeneity is 
placed in a boundless matrix and remotely subjected to the 
average matrix stress �m or strain �m . Hence, the central 
assumption of the MT method for elasticity can be formu-
lated as

where �i and �m are the averaged inhomogeneity and matrix 
strain, respectively, �MT

m
 is the matrix Mori–Tanaka strain 

concentration tensor, � is the macroscopic strain, and �Dil
i

 
is the diluted strain concentration tensor. In the case of an 
ellipsoidal inhomogeneity, it is specified as

where ℙm is the polarization tensor, which is known for 
ellipsoidal shapes [6] and depends on the matrix stiffness 
�m , � is the fourth-rank identity tensor, while �i and �m are 
the elasticity tensors of the inhomogeneity and the matrix 
phase, respectively. Following the standard procedure of the 
mean-field approach, one can obtain the effective material 
stiffness �MT as

in which fi is the volume fraction of the inhomogeneity 
phase in the composite, and �MT

i
 is the inhomogeneity 

Mori–Tanaka strain concentration tensor specified as

Thus for a two-phase material, the Mori–Tanaka method 
takes into account interaction between the phases. Remark 
that the application of the MT to multi-phase composites is 
sometimes questionable (e.g. [7]). The main obstacle is that 
the major (diagonal) symmetry of the estimated stiffness 
tensor is violated. However, this is not an issue in the pre-
sent analysis since we study a two-phase composite, namely 
a metal matrix reinforced with ceramic particles (Table 1).

In the case of non-ellipsoidal inclusions, the analytical 
form of the diluted strain concentration tensor of the inho-
mogeneity �Dil

i
 (Eq. 9) is not known. Therefore, following 

[22], a phase-averaged diluted “replacement” is introduced. 
Firstly, in Eq. 11, the analytical strain concentration tensor 
�

Dil
i

 is replaced with its numerical approximation �NDil
i

 . Con-
sequently, the strain concentration tensor �RMTM

i
 , replacing 

�
MT
i

 , is given by

Secondly, a phase-averaged diluted “replacement” elasticity 
tensor �NDil

i
 is used instead of �i in Eq. 10. Therefore, the 

effective material stiffness �RMTM is

The phase-averaged diluted “replacement” elasticity tensor 
�
NDil
i

 is obtained from the relation of the form

(8)�i = �
Dil
i
�m = �

Dil
i
�

MT
m

� = �
MT
i

� ,

(9)𝔸
Dil
i

=
[

𝕀 + ℙm

(

𝕃i − 𝕃m

)]−1
,

(10)�MT = �m + fi
(

�i − �m

)

�
MT
i

,

(11)�
MT
i

=
[

fi � + fm
(

�
Dil
i

)−1
]−1

.

(12)�
RMTM
i

=
[

fi � + fm
(

�
NDil
i

)−1
]−1

.

(13)�RMTM = �m + fi
(

�
NDil
i

− �m

)

�
RMTM
i

.
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where �NDil and f NDil
i

 are the effective stiffness tensor and 
the inhomogeneity volume fraction for the analysed unit cell 
with a diluted inhomogeneity of an arbitrary shape, respec-
tively. Both �NDil and �NDil

i
 are obtained numerically, e.g. 

using the finite element method. We provide further details 
of the procedure is explained in the next section (Sec.3).

In the rest of this paper, we restrict ourselves to five 
shapes of inhomogeneities, namely:

• a sphere (Fig. 3a),
• a prolate spheroid with semi-axes (2a, a, a) (Fig. 3b),
• a sphere with identical cylindrical cavities in three mutu-

ally perpendicular directions (drilled sphere); the ratio 
of the sphere’s radius to the diameter of the cylinders 
is assumed to be constant and equal to RSph∕dCyl = 3∕2 
(Fig. 3c),

• three prolate spheroids with semi-axes (2a, a, a) crossing 
at right angles (Fig. 3d),

• an oblate spheroid with semi-axes (2∕3 a, a, a) , with 
a cylindrical cavity in the ’X’ principal axis direction 
(drilled oblate spheroid); the cylinder’s diameter is 
assumed to satisfy a∕dCyl = 4 (Fig. 3e).

The first two ellipsoidal shapes are considered mainly for the 
purpose of comparison, to verify the procedure of computing 
the �NDil

i
 tensor.

In Fig. 3f, planar projections of the five inclusion types 
with the same volume are compared.

It is worth noting that the matrix packing ratio f�∕fm of 
inclusions with cavities (Fig. 3c and e) is still computed as 
the ratio of the volume of the matrix coating f� around the 
inclusion, without the matrix in the cavity, to the volume 

(14)�
NDil
i

= �m +
(

f NDil
i

)−1
(

�NDil − �m

)

(

�
NDil
i

)−1
,

of the entire matrix fm in the composite. The matrix in the 
cavity is considered as part of the matrix in the MT* pattern 
of the “free matrix”. With this assumption, if an inclusion 
with a cavity touches its nearest neighbour, f�∕fm equals 0. 
The matrix coating has the same shape as the inclusion (e.g. 
Fig. 1b). In the case of drilled inhomogeneities (Fig. 3c and 
e) the cavities are neglected, e.g. the matrix coating of the 
drilled sphere (Fig. 3c) is spherical.

3  Numerical procedures

3.1  Numerical concentration tensors

As it was mentioned earlier, �NDil and �NDil
i

 are obtained 
numerically using the FEM. The tetrahedral meshes for the 
unit cells and RVEs have been generated using NetGen [35] 
and then used in the AceFEM environment [36] to perform 
the FE computations. A single inhomogeneity of an appro-
priate shape and properties is embedded in a large, but finite 
matrix region (Fig. 4).

The strain concentration tensor �NDil
i

 is obtained from 
volume averages over the inhomogeneity and �NDil through 
numerical homogenization of the entire sample. In particu-
lar, the following relations are used:

in which � is the strain imposed by means of the periodic 
boundary conditions as described below, � is the stress aver-
aged over the whole cell, while �i and �m are the strains 
averaged over the inhomogeneity and matrix, respectively.

For this purpose, 3D numerical models of the matrix-
inhomogeneity arrangement with a single diluted inho-
mogeneity f NDil

i
= 10−4 , as shown in figure Fig.  4, are 

(15)�i = �
NDil
i

�m , � = �NDil� ,

Fig. 3  Five selected inclusion shapes: a a sphere, b a prolate spheroid 
with semi-axes (2a,  a,  a), c a drilled sphere, having three identical 
perpendicular cylinderical cavities with RSph∕dCyl = 3∕2 , d three pro-
late spheroids with semi-axes (2a, a, a) crossing at right angles, e a 

drilled oblate spheroid with semi-axes (2∕3 a, a, a) , having a cylindri-
cal cavity in the ’X’ principal direction with a∕dCyl = 4 . f Compari-
son of the five shapes when they are of the same volume
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generated and simulated by FEM using a very fine mesh. 
The mesh size was selected so that a subsequent mesh 
refinement does not affect the calculated concentration ten-
sors noticeably, i.e. the difference is less than 0.1%. The 
inhomogeneities and their meshes are shown in Fig. 3a–e. 
Perfect bonding between phases is used.

We used AceFEM-based in-house code in our calcula-
tions. As an alternative, one can use the open-access soft-
ware AMAT [37], which has similar capabilities. The lat-
ter open-access software uses a mesh free method based on 
a class of Gaussian approximating functions to calculate 
the components of compliance and stiffness contribution 
tensors of inhomogeneities of any shape. Both approaches: 
the one using FEM described in this paper and the AMAT 
software from the NMSU Center for Micromechanics, give 
similar results. In this work, we used our FEM codes due 
to our future plans for code modification to model propa-
gation of cracks. Nonetheless, in the case of calculations 
involving many different inclusion shapes, e.g. inclusion 
shape optimization, the AMAT software is more efficient.

We assumed that the effective response of a unit cell is 
driven solely by the symmetry of the inhomogeneity, pos-
sible because we consider a very small volume fraction of 
inhomogeneity. Consequently, both the fourth-order ten-
sors �NDil and �NDil

i
 of the unit cells are:

• isotropic for a spherical inhomogeneity (Fig. 3a),
• of cubic symmetry (Eq. A.6) for the drilled sphere and 

crossed spheroids (Fig. 3c and d),
• transversely isotropic for the prolate and oblate sphe-

roids (Fig. 3b and e).

Relevant formulae for the projectors stemming from the 
spectral decomposition of the fourth-order tensors of 
transverse isotropy and cubic symmetry are given by Eqs. 
(A.2)–(A.4) and Eqs. (A.7), respectively. They are subse-
quently used to define independent components of �NDil in 
6 and of �NDil

i
 in 7.

To derive �NDil or �NDil
i

 , sets of micro-periodic displace-
ment boundary conditions were imposed on pairs of corre-
sponding points A–B on the opposite faces of a unit cell, viz.

where � is the imposed overall strain of a unit cell equiv-
alent to the local strain averaged over the RVE’s volume, 
� = 1∕V ∫

V
� dV  , while �A , �B , �A and �B are the displace-

ments and initial positions of points A and B, respectively. 
In the calculations, unit dimensions of the unit cell or RVE 
were assumed. To realize boundary conditions (Eq.16) in 
FE analysis, a special multi-point constraint procedure was 
used. Within this procedure, displacements of a pair of nodes 
A and B are related to the displacements of two nodes O and 
Xk at the selected unit cell corners as follows:

where �B − �A = �Xk , and x(X1)
i

= (1, 0, 0) , x(X2)
i

= (0, 1, 0) , 
x
(X3)

i
= (0, 0, 1) , x(O)

i
= (0, 0, 0) . For example, index k = 1 is 

taken for the face nodes A and B with coordinates (0, x2, x3) 
and (1, x2, x3) , respectively. Components of the overall strain 
� are then imposed simply by assigning displacement com-
ponents to the nodes Xk in such a way that

Node O is fixed: u(O)
i

= (0, 0, 0) . All coordinates are given in 
the frame aligned with the main symmetry axes of the cell 
(see e.g. Fig. 4).

The imposed overall strains are selected based on the 
eigensubspaces of the effective stiffness tensor. Their repre-
sentations in the basis {�i} aligned with the main symmetry 
axes of the cell are:

where d specifies the strain magnitude. For transverse isot-
ropy, analysis is performed for all strain forms �(0) to �(3) , 
whereas for cubic anisotropy only for �(0) to �(2) , from the 
set given in Eq. (19).

In numerical homogenization, five (respectively, three) 
independent components of �NDil are computed using 

(16)�A − �B = � ⋅ (�A − �B) ,

(17)�A − �B = �O − �Xk , k = 1 or 2 or 3 ,

(18)u
(Xk)

i
= (E1k,E2k,E3k).

(19)

E
(0)

ij
=

⎛

⎜

⎜

⎝

d 0 0

0 d 0

0 0 d

⎞

⎟

⎟

⎠

, E
(1)

ij
=

⎛

⎜

⎜

⎝

d 0 0

0 − d∕2 0

0 0 − d∕2

⎞

⎟

⎟

⎠

,

E
(2)

ij
=

⎛

⎜

⎜

⎝

0 0 0

0 0 d

0 d 0

⎞

⎟

⎟

⎠

, E
(3)

ij
=

⎛

⎜

⎜

⎝

0 d 0

d 0 0

0 0 0

⎞

⎟

⎟

⎠

,

Fig. 4  A single inhomogeneity of an appropriate shape and proper-
ties embedded in a large but finite matrix region, used to calculate 
numerically both the effective stiffness tensor �NDil and the numerical 
strain concentration tensor �NDil

i
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Eq. A.5 (respectively, Eq. A.8) for the transverse isotropy 
case (respectively, cubic symmetry). Similarly, the com-
ponents of �NDil

i
 are derived from Eq. B.3 for the prolate 

and oblate spheroids, and from Eq. B.3b for other shapes. 
In general, when the inclusion has an irregular shape, its 
concentration tensor is usually anisotropic. The numerical 
simulations should be carried out in such a way as to identify 
all independent components of the concentration tensor [38].

3.2  Generation of periodic cubes with randomly 
placed inclusions

Model-based assessments of the influence of the shape and 
packing of inhomogeneities on the macroscopic behaviour of 
particulate composites were verified by performing numeri-
cal homogenization. Samples with both regular and random 
arrangements of particles were generated. The results for 
composites with inclusions placed as in the FCC system 
(Fig. 9) are presented in Subsect. 4.2, while those with 

random arrangements of inclusions (e.g. Figs. 5 or 6) are 
described in Subsect. 4.3.

The cubic volume elements with randomly placed par-
ticles were generated using a discrete element method 
(DEM)-based dynamic procedure. This particular method 
was chosen due to its availability via existing DEM software, 
its ability to handle volume fractions reaching 0.65, and its 
speed of execution. The application of technique itself, when 
applied to spherical inclusions, was described in the previ-
ous paper [11]. Here we only note that inclusions, repre-
sented by elastic spheres, are initially placed in an enlarged 
periodic cell, which subsequently shrinks to its target dimen-
sions 1 × 1 × 1 . During the compression, the spheres mix 
and collide, which results in their desired pseudo-random 
placement in the final cell (e.g. Fig. 5). For the purposes of 
this paper we used the Yade DEM software [39].

In the case of microstructures with spheroidal inclu-
sions (Fig. 6b–d), first the positions of inclusions’ centres 
were randomly selected using the above algorithm, and 
then random directions of each inclusion’s main axes of 

Fig. 5  Volume elements with periodic boundaries and a 10, b 20, and c 30 randomly placed spheres. The volume fraction of inclusions is 30%

Fig. 6  Representative volume elements with periodic boundaries, 
randomly generated structures, and the volume fraction of 30 inclu-
sions equal to 30%. The shapes of inclusions are: a drilled spheres 

(Fig. 3c), b prolate spheroids (Fig. 3b), c crossed spheroids (Fig. 3d), 
and d drilled oblate spheroids (Fig. 3e)
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heterogeneity were established, one inclusion at a time. 
Subsequent inhomogeneities were added in such a way that 
they did not intersect the already fixed particles. If this was 
not possible at some point, the procedure was restarted with 
a new random distribution of centres. In the next step, the 
smallest distance between the surfaces of inclusions was 
numerically calculated, treating them as filled, i.e. ignoring 
the presence of hollows for some of the considered shapes, 
i.e. the drilled sphere (Fig. 3c) was treated as a sphere, and 
the drilled oblate spheroid (Fig. 3e) was regarded as an 
oblate spheroid. If the smallest distance between the surfaces 
of particles was less than 0.0005, the random structure was 
discarded to improve both accuracy and efficiency of later 
numerical calculations.

The above method of generating random structures is one 
of the simplest, but it proved to be sufficient for the purpose 
of the present studies. More advanced algorithms for three-
dimensional random packing, which include an overlapping 
detection algorithm for an optimized simulation of the meso-
structure, can be found in the literature, e.g. [40].

Let us demonstrate that the complexity of generating the 
required set of RVEs increases with the number of inclu-
sions, especially if we aim to obtain a prescribed packing 
ratio for a given volume fraction. Fig. 7 presents normal-
ized histograms of the packing ratio f�∕fm in random struc-
tures. Fig. 7a shows such histograms for spherical inclusions 
with a volume fraction of 30% and the number of particles 
in the RVE set to 10, 20 or 30. As the number of inclu-
sions increases, the curve becomes narrower, i.e. to obtain 
several dozen structures with a similar value of the pack-
ing ratio within a given range, more trial microstructures 
are needed, e.g. for f�∕fm = 0.03 , 106 random microstruc-
tures with 30 spherical inclusions were required to allow 

the selection of 30 RVEs with a similar packing ratio, i.e. 
f�∕fm = 0.03 ± 10−4.

Normalized histograms of f�∕fm for 30 particles with 
fi = 30% and various shapes of inclusions (Fig. 3a–e) are 
shown in Fig. 7b. The drilled spheres, which have approxi-
mately the same size in each direction (Fig. 3c), have the 
smallest average packing ratio and the narrowest spread of 
its values. The drilled oblate spheroids are at the other end 
of the spectrum. Despite the cavity, they have the largest 
average packing ratio and the widest scatter.

4  Results

4.1  Concentration tensors

In this section, the numerical diluted concentration tensor 
�

NDil
i

 , calculated using the described procedure, is verified 
against the analytical solution derived by Eshelby [6]. The 
case of a spheroidal inclusion with semi-axes (a, b, b) is 
analyzed, with the ratio a

b
 ranging from 0.5 to 2 and with 

different ratios of the phases’ Young’s moduli Ei∕Em.
In Fig. 8a, the material parameters were taken as for 

ceramic particles embedded in a metal matrix (MMC, 
Table 1), and in Fig. 8b Poisson’s ratios of the inhomoge-
neities and the matrix are the same as for the MMC, i.e. 
�i = 0.2 and �m = 0.3 , while the ratio of Young’s moduli 
Ei∕Em changes as shown on the X axis with Em = 75[GPa] . 
Note that for the MMC of Table  1, Ei∕Em ≈ 5.33 . The 
components An , n = 0,… , 3 and 12, of the spheroid con-
centration tensor � are defined in Appendix B [Eq. (B.1)], 
and calculated from Eq. (B.3). In Fig. 8, good agreement 
between numerical and analytical results is observed: A2 and 

(a) (b)

Fig. 7  Normalized histograms of the packing ratio f�∕fm for the vol-
ume fraction of inclusions 30% in random structures. a The number 
of spherical inhomogeneities is: 10, 20, or 30. b RVEs with 30 inho-

mogeneities of different shapes: spheres, prolate spheroids, drilled 
spheres, crossed spheroids and drilled spheroids (Fig.  3a–e, respec-
tively)
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(a) (b)

Fig. 8  Components of the spheroid concentration tensor � vs a 
the ratio of the spheroid’s semi-axes a

b
 for the MMC composite, b 

Young’s moduli ratio between the material phases Ei∕Em for a
b
= 2 . 

Analitical results (lines) are from the Eshelby solution, numerical 
results—from the described RMTM procedure

Table 2  MMC components of the numerical �NDil
i

 for different 
shapes: sphere, drilled sphere, prolate spheroid a∕b = 2 , crossed 
spheroids, and oblate spheroid a∕b = 2∕3 (Fig. 3a–e). The numerical 

dilute concentration tensors: �Iso—isotropy, �Cub—cubic anisotropy 
(Eq.  B.2), �Trans—transverse anisotropy (Eq.  B.1). The components 
An of � are listed in Appendix B.3

Symmetry of � Shape A0 A1 A2 A3 A12

�
Iso Sphere 0.387 0.306 –

�
Cube Drilled sphere 0.433 0.354 0.334 –

�
Cube Crossed spheroids 0.399 0.315 0.325 –

�
Trans Prolate spheroid 0.397 0.387 0.270 0.316 ≈ 10−2

�
Trans Drilled spheroid 0.401 0.335 0.298 0.345 ≈ 10−3

Fig. 9  UVEs with the FCC arragement of meshed inhomogeneities, fi = 30% : a spheres, b drilled spheres, c prolate spheroids, d crossed sphe-
roids, and e drilled oblate spheroids. The matrix phase is not shown for clarity
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A3 predicted by both methods are almost the same (Fig. 8a), 
also numerical A0 and A1 lie close to the analytical results 
though a slight difference is visible here. As can be seen 
in Fig 8b, a change of contrast Ei∕Em does not worsen the 
agreement of results. Though the numerical A12 (Eq. B.3) 
equals 10−2 for a

b
= 2 , which is far smaller than the rest of 

the � components, the analytical A12 is almost 0 (around 
10−5 ). As expected, with increasing Ei∕Em > 1, the compo-
nents of the concentration tensor decrease and take values 
smaller than one, which indicates a reduced capability of the 
inhomogeneity to accommodate the overall strain. The limit 
case would be a rigid inclusion which is not able to accom-
modate any strain. A reverse trend is observed for decreasing 
Ei∕Em < 1 , in which case the soft inhomogeneity is more 
and more ‘eager’ to accommodate strain.

Table 2 contains the independent components of the 
numerical diluted concentration tensor �NDil

i
 for different 

shapes of inhomogeneities, properties of which are given 
in Table 1. For a sphere �NDil

i
 is isotropic, for the crossed 

spheroids and the drilled sphere it has cubic symmetry (see 
�

Cub in Eq. B.2), and for the prolate, oblate and drilled sphe-
roid it is transversely isotropic (see �Trans in Eq. B.1). Let us 
observe that the spherical component A0 of �NDil

i
 is similar 

for different shapes, but the components of the deviatoric 
part: A1 , A2 , and A3 are sensitive to the shape change. Note 
that the value of component A1 for the prolate spheroid 
is higher than for a sphere. This could be rationalized as 

follows. For the strain given by Eq. (19)2, it is necessary 
to elongate the composite in the direction of the main axis 
of the spheroid. Thus, in this direction the inhomogeneity 
needs to participate more in the composite’s strain. It can be 
clearly seen when we imagine infinitely long spheroids—
fibres—which must accommodate the composite’s total 
strain in their direction. On the other hand, this is not neces-
sary when we consider the strain in the transverse direction. 
When comparing the components of �NDil

i
 for a sphere with 

those for the drilled sphere, larger values of the components 
Ak are observed for the second shape. It means that in the 
second case more strain is accommodated by the inhomoge-
neity. It is worth recalling that the numerical strain concen-
tration tensor �NDil

i
 is calculated from the inhomogeneity’s 

domain excluding the cavity if the inhomogeneity is drilled.

4.2  FCC arrangements of inclusions

In this section, effective material parameters of two-phase 
composites are discussed. It is assumed that the spatial 
distribution of inhomogeneities is the same as in the face-
centred cubic crystal lattice. The arrangement of particles in 
the Unit Volume Element (UVE), which is a 1 ×1× 1 cube, is 
shown in Fig. 9. The FE mesh for inclusions is presented in 
Fig. 9, where the matrix phase is hidden for better clarity of 
the figure. The mesh size was chosen so that the difference 

(a) (b)

Fig. 10  The metal matrix composite (MMC) reinforced with ceramic 
particles arranged in the face-centred cubic (FCC) system. Compo-
nents of the effective stiffness tensor a �

Tetra
 (Eq.  A.9) with prolate 

spheroids (2a,a,a) (Fig. 9c), and b �
Cub

 (Eq. A.8) with drilled spheres 

(Fig. 9b) as inclusions. Notation: fi the volume fraction of inclusions, 
MRP the MRP based on RMTM and MT* (Fig. 1), FEM numerical 
homogenization
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in the obtained results is less than 1% after a subsequent 
mesh refinement. The assumed shapes of inhomogeneities 
are discussed in Sect. 2.2.

The influence of the inclusions’ volume fraction fi in 
the MMC (Tab. 1) on the effective properties is studied 
first. Fig. 10 demonstrates the effective stiffness tensor of: 
tetragonal symmetry �

Tetra (Fig. 10a) for the UVE rein-
forced with prolate spheroids (Fig. 9c), and cubic sym-
metry �

Cub (Fig. 10b) for the UVE reinforced with drilled 
spheres (Fig. 9b). The six independent components of 
�
Tetra (Eq. A.9) are established by performing five numeri-

cal tests (Eq. 19 and Eq. A.12), and the three independent 
components of �

Cub (Eq. A.8) are established by perform-
ing tests using E(0)

ij
,E

(1)

ij
 , and E(2)

ij
 from Eq.  19. Let us 

emphasize that the estimates of the MRP model are insen-
sitive to the spatial distribution of inclusions, so the effec-
tive stiffness tensor obtained by this method inherits the 
symmetry group of the concentration tensor. Therefore, for 
the prolate spheroid it has transverse isotropy and the 
shear moduli Ḡ2 and Ḡ4 obtained by MRP, contrary to 
FEM results, are equal in Fig. 10a. This analytical out-
come lies between the numerical homogenization results. 
The order of the macroscopic shear moduli estimated by 
MRP: Ḡ1 > Ḡ2 > Ḡ3 (Fig. 10a) corresponds to the order of 
the respective components of the numerical concentration 
tensor: A1 > A2 > A3 (Table  2 prolate spheroid). For 
smaller volume fractions of the particles, fi < 0.15 , Ḡ1 is 

almost equal to Ḡ3 , and Ḡ2 is close to Ḡ4 for FEM results. 
For the FCC MMC reinforced with ceramic drilled spheres 
(Fig. 10b), there is good agreement between the FEM and 
MRP results.

The influence of the inhomogeneity’s shape on the 
effective properties is demonstrated next. Fig. 11 shows 
the effective shear modulus (a) G1 and (b) G2 of the UVE 
made of the MMC (Table 1) reinforced with ceramic par-
ticles in the FCC arrangement and having one of the five 
different shapes: sphere, drilled sphere, prolate spheroid, 
crossed spheroids, and drilled oblate spheroid (Fig. 3). 
Because the geometries of inclusions differ, the maximum 
volume fraction of inhomogeneities in the FCC system 
varies. The order of the macroscopic shear moduli G1 and 
G2 by MRP in Fig. 11 corresponds to the order of the 
first (Fig. 11a) and second (Fig. 11b) component of �NDil

i
 

(Table 2) for the different shapes as, under the loading 
conditions �1 and �2 , respectively, more strain is accom-
modated by the stiffer inhomogeneity phase. The MRP 
estimates and results of numerical homogenization are in 
good agreement except for the case of the prolate sphe-
roids (Fig. 11). This discrepancy follows from the tetrago-
nal symmetry of the FCC UVE, which is not accounted for 
by the MRP scheme. In general, the metal matrix compos-
ite is the stiffest in terms of the considered component of 
the elasticity tensor when it is reinforced with the ceramic 
spheroids drilled in three directions. The biggest difference 

(a) (b)

Fig. 11  The metal matrix composite (MMC) reinforced with ceramic 
particles arranged in the face-centred cubic (FCC) system. The effec-
tive shear modulus a G1 for �(1) , and b G2 for �(2) in BC (Eq. A.12) 

for different shapes of inhomogeneities (Fig. 3). Notation: fi the vol-
ume fraction of inclusions, MRP the MRP based on RMTM and MT* 
(Fig. 1), FEM numerical homogenization
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between the effective stiffness G1 and G2 (Fig. 11a and b) 
is for spheroids: prolate and drilled.

Second, the influence of contrast in the elastic properties 
of phases, i.e. the ratio Ei∕Em between the Young’s moduli 
of the inclusions and matrix, is studied for the fixed vol-
ume fraction of inclusions fi = 0.3 . Because the material 
parameters change, the numerical concentration tensor is 
calculated independently for each value of Ei∕Em . Fig. 12 
shows K̄ and four Ḡ as a function of the Young’s moduli 
ratio between the hard and soft phase, Eh∕Es . The curves in 
the upper part of Fig. 12 have Ei > Em , so Ei = Eh , and in 
the lower part Ei < Em , thus Ei = Es . Fig. 12a demonstrates 
the independent components of the effective elasticity ten-
sor �

Tetra of the UVE reinforced with prolate spheroids with 
semi-axes (2a, a, a) (Fig. 9c). As before, the biggest differ-
ence between the numerical and MRP model predictions is 
seen for the Ḡ1 and Ḡ2 elastic constants. For the remaining 
shapes of particles, good agreement was found as demon-
strated in Fig. 12b using the example of the Ḡ2 modulus. 
Overall, effective properties of UVEs with inhomogeneities 
of cubic symmetry described by �Cub estimated by MRP are 
in better agreement with numerical results because these 
inclusions have the same symmetry as the FCC spatial distri-
bution of particles. The varying contrast in phase properties 
does not significantly change the consistency of agreement 
between the MRP and numerical predictions.

4.3  Random arrangements of inclusions

In this section, macroscopic material parameters of two-
phase composites with randomly distributed particles are 
considered, and the packing effects are studied. To investi-
gate the impact of the packing ratio f�∕fm on the effective 
behaviour of particulate composites, at least 105 random 
microstructures were generated to select 30 RVEs with a 
similar packing ratio to a tolerance of ±10−4.

In Fig. 13, the effective material parameters: (a) bulk 
K  , and (b) shear G modulus are shown vs the packing 
ratio f�∕fm of the MMC reinforced with ceramic parti-
cles of the five different shapes. Numerical homogeniza-
tion was performed by FEM and lasted around 1 h for 
the assumed mesh size. The mesh size was such that a 
subsequent mesh refinement gave a difference in the effec-
tive bulk and shear moduli, respectively, of less than 2%. 
In Fig. 13, the boundary conditions for the FEM calcula-
tions of K and G were specified by �(0) and �(1) (Eq. 19), 
respectively. Each point of the FEM results corresponds 
to simulations of 30 random structures with almost iden-
tical packing parameters f�∕fm . Triangles mark the 95% 
confidence interval for the population mean, and the shape 
symbol marks the average over all 30 random structures. 
Because among the generated random structures the range 
of the packing ratio f�∕fm is narrow (see Fig. 7b) for the 
drilled spheres and the crossed spheroids, it was decided to 

(a) (b)

Fig. 12  Two-phase composite with a varying ratio Ei∕Em ( �i = 0.2 , 
�m = 0.3 ), particles placed according to the face-centred cubic (FCC) 
system, two configurations: (Eh,Es) = (Ei,Em) or (Eh,Es) = (Em,Ei) . 
(a) Components of the effective stiffness tensor �

Tetra
 (Eq.  A.9) for 

prolate spheroids with axes (2a,  a,  a) (Fig.  9.c). (b) The effective 
shear modulus G2 for �(2) in BC (Eq.  A.12) for different shapes of 
inhomogeneities (Fig. 3). Notation: MRP the MRP based on RMTM 
and MT* (Fig. 1), FEM numerical homogenization
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take only two representative packing parameters (Fig. 13) 
for these shapes. It can be seen that the macroscopic bulk 
modulus (Fig. 13a) has a smaller spread than the effective 
shear modulus (Fig. 13b). This feature conforms with the 
results reported in [11]. Moreover, the packing ratio f�∕fm 
affects the effective material parameters, but the impact 
is small compared to the effect of shape, at least in the 
considered elastic range. However, as it was shown in the 
paper [13], the packing ratio plays a major role in the non-
elastic response of composites, e.g. in plasticity.

RVEs of particulate composites with randomly distrib-
uted and oriented inclusions are isotropic. In this research, 

30 particles were enough to obtain similar shear moduli for 
all deviatoric tests (Eq. A.12). Because the numerical con-
centration tensors have the same symmetry as the inclusion 
shapes, an isotropization procedure was used. For all shapes, 
the effective shear modulus Ḡ was taken as a weighted aver-
age of all calculated Ḡk [11]. The MRP model predicts a 
trend similar to the numerical outcomes for the influence 
of the packing ratio on effective stiffness parameters. Slight 
stiffening of the material is predicted when the packing 
parameter decreases, with the effective response of the com-
posite reinforced with drilled spheres being the stiffest, as for 
the FCC MMC studied in Fig. 11. The effective shear moduli 

(a) (b)

Fig. 13  Two-phase composite (Table  1) with a continuous metal 
matrix and different shapes of 30 randomly oriented ceramic inhomo-
geneities (Fig.  3a–f) with fi = 0.3 . The effective a bulk modulus K 
and (b) shear modulus G , scaled by matrix parameters, vs the pack-
ing ratio f�∕fm . Notation: MRP (RMTM,MT*) the present MRP model 

based on the RMTM and MT* patterns (Fig.  1), FEM numerical 
homogenization. Each FEM mark (e.g. dots for spheres) denotes the 
mean of 30 random RVEs of the same f�∕fm ; triangles mark the 95% 
confidence interval for the population mean

Fig. 14  Equivalent von Mises stress (legend 0–300 MPa, the same 
for all plots) within periodic representative volume elements of ran-
dom composites, each containing 30 inclusions with a volume frac-

tion of 30%. The shapes of inclusions are: a spheres, b drilled spheres 
(Fig. 3c), c prolate spheroids (Fig. 3b), d crossed spheroids (Fig. 3d), 
and e drilled oblate spheroids (Fig. 3e)
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Ḡ obtained by numerical homogenization for drilled sphe-
roids and crossed spheroids are similar (Fig. 13b), despite 
the different packing ratios.

In Fig. 14, the Mises stress contour maps for selected 
microstructures (Fig. 6) are presented. As can be seen, the 
equivalent stress level within the matrix phase inside drilled 
inhomogeneities is smaller than in the surrounding matrix, 
because stiff ceramic particles prevent the development of 
higher strains in these areas. In Fig. 14, the maximum von 
Mises stress in each representative volume ranges from 793 
for spheres (Fig. 14a), to 1840 MPa for crossed spheroids 
(Fig. 14d), to 2992 MPa for prolate spheroids (Fig. 14c), 
to 5290 MPa for drilled spheres (Fig. 14b), to 6820 MPa 
for drilled oblate spheroids (Fig. 14.e). These results were 
obtained for these particular realizations of the representa-
tive volumes and do not necessarily represent values found 
for the whole range of the random composites. Nevertheless, 
they are listed to help interpret the contour maps in Fig. 14.

5  Conclusions

This study investigated the effects of particle packing and 
shape on the overall elastic properties of particulate com-
posites using the mean-field morphologically representa-
tive pattern approach. In the MRP approach, the composite 
microstructure was represented by two patterns: the replace-
ment Mori–Tanaka model and a Mori–Tanaka-type (MT*) 
estimate. The RMTM pattern comprised a composite inclu-
sion composed of an inclusion surrounded by two coatings: 
the first one specified by the minimum distances �k between 
particles in the representative volume, the second one by 
the volume fraction of inclusions and of the matrix outside 
the �-coatings region. Thus, the parameters describing the 
packing of the particles were minimum distances between 
particles. The RMTM was used to account for the shape 
effect because it allows one to numerically estimate the 
effective response of any shape of inclusion. The MT* pat-
tern, containing the remaining matrix material surrounded 
by a medium with the effective parameters of the composite 
inclusion, takes into account interactions between composite 
inclusions.

The analytical mean-field models were confronted with 
the results of computational homogenization performed 
using the finite element method. Samples with both regu-
lar and random arrangements of particles were generated. 
Representative volume elements with random distributions 
of 10, 20, or 30 particles, and periodic unit cells with face-
centred cubic crystal-type arrangements were used. In the 
RVE’s case, to isotropize the anisotropic MRP estimates of 
the effective stiffness tensor for a single non-spherical inho-
mogeneity, a method was proposed that treats the composite 

material as a polycrystal made of randomly oriented domains 
corresponding to the unit cells.

The MRP-based assessments of the influence of the 
inhomogeneities’ shape and packing on the macroscopic 
behaviour of particulate composites were verified by per-
forming numerical simulations. The MRP approach pre-
dicts a stronger stiffening effect of the decreasing minimum 
distance between reinforcement particles on the overall 
response compared to the FEM results. However, quantita-
tively the MRP elastic moduli are lower than those obtained 
using FE homogenization for FCC unit volumes, especially 
for high volume contents of inclusions, approaching a limit 
when particles are in contact. MRP is based on numeri-
cal concentration tensors calculated for the dilute volume 
fraction of a single inhomogeneity, so the estimates of the 
MRP model are insensitive to the spatial arrangement of 
inclusions. Therefore, the FEM and MRP results for FCC 
volumes are not in agreement for higher volume fractions 
of inclusions.

Both the MRP and FEM results predict a strong impact 
of the shape of particles on the effective properties. Five 
selected shapes of inhomogeneities were considered in the 
article: a sphere, a prolate spheroid, a sphere with three per-
pendicular cylindrical cavities (drilled sphere), three prolate 
spheroids crossing at right angles (crossed spheroids), and 
an oblate spheroid with a cylindrical cavity (drilled oblate 
spheroid). As concerns qualitative predictions related to 
packing in such cases, similar trends as those observed for 
two-phase composites reinforced with spherical inclusions 
can be seen. The tendencies predicted by MRP are consist-
ent with FEM results in the case of all studied shapes—an 
especially good agreement was obtained for drilled oblate 
spheroids. In the case of highly irregular shapes of the par-
ticles, the numerical simulations of the concentration tensor 
could be more challenging. Especially when there is signifi-
cant unevenness of the surface of the particle, which makes 
mesh quality an important factor. On the other hand, it is 
substantially easier to simulate single irregular inhomoge-
neities than an RVE with many irregular inclusions.

One may conclude from the presented studies that MRP 
estimates, by accounting for particle shapes and packing, 
may improve classical micromechanical estimates in the 
case of moderate volume contents. The inclusions’ shape 
can be used as a design parameter to be found using the 
multi-objective optimization procedure presented in [41]. 
Additionally, it is foreseen that this approach may be par-
ticularly useful with respect to particulate composites in the 
elastic–plastic regime or with damage evolution. Therefore, 
an extension of the presented MRP approach to the non-lin-
ear regime is a subject of our current research. The extension 
can be performed by applying the concept of incremental 
linearization of elastic–plastic constitutive relations pro-
posed by Hill [42], like it was done in our recent paper [13]. 
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Such linearization is obtained by adopting either tangent 
or secant material moduli [42]. Therefore, the use of the 
RMTM and MT* formalism requires isotropization of the 
current moduli, which are usually anisotropic [14]. To this 
end, the algorithm for microstructure generation presented 
in this paper can be directly applied. The correctness of the 
choice of either modulus can be verified numerically.

Our preliminary studies using a simple continuum dam-
age model presented in 8 enable us to hypothesize about 
basic trends in material degradation related to different 
shapes and spatial distributions of particles. On the basis of 
these observations, some guidelines for building an efficient 
analytical or semi-analytical model incorporating damage 
may be formulated. In general, more localized damage is 
observed in the case of a smaller distance between the par-
ticles’ outer surfaces and more spherical shapes of inclu-
sions. In short, the proposed damage will be developed 
until fracture of the material. To improve the MRP model’s 
predictions each inclusion will be considered separately, as 
schematically shown in Fig. 15

Appendix A: Stiffness tensor 
decompositions: transverse isotropy 
and cubic symmetry

In the paper, five different shapes are studied (see Fig. 3a–e). 
Let us assume that the spheroid is prolate (Fig. 3c) or oblate 
and drilled (Fig. 3e) in the �1 direction. Then the stiffness 
tensor �

dil

i
 of a tiny spheroid embedded in a large cube 

(Fig. 4) and the effective stiffness tensor �NDil in Eq. 14 
exhibit transverse isotropy and can be written in the follow-
ing form [43]:

The orthogonal projectors ℙK ( K = 1, 2, 3 ) define:

• 1D space of isochoric tension/compression along �1

• 2D space of in-plane shears 

• 2D space of out-of-plane shears where 

As it was mentioned, to calculate the five independent 
components: 3K , 2G1 , 2G12 , 2G2 , 2G3 , a set of four analy-
ses with micro-periodic displacement boundary conditions 
(Eq. 16)   were performed for a unit volume element. The 
four strain tensors �(n) ( n = 0, 1, 2, 3 ) imposed in these 
analyses are given by Eq. (19).

The strains �(n) result in the overall stresses, calculated 
as the local stresses averaged over the RVE’s volume, 
�
(n) = 1∕V ∫

V
�dV  , which allow one to derive each inde-

pendent component of �
Trans according to the relations:

(A.1)
𝕃
Trans

=3K𝕀P + 2G1ℙ1 + 2G2ℙ2 + 2G3ℙ3

+ 2G12

1
√

6

(�⊗ � + �⊗ �) .

(A.2)ℙ1 = �⊗ � , � =
1
√

6

�

3�1 ⊗�1 − �
�

,

(A.3)
ℙ2 =

1

2

[(

�2 ⊗�3 +�3 ⊗�2

)

⊗
(

�2 ⊗�3 +�3 ⊗�2

)

+
(

�2 ⊗�2 −�3 ⊗�3

)

⊗
(

�3 ⊗�3 −�2 ⊗�2

)]

,

(A.4)

ℙ3 =
1

2

∑

k=2,3

(

�1 ⊗�k +�k ⊗�1

)

⊗
(

�1 ⊗�k +�k ⊗�1

)

.

Fig. 15  The microstructure of a two-phase composite reinforced with five inclusions represented in the MRP approach by six patterns: b each 
inclusion represented by its own pattern and c the MT* pattern
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where Σ(n)

i j
 denotes the ij component of the averaged stress 

tensor �(n) obtained as a material response to the strain �(n)

.
For the other shapes, i.e. the drilled sphere and crossed 

spheroids (Fig. 3c and d), the effective elastic stiffness 
tensor �

Cub of the unit cells is the anisotropic fourth-order 
tensor relevant for cubic symmetry with three Kelvin mod-
uli 3K , 2G1 , and 2G2 , namely [38]:

where

and �k are the main symmetry axes of the unit cell. The 
eigensubspaces corresponding to 3K , 2G1 , and 2G2 are one 
dimensional (the space of hydrostatic states), two dimen-
sional, and three dimensional (two orthogonal subspaces of 
deviatoric states), respectively.

Only three FE analyses with strains �(0) , �(1) , and �(2) 
imposed by periodic boundary conditions (Eq.  19) are 
needed to derive each Kelvin modulus independently, 
according to the relations:

It can be seen that the above three strains �(0) , �(1) , and 
�
(2) belong to three distinct eigensubspaces of the tensor 

�
Cub and result in the overall stresses �(0) , �(1) , and �(2) of 

the same structure as strains. Finally, the response of a unit 
volume element reinforced with a single tiny spherical inho-
mogeneity (Fig. 4) is isotropic.

The situation changes in the case of unit cells with the 
FCC placement of inhomogeneities (Fig.  9), which for 
spherical inclusions are of cubic symmetry. If the compos-
ite is reinforced with prolate (Fig. 9c) or oblate (Fig. 9e) 
spheroids, the effective stiffness tensor � has tetragonal sym-
metry and can be written in the following form:

(A.5)

3K =
Σ
(0)

11
+ 2Σ

(0)

22

3d
, 2G12 =

Σ
(0)

11
− Σ

(0)

22
+ Σ

(1)

11
+ 2Σ

(1)

22

3d
,

2G1 =
2

(

Σ
(1)

11
− Σ

(1)

22

)

3d
, 2G2 =

Σ
(2)

23

d
, 2G3 =

Σ
(3)

12

d
,

(A.6)�
Cub

= 3K�P + 2G1(� − �
P) + 2G2(� − �) ,

(A.7)� =

3
∑

k=1

�k ⊗�k ⊗�k ⊗�k , �
P =

1

3
�⊗ � ,

(A.8)3K =
�
(0)

11

d
, 2G1 =

�
(1)

11

d
, 2G2 =

�
(2)

23

d
.

(A.9)
𝕃
Tetra

=3K𝕀P + 2G1ℙ1 + 2G2ℙ̂2 + 2G3ℙ3

+ 2G4ℙ̂4 + 2G12

1
√

6

(�⊗ � + �⊗ �) ,

where 3K , 2G1 , 2G12 , 2G2 , 2G3 , 2G4 are six independent 
components. Note that it is assumed that the main axis of 
a prolate or oblate spheroid, or a drilled sphere, is coaxial 
with the �1 direction, which is at the same time coaxial with 
one of the unit cell’s edges �k . Under such conditions, the 
projectors ℙK (K=1,3) for tetragonal symmetry are the same 
as for the transversal one. The projectors ℙ̂2 and ℙ̂4 sum up 
to ℙ2 for transverse isotropy. They define two 1D orthogonal 
subspaces of shearing in the 2–3 plane, namely:

• pure shear along the �2 and �3 directions, 

• pure shear along directions inclined by 45o with respect 
to the �2 and �3 directions, 

To find the six independent components of �̄Tetra , the four anal-
yses with the overall strains �(n) (n = 0, 1, 2, 3) given by Eqs. 
(19), performed in the case of the overall transverse isotropy, 
are completed with a fifth analysis with an imposed strain of 
the following representation in the basis {�i}:

where d specifies the strain magnitude.
The imposed strains �(n) result in the overall stresses �(n) , 

which allow one to derive each independent component of 
�
Tetra according to Eq. A.5 with the addition of G4:

The effective stiffness of a composite with the FCC arrange-
ment of inhomogeneities shown in Fig. 9a, b and d is of 
cubic symmetry as long as the main axes of ingomogeneities 
coincide with the axes of the unit cell.

Appendix B: The form of concentration 
tensors: transverse isotropy and cubic 
symmetry

The numerical strain concentration tensor �NDil
i

 of an inhomo-
geneity has the same symmetry group as the effective stiffness 
tensor of a large unit cell (Fig. 4) with a tiny inhomogene-
ity. Thus, for inhomogeneities having the shape of the prolate 

(A.10)
ℙ̂2 =

1

2
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�2 ⊗�3 +�3 ⊗�2

)

⊗
(

�2 ⊗�3 +�3 ⊗�2

)]

,

(A.11)
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0 d 0
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spheroid or drilled oblate spheroid (Fig. 3b and e) its symme-
try group is that for transverse isotropy:

and for the other shapes: drilled sphere and crossed sphe-
roids (Fig. 3c and d), it has cubic symmetry, viz.

where the projectors ℙK and the remaining tensorial quanti-
ties, e.g. � , are listed above; see Eqs. A.2, A.3, and A.7. 
Finally, if a particle is spherical then the numerical strain 
concentration tensor is isotropic.

For the set of micro-periodic displacement boundary condi-
tions specified by the strains �(n) from Eq. (19), the compo-
nents ACub and ATrans , established from Eq. (15), are:

where ⟨⋅⟩ is the volume averaging operation defined as 
1∕V ∫

V
(⋅)dV , � is the local strain tensor in the inhomogeneity 

domain, ⟨�⟩(n)
ij

 is the component ij of the inhomogeneity’s 
average strain in response to the displacement BC given by 
�
(n) . The simplification ATrans

12
≈ ATrans

21
 was assumed taking 

into account very small values of this component compared 
to the remaining ones (see Table 2).

Appendix C: The impact of inclusion shape 
on damage evolution

As it has been shown, the shape of inclusions may substan-
tially influence the local strain and stress fields in the compos-
ite phases. These local fields have a prominent effect on the 
initiation of damage in the material [20]. Below, we analyze 
damage evolution in composites with the considered shapes of 
heterogeneities by means of numerical homogenization.

Material degradation is simulated by FEM using the con-
cept of the damage parameter d and the framework of con-
tinuous damage mechanics [44]. Within the local constitutive 
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model of the phases, the free energy density Π is postulated 
in the form

where Πe is the elastic energy density specified as

The damage parameter d depends on the history parameter 
� which is related to the elastic energy density according to 
the exponential law [45]:

where dmax = 0.8 is taken as the maximum damage, H = 0.1 
is the damage ductility, and � is equal to the maximum value 
of the elastic energy density Πe achieved during the deforma-
tion process up to the considered time step.

Figure 16a presents the average value of the von Mises 
stress, calculated from the effective stress �̄� , versus the 
overall strain component �23 of the MMC (Table 1) sub-
jected to periodic boundary conditions (16) with � = �

(2) . 
Similarly to [46], damage evolution is enabled only in the 
matrix phase. Figure 16b shows the average damage evolu-
tion dm = 1∕Vm ∫ d dVm in the matrix phase for five differ-
ent inclusion shapes in the FCC spatial arrangement. The 
studied microstructures are presented in Fig. 9.

The results indicate that the shape of inhomogeneities 
plays a critical role in the non-linear response of the particu-
late composite. As can be seen in Fig. 16a, the difference in 
the overall von Mises stress between the crossed spheroids 
and the prolate spheroids is almost 500[MPa]. In all cases 
we observe first an increase in the stresses accompanied by a 
smooth reduction of stiffness. Next, some stabilization of the 
stress level is seen, so the strain increases under an approxi-
mately constant stress. Finally, the overall stresses start to 
increase again. The reason for this behaviour is the damage 
evolution law (Eq. C.1) and the assumption of the maximum 
damage dmax = 0.8 which is less than 1.0, so the elastic stiff-
ness of the matrix never degrades to zero. When d reaches its 
maximum value dmax , the locally damaged matrix becomes 
elastic but with a smaller stiffness: (1 − dmax)�m . The con-
tour maps shown in Fig. 17 present the distribution of the 
damage parameter d at �23 = 0.02 . Details of the distribution 
vary with the inclusion shape. In the MMC reinforced with 
prolate spheroids, wide and almost straight damage bands 
develop (see Fig. 17c), while for crossed spheroids dam-
age bands are more curved (see Fig. 17d), and for drilled 
spheres damage develops in the matrix inside the inclusions 
(see Fig. 17b). In general, higher damage localization is 
observed in specimens with a smaller distance between the 
particles’ external surfaces and with more spherical shapes 
of inclusions.

(C.1)Π = (1 − d)Πe(�) ,

(C.2)Πe =
1

2
� ⋅ �i∕m ⋅ � .

(C.3)d = dmax(1 − Exp[−H�]),
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(a) (b)

Fig. 16  MMC with the FCC particle distribution with a volume frac-
tion fi = 0.3 , subjected to the shear specified by �(2) (Eq. 19). Dam-
age development is enabled in the matrix phase only. a The overall 

equivalent von Mises stress �Mises , and b the averaged matrix damage 
d vs the overall strain component �23

Fig. 17  Distribution of the damage parameter d (contour maps) at 
the strain �23 = 0.02 in the shear test specified by �(2) (Eq. 19). The 
MMC is reinforced with ceramic particles of five different shapes: a 
spheres, b drilled spheres, c prolate spheroids, d crossed spheroids, 

and e drilled oblate spheroids (see Fig. 3) placed in the FCC arrange-
ment (Fig. 9). The damage evolution law of the matrix phase is speci-
fied by Eq. C.1 (damage evolution is disabled in the inclusions)
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