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Abstract
The direct incremental energy minimization in rate-independent plasticity does
not account for the skew-symmetric part of the tangent stiffness matrix. In crys-
tal plasticity, this corresponds to neglecting the asymmetry of the matrix of
interaction moduli for active slip-systems. This limitation has been overcome
in the recently proposed quasi-extremal energy principle (QEP) applicable to
nonpotential problems. In the present article it is shown how to extend QEP
to finite increments in the backward-Euler computational scheme. A related
constitutive algorithm is proposed which enables automatic selection of active
slip systems using an energetic criterion, along any path of large deformation
of a rate-independent single crystal with a nonsymmetric slip-system interac-
tion matrix. Numerical examples have been calculated for a fcc single crystal
subjected to simple shear or uniaxial tension. The slip system activity predicted
by using the QEP algorithm has been found to be more reliable in describing
the actual plastic response of metal crystals than conventional rate-dependent
modeling in cases where the selection of active slip-systems is essential.
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1 INTRODUCTION

In this article, an energy-based constitutive algorithm for the rate-independent crystal plasticity is developed which
enables automatic selection of active slip systems along any paths of large deformation. The algorithm generates the
values of incremental slips which, in the limit of a vanishingly small time step, provide an exact solution to the consti-
tutive rate-problem. In contrast to the previous energy-based algorithms, there is no restriction here on the symmetry
of the slip-system interaction matrix. However, this required a more fundamental extension of the incremental energy
minimization approach, applicable to potential problems, to a broader concept of incremental quasi-minimization of
energy.1

There are commonly known branching phenomena like buckling, necking, shear banding or subgrain forma-
tion which in numerical simulations require a criterion of choice of the postcritical deformation branch. In the
rate-independent crystal plasticity at finite strain, the problem of nonuniqueness appears already at the constitutive level
of selection of active slip systems at a material point.2-4 General conditions sufficient and necessary for uniqueness of
the solution for slip-rates in the rate-independent framework2,5 are not satisfied in general. If there exists an incremen-
tal potential then a computational approach based on the incremental energy minimization is available for selecting the
slip-system set of physical meaning.6,7 However, a generic rate-problem in crystal plasticity is of nonpotential type due
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to the lack of symmetry of the slip-system interaction matrix.3,4 Therefore, the question arises how to select a physically
meaningful solution among multiple possibilities when the known extremal principles do not apply.

Recently, a new energy-based variational formulation has been developed for a broad class of nonpotential problems
in rate-independent plasticity.1 It has been demonstrated that the direct incremental energy minimization does not pro-
vide a proper solution to the rate-problem posed if the global stiffness matrix for active plastic deformation mechanisms
is not symmetric. A correct rate-solution is then generated by a quasi-extremal energy principle (QEP) in which the min-
imized function depends on an unknown solution as a parameter. When specialized in the constitutive rate-problem of
rate-independent plasticity, this reduces to the quasi-minimization of the incremental energy expression that consists of
the standard quadratic expression for deformation work and a new bilinear form based on the skew part of the slip-system
interaction matrix.

The aim of this article is twofold. First, to extend the quasi-extremal energy principle, formulated originally in Refer-
ence 1 for rate-solutions to nonpotential problems, to small but finite increments with end-point values as unknowns in
the computational approach. Second, to apply the principle in numerical simulations of large plastic deformations of a
single crystal to automatically select currently active slip systems at each time step, without assuming symmetry of the
slip-system interaction matrix.

While the quasi-extremal principle formulated in Reference 1 encompasses the gradient-enhanced plasticity, the algo-
rithmic problem examined in this article is local, that is, formulated in the continuum mechanics framework at a single
material point without slip-gradient effects. The classical constitutive theory of elastic-plastic crystals deformed by mul-
tislip at large strain has been established by Hill and Rice,2,8,9 later reformulated and used in many works, for example,
References 3,10-12 and others. Although it is not necessary in this article, for the sake of simplicity we adopt the gen-
eralized Schmid (normality) rule, the meaning of which has been thoroughly discussed in Reference 2. Nonassociative
plasticity (cf. Reference 13) is included in the variational formulations recently proposed in References 1 and 14 for
rate-independent thermodynamic systems. Variational formulations and slip-system selection in the gradient-enhanced
crystal plasticity represent another topic, see References 15-22, which is not addressed here.

An overview of different algorithmic approaches to rate-independent crystal-plasticity was presented in Reference 23.
Earlier algorithms for multisurface plasticity24,25 are of limited applicability as the slip-systems interaction matrix, (g𝛼𝛽),
need not satisfy any of the standard conditions of (i) linear independence of systems, (ii) positive definiteness, and (iii)
symmetry. An iterative procedure for selecting active slip-systems in crystal plasticity in the geometrically linear setting
was developed in Reference 26 and in the finite-strain framework in References 27 and 28. In outline, it proceeds by
eliminating slip-systems which correspond to negative slips and adding overloaded slip-systems which correspond to pos-
itive values of the yield functions. Another algorithm based on an augmented Lagrangian formulation of the principle
of maximum plastic dissipation was proposed in Reference 29. In turn, if the set of active slip-systems is prescribed, the
incremental slips are determined by solving a system of (linear or nonlinear) equations. When the active slip-systems
are linearly dependent then this can lead to a singular or ill-conditioned problem. In such cases, the pseudo-inverse or
generalized inverse methods can be used.27,28,30 Subsequently, other algorithms have been developed, compare Refer-
ences 31-37 and the references therein. The closest to the present article are the works based on the incremental energy
minimization,6,7,21,38-47 but they require existence of an incremental potential, which is a separate assumption in the
general case.

In all these studies, however, the following significant question remained open: how to proceed in the
rate-independent crystal plasticity if there are nonunique incremental solutions associated with distinct sets of active
slip-systems in a generic nonpotential case. This work aims to fill that gap.

The nonuniqueness problem in crystal plasticity is often circumvented by applying a rate-dependent (viscoplastic)
model in which the slip-rates are uniquely defined in a given state, see References 9,35,37,48-53 and many other works.
This clear advantage is, however, accompanied by the difficulties related to a “stiff” system of highly nonlinear equations
obtained for low rate-sensitivity, which is typical for metals at room temperature and usually requires the use of a small
time step in the calculations. The lack of nonuniqueness in crystal viscoplasticity may also be accompanied by strong sen-
sitivity of a solution to initial imperfections, for example, to the alignment of crystallographic axes to the loading axis,49 or
exponential growth of perturbations.53 It is an open question whether the variational formulation of viscoplastic consti-
tutive updates based on minimization of a quasi-thermodynamic function treated as constitutive potential, for example
References 54-57, can be used to deal with the issue of imperfection sensitivity. By simply solving the set of incremental
constitutive equations in a high-symmetry orientation of the crystal while maintaining the geometric symmetry, either
within the rate-dependent or rate-independent framework, the predicted number of active slip systems can be excessive
in comparison with experiments, which is illustrated in Section 5.2 below.
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The article is organized as follows. Sections 2.1–2.4 provide the needed mathematical background for the
quasi-extremal energy principle (QEP) in its formulation for the constitutive rate problem of rate-independent crystal
plasticity with an arbitrary (nonsymmetric) slip-system interaction matrix. Coefficients of the constitutive rate equations
are given a more specific form in Section 2.5 within the conventional crystal plasticity framework at finite deformation.
In Section 3 and Appendix, the extension of QEP to the case of finite increments is derived. It is used in the computational
algorithm described in detail in Section 4 and given in Boxes 1–4 in the form ready for implementation. Applicability
of the algorithm to slip-system selection is demonstrated in Section 5 through numerical simulations of large deforma-
tion of a fcc single crystal under simple shear and uniaxial tension, with comparison to the results generated by other
algorithms. Basic conclusions are summarized in Section 6.

2 CONSTITUTIVE FRAMEWORK AND MATHEMATICAL BACKGROUND

2.1 The rate-independent framework for crystal plasticity

Due to inherent path dependence of the response of an elastic-plastic material to the applied loads or displacements,
the basic problem to be solved is formulated in a time-continuous setting in the rate form. This article is limited to the
description of the quasi-static isothermal behavior of ductile single crystals.

In the finite deformation framework, the quasi-static rate problem of continuing equilibrium takes the simplest form
in terms of the rate Ṡ of the Piola stress S (the first Piola–Kirchhoff stress tensor). For typical boundary conditions in the
assumed absence of body forces, the problem of continuing equilibrium is formulated in the standard notation as follows*

Div Ṡ = 0 in , u̇ = v on 𝜕u, Ṡn = Ṫ on 𝜕T. (1)

Here, is a domain occupied by a material body in a fixed reference configuration, on a part 𝜕u of the body boundary 𝜕
a velocity u̇ takes a prescribed value v, while on the complementary part 𝜕T = 𝜕 ⧵ 𝜕u of unit outward normal n the
nominal traction rate Ṫ is prescribed. If, at a material point, Ṡ is a known function of velocity gradient then the velocity
field is the basic unknown in problem (1).

In crystal plasticity, or more generally in case of multiple inelastic deformation mechanisms of rate-independent type,
at a material point there are other basic unknowns, commonly known as slip-rates or plastic multipliers, denoted here
as 𝛾̇𝛼 , 𝛼 = 1, … ,N. A Greek superscript 𝛼 is used throughout as an index of the crystallographic slip-system (and not an
exponent). Each plastic multiplier 𝛾̇𝛼 is related to f 𝛼 , the value of a corresponding yield function for the 𝛼th slip-system,
to be defined later. The respective vectors are denoted by (𝛾̇𝛼) ∈ RN and (f 𝛼) ∈ RN .

Generic constitutive rate-equations of crystal plasticity at finite strain were originally formulated in an objective form
by Hill and Rice.2 By using the known transformation rules,5,58 they can be expressed in the Lagrangian formulation as
follows

Ṡ = C
e ⋅ Ḟ −

∑

𝛼∈

𝚲𝛼p 𝛾̇𝛼, ̇f 𝛼 = Ḟ ⋅ 𝚲𝛼 −
∑

𝛽∈

g𝛼𝛽 𝛾̇𝛽 for 𝛼 ∈ = {1, … ,N}. (2)

Here, Ce =
T
Ce is the fourth-order elastic stiffness tensor that provides the link between Ṡ and Ḟ = ∇u̇, the rate of defor-

mation gradient equal to the velocity gradient in a fixed reference configuration, the sum of 𝚲𝛼p 𝛾̇𝛼 defines the direction
of plastic stress-rate Ṡp = Ṡ −Ce ⋅ ∇u̇, and 𝚲𝛼 is the 𝛼th yield-surface normal transformed to R3×3 space. The quantities
Ce
,𝚲𝛼p,𝚲𝛼, g𝛼𝛽 are all dependent on the current state of the material, denoted by , in a manner which will be specified

in Section 2.5, and represent coefficients of the otherwise linear rate-equations (2).
After suitable normalization which is assumed,𝚲𝛼p = 𝚲𝛼 corresponds to the normality flow rule for the 𝛼th slip system

(see References 2,7,10 for more details), and 𝚲𝛼p ∦ 𝚲𝛼 to a nonassociative flow rule for the plastic slip with non-Schmid
effects.12,59 Throughout this article, we restrict attention to the normality flow rule, 𝚲𝛼p = 𝚲𝛼 . The (measure-invariant)
slip-system interaction matrix (g𝛼𝛽) includes strain hardening/softening dominated by a quadratic form based on the
elastic stiffness tensor, see References 2 and 10 and Section 2.5 for details. The state-dependent matrix (g𝛼𝛽) will play an
essential role in what follows.

The basic rule of plastic slip-system activity in the rate-independent framework is assumed in the well-known form
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𝛾̇
𝛼

≥ 0, f 𝛼 ≤ 0, f 𝛼𝛾̇𝛼 = 0 for 𝛼 ∈ . (3)

Nonzero values of 𝛾̇𝛼 ’s cannot be uniquely determined from rule (3) applied in a given state  at a single instant only,
see Section 2.2. An unknown slip-rate 𝛾̇𝛼 in the plastic region where f 𝛼 = 0 must additionally satisfy the consistency
conditions

̇f 𝛼 ≤ 0, ̇f 𝛼𝛾̇𝛼 = 0 if f 𝛼 = 0, (4)

which makes the constitutive rate-problem inherently nonlinear (actually piecewise-linear).
The entire rate-problem to be solved is defined by Equations (1), (2), (3), and (4). In this article, the basic constitutive

rate-problem of rate-independent crystal plasticity is isolated for study as follows.

Constitutive Rate-Problem. In a given state  and for prescribed Ḟ, find 𝛾̇
𝛼 that satisfy

the conditions (2)2, (3) and (4) for all 𝛼 ∈ simultaneously. (5)

If the Constitutive Rate-Problem has been solved at each spatial integration point then Equation (1) reduces to a
nonlinear problem for a velocity field u̇.

2.2 Minimum principle for the first-order work

A variational formulation of the slip-system activity rule (3) is frequently obtained, following,60,61 from the principle of
maximum plastic work or maximum dissipation rate, the maximum reached among admissible stresses. It is well known
that this implies the normality flow rule relative to a nonempty elastic domain.

However, without these limitations, the activity rule (3) for a slip-rate solution (𝛾̇𝛼) can be given an equivalent vari-
ational form by referring to the minimum principle for a virtual work-rate w̃ (per unit reference volume), treated as
a function of virtual slip-rates. The virtual work-rate, when expressed as a sum of virtual rates of the free energy and
dissipation densities, takes the form given in References 7 and 62

w̃ = S ⋅ F̃ −
∑

𝛼∈

f 𝛼𝛾̃𝛼. (6)

Henceforth, a superimposed tilde denotes a virtual rate which needs to be distinguished from the actual rate denoted by
a superimposed dot. A nonzero last term in the expression for w̃ for a virtual slip-rate 𝛾̃𝛼 can be interpreted as a result of
perturbation imposed by a disturbing agency on the actual internal forces.62 To examine the local constitutive problem
posed in a given material state  for a prescribed Ḟ, we restrict attention to F̃ = Ḟ, so that w̃ becomes a linear function of
𝛾̃
𝛼 only.

The following simple lemma provides the basic variational formulation of the slip-system activity rule (3).

Lemma 1. In a given state , where (S, f 𝛼) are known, the following two statements are equivalent:

(i) (𝛾̇𝛼) satisfies the slip-system activity rule (3),
(ii) (𝛾̇𝛼) satisfies the minimum work-rate principle

ẇ(𝛾̇𝛼) ≤ w̃(𝛾̃𝛼) ∀𝛾̃𝛼 ≥ 0 for given F̃ = Ḟ. (7)

Proof. It follows immediately from the mathematical theorem on the necessity and sufficiency of the Kuhn-Tucker condi-
tions for constrained minimization (7) of the linear form (6) with respect to 𝛾̃𝛼 , which can be verified by a direct elementary
proof. ▪

The above equivalence statement46 in Lemma 1, based on the virtual work-rate expression (6), is fully general, that is,
independent of any additional assumption.
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In terms of the excess power w̃dist = w̃ − ẇ locally supplied by a disturbing agency, inequality (7) on account of
Equation (3)3 simplifies to

w̃dist = w̃ − ẇ = −
∑

𝛼∈

f 𝛼𝛾̃𝛼 ≥ 0 ∀𝛾̃𝛼 ≥ 0 for given F̃ = Ḟ. (8)

The disturbance power w̃dist is zero if and only if (𝛾̃𝛼) ∈ , where

 ∶= {(𝛾̇𝛼) | 𝛾̇𝛼 ≥ 0 ∧ 𝛾̇
𝛼 = 0 if f 𝛼 ≠ 0}, (9)

so that merely potentially active slip-systems are activated. That is,

w̃ = ẇ = S ⋅ Ḟ ⇔ (𝛾̇𝛼) ∈ . (10)

It follows that the minimum principle (7) determines the set (cone)  and is never sufficient to determine a unique
nonzero solution (𝛾̇𝛼) to Constitutive Rate-Problem (5) if applied in the current state  at a single instant only.

The minimum principle (7) admits a variety of extensions and generalizations, see a recent discussion in
Reference 1.

2.3 Quasi-extremal principle for the first-order work

Suppose that inequality (7) holds true in a given state  at time t = 0. Following Reference 1, apply now inequality (7)
after a small time increment 𝜏 > 0 along a solution path (Ḟ(t), 𝛾̇𝛼(t)), so that

w̃dist
𝜏

= −
∑

𝛼∈

f 𝛼
𝜏
𝛾̃
𝛼

≥ 0 ∀𝛾̃𝛼 ≥ 0, (11)

where a lower index 𝜏 indicates a quantity evaluated at time 𝜏. It is assumed that all quantities vary continuously and suf-
ficiently smoothly in the time interval [0, 𝜏). With accuracy to the first order in 𝜏, from the constitutive rate-equation (2)2
we have

f 𝛼
𝜏
= f 𝛼 + 𝜏 ̇f 𝛼 + o(𝜏) = f 𝛼 + 𝜏

(
Ḟ ⋅ 𝚲𝛼 −

∑

𝛽∈

g𝛼𝛽 𝛾̇𝛽
)
+ o(𝜏), (12)

where o(𝜏)∕𝜏 → 0 in the limit as 𝜏 → 0. It yields

w̃dist
𝜏
(𝛾̃𝛼, 𝛾̇𝛼) = −

∑

𝛼∈

f 𝛼𝛾̃𝛼 − 𝜏
∑

𝛼∈

(
Ḟ ⋅ 𝚲𝛼 −

∑

𝛽∈

g𝛼𝛽 𝛾̇𝛽
)
𝛾̃
𝛼 (13)

with accuracy to o(𝜏). The key point is that the above expression depends not only on virtual slip-rates 𝛾̃𝛼 but also on an
unknown rate-solution 𝛾̇𝛼 . The function w̃dist

𝜏
is defined up to the first-order with respect to a time distance 𝜏 from the

given state at t = 0, the leading term being independent of 𝜏.
As a corollary from Reference 1(theorem 1), the following proposition holds true.

Proposition 1. (Energy formulation of Constitutive Rate-Problem) The following statements are equivalent:

(i) (𝛾̇𝛼) satisfies the quasi-extremal energy principle of first order (QEP1) :

(𝛾̇𝛼) = arg min
𝛾̃
𝛼
≥0

w̃dist
𝜏
(𝛾̃𝛼, 𝛾̇𝛼) for all 𝜏 ≥ 0 sufficiently small. (14)

(ii) (𝛾̇𝛼) is a solution to Constitutive Rate-Problem (5).

The proof is given in Reference 1 for a more general case that encompasses the present one.
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2.4 Quasi-extremal principle for the second-order work

Consider a deformation path that starts at time t = 0 from a given state  in which S, f 𝛼 and all the state-dependent
coefficients in Equations (2) are known. A short straight segment of the path is characterized by virtual rates (F̃, 𝛾̃𝛼) taken
constant in a time interval [0, 𝜏). The virtual work density per unit reference volume on that segment is defined as a time
integral over [0, 𝜏) of the virtual work-rate w̃. By the Taylor expansion of the integral up to the second-order terms with
respect to 𝜏, we obtain the following expression for the virtual work density:

w𝜏 = w1𝜏 + w2𝜏
2 + o(𝜏2), w1 = S ⋅ F̃ −

∑

𝛼∈

f 𝛼𝛾̃𝛼, w2 =
1
2

S̃ ⋅ F̃ − 1
2
∑

𝛼∈

̃f 𝛼𝛾̃𝛼. (15)

By using Equation (2) with the normality flow rule reduced to 𝚲𝛼p = 𝚲𝛼 , we have

S̃ = C
e ⋅ F̃ −

∑

𝛼∈

𝚲𝛼𝛾̃𝛼, ̃f 𝛼 = F̃ ⋅ 𝚲𝛼 −
∑

𝛽∈

g𝛼𝛽 𝛾̃𝛽 , (16)

and w2 is a quadratic form

w2(𝛾̃𝛼, F̃) =
1
2

∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽 𝛾̃𝛽 −

∑

𝛼∈

F̃ ⋅ 𝚲𝛼𝛾̃𝛼 + 1
2

F̃ ⋅ Ce ⋅ F̃. (17)

Now, following the main idea introduced in Reference 1, consider a short deformation path that leads to the same
final increments (𝜏F̃, 𝜏𝛾̃𝛼) as above but consists of two straight segments, the first aligned with 𝛾̇𝛼 . It has been shown1 that
the decomposition (15) is then replaced with

w𝜏 = w1𝜏 + 𝜀2𝜏
2 + o(𝜏2), 𝜀2(𝛾̃𝛼, F̃; 𝛾̇𝛼) = w2(𝛾̃𝛼, F̃) +

∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽skew𝛾̇

𝛽

, (18)

where (g𝛼𝛽skew) is a skew-symmetric part of (g𝛼𝛽),

g𝛼𝛽skew =
1
2
(g𝛼𝛽 − g𝛽𝛼). (19)

A detailed derivation of a similar function but extended to finite increments and containing additional terms is given in
Appendix. If (𝛾̃𝛼) ∈  then for given F̃ = Ḟ the term w1 takes by Equation (10) a fixed value, and minimization of w𝜏 for
𝜏 sufficiently small reduces to minimization of 𝜀2.

From theorem 2 in Reference 1, if all current f 𝛼 ≤ 0, we obtain the following corollary.

Proposition 2. A solution to the quasi-extremal principle (QEP2) for the second-order energy function (18), namely

(𝛾̇𝛼) = arg min
(𝛾̃𝛼)∈

𝜀2(𝛾̃𝛼, 𝛾̇𝛼) for given F̃ = Ḟ, (20)

solves Constitutive Rate-Problem (5) and satisfies additionally the path-stability condition

∑

𝛼,𝛽∈

(𝛾̃𝛼 − 𝛾̇𝛼)g𝛼𝛽(𝛾̃𝛽 − 𝛾̇𝛽) ≥ 0 subject to (𝛾̃𝛼) ∈  and
∑

𝛼∈

̇f 𝛼𝛾̃𝛼 = 0. (21)

The proof is given in Reference 1 for a more general case that encompasses the present one.

Remark 1. The left-hand expression in inequality (21) can be interpreted1 as the second-order work, supplied by a disturb-
ing agency to the material that is deforming plastically with slip-rates 𝛾̇𝛼 , and associated with the change of the slip-rates
to 𝛾̃𝛼 . QEP2 (20) through condition (21) introduces thus an energetic condition for path stability, for a given velocity gradi-
ent Ḟ. Condition (21) implies positive semidefiniteness of the slip-system interaction submatrix (ĝ𝛼𝛽)(𝛾̇) = (g𝛼𝛽) restricted
to the rows and columns corresponding to active slip-systems for which 𝛾̇

𝛼
> 0 and 𝛾̇𝛽 > 0. Solutions that violate this

condition are rejected as describing an unstable path.
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2.5 Further specification of constitutive equations

The constitutive framework given in Section 2.1, while sufficient to construct the conceptual algorithm, is supplemented
here with the typical assumptions of the conventional theory of crystal plasticity used in applications. The formulation
adopted below follows Reference 7, where the reader can find more details and references to the literature. Although it is
not necessary, the common multiplicative split of a finite deformation gradient F is used,63

F = F∗Fp
, F∗ = R∗Ue

, det F∗ > 0, det Fp = 1, (22)

where Fp is the plastic deformation gradient, F∗ is a contraction of the lattice rotation R∗ and the elastic stretch tensor
Ue taken relative to the stress-free lattice configuration, and 𝝃 denotes local internal variables of any type. For given F,
tensor Ue depends on Fp, therefore Fp acts as an internal variable additional to 𝝃.

The attention is restricted to the case when elastic properties of the lattice are unaffected by plastic flow. Accordingly,
the common split of the isothermal free energy function into the elastic strain energy function 𝜙e(Ue) of class C2 and the
residual part 𝜙p(𝝃) is assumed, namely,

𝜙(F∗, 𝝃) = 𝜙e(Ue) + 𝜙p(𝝃) and S∗ = 𝜕𝜙
e

𝜕F∗
at constant temperature. (23)

The elastic stiffness pseudomoduli tensor Ce =
T
Ce = 𝜕

2
𝜙∕𝜕F𝜕F||FP (at fixed FP), which appears in Equations (2) or (16),

along with its counterpart C∗ ∶= 𝜕2
𝜙

e∕𝜕F∗𝜕F∗, can be determined by using the standard chain rule of differentiation and

applying Equations (22). The Piola stress S is related to S∗ through S = S∗F
T
p .

The evolution equation for Fp in crystal plasticity reads

Ḟp(Fp)−1 =
∑

𝛼

m𝛼

⊗ n𝛼

𝛾̇
𝛼

, (24)

where (m𝛼
,n𝛼) is a pair of orthogonal unit vectors that define slip direction and slip-plane normal, respectively, in

the stress-free (intermediate) configuration of the crystallographic lattice, assumed unaffected by changes in 𝝃. The
assumption m𝛼 ⋅ n𝛼 = 0 implies that the plastic deformation is isochoric, det Fp

≡ 1, by Jacobi’s formula for the rate of
det Fp. The rate of 𝝃 is assumed to be linearly related to 𝛾̇𝛼 with state-dependent coefficients.

After known transformations which are omitted here, the generalized Schmid stress 𝜏𝛼, such that
∑
𝛼
𝜏
𝛼
𝛾̇
𝛼 is the plastic

work-rate per unit reference volume, reads

𝜏
𝛼 = 𝚷 ⋅N𝛼

, N𝛼 = m𝛼

⊗ n𝛼

, (25)

where 𝚷 =
T

F∗S∗ is the Mandel stress.64 The yield function f 𝛼 for 𝛼th slip-system is defined by

f 𝛼 = 𝜏𝛼 − 𝜏𝛼cr, (26)

where 𝜏𝛼cr are the critical resolved shear stresses obeying the conventional incremental hardening law

𝜏̇
𝛼

cr =
∑

𝛽

h𝛼𝛽 𝛾̇𝛽 , h𝛼𝛽 = h
𝛼𝛽

(𝝃), (27)

for given functions h
𝛼𝛽

. Remarkably, the split of 𝜏𝛼cr into energetic and dissipative parts need not be specified here, so
that the residual part 𝜙p(𝝃) of the free energy density remains arbitrary7(remark 2) as it does not affect the final constitutive
equations nor the algorithm below.

The above constitutive equations are nowadays standard in conventional crystal plasticity at finite deformation.
The adopted expressions for state-dependent coefficients in the evolution Equation (16)2 for yield function f 𝛼 are less
standard,7 namely
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𝚲𝛼 =
(

C
∗ ⋅ F∗N𝛼 + S∗

T
N𝛼

) −T
FP
, (28)

g𝛼𝛽 = h𝛼𝛽 + F∗N𝛼 ⋅C∗ ⋅ F∗N𝛽 +𝚷 ⋅N𝛽N𝛼

. (29)

The last formula makes it explicit that matrix (g𝛼𝛽) is generally nonsymmetric for two independent reasons: (h𝛼𝛽) ≠ (h𝛽𝛼)
or𝚷 ⋅ (N𝛽N𝛼 −N𝛼N𝛽) ≠ 0. By time differentiation of Equations (25) and (23)2, it can be shown65 that the constitutive rate
Equation (2) with coefficients (28) and (29) are equivalent to those given originally in another form by Hill and Rice.2

3 QEP FORMULATION FOR FINITE INCREMENTS

3.1 A general framework

By replacing the rates with small but finite increments over a time step [tk, tk+1], a quasi-extremal principle (QEP) for a
discretized plasticity problem1 takes the form

x = arg min
z∈Z

(z, x), z = (q̃, 𝜇̃), Z = R
m ×R

n
+, (30)

where the variable z = (q̃, 𝜇̃) contains virtual increments q̃ = qk+1 − qk ∈ Rm of generalized displacements and
non-negative incremental plastic multipliers 𝜇̃ ∈ R

n
+. An index k denotes a quantity evaluated at tk. A general character-

istic feature of a quasi-extremal principle is that the minimized real-valued function  depends not only on variable z but
also on an unknown solution x as a parameter. A particular energy-based form of function  has been derived in Ref-
erence 1. When evaluated with accuracy to second-order terms, function  is nonconvex in general. Its straightforward
extension to small but finite increments takes a fully analogous form,

(z, x) = Ẽ(z) + z ⋅ Cx, C = −CT
, (31)

where the leading term is the incremental energy function defined for isothermal irreversible processes by

Ẽ = Φ̃ + ̃Ω + ̃. (32)

Here, a tilde over a symbol denotes a virtual increment (instead of a virtual rate), Φ is the Helmholtz free energy, Ω the
potential energy of external loads, and ̃ is the incremental rate-independent dissipation in the case when all compo-
nents of z vary proportionally with time during the time step [tk, tk+1]. The new term z ⋅ Cx in Equation (31) introduced in
Reference 1 provides an extension of the incremental energy minimization method to the general class of nonpotential
incremental problems. It is expressed through the antisymmetric part C = 1

2
(A − AT) of a governing matrix A in consti-

tutive equations ( ̃Q, ̃f ) = Ax + o(tk+1 − tk) that relate an incremental solution x to increments ̃Q of generalized forces and
̃f of yield functions.

In the next section, QEP (30) is specialized for the rate-independent crystal plasticity. It will be shown that a solution x
to QEP (30) formulated at a material point solves the local incremental quasi-static problem so that ̃f satisfies the discrete
consistency conditions at the end of a time step.

Additionally, QEP (30) in its present incremental version imposes the energy condition of stability on a solution path
in the sense that small perturbing forces perform a non-negative work on the deviation 𝛿x they induce in the solution.1
QEP (30) with nonconvex  provides thus a criterion of choice among multiple solutions that is not based on arbitrarily
assumed imperfections or random selection but can be given a physical meaning. For potential problems we have C = 0,
and then QEP (30) reduces to direct minimization of Ẽ(z) referred to as the incremental energy minimization,66 initiated
in Reference 67.

3.2 Incremental QEP in single crystal plasticity

To extend the quasi-extremal principles presented in Section 2 for crystal plasticity to finite increments, consider a finite
time interval [tn, tn+1]. A quantity 𝜓 dependent on t and evaluated at t ∈ (tn, tn+1) will be denoted by 𝜓t ∶= 𝜓(t), its
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end-point values by 𝜓n ∶= 𝜓(tn) and 𝜓n+1 ∶= 𝜓(tn+1), and its increment in the interval [tn, tn+1] by a prefix Δ, so that
Δ𝜓 ∶= 𝜓n+1 − 𝜓n. A forward slip rate 𝛾̇𝛼(t) in a time-discrete solution is assumed to be constant for t ∈ [tn, tn+1). The basic
problem is to update the quantities known at instant tn to tn+1 in a manner consistent with the constitutive equations
provided in Section 2.

We apply an implicit backward-Euler difference scheme. Accordingly, the two sets of conditions (3) and (4) that
define the basic rule of plastic slip-system activity in the rate-independent framework are reduced to the so-called discrete
consistency conditions,

Δ𝛾𝛼 ≥ 0 and f 𝛼n+1 ≤ 0 and f 𝛼n+1 Δ𝛾
𝛼 = 0 ∀𝛼 ∈ . (33)

For consistency with the constitutive rate equation (2)2 upon substituting

Ḟ ∶= ΔF
Δt
, 𝛾̇

𝛼 ∶= Δ𝛾𝛼

Δt
, (34)

it is required that

f 𝛼n+1 − f 𝛼n = ΔF ⋅ 𝚲𝛼n+1 −
∑

𝛽∈

g𝛼𝛽n+1Δ𝛾
𝛽 + o(Δt), 𝛼 ∈ . (35)

It is assumed that the coefficients𝚲𝛼t and g𝛼𝛽t vary continuously with respect to time t, which implies the indicated accuracy
of Equation (35). It is also assumed that f 𝛼n ≤ 0 from the previous time step, since otherwise the inequality (33)2 could not
be satisfied for Δt small enough.

Δ𝛾𝛼 plays the role of an incremental plastic multiplier identified with an unknown increment of slip on the 𝛼th
slip-system. In the constitutive algorithm, an increment ΔF of the deformation gradient is treated as given, although
extensions to mixed loading conditions are possible.7 The time-discrete counterpart to Constitutive Rate-Problem (5) of
rate-independent crystal plasticity posed in Section 2.1 takes the following incremental form.

Incremental Problem. Given the state n, f 𝛼n ≤ 0,ΔF and relationship (35), find Δ𝛾𝛼

that satisfy the conditions (33) for all 𝛼 ∈ simultaneously. (36)

Remark 2. In the limit as Δt → 0, a solution to Incremental Problem (36) provides an exact solution to the basic rate
problem (5) at tn. Indeed, upon substituting Equations (34) and performing the limiting passage atΔt → 0, Equation (35)
and conditions (33) reduce precisely to Equation (2)2 and conditions (3), respectively. Moreover, if fn = 0 then f 𝛼n+1∕Δt ≤ 0
tends in the limit to ̇f 𝛼 ≤ 0, while f 𝛼n+1Δ𝛾

𝛼∕(Δt)2 = 0 gives in the limit ̇f 𝛼𝛾̇𝛼 , so that conditions (4) are also met. Hence, all
the conditions of the rate problem 1 are fulfilled. Without the key assumption (35), the limiting passage to rate problem
1 would fail.

The following expression will be used to calculate f 𝛼n+1 at time tn+1 on a discretized solution path:

f 𝛼n+1 ∶= 𝜏
𝛼

n+1 − 𝜏
𝛼

cr n+1, (37)

where 𝜏𝛼n+1 is defined by Equation (25) as the projection of the Mandel stress 𝚷n+1 on the 𝛼th slip-system dyad, while
𝜏
𝛼

cr n+1 is calculated incrementally by using the hardening law (27); see Section 3.3 for more detail. The theoretical results
below are obtained without appealing to Equation (37).

As the specification of a global quasi-potential  (Section 3.1) for the local (i.e., pointwise) Incremental Problem (36),
we take the incremental energyΔ𝜀. Following,1 it is obtained from the work density functionalΔw evaluated for a sharply
bent (“dog-leg”) path of (𝛾𝛼)(t) which consists of two straight segments, such that the first (longer) is aligned with the
searched solution Δ𝛾𝛼 and the second (shorter) represents a strong variation of the first at its end.

The resulting formula for Δ𝜀 is derived in Appendix in a nonstandard way by applying a backward time integration
over [tn, tn+1] of the work-rate expression along an arbitrary continuous and piecewise-smooth path of (F, 𝛾𝛼)(t) leading
to increments (ΔF, 𝛾̃𝛼), under the sole assumption of constant coefficients. Then, on evaluating the time integral for a
dog-leg path mentioned above, the final formula (A9) has been derived which is an extension of the asymptotic formula
(18) from Section 2 to finite increments. Formula (A9) is adopted here with the coefficients evaluated at tn+1 for a yet
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unknown or approximate solution Δ𝛾𝛼 as a parameter. Accordingly,

Δ𝜀(𝛾̃𝛼,ΔF; Δ𝛾𝛼) = Sn+1 ⋅ ΔF − 1
2
ΔF ⋅Ce

n+1 ⋅ ΔF −
∑

𝛼∈

(
f 𝛼n+1 − 𝚲

𝛼

n+1 ⋅ ΔF
)
𝛾̃
𝛼

− 1
2

∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽n+1 𝛾̃

𝛽 + 1
2

∑

𝛼,𝛽∈

𝛾̃
𝛼(g𝛼𝛽n+1 − g𝛽𝛼n+1)Δ𝛾

𝛽

.

(38)

Using the expression (A10) for Δw determined for a single straight segment, Δ𝜀 can be written down in a more compact
form as the following function

Δ𝜀(𝛾̃𝛼,ΔF; Δ𝛾𝛼) = Δw(𝛾̃𝛼,ΔF) + 1
2

∑

𝛼,𝛽∈

𝛾̃
𝛼(g𝛼𝛽n+1 − g𝛽𝛼n+1)Δ𝛾

𝛽

, (39)

where Δw is the work expression for a straight path of (𝛾𝛼)(t),

Δw(𝛾̃𝛼,ΔF) = Sn+1 ⋅ ΔF −
∑

𝛼∈

f 𝛼n+1Δ𝛾
𝛼 − Δ2w, (40)

and Δ2w is the second-order work expression extended to finite increments,

Δ2w(𝛾̃𝛼,ΔF) = 1
2
ΔF ⋅Ce

n+1 ⋅ ΔF −
∑

𝛼∈

(
𝚲𝛼n+1 ⋅ ΔF

)
𝛾̃
𝛼 + 1

2
∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽n+1 𝛾̃

𝛽

. (41)

It is pointed out that only the symmetric part of matrix (g𝛼𝛽n+1) affects Δw, and a skew part of (g𝛼𝛽n+1) and parameter Δ𝛾𝛼
only affect the last term in Equation (38) or (39). Obviously,

Δ𝜀(Δ𝛾𝛼,ΔF; Δ𝛾𝛼) = Δw(Δ𝛾𝛼,ΔF). (42)

Consider a variation ofΔ𝜀with respect to arguments (𝛾̃𝛼,ΔF)while the coefficients and parameterΔ𝛾𝛼 are kept fixed.
From the constitutive rate equations (2) with 𝚲𝛼p ≡ 𝚲𝛼 it follows that infinitesimal variations 𝛿Sn+1 and 𝛿f 𝛼n+1 caused by
variations 𝛿F ≡ 𝛿Fn+1 and 𝛿𝛾𝛼 ≡ 𝛿𝛾̃𝛼 read

𝛿Sn+1 = C
e
n+1 ⋅ 𝛿F −

∑

𝛼∈

𝚲𝛼n+1𝛿𝛾
𝛼

, 𝛿f 𝛼n+1 = 𝛿F ⋅ 𝚲𝛼n+1 −
∑

𝛽∈

g𝛼𝛽n+1𝛿𝛾
𝛽

𝛼 ∈ . (43)

After straightforward transformations, it follows that

𝛿(Δ𝜀) = Sn+1 ⋅ 𝛿F −
∑

𝛼∈

f 𝛼n+1𝛿𝛾
𝛼 + 𝛿Sn+1 ⋅ ΔF −

∑

𝛼∈

𝛿f 𝛼n+1𝛾̃
𝛼

−

(
C

e
n+1 ⋅ 𝛿F −

∑

𝛼∈

𝚲𝛼n+1𝛿𝛾
𝛼

)
⋅ ΔF +

∑

𝛼∈

(
𝛿F ⋅ 𝚲𝛼n+1 −

1
2
∑

𝛽∈

(g𝛼𝛽n+1 + g𝛽𝛼n+1) 𝛿𝛾
𝛽

)
𝛾̃
𝛼

+ 1
2

∑

𝛼,𝛽∈

𝛿𝛾
𝛼(g𝛼𝛽n+1 − g𝛽𝛼n+1)Δ𝛾

𝛽

= Sn+1 ⋅ 𝛿F −
∑

𝛼∈

f 𝛼n+1𝛿𝛾
𝛼 − 1

2
∑

𝛼,𝛽∈

𝛿𝛾
𝛼(g𝛼𝛽n+1 − g𝛽𝛼n+1)(𝛾̃

𝛽 − Δ𝛾𝛽) (44)

since the remaining terms cancel each other of account of Equations (43) and C
e
n+1 =

T
C

e
n+1. Note that the last term

vanishes if 𝛿𝛾𝛼 ∝ 𝛾̃𝛼 − Δ𝛾𝛼 .
We arrive at a remarkable conclusion that

Sn+1 =
𝜕Δ𝜀
𝜕ΔF

, f 𝛼n+1 = −
𝜕Δ𝜀
𝜕𝛾̃

𝛼

||||𝛾̃𝛽=Δ𝛾𝛽
, (45)
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so that function Δ𝜀 acts precisely as a potential for Sn+1 and a quasi-potential for f 𝛼n+1. This new result is a counterpart of
a general equation1Eq. (72) specialized here for finite slip increments in crystal plasticity.

Equation (44) provides the first-order Taylor decomposition of Δ𝜀 with respect to variations of both ΔF and 𝛾̃𝛼 . Since
incremental deformation gradientΔF is prescribed in the incremental problem (36), henceforth, we removeΔF from the
list of variables to simplify the notation. The second variation of Δ𝜀 in direction 𝛿𝛾𝛼 for 𝛿F = 0 reads

𝛿
2(Δ𝜀) = −

∑

𝛼∈

𝛿f 𝛼n+1𝛿𝛾
𝛼 =

∑

𝛼,𝛽∈

𝛿𝛾
𝛼g𝛼𝛽n+1𝛿𝛾

𝛽

. (46)

The second-order Taylor series decomposition of Δ𝜀 with respect to 𝛿𝛾
𝛼 ∶= (𝛾̃𝛼 − Δ𝛾𝛼), keeping ΔF, Δ𝛾𝛼 and the

coefficients constant, takes thus the form

Δ𝜀(𝛾̃𝛼,Δ𝛾𝛼) = Δ𝜀(Δ𝛾𝛼,Δ𝛾𝛼) + Δ1𝜀(𝛾̃𝛼,Δ𝛾𝛼) + Δ2𝜀(𝛾̃𝛼,Δ𝛾𝛼) + o(𝛾̃𝛼 − Δ𝛾𝛼)2, (47)

with

Δ𝜀(Δ𝛾𝛼,Δ𝛾𝛼) = Δw(Δ𝛾𝛼), ΔF given,

Δ1𝜀(𝛾̃𝛼,Δ𝛾𝛼) = −
∑

𝛼∈

f 𝛼n+1(𝛾̃
𝛼 − Δ𝛾𝛼),

Δ2𝜀(𝛾̃𝛼,Δ𝛾𝛼) =
1
2

∑

𝛼,𝛽∈

(𝛾̃𝛼 − Δ𝛾𝛼)g𝛼𝛽n+1(𝛾̃
𝛽 − Δ𝛾𝛽).

(48)

This decomposition is not exact on account of the approximation involved in Equations (43) when infinitesimal variations
are replaced with finite increments. Validity of decomposition (47) with accuracy to the second-order term o(𝛾̃𝛼 − Δ𝛾𝛼)2
can be verified by back-substitution of expressions (48) and (35) into Equation (47) and using Equation (43) as the
first-order approximation.

In analogy to Reference 1(theorem 2) and Proposition 2 above, but with the modification due to finite increments, the
following proposition holds true.

Proposition 3. A solution (Δ𝛾𝛼) to the quasi-extremal energy principle (QEP) for finite increments:

(Δ𝛾𝛼) = arg min
𝛾̃
𝛼
≥0
Δ𝜀(𝛾̃𝛼; Δ𝛾𝛼) for given ΔF (49)

(i) solves Incremental Problem (36), and
(ii) satisfies additionally the condition

∑

𝛼,𝛽∈

(𝛾̃𝛼 − Δ𝛾𝛼)g𝛼𝛽n+1(𝛾̃
𝛽 − Δ𝛾𝛽) ≥ 0 ∀𝛾̃𝛼 ≥ 0 subject to f 𝛼n+1𝛾̃

𝛼 = 0. (50)

Proof. Suppose that there exists a vector (Δ𝛾𝛼) that solves QEP (49). ThenΔ𝜀(𝛾̃𝛼,Δ𝛾𝛼) ≥ Δ𝜀(Δ𝛾𝛼,Δ𝛾𝛼) and from the Taylor
decomposition (47) we obtain

Δ1𝜀(𝛾̃𝛼,Δ𝛾𝛼) + Δ2𝜀(𝛾̃𝛼,Δ𝛾𝛼) + o(𝛾̃𝛼 − Δ𝛾𝛼)2 ≥ 0 ∀𝛾̃𝛼 ≥ 0. (51)

It follows that Δ1𝜀(𝛾̃𝛼,Δ𝛾𝛼) ≥ 0 for |𝛾̃𝛼 − Δ𝛾𝛼| sufficiently small, which is possible if and only if the respective
Kuhn–Tucker conditions (33) hold true. The consequence (i) is thus proven.

Suppose now that Δ1𝜀(𝛾̃𝛼,Δ𝛾𝛼) = 0, which is the case if and only if f 𝛼n+1𝛾̃
𝛼 = 0 for each 𝛼 on account of definition

(48)2 and conditions (33) obtained from (i). Then from inequality (51) it follows that Δ2𝜀(𝛾̃𝛼,Δ𝛾𝛼) ≥ 0, which yields the
condition (ii). Proposition 3 has been proven. ▪

Remark 3. The left-hand expression in inequality (50) can be interpreted as the second variation of the energy function
Δ𝜀 in direction 𝛿𝛾𝛼 = (𝛾̃𝛼 − Δ𝛾𝛼), compare Equation (46). QEP (49) through condition (50) introduces thus an energetic
condition for path stability, for a given incrementΔF of the deformation gradient; compare also Remark 1 above. It means
that the perturbation (𝛿𝛾𝛼) makes a negative scalar product with the associated perturbation (𝛿f 𝛼) for given ΔF, which
can be interpreted as a contractivity property.
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Remark 4. QEP (49) provides a criterion for the selection of active slip-systems, in the following sense. On physical
grounds, when latent hardening exceeds self-hardening of slip systems, positive semidefiniteness of (g𝛼𝛽) can only be
expected for linearly independent slip-systems whose number does not exceed 5.10 Therefore, QEP (49) offers through
condition (50) a criterion for eliminating the solution paths with more than five slip systems active simultaneously at one
material point, which are unstable in the energy sense mentioned above. The basic advantage with respect to a similar
method developed in Reference 7 is that QEP does not require the previous selective symmetrization of the slip-system
interaction matrix (g𝛼𝛽).

Proposition 3 provides the theoretical basis for the algorithm developed in Section 4.

3.3 Incremental update

Once Incremental Problem (36) has been solved (with any accuracy) with respect to Δ𝛾 , the update of a given local state
n to n+1 at time tn+1 follows straightforwardly from the constitutive equations given in Section 2.5. This incremental
update is summarized in the set of Equations (52). It begins with the update of plastic deformation gradient FP calculated
by using the exponential map, which preserves the plastic incompressibility and enables accurate calculation of the elastic
deformation gradient F∗.68,69 The further equations follow from the constitutive framework given above.

Fn+1 = Fn + ΔF,

Fp
n+1 = exp

(
∑

𝛼

Δ𝛾𝛼N𝛼

)
Fp

n,

F∗n+1 = Fn+1

-1
Fp

n+1,

S∗n+1 =
𝜕𝜙

e

𝜕F∗
(F∗n+1),

Sn+1 = S∗n+1

-T
Fp

n+1,

𝚷n+1 =
T

F∗n+1Sn+1

T
Fp

n+1,

𝜏
𝛼

n+1 = 𝚷n+1 ⋅N𝛼

,

𝝃n+1 = 𝝃n + Δ𝝃(Δ𝛾𝛼),

h𝛼𝛽n+1 = h
𝛼𝛽

(𝝃n+1),

𝜏
𝛼

cr n+1 = 𝜏
𝛼

cr n +
∑

𝛽

h𝛼𝛽n+1 Δ𝛾
𝛽

,

f 𝛼n+1 = 𝜏
𝛼

n+1 − 𝜏
𝛼

cr n+1,

C
∗
n+1 =

𝜕
2
𝜙

e

𝜕F∗𝜕F∗
(F∗n+1),

𝚲𝛼n+1 =
(

C
∗
n+1 ⋅ F∗n+1N𝛼 + S∗n+1

T
N𝛼

) -T
Fp

n+1,

g𝛼𝛽n+1 = h𝛼𝛽n+1 + F∗n+1N𝛼 ⋅ C∗
n+1 ⋅ F∗n+1N𝛽 +𝚷n+1 ⋅N𝛽N𝛼

.

(52)

4 THE ALGORITHM

4.1 Relation to the incremental work minimization algorithm

A closer inspection shows that the minimized energy functionΔ𝜀 differs from the incremental work minimized in the pre-
vious approach,7 including the algorithm refinement 1 given in the reference, only by the extra last term in Equation (38).
This was not obvious in advance. This simple additional term plays a fundamental role as it removes the previous need
for selective symmetrization of the slip-system interaction matrix (g𝛼𝛽). Mathematically, it is related to introducing a new
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concept of a quasi-extremal principle in place of an extremal one. Nevertheless, the influence of this extra term on the
structure of the computational algorithm given in Reference 7 turns out to be minor, and actually it leads to a simplifi-
cation since the selective symmetrization step is now dropped. To make the present article self-contained, at the cost of
unavoidable repetitions, the full description of the modified algorithm is provided in the next subsections. It is given in
a condensed form, and the reader is referred to Reference 7 for more detailed explanations. Moreover, the algorithm can
be extended to partial kinematic control in the same way, which is therefore not repeated here.

The expression (A11) for the second-order work extended to finite increments is repeated here for convenience:

Δ2w = 1
2
ΔF ⋅ Ce ⋅ ΔF −

∑

𝛼∈

(
𝚲𝛼 ⋅ ΔF

)
Δ𝛾𝛼 + 1

2
∑

𝛼,𝛽∈

Δ𝛾𝛼g𝛼𝛽 Δ𝛾𝛽

= 1
2
Δ̂S ⋅ ΔF − 1

2
∑

𝛼∈

Δ̂f 𝛼Δ𝛾𝛼,
(53)

where

Δ̂S ∶= C
e ⋅ ΔF −

∑

𝛼∈

𝚲𝛼Δ𝛾𝛼, Δ̂f 𝛼 ∶= ΔF ⋅ 𝚲𝛼 −
∑

𝛽∈

g𝛼𝛽Δ𝛾𝛽. (54)

Interestingly, on adding and simultaneously subtracting the doubled expression for Δ2w, the incremental work (A10),
calculated on a linear path of 𝛾𝛼t varying proportionally with time, is transformed to

Δw = (Sn+1 − Δ̂S) ⋅ ΔF −
∑

𝛼∈

(f 𝛼n+1 − Δ̂f 𝛼)Δ𝛾𝛼 + Δ2w. (55)

In the actual calculations of a nonlinear problem, the assumption of constant coefficients Ce =
T
Ce, 𝚲𝛼 and g𝛼𝛽 no longer

holds so that expressions (54) become only approximate for the actual finite increments ΔS = Sn+1 − Sn,Δf 𝛼 = f 𝛼n+1 − f 𝛼n .
By direct comparison, expression (55) turns out to be fully analogous to the algorithmic refinement of the work function
adopted in Reference 7(Eq. (55)) to improve accuracy of the iterative solution. The previously postulated refinement is
thus derived here in a natural way as the consequence of applying the backward integration scheme (A1).

On substituting the above equalities into Equation (A9), we obtain the following approximation for quasi-potential
Δ𝜀:

Δ̂𝜀(𝛾̃𝛼, Δ̂𝛾𝛼) ∶= Δ̂w(𝛾̃𝛼, Δ̂𝛾𝛼) +
∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽skewΔ̂𝛾

𝛽

, (56)

where

Δ̂w(𝛾̃𝛼, Δ̂𝛾𝛼) = (Sn+1 − Δ̂S) ⋅ ΔF −
∑

𝛼∈

(f 𝛼n+1 − Δ̂f 𝛼)𝛾̃𝛼

+ 1
2
ΔF ⋅ Ce ⋅ ΔF −

∑

𝛼∈

(
𝚲𝛼 ⋅ ΔF

)
𝛾̃
𝛼 + 1

2
∑

𝛼,𝛽∈

𝛾̃
𝛼g𝛼𝛽 𝛾̃𝛽 .

(57)

Except (𝛾̃𝛼), all other quantities are taken from the preceding subiteration for (Δ𝛾𝛼) ∶= (Δ̂𝛾𝛼) within time step [tn, tn+1]
and evaluated at tn+1 as in the energy expression (42). Its approximation (56) is used in Box 4 of the algorithm. It is the
last term in Equation (56) which is new in comparison with the incremental work minimization algorithm.7

4.2 Solving QEP by the augmented Lagrangian method

The minimization subproblem in QEP (49) has the form of nonsmooth and constrained nonconvex optimization. To solve
that problem by reducing it to a smooth and unconstrained optimization problem, the augmented Lagrangian method is
adopted. For the description of this method the reader is referred to References 70 and 71. In the present case, the problem
(49) is reduced to a sequence of unconstrained minimization problems for the augmented Lagrangian of the form
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L(𝛾̃𝛼, 𝜆𝛼; Δ𝛾𝛼) ∶= Δ𝜀(𝛾̃𝛼; Δ𝛾𝛼) +
∑

𝛼∈

𝜓
𝛼

c (𝛾̃𝛼, 𝜆𝛼) → min
𝛾̃
𝛼

for given ΔF. (58)

Additional variables here are Lagrange multipliers 𝜆𝛼 that enable the removal of the constraints 𝛾̃𝛼 ≥ 0 from (58). The
augmented Lagrangian multipliers are defined by

𝜆

𝛼

∶= 𝜆𝛼 + c𝛾̃𝛼, (59)

and the functions 𝜓𝛼

c by

𝜓
𝛼

c (𝛾̃𝛼, 𝜆𝛼) ∶=
1
2c

((
min(0, 𝜆

𝛼

)
)2
− (𝜆𝛼)2

)
(60)

=

{
𝜆
𝛼
𝛾̃
𝛼 + c

2
(𝛾̃𝛼)2 if 𝜆

𝛼

≤ 0,
− 1

2c
(𝜆𝛼)2 if 𝜆

𝛼

> 0.
(61)

Here, c > 0 is a parameter which need not increase unboundedly to approach the exact solution to the original mini-
mization subproblem included in QEP (49). Once a local minimum in the subproblem (58) has been calculated, the next
iteration within the same time step is performed for updated values of Δ𝛾𝛼 and 𝜆𝛼 until the discrete consistency condi-
tions (58) are satisfied with a desired accuracy. The Lagrange multipliers 𝜆𝛼 are updated following the standard rule of
the augmented Lagrangian method70,71

𝜆
𝛼 ∶= min (0, 𝜆𝛼 + cΔ𝛾𝛼) . (62)

The reader is referred to Reference 7 for more details regarding the augmented Lagrangian approach to the crystal plas-
ticity problem analogous to the present one. The augmented Lagrangian approach also proved useful in other algorithms
for crystal plasticity, compare Reference 35.

4.3 The structure of the algorithm

The overall structure of the algorithm given in Box 1 is analogous to that given in Reference 7. However, there is a
substantial difference as the previous incremental work minimization has been replaced here by quasi-minimization of
incremental energy Δ𝜀. Related differences will appear in Boxes 2, 3, and 4 referred to in Box 1 and given in the next
subsections.

BOX 1 The structure of the incremental constitutive algorithm for a time step [tn, tn+1]

• Input: new F = Fn+1, given datan = {Fn,n,FP
n, 𝝃n, 𝜏

𝛼

cr n,𝚲𝛼n, g
𝛼𝛽

n } at tn.

1. Compute elastic predictor: f 𝛼tr = f 𝛼 and par for Δ𝛾𝛼 ≡ 0 using Box 2;

if ∃𝛼 f 𝛼tr > 𝜀 then go to 2 (plastic step)

else set ∶= ∅ and go to Output (elastic step).

2. if 1 ≤ |n| ≤ 5 then compute Δ𝛾𝛼 using equations solver Box 3 for givenn

else go to 3;

if ∃𝛼 f 𝛼∉n > 𝜀 or Δ𝛾𝛼∈n = 0 then go to 3

else set ∶= n and go to 4 (old active systems set) .

3. Compute Δ𝛾𝛼 by quasi-minimization of incremental energy Δ𝜀 in Box 4 (new active systems set).

4. Update par using Box 2.

• Output: datan+1 ∶= {F,} ∪ par for tn+1, set n ∶= n + 1 and go to Input.
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4.4 Incremental update for given increments of slips

The update procedure for given Δ𝛾𝛼 provided in Box 2 is simplified with respect to that in Reference 7 as the selective
symmetrization is no longer needed. The procedure here is to much extent standard, only the update of the coefficients
of the incremental constitutive equations in the form given here is not common. The update is applied in general in a
subiteration loop within a given time increment; when the loop is completed then the final values of Δ𝛾𝛼 provide the
update summarized in Section 3.3 for a time step [tn, tn+1]. The plastic deformation gradient FP is updated by using the
exponential map to preserve plastic incompressibility and improve accuracy of calculations of the elastic deformation
gradient F∗.68,69 The second Piola–Kirchhoff stress Te is determined as the partial derivative of elastic strain energy 𝜙e

being a given function of the Green strain tensor Ee, with the local unstressed (intermediate) configuration taken as
reference. The functions C

∗
and C

e
needed to determine current elastic pseudomoduli tensors C∗ and Ce (cf. Section 2.5)

have a well-known form Reference 58. On calculating the Mandel stress 𝚷, the current value of each yield function f 𝛼 =
𝜏
𝛼 − 𝜏𝛼cr is determined by using the basic definitions 𝜏𝛼 = 𝚷 ⋅N𝛼 and N𝛼 = m𝛼

⊗ n𝛼 along with the slip-system hardening
law.

BOX 2 Update procedure for given Δ𝛾𝛼

• Input: new:,Δ𝛾𝛼,F, given: Fn,FP
n, 𝝃n, 𝜏

𝛼

cr n.

1. Deformation: FP ∶= exp
(∑

𝛼∈ Δ𝛾𝛼 N𝛼

)
FP

n, F∗ = F
−1
FP, Ee = 1

2

( T
F∗F∗ − 1

)

Stresses: Te = 𝜕𝜙e∕𝜕Ee, S∗ = F∗Te, 𝚷 =
T

F∗S∗, 𝜏
𝛼 = 𝚷 ⋅N𝛼

Elastic moduli: L
e = 𝜕2

𝜙
e∕𝜕Ee

𝜕Ee, C
∗ = C

∗
(Le

,Te
,F∗), C

e = C
e
(C∗

,FP) .

2. Hardening moduli:

𝝃 ∶= 𝝃n + Δ𝝃(Δ𝛾𝛼), h𝛼𝛽 = h
𝛼𝛽

(𝝃)

3. Yield functions:

𝜏
𝛼

cr ∶= 𝜏𝛼cr n +
∑
𝛽∈ h𝛼𝛽 Δ𝛾𝛽

f 𝛼 ∶= 𝜏𝛼 − 𝜏𝛼cr .

4. Incremental approximation of yield functions:

𝚲𝛼 = (C∗ ⋅ F∗N𝛼 + S∗
T

N𝛼)
-T
FP

g𝛼𝛽 = h𝛼𝛽 + F∗N𝛼 ⋅ C∗ ⋅ F∗N𝛽 +𝚷 ⋅N𝛽N𝛼

Δ̂f 𝛼 = 𝚲𝛼(F − Fn) −
∑
𝛽∈ g𝛼𝛽Δ𝛾𝛽 .

• Output: par ∶= {FP
, 𝝃, 𝜏𝛼cr,𝚲𝛼, g𝛼𝛽}, f 𝛼, Δ̂f 𝛼 .

4.5 Incremental solution for a prescribed set of active slip-systems

It is emphasized that this step summarized in Box 3 only serves to speed up the calculations whenever possible, otherwise
it is not necessary in the QEP algorithm.

The part of the algorithm provided in Box 3 represents essentially the known return mapping algorithm of multi-
surface plasticity,23 except that it is used in Box 1 exclusively in the case when the number of active slip-systems from
the preceding time step takes a value from 1 to 5. Then the inverse of slip-system interaction submatrix (g𝛼𝛽


) is expected

to exist, moreover, (g𝛼𝛽

) is expected to be positive definite, provided the active slip-systems are linearly independent,10

so that the Newton-Raphson method can safely be used. It may happen that Δ𝛾𝛼 takes temporarily a negative value
during iterations; then such a value is replaced with zero (keeping set  = n fixed), that is, Δ𝛾𝛼 ∶= ⟨Δ𝛾𝛼⟩, where
⟨x⟩ = x for nonnegative x and zero otherwise. In case of no convergence to Δ𝛾𝛼∈n > 0 within a prescribed number of
iterations, for example, due to singularity of (g𝛼𝛽


), the quasi-minimization of incremental energy in Box 4 is invoked,

see Box 1.
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BOX 3 Solving the system of nonlinear equations for givenn

• Input: new: F, given: datan at tn, f 𝛼tr from elastic predictor.

1. Initialization: g𝛼𝛽 ∶= g𝛼𝛽n , 𝚲𝛼 ∶= 𝚲𝛼n, f 𝛼 ∶= f 𝛼tr , Δ̂𝛾𝛼∈n ∶= 0, Δ𝛾𝛼∉n ∶= 0 .

2. Compute Δ𝛾𝛼∈n from the system of linear equations
∑
𝛽∈n

g𝛼𝛽 (Δ𝛾𝛽 − Δ̂𝛾𝛽 ) = f 𝛼, 𝛼 ∈ n.

3. Set Δ̂𝛾𝛼 ∶= Δ𝛾𝛼 ∶= ⟨Δ𝛾𝛼⟩ for 𝛼 ∈ n and update f 𝛼 and g𝛼𝛽 using Box 2.

4. Accuracy check: if ∃𝛼 |f 𝛼∈n | > 𝜀 then go to 2.

• Output: incremental slips Δ𝛾𝛼 for 𝛼 ∈ n .

4.6 Automatic selection of active slip-systems by QEP

Box 4 constitutes the core of the proposed algorithm for rate-independent crystal plasticity, based on the quasi-extremal
energy principle QEP (49).

It overcomes the long-standing difficulty in rate-independent crystal plasticity in selecting the set of active slip systems,
especially if the incremental problem has more than one solution which correspond to different sets of active slip-systems.
In the previous paper,7 the incremental energy minimization method66 was applied, which required modification of the
constitutive equations by symmetrization of the active slip-system interaction submatrix. In the present article based on
the quasi-minimization of the incremental energy function, the need for symmetrization has been eliminated, which gives
a significant benefit since the algorithm has become applicable to the original constitutive equations with a nonsymmetric
slip-system interaction matrix. Nevertheless, the previous algorithm developed in Reference 7 turned out to be flexible in
adaptation and merely needed a few changes related to the addition of the new last term in Equations (39) and (57) to the
previous expression for the incremental work density.

BOX 4 Algorithm of quasi-minimization of incremental energy

• Input: ΔF = F − Fn, given datan at tn, f 𝛼tr from elastic predictor,

if f 𝛼 is calculated using Box 3 then take f 𝛼 else f 𝛼 ∶= f 𝛼tr ,

estimate potentially active slip-systems set  ∶= n ∪ {𝛼 | f 𝛼 ≥ 𝜀} .

1. Initialization:

g𝛼𝛽 ∶= g𝛼𝛽n , 𝚲𝛼 ∶= 𝚲𝛼n, f 𝛼 ∶= f 𝛼tr , Δ̂𝛾𝛼∈ ∶= 0, Δ𝛾𝛼∉ ∶= 0,

set parameter c > 0 and initial Lagrange multipliers 𝜆𝛼∈ ∶= 0 .

2. Energy quasi-minimization loop:

2.1. Compute incremental slips Δ𝛾𝛼∈ by minimization of augmented Lagrangian:

Δ𝛾𝛼 ∶= arg min
𝛾̃
𝛼

(
Δ̂𝜀(𝛾̃𝛼 ; Δ̂𝛾𝛼) +

∑

𝛼

𝜓
𝛼

c (𝛾̃𝛼 , 𝜆𝛼)

)
, 𝛼 ∈ 

2.2. Update Lagrange multipliers 𝜆𝛼 ∶= min {0, 𝜆𝛼 + cΔ𝛾𝛼} for 𝛼 ∈ 

2.3. Set ∶= {𝛼 | Δ𝛾𝛼 > 0} and Δ̂𝛾𝛼 ∶= Δ𝛾𝛼 for 𝛼 ∈ 

2.4. if the first iteration after Initialization then  ∶= 

2.5. Update f 𝛼 and par ⊃ {g𝛼𝛽 ,𝚲𝛼} using Box 2

2.6. Accuracy check: if ∃𝛼|f 𝛼∈| > 𝜀 then go to 2.

3. Final check: if ∃𝛼f 𝛼∉ > 𝜀 then  ∶=  ∪ {𝛼 | f 𝛼 > 𝜀} and go to 1.

• Output: new par at tn+1 .
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Here, the active slip-system set is determined by performing quasi-minimization of the energy function over a set
 of potentially active slip-systems that can be selected a priori only to reduce the computational effort. The set is then
obtained (point 2.3) as part of the solution to the minimization problem 2.1, in distinction to the approaches where is
assumed before solving the system of equations f 𝛼∈ = 0.

In order to accelerate the computations, in Box 4 the set  is reduced as soon as possible (point 2.4) and subsequently
enhanced only if needed (point 3). The augmented Lagrangian term 𝜓

𝛼

c takes care of the nonnegativeness of Δ𝛾𝛼 in the
final solution. In the energy quasi-minimization loop, the Lagrange multipliers are updated (point 2.2) simultaneously
with the current approximate solution (point 2.3) and state parameter values (point 2.5). In the calculations performed,
a constant parameter c = 104 GPa has been adopted.

Minimization of the smooth augmented Lagrangian (point 1.1) was implemented within the scientific computing
environment Mathematica (http://www.wolfram.com). In the unconstrained search for a minimum of the Lagrangian,
the embedded function FindMinimum that employs the usual Newton method has been used, taking advantage of the
explicit knowledge of the gradient and Hessian of functions Δ̂𝜀 and 𝜓𝛼

c from their definitions. In case when the Hes-
sian is not positive definite, the line search or trust region methods are employed for appropriate step control during
minimization.

5 NUMERICAL EXAMPLES

5.1 Simulation of simple shear

Effectiveness of the algorithm is demonstrated by numerical simulations of large deformation of a fcc single crystal under
simple shear in different directions. The notation of 12 positive and 12 negative slip-systems (N = 24) is taken after
Reference 72; a negative slip direction is denoted by an overbar, compare Table 1.

The slip-system hardening matrix (h𝛼𝛽) in Equation (27) is specified in the following form taken from Reference 73

h𝛼𝛽 =
(
𝜒
𝛼𝛽 + q

(
1 − 𝜒𝛼𝛽

))
h𝛽 , (63)

where 𝜒
𝛼𝛽 = 1 for coplanar slip-systems and 𝜒

𝛼𝛽 = 0 otherwise, the latent-to-self hardening ratio q = 1.4, and the
slip-hardening rate h𝛽 as a function of the generalized Schmid stress 𝜏𝛽 on the 𝛽th slip system is expressed by the formula

h𝛽 = h0

(
1 −

𝜏
𝛽

c

𝜏s

)a

for 𝜏𝛽c ≤ 𝜏s. (64)

Note that matrix (h𝛼𝛽) is not symmetric. The material parameters have been specified to fit the hardening curve for a
high-purity Cu single crystal tested in the authors’ home department.74 The initial yield stress is set to 𝜏0 = 1 MPa, initial
hardening parameter h0 = 250 MPa, saturation stress 𝜏s = 144 MPa and exponent a= 2. The model is intended to describe
Stages III and IV of strain hardening at room temperature while Stage I (easy glide) hardening is not accounted for. Elastic
moduli of cubic symmetry, C11 = 170 GPa, C12 = 124 GPa, C44 = 75 GPa, used to determine a constant elastic moduli
tensor Le for Cu have been adopted after Reference 75.

The crystal response to uniform simple shear has been calculated for a fully prescribed deformation gradient F(𝜆) =
1 + 𝜆 A⊗ B, where symbol 1 means the second-order identity tensor, and loading parameter 𝜆(t) increased from 0 to 5
with constant incrementΔ𝜆 = Δt∕s = 10−2. It was checked that decreasing the step size toΔ𝜆 = 10−3 orΔ𝜆 = 10−4 has no
significant influence on the results. The calculations were performed for four orientations of simple-shear deformation
as in Reference 76. Unit vectors of direction A and plane B of simple shear are defined relative to a fixed laboratory frame
Xi, i = 1, 2, 3, as in Table 2.

T A B L E 1 Notation of planes and directions of slip-systems in fcc single crystals, adopted after Reference 72

a 1 2 3 b 1 2 3 c 1 2 3 d 1 2 3

(111) [011] [101] [110] (111) [011] [101] [110] (111) [011] [101] [110] (111) [011] [101] [110]

http://www.wolfram.com
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T A B L E 2 Orientations of unit vectors A and B, denoting direction and plane of simple-shear deformation relative to a fixed
laboratory frame Xi, i = 1, 2, 3

(1) (2) (3) (4)

A [100] [100] [100] [110]

B (001) (013) (011) (001)

(A)

(B)

F I G U R E 1 Simulation of simple shear No. (1): (A) shear stress 𝜏13 versus shear strain with the active slip-system sets marked, and (B)
corresponding values of the yield functions f 𝛼 for all slip-systems

The material response to the simple shear No. (1) is quite complex. In Figure 1A the plot of the Kirchhoff stress 𝜏13
versus shear strain 𝜆 is shown along with the changing set of active slip-systems. Arrows indicate points where a new
active slip-system set has been selected by the QEP algorithm. Different colors along the stress-strain curve mean different
numbers of active slip-systems. Remarkably, the number of simultaneously active slip-systems never exceeds five. Four
or five slip-systems are active throughout almost all the deformation stages. In a high-symmetry initial orientation, as in
the case examined, several equivalent solutions exist, and the one presented here should be interpreted as a representative
example.

For the chosen deformation step sizeΔ𝜆 = 10−2, the initial elastic state is overshot, and immediately at the beginning
of calculations the plastic state is reached. Changes of active sets occur frequently and as a rule are related to the appear-
ance of some irregularities on the stress curves. The changes of active slip-systems are more visible on the plots of yield
functions f 𝛼 , Figure 1B, when they reach or leave the zero level. The mechanism of automatic switching between different
active slip-system sets is analogous to that described in detail in Reference 7, but this time without any symmetrization of
the slip-system interaction matrix. The irregularities on the stress and yield functions f 𝛼 plots are related to the transition
between corners of the yield surface. In particular, the irregularities are associated with unloading of slip-systems, which
is clearly visible in Figure 1B.

Accumulated slips 𝛾𝛼 on individual slip-systems versus shear strain are plotted in Figure 2A. In the stage of defor-
mation related to successive transitions between yield-surface corners the crystal lattice is subjected to large rotation,
Figure 2B. Changes in the orientation of three crystallographic directions [100], [010], [001] are shown on the pole figure,
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(A) (B)

F I G U R E 2 Simulation of simple shear No. (1): (A) accumulated slips on active slip-systems and (B) changes in the orientation of
crystallographic axes

from their initial orientations X1,X2,X3 marked with circles. It can be seen from Figure 2A that slip-systems which are
active at the beginning are later unloaded, as a result of rotation of the crystallographic lattice. In the final stage of the sim-
ulations, two slip-systems (c1, a1) become dominant, and the remaining active systems are much slower. The rotation of
the crystallographic lattice gradually slows down at the final stage of the simulation. It is worth recalling that during the
entire deformation process no more than five simultaneously active slip-systems have been allowed by the path stability
criterion embedded in the QEP algorithm.

In turn, the simple shear deformation No. (2) corresponds to a more localized, clearly visible irregularity on the shear
stress 𝜏13 and yield functions f 𝛼 plots in Figure 3. Only one change of a yield-surface corner appears in this deformation

(A)

(B)

F I G U R E 3 Simulation of simple shear No. (2): (A) shear stress 𝜏13 versus shear strain with the active slip-system sets marked, and (B)
corresponding values of the yield functions f 𝛼 for all slip-systems
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(A) (B)

F I G U R E 4 Simulation of simple shear No. (2): (A) accumulated slips on active slip-systems and (B) changes in the orientation of
crystallographic axes

(A)

(B)

F I G U R E 5 Simulation of simple shear No. (3): (A) shear stress 𝜏13 versus shear strain with the active slip-system sets marked, and (B)
corresponding values of the yield functions f 𝛼 for all slip-systems

process. It starts around 𝜆 = 1.1, when first b3 and next b1 slip-systems become unloaded, and ends about 𝜆 = 1.33 when
new slip-systems c3 and c2 become active. Five slip-systems are active during the most part of the deformation, and after
𝜆 = 1.33 the set (c3, d1, b1, c2, d3) is active. However, at the final stage two slip-systems (c3, c2) are dominant, Figure 4A.
The rotation of the crystallographic lattice Figure 4B runs more regularly compared to the previous deformation No. (1).

The simple shear deformation No. (3) visualized in Figure 5 is even more smooth and continues without any visible
irregularities observed in the previous deformations No. (1) and No. (2). In the first step of deformation, two collinear
systems d1 and b1 starts to flow with equal increments of slip shearing. Shortly thereafter, in the second deformation
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(A) (B)

F I G U R E 6 Simulation of simple shear No. (3): (A) accumulated slips on active slip-systems and (B) changes in the orientation of
crystallographic axes

(A)

(B)

F I G U R E 7 Simulation of simple shear No. (4): (A) shear stress 𝜏13 versus shear strain with the active slip-system sets marked, and (B)
corresponding values of the yield functions f 𝛼 for all slip-systems

step, two additional coplanar slip-systems c3 and c2 are activated, which initially flow more slowly than the previous two
slip-systems. As a result of the progressing smooth rotation of the lattice, Figure 6, the dominant role in the plastic flow
is taken over by c3 and c2 coplanar systems. The rotation of the lattice, accompanied by apparent geometric “softening”,
gradually decreases during deformation. No transition between yield-surface corners is observed and no slip-system is
unloaded, so that the yield function values f 𝛼 vary smoothly and monotonically, Figure 5B.

Finally, the case of simple shear deformation No. (4) is extremely simple as the saturation type hardening on the shear
stress 𝜏13 curve occurs during the entire deformation, Figure 7A. Only two collinear slip-systems c3 and d3, which undergo
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(A) (B)

F I G U R E 8 Tensile true stress versus engineering strain, active slip-systems and changes in the orientation of tensile axis for
latent-hardening parameter q = 1.2, in comparison with experimental results from Reference 77. (A) Simulations for selecting active
slip-systems by QEP, (B) analytical predictions with no criterion of slip-system selection

self and latent hardening, are active in the entire plastic range, while the remaining systems are inactive. The almost
constant and equal increase of shearing of two slip-systems gives the same accumulated value of slips on both systems.
The crystal lattice does not rotate, and accordingly there is no transition between yield-surface corners, Figure 7B. This
particular case, unlike the previous three, can be treated by elementary analysis and is given here only to facilitate the
interpretation of the previous figures generated by the same computer code.

5.2 Uniaxial tension in high-symmetry orientation

From the point of view of the slip-system selection procedure, this example may be treated as a benchmark for crystal
plasticity algorithms. For uniaxial tension of a fcc crystal in [001] direction, there are eight equally stressed slip-systems.
If no criterion of slip-system selection is involved, simultaneous and equal activity of the eight slip-systems is predicted.
This is in variance with experimental observations of a smaller number of simultaneously active slip-systems in a small
volume element of a tensile specimen (the latter may deform nonuniformly). Such observations are well documented in
the work77 taken below as reference.

Numerical simulations of a uniaxial tension in a high-symmetry initial direction [001] have been previ-
ously performed using the incremental work minimization algorithm along with selective symmetrization of the
slip-system hardening matrix.7 This required the extension of the algorithm to the case of partial kinematic
control. In those calculations, in order to obtain good agreement with the experimental results given in Refer-
ence 77, it was found necessary to assume two different latent-hardening parameters, qlc = 1.3 for slip-system
pairs with sessile junctions and q = 1.2 for other pairs. It is shown below that the QEP algorithm, where
the selective symmetrization is no longer used, allows the previous results to be accurately reproduced using
only one latent-hardening parameter q = 1.2 and the other material parameters adopted from section 6.3 of
Reference 7.

The material parameters have been assumed to fit the first portion of the experimental tension curve
taken from References 77 for Al 99.99% single crystal of [100] initial orientation, shown as circle points
in Figure 8. Saturation type hardening has been adopted in the form h𝛽(Γ) ∶= h0 sech2

(
h0Γ
𝜏s−𝜏0

)
for every

slip-system 𝛽 after Reference 3, where accumulated shear Γ on all slip-systems is updated using the for-
mula Γn+1 ∶= Γn +

∑
𝛼
Δ𝛾𝛼 . Formula (63) is applied here by taking q = 1.2 for latent hardening and 𝜒

𝛼𝛽 =
𝛿
𝛼𝛽 , the Kronecker delta. Simulations have been carried out for the initial yield stress 𝜏0 = 1.13 MPa, satura-

tion stress 𝜏s = 8.5𝜏0, initial hardening modulus h0 = 160𝜏0, and elasticity moduli C11 = 108 GPa, C12 = 62 GPa,
C44 = 28 GPa.
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The uniaxial tension has been simulated by increasing loading parameter 𝜆(t) from 0 to 0.6 using step sizeΔ𝜆 = 10−3.
The QEP algorithm presented in Section 4 has been extended to the case of partial kinematic control in close analogy to
the approach described in sections 6.1 and 6.2 of References 7. For uniaxial tension, the deformation gradient and Piola
stress tensors are taken in the form

F =
⎡
⎢
⎢
⎢⎣

F̃11 0 0
F̃21 F̃22 0
F̃31 F̃32 𝜆

⎤
⎥
⎥
⎥⎦
, S =

⎡
⎢
⎢
⎢⎣

0 0 0
0 0 0
0 0 ̃S33

⎤
⎥
⎥
⎥⎦
. (65)

Components F̃ij and ̃S33 are unknown and determined at each step of 𝜆 along with the incremental shears Δ𝛾𝛼 by
quasi-minimization of the energy function Δ𝜀 (for zero potential energy of external loads).

In the first stage of elongation up to the engineering strain 𝜀 = 𝜆 − 1 = 19%, a single slip-system d2 (as one of
eight systems {a1, b1, c1, d1, a2, b2, c2, d2} which are equivalent by symmetry) is activated. Stable rotation of the crys-
tallographic lattice in (010) plane is observed, and the tensile direction rotates from initial direction [001] along
[001] − [101] vertical line until reaching the elongation 𝜀 = 19%. Due to latent hardening, neither b1 nor c1 slip-systems
are activated up to this point. Subsequently, the algorithm enforces the replacement of the active slip-system by b1
(an equivalent alternative would be c1) while d2 is deactivated. The direction of lattice rotation changes, now the
elongation direction is rotating toward [001] − [111] line until reaching 𝜀 = 37% of elongation. Additional slip-system
a2 is then activated at the elongation 𝜀 = 37%, and simultaneously one more abrupt change in the lattice rota-
tion direction takes place. Two slip-systems {b1, a2} remain active while the tensile direction is now rotating along
[001] − [111] line.

The numerical simulations have been compared to the experimental results given by Saeki and Miura77 for a
tensile specimen of Al 99.99% single crystal of [100] initial orientation. The agreement between numerical and exper-
imental stress-strain curves in Figure 8A is not perfect but may be regarded as satisfactory. Of more interest for
validation of the slip-system selection is the comparison, inserted in Figure 8A, of the calculated crystal lattice rota-
tions (shown as blue solid-line representing changes in the orientation of tensile axis on the inverse pole figure) with
experimentally observed results. Two symmetry-related sets of experimental points for tensile axis rotations taken for
two different regions of the specimen from Reference 77 are superimposed at one side of the vertical line and rep-
resented by diamonds and circles, labeled by the respective values of the sample elongation. In view of the observed
complexity of the material response, and of simplicity of the material model, the obtained good agreement sup-
ports validity of the active slip-system selection based on the energetic criterion of path stability embedded in the
QEP algorithm.

In contrast, if no criterion of slip-system selection is used then for uniaxial tension in [001] direction simultane-
ous and equal activity of the eight slip-systems {a1, b1, c1, d1, a2, b2, c2, d2} indexed by 𝛼 ∈[001] is predicted, which
leads to the results presented in Figure 8B. In this case, there is no lattice rotation, and by disregarding a negligi-
ble effect of elastic strain, the crystal response can be determined analytically. Straightforward integration of formula
(27) from the initial value 𝜏

𝛼

cr = 𝜏0, using hardening matrix (63) with h𝛽 and 𝜒
𝛼𝛽 specified earlier in this section,

yields

𝜏
𝛼

cr(Γ) = 𝜏0 + ((7∕8)(q − 1) + 1)(𝜏s − 𝜏0) tanh[Γh0∕(𝜏s − 𝜏0)] for 𝛼 ∈[001]. (66)

On substituting the expressions for resolved shear stress 𝜏𝛼 = 𝜎33∕
√

6 = 𝜏𝛼cr and accumulated plastic slip Γ =
√

6 ln 𝜆, we
arrive at the closed-form formula for 𝜎33 versus 𝜆,

𝜎33 =
√

6
(
𝜏0 + ((7∕8)(q − 1) + 1)(𝜏s − 𝜏0) tanh[

√
6 h0 ln 𝜆∕(𝜏s − 𝜏0)]

)
, (67)

for the above rigid-plastic model of uniaxial tension in [001] direction with eight equally active slip-systems.
This analytical relationship is plotted in Figure 8B in terms of 𝜀 = 𝜆 − 1 for the material parameters given above.

The curve is clearly higher than in Figure 8A due to the higher contribution of latent hardening. The most noteworthy,
however, is the discrepancy between the predicted fixed orientation of the tensile axis, marked by a bold center point in
the inverse pole figure, and its experimentally observed rotations marked with diamonds and circles. The discrepancy



3308 PETRYK and KURSA

occurs irrespective of the values of the material parameters if there is no built-in mechanism of slip-system selection that
could enforce a deviation from the initially imposed symmetry.

5.3 Comparison with other algorithms

We begin with the example of uniaxial tension in high-symmetry orientation [001] as in the preceding Section 5.2.
The same slip-systems as in Figure 8A were active in the calculations performed in Reference 7 for two different

latent-hardening parameters (q = 1.2 and qlc = 1.3) assumed under otherwise the same material model. The slip-system
selection in the reference was also based on the energy criterion of path stability, but understood together with the concept
of selective symmetrization, not used here. Nevertheless, the results given in figure 7(a) in Reference 7 practically coincide
with these in Figure 8A here.

When using a standard rate-dependent model (RD), the results are fundamentally different. The reason is that
in the absence of imperfections other than round-off errors, during uniaxial tension in [001] direction there is no
mechanism in the RD calculations for deviation from the equal activity of the eight equally stressed slip systems
{a1, b1, c1, d1, a2, b2, c2, d2}. In effect, rotations of the crystallographic lattice are absent, and for a properly selected level
of the external strain-rate also the stress level is very close to that obtained from the analytical model and presented in
Figure 8B.

This has been confirmed numerically by using the explicit time integration scheme applied to the standard power-law
rate-dependent regularization78 of otherwise the same plasticity model of Cu single crystals,

𝛾̇
𝛼 =

⎧
⎪
⎨
⎪⎩

𝛾̇0

(
𝜏
𝛼

𝜏
𝛼

c

) 1
m if 𝜏

𝛼 ⩾ 0,

0 otherwise.
(68)

Frequently used reference shear-rate 𝛾̇0 = 0.001s−1 has been adopted.73 A strain-rate-sensitivity parameter m = 0.015,
typical at room temperature, has been taken to ensure convergence for an elongation step Δ𝜆 = 10−5.

The stress level depends now on the elongation rate Δ𝜆∕Δt. It can be taken equal to Δ𝜆∕Δt = 8𝛾̇0𝜆∕
√

6 ≈ 0.004 1∕s
so that 𝛾̇𝛼 ≈ 𝛾̇0. An interesting conclusion obtained from formula (68) is that the stress level is then practically inde-
pendent of the value of the rate-sensitivity parameter m. Since the elasticity effects are negligible, the analytical results
shown in Figure 8B also represent the results calculated for the rate-dependent model, except for the initial elastic
response which was missing from the rigid-plastic model. Unlike the stress-strain curve itself, the equal activity of
eight equally stressed slip-systems is independent of material parameters, and the lattice orientation is represented
by a single center point in Figure 8B contrary to the experiment. This is because the standard RD algorithm does
not have a built-in mechanism of slip-system selection that could enforce a deviation from the initially imposed
symmetry.

Uniaxial tension in the high symmetry orientation examined here can also be qualitatively compared with a number
of results calculated in the literature using a rate-dependent model.27,79,80 It is typical for RD models that from the outset
of deformation the eight slip-systems become and remain active in this high-symmetry orientation. The results of RD
models are thus qualitatively different from those obtained by applying QEP for the selection of active slip-systems and
shown in Figure 8A.

We come back now to the simulations of simple shear presented in Section 5.1 and compare them to those based
on the rate-dependent (RD) regularization with m = 0.015. Material parameters for both QEP and RD approaches
are set as in Section 5.1, except the initial yield stress changed to 𝜏0 = 10 MPa in order to avoid numerical insta-
bilities in the RD simulations at the onset of plastic range. The difference in the initial value of yield stress has in
fact a little effect on the stress-strain curves shown on a large-strain scale. The initial portions are different, but on
this scale the difference is hardly visible. This is understandable because at large strain the initial stress level does
not significantly affect the hardening behavior governed by the formula (64) with the same material parameters for
QEP and RD.

Consider first the case of simple shear No. (3). The results of simple shear No. (3) generated by the QEP algorithm
for the step size Δ𝜆 = 0.01 were previously shown in Figures 5 and 6. Calculations with the use of the RD regularization
have been conducted for two shear rates, Δ𝜆∕Δt = 1∕s and Δ𝜆∕Δt = 0.002 1∕s. In each case, a much smaller step size
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Δ𝜆 = 10−5 was used. A sufficient accuracy of RD calculations was confirmed by decreasing the step size to Δ𝜆 = 10−6 =
1 Δt∕s and obtaining practically the same results (not presented here) up to 𝜆 = 1.

The level of Kirchhoff stress 𝜏13 calculated for Δ𝜆∕Δt = 1∕s for the RD model is visibly higher than that determined
by the QEP algorithm, Figure 9. However, the sets of active slip-systems and the predicted changes in the orientation
of crystallographic axes are the same for the QEP and RD calculations, which results in the very similar shape of the
corresponding stress curves. Finally, by reducing the shear rate to Δ𝜆∕Δt = 0.002 1∕s, the results for rate-independent
(QEP) and rate-dependent (RD) calculations become undistinguishable in this particular case of simple shear as shown
in Figure 9.

While for uniaxial tension in the high-symmetry direction the RD results corresponding to Figure 8B are hardly accept-
able, in the above case of simple shear No. (3) the RD results can coincide with the QEP results. This is so because in the
former case the criterion for selection of active slip-systems plays a crucial role while it is not needed in the latter example.
In general, substantial differences between the QEP and RD results can be expected.

This is so in the case of simple shear No. (1), where the slip-system selection is again essential. Significant differences
are visible in Figure 10 between the stress-strain curves obtained from the QEP algorithm and the rate-dependent (RD)
model. Material parameters are again the same as in Section 5.1, except the initial yield stress set here to 𝜏0 = 10 MPa.
Calculations for the rate-dependent model (RD) have been performed using the previous parameters m = 0.015 and 𝛾̇0 =
0.001s−1, and step size Δ𝜆 = 10−5 = 0.002 Δt∕s until reaching 𝜆 = 5. The step size for QEP calculations was set much

F I G U R E 9 Simulations of simple shear No. (3). The QEP results (colored plot markers) are compared to rate-dependent (RD)
simulations (broken lines) for shear increment Δ𝜆 = 10−5 and two different time steps Δt = 10−5 s and Δt = 0.005 s. Initial yield stress 𝜏0 =
10 MPa, rate sensitivity parameter m = 0.015, reference shear-rate 𝛾̇0 = 0.001s−1

F I G U R E 10 Simulations of simple shear No. (1). The QEP results (colored plot markers) are compared to those obtained for the
selective symmetrization of (g𝛼𝛽 ) (dashed black line), both for shear increment Δ𝜆 = 0.01, and to rate-dependent (RD) simulations (broken
brown line) for Δ𝜆 = 10−5 = 0.002 Δt∕s, 𝛾̇0 = 0.001s−1 and m = 0.015. Initial yield stress 𝜏0 = 10 MPa
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(A)

(B)

F I G U R E 11 Rate-dependent simulation of simple shear No. (1): (A) shear stress 𝜏13 versus shear strain with the active slip-system sets
marked, and (B) corresponding values of the yield functions f 𝛼 for all slip systems, for Δ𝜆 = 10−5 = 0.002 Δt∕s, 𝛾̇0 = 0.001s−1, m = 0.015, 𝜏0 =
10 MPa

(A) (B)

F I G U R E 12 Rate-dependent simulation of simple shear No. (1): (A) accumulated slips on different systems and (B) changes in the
orientation of crystallographic axes, for Δ𝜆 = 10−5 = 0.002 Δt∕s, 𝛾̇0 = 0.001s−1, m = 0.015, 𝜏0 = 10 MPa
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larger, Δ𝜆 = 10−2 as in the previous sections. In effect, the overall calculation time for the QEP algorithm was much
shorter than that for the RD model.

The differences between the RD and QEP stress-strain curves in Figure 10 can be attributed to the difference in the pre-
dicted sets of active slip-systems. For many stages of deformation the rate-dependent model (RD) predicts activity of more
than five slip-systems with Δ𝛾𝛼 > 0, Figure 11. The difference in the prediction of lattice rotation is particularly striking,
compare Figures 12B and 2B. It results from different sets of active slip systems, compare Figures 1, 2 and Figures 11, 12.

The results shown in Figure 10 are also compared with the calculations performed using the selective symmetrization7

of the interaction moduli submatrix of (g𝛼𝛽) restricted to active slip-systems. The respective dashed black line differs some-
what from the QEP results obtained without that symmetrization. The difference is not substantial, which confirms that
the selective symmetrization proposed in Reference 65 and applied in References 7 and 46 may be a good approximation.

Further work is in progress on nonunique deformation patterns calculated using the quasi-extremal energy principle.

6 CONCLUSION

A constitutive algorithm for the rate-independent crystal plasticity has been proposed which enables automatic selection
of active slip systems along large deformation paths using an energetic criterion. For the first time, this energy approach
makes full use of the entire nonsymmetric slip-system interaction matrix, and not just its symmetrized part as in the
incremental energy minimization approach. The algorithm is general enough to allow the inclusion of user-defined con-
stitutive functions, such as hardening moduli h𝛼𝛽 specified in terms of any internal variables, or free energy density 𝜙
with its arbitrary split into elastic and plastic parts, to the constitutive standard framework derived from Reference 2.

The new key part of the algorithm is based on the recently proposed in Reference 1 quasi-extremal energy princi-
ple (QEP) applicable to nonpotential problems in rate-independent plasticity. To build it up, QEP is here extended to
finite increments in the backward-Euler computational scheme for nonpotential problems of crystal plasticity. The other
parts of the algorithm were adapted from the previous paper by the authors,7 now with the extra term

∑
𝛼𝛽
𝛾̃
𝛼g𝛼𝛽skewΔ𝛾

𝛽

added to a (generally nonconvex) incremental work expression. In this way, the incremental work minimization (limited
to potential problems) has been extended to quasi-minimization of the energy expression for the nonpotential problems
with nonsymmetric matrix (g𝛼𝛽). It has been shown that a solution to QEP formulated at a material point solves the local
incremental problem so that all yield functions satisfy the discrete consistency conditions at the end of a time step. It
is essential that the active slip-system set is obtained as part of the solution to the minimization problem for an aug-
mented Lagrangian, in distinction to other approaches where the set is assumed before solving the system of incremental
equations.

The effectiveness of the QEP algorithm has been illustrated by the numerical examples calculated for a fcc single
crystal subjected to simple shear or uniaxial tension. It has been shown that the algorithm enables the automatic selection
of a set of active slip-systems during the simulations. The obtained results differ significantly from those calculated using
the rate-dependent modeling without any criterion of slip-system selection, see Figures 8 and 10. The comparison with
the experimental data presented in Figure 8 shows that the QEP results in this case are much closer to the experimental
test in terms of the number of active slip-systems and the rotation of the crystallographic lattice. The QEP modeling can
therefore be more reliable in describing the actual plastic response of metal crystals than conventional rate-dependent
modeling in cases where the selection of active slip-systems is essential.

In the outlook, an analogous QEP-based approach can be applied to other nonpotential inelastic problems as a gener-
alization of the previous algorithms based on the incremental energy minimization approach with the automatic branch
switching on deformation paths, see References 38,39,46.

ENDNOTE
∗Notation: Bold-face characters are used to denote vectors (in a three-dimensional Euclidean space) or second-order tensors, and doublestruck
capitals (like C) denote fourth-order tensors. Direct juxtaposition of two tensors means simple contraction, a central dot – double contraction
in the sense A ⋅ B = AijBij, and ⊗ a tensor product. A superimposed −1, T or −T over a tensor symbol denotes an inverse, transpose or
transposed inverse, respectively. A superimposed dot denotes the rate, understood as the material time derivative in the one-sided (forward)
sense, d∕dt+, which is assumed to exist. A Greek superscript denotes a slip-system index (not an exponent). Symbol ∶= is used to distinguish
a definition or substitution from an equality.
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APPENDIX . DERIVATION OF THE ENERGY EXPRESSION FOR THE INCREMENTAL
PROBLEM

The expression for a finite increment of the internal work density for an arbitrary history of virtual rates (F̃t, 𝛾̃
𝛼

t ) ∶=

(F̃(t), 𝛾̃𝛼(t)), at constant coefficients (Ce
,𝚲𝛼, g𝛼𝛽) of constitutive rate-equations (16) with Ce =

T
Ce and (g𝛼𝛽) an arbitrarily

nonsymmetric matrix, is obtained by backward time integration of the virtual work rate (6) as follows

Δw ∶ =
∫

tn+1

tn

((
Sn+1 −

∫

tn+1

t
S̃(𝜃)d𝜃

)
⋅ F̃t −

∑

𝛼∈

(
f 𝛼n+1 − ∫

tn+1

t

̃f 𝛼(𝜃)d𝜃
)
𝛾̃
𝛼

t

)
dt

= Sn+1 ⋅ ΔF −
∑

𝛼∈

f 𝛼n+1Δ𝛾
𝛼 −
∫

tn+1

tn

(

∫

tn+1

t

(
C

e ⋅ F̃(𝜃) −
∑

𝛼∈

𝚲𝛼𝛾̃𝛼(𝜃)
)

d𝜃

)
⋅ F̃tdt

+
∫

tn+1

tn

∑

𝛼∈

(

∫

tn+1

t

(
F̃(𝜃) ⋅ 𝚲𝛼 −

∑

𝛽∈

g𝛼𝛽 𝛾̃𝛽(𝜃)

)
d𝜃𝛾̃𝛼t

)
dt

= Sn+1 ⋅ ΔF −
∑

𝛼∈

f 𝛼n+1Δ𝛾
𝛼 −
∫

tn+1

tn

(
C

e ⋅ (Fn+1 − Ft) −
∑

𝛼∈

𝚲𝛼(𝛾𝛼n+1 − 𝛾
𝛼

t )

)
⋅ F̃tdt

+
∫

tn+1

tn

∑

𝛼∈

(
(Fn+1 − Ft) ⋅ 𝚲𝛼 −

∑

𝛽∈

g𝛼𝛽(𝛾𝛽n+1 − 𝛾
𝛽

t )

)
𝛾̃
𝛼

t dt

= Sn+1 ⋅ ΔF −
∑

𝛼∈

f 𝛼n+1Δ𝛾
𝛼 +
∫

tn+1

tn

d
dt

(
(Fn+1 − Ft) ⋅

(
1
2

C
e ⋅ (Fn+1 − Ft) −

∑

𝛼∈

𝚲𝛼(𝛾𝛼n+1 − 𝛾
𝛼

t )

))
dt

+
∑

𝛼,𝛽∈

(

∫

tn+1

tn

1
2

g𝛼𝛽
d
dt

(
(𝛾𝛽n+1 − 𝛾

𝛽

t )(𝛾
𝛼

n+1 − 𝛾
𝛼

t )
)

dt −
∫

tn+1

tn

1
2

g𝛼𝛽
(
(𝛾𝛽n+1 − 𝛾

𝛽

t )𝛾̃
𝛼

t + 𝛾̃
𝛽

t (𝛾
𝛼

n+1 − 𝛾
𝛼

t )
)

dt
)

= Sn+1 ⋅ ΔF − 1
2
ΔF ⋅ Ce ⋅ ΔF −

∑

𝛼∈

(
f 𝛼n+1 − 𝚲

𝛼 ⋅ ΔF
)
Δ𝛾𝛼 − 1

2
∑

𝛼,𝛽∈

Δ𝛾𝛼g𝛼𝛽 Δ𝛾𝛽

− 1
2

∑

𝛼,𝛽∈
∫

tn+1

tn

𝛾̃
𝛼

t (g
𝛼𝛽 − g𝛽𝛼) (𝛾𝛽n+1 − 𝛾

𝛽

t )dt, (A1)

where

ΔF ∶=
∫

tn+1

tn

F̃t dt ≥ 0, Δ𝛾𝛼 ∶=
∫

tn+1

tn

𝛾̃
𝛼

t dt ≥ 0, 𝛾
𝛽

t ∶= ∫

t

tn

𝛾̃
𝛽

𝜃
d𝜃. (A2)
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For constant coefficients Ce =
T
Ce, 𝚲𝛼 , and g𝛼𝛽 , the work expression (A1) is exact. Under the same assumptions, the

immediate consequence of the constitutive rate Equation (16) is that the quantities

Δ̂S ∶= C
e ⋅ ΔF −

∑

𝛼∈

𝚲𝛼Δ𝛾𝛼, Δ̂f 𝛼 ∶= ΔF ⋅ 𝚲𝛼 −
∑

𝛽∈

g𝛼𝛽Δ𝛾𝛽 (A3)

satisfy the equalities

Sn+1 = Sn + Δ̂S, f 𝛼n+1 = f 𝛼n + Δ̂f 𝛼 for constant C
e
,𝚲𝛼, g𝛼𝛽 . (A4)

Jointly with the identity
∑
𝛼,𝛽∈ Δ𝛾𝛼(g𝛼𝛽 − g𝛽𝛼) Δ𝛾𝛽 = 0, which implies

−
∑

𝛼,𝛽∈
∫

tn+1

tn

𝛾̃
𝛼(t)(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽n+1 − 𝛾

𝛽

t )dt =
∑

𝛼,𝛽∈
∫

tn+1

tn

𝛾̃
𝛼(t)(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽t − 𝛾

𝛽

n )dt, (A5)

this shows that the formula (A1) is equivalent to another exact formula given in Reference 7(Eq. (39)) under the
assumption of constant coefficients. However, the coefficients are typically state-dependent and vary continuously along
a straining path, and then the equivalence no longer holds. The final formula (A1) with

C
e ∶= C

e
n+1, 𝚲𝛼 ∶= 𝚲𝛼n+1, g𝛼𝛽 ∶= g𝛼𝛽n+1 (A6)

is to be preferred when using the implicit Euler method. As shown in Section 4.1, this provides a natural derivation of the
algorithmic refinement 1 postulated in Reference 7.

From formula (A1) it is clear that Δw depends on the final increment ΔF regardless of the history of its rate F̃(t), on

account of Ce =
T
Ce. However,Δw depends not only onΔ𝛾𝛼 but is also a functional of the history of virtual slip-rates 𝛾̃𝛼(t)

in interval [tn, tn+1], unless (g𝛼𝛽) is a symmetric matrix when restricted to 𝛼, 𝛽 ∈  ∶= {𝛼 | Δ𝛾𝛼 > 0}.
Examine now a strong variation of the functional in the final expression (A1), taken relative to a solution path

𝛾̇
𝛼(t) = 𝛾̇𝛼0 = Δ𝛾

𝛼

0 ∕(tn+1 − tn) = const ≥ 0 in interval [tn, tn+1]. For this purpose, suppose that 𝛾̃𝛼(t) = 𝛾̇𝛼0∕𝜃 = const for
t ∈ [tn, 𝜏], where 𝜏 − tn = 𝜃(tn+1 − tn) and 1 > 𝜃 ≈ 1, so that the integral in Equation (A1) vanishes if restricted to the pre-
dominant subinterval [tn, 𝜏]. Over the complementary small subinterval [𝜏, tn+1], let the virtual rate 𝛾̃𝛼(t) take another,
arbitrarily different from 𝛾̇

𝛼

0 but constant value 𝛾̃𝛼(t) = 𝛾̃𝛼 = const. Then (𝛾𝛽t − 𝛾
𝛽

n ) is proportional to 𝛾̇𝛽 for t ∈ [tn, 𝜏], while
(𝛾𝛽t − 𝛾

𝛽

𝜏
) is proportional to 𝛾̃𝛽 for t ∈ [𝜏, tn+1], andΔ𝛾𝛼 = Δ𝛾𝛼0 + (tn+1 − 𝜏)𝛾̃𝛼 . Hence, the integral in Equation (A5) reduces

successively to

−
∑

𝛼,𝛽∈
∫

tn+1

tn

𝛾̃
𝛼(t)(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽n+1 − 𝛾

𝛽

t )dt =
∑

𝛼,𝛽∈
∫

tn+1

𝜏

𝛾̃
𝛼(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽t − 𝛾

𝛽

n )dt

=
∑

𝛼,𝛽∈
∫

tn+1

𝜏

𝛾̃
𝛼(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽t − 𝛾

𝛽

𝜏
+ Δ𝛾𝛽0 )dt

=
∑

𝛼,𝛽∈

(tn+1 − 𝜏)𝛾̃𝛼(g𝛼𝛽 − g𝛽𝛼)Δ𝛾𝛽0

=
∑

𝛼,𝛽∈

(Δ𝛾𝛼 − Δ𝛾𝛼0 )(g
𝛼𝛽 − g𝛽𝛼)Δ𝛾𝛽0

=
∑

𝛼,𝛽∈

Δ𝛾𝛼(g𝛼𝛽 − g𝛽𝛼)Δ𝛾𝛽0 . (A7)

Alternatively, to examine again a strong variation of functional (A1) but in a somewhat different way, suppose that
𝛾̃
𝛼(t) = 𝛾̇𝛼0 = Δ𝛾

𝛼

0 ∕(tn+1 − tn) = const for t ∈ [tn, 𝜏] with 𝜏 − tn = 𝜃(tn+1 − tn), while 𝛾̃𝛼(t) takes another constant value
𝛾̃
𝛼(t) = 𝛾̂𝛼 + 𝛾̇𝛼0 = const in the complementary subinterval [𝜏, tn+1]. Then (𝛾𝛽t − 𝛾

𝛽

n ) is proportional to 𝛾̇𝛽0 for t ∈ [tn, 𝜏],
while (𝛾𝛽t − 𝛾

𝛽

𝜏
) is proportional to 𝛾̂

𝛽 + 𝛾̇𝛽0 for t ∈ [𝜏, tn+1], and Δ𝛾𝛼 = Δ𝛾𝛼0 + (tn+1 − 𝜏)𝛾̂𝛼 . Integral (A5) reduces now
successively to
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−
∑

𝛼,𝛽∈
∫

tn+1

tn

𝛾̃
𝛼(t)(g𝛼𝛽 − g𝛽𝛼) (𝛾𝛽n+1 − 𝛾

𝛽

t )dt =
∑

𝛼,𝛽∈
∫

tn+1

𝜏

(𝛾̂𝛼 + 𝛾̇𝛼0)(g
𝛼𝛽 − g𝛽𝛼) (𝛾𝛽t − 𝛾

𝛽

n )dt

=
∑

𝛼,𝛽∈
∫

tn+1

𝜏

(𝛾̂𝛼 + 𝛾̇𝛼0)(g
𝛼𝛽 − g𝛽𝛼) (𝛾𝛽

𝜏
− 𝛾𝛽n )dt

=
∑

𝛼,𝛽∈

(tn+1 − 𝜏)(𝛾̂𝛼 + 𝛾̇𝛼0)(g
𝛼𝛽 − g𝛽𝛼)(𝛾𝛽

𝜏
− 𝛾𝛽n )

=
∑

𝛼,𝛽∈

(Δ𝛾𝛼 − Δ𝛾𝛼0 )(g
𝛼𝛽 − g𝛽𝛼)𝜃Δ𝛾𝛽0

= 𝜃
∑

𝛼,𝛽∈

Δ𝛾𝛼(g𝛼𝛽 − g𝛽𝛼)Δ𝛾𝛽0 (A8)

In the limit as 𝜃 → 1 we retrieve the final formula in Equation (A7), although this time with the relaxed restriction 𝛾̂𝛼 +
𝛾̇
𝛼

0 ≥ 0 (which implies Δ𝛾𝛼 ≥ 0) in place of previous 𝛾̃𝛼 ≥ 0 (which implied Δ𝛾𝛼 ≥ Δ𝛾𝛼0 ). In either case, we arrive at the
expression, denoted by Δ𝜀, for Δw evaluated along the bi-linear path of 𝛾𝛼t as examined above, in the form

Δ𝜀 = Sn+1 ⋅ ΔF − 1
2
ΔF ⋅Ce ⋅ ΔF −

∑

𝛼∈

(
f 𝛼n+1 − 𝚲

𝛼 ⋅ ΔF
)
Δ𝛾𝛼 − 1

2
∑

𝛼,𝛽∈

Δ𝛾𝛼g𝛼𝛽 Δ𝛾𝛽

+
∑

𝛼,𝛽∈

Δ𝛾𝛼g𝛼𝛽skewΔ𝛾
𝛽

0 , where g𝛼𝛽skew =
1
2
(g𝛼𝛽 − g𝛽𝛼),

(A9)

for constant but arbitrary coefficients Ce =
T
Ce, 𝚲𝛼 , and g𝛼𝛽 . For a single linear path of any 𝛾𝛼t varying proportionally with

time, the last term vanishes and Δ𝜀 reduces to

Δw = Sn+1 ⋅ ΔF −
∑

𝛼∈

f 𝛼n+1Δ𝛾
𝛼 − Δ2w, (A10)

where

Δ2w = 1
2
ΔF ⋅ Ce ⋅ ΔF −

∑

𝛼∈

(
𝚲𝛼 ⋅ ΔF

)
Δ𝛾𝛼 + 1

2
∑

𝛼,𝛽∈

Δ𝛾𝛼g𝛼𝛽 Δ𝛾𝛽

= 1
2
Δ̂S ⋅ ΔF − 1

2
∑

𝛼∈

Δ̂f 𝛼Δ𝛾𝛼 for constant C
e
,𝚲𝛼, g𝛼𝛽 .

(A11)
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