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1 . Problem statement

The role of the adaptive control in the structural vibration problems is to guarantee a relevant adjustment of the

control decisions as the environmental conditions or internal structural parameters are unknown or subject to

changes. A typical approach to adapting the control functions is based on the model predictive control which

employs repetitive solutions to an optimal control problem. This method exhibits high efficiency, nevertheless,

due to the high computational burden, it is mostly dedicated to the applications in linear structural control

problems (actively controlled structures) [2, 3]. To cope with the higher complexity of the dynamical systems

concerned with semi-actively controlled structures, it is relevant to consider using iterative learning algorithms

such as reinforcement learning (RL). Reinforcement learning control does not require complete information

of the system [1] and the computational complexity concerned with successive iterations of the control policy

is significantly lower than in the case of searching for the optimal solutions. In this work, we study the rein-

forcement learning actor-only algorithm for the problem of semi-active vibration control. The aim is to exploit

the convergence property which is naturally inherited from the incorporated gradient descent method and to

examine the stabilizing performance when compared to competitive control strategies.

We consider a class of semi-active vibrating structures described by the bilinear dynamical equation:

(1) ẋ(t) = Ax(t) +

m
∑

j=1

uj Bj x(t) + F (t) , x(0) = x0 .

In (1), x, u1, ..., um, and A, B1, ..., Bm stands respectively for the state vector, control functions, and con-

stant matrices. The vector F stands for a repetitive short-time excitation defined be a periodic function with

unknown amplitude and frequency (concerned for example with drilling processes). The aim is to design the

control functions uj ∈ [umin, umax], j = 1, ...,m (later referred to as the policy functions), and reinforcement

learning algorithm that allows these functions to adjust their parameters (policy parameters) guaranteeing the

best stabilization of the transient vibrations of the system (1) induced by the excitation F .

2 . Design of the RL control

For the considered process time t ∈ [0, T ], for (1) we assume the switching state-feedback policy functions

u1, ..., um defined as:

(2) uj(t) =

{

umin, xT (t)Kj(t)x(t) ≥ 0,
umax, xT (t)Kj(t)x(t) < 0.

In (2), Kj is the policy parameter and structured by two sub-parameters. The first one is K∗
j , iterated using the

reinforcement learning actor-only algorithm for the time window t ∈ [0, TL] and then assumed for the time

t ∈ [0, TF ] (TF ≥ TL) where the excitation force F 6= 0 is acting on a structure. The second sub-parameter is

K0
j , assumed for the free vibration for t ∈ (TF , T ], i.e. when F = 0, and predefined based on the solution to

the Lyapunov equation to guarantee the asymptotic stability of the autonomous form of the system (1) (see [5]).

The aim of reinforcement learning is to minimize the cost functional J , defined as the integral of the structure’s



energy computed for the learning time window t ∈ [0, TL]:

(3) J(TL) =
1

2

∫ TL

0

xT (t)Qx(t) dt , Q ≻ 0 .

For updating the policy parameter K∗
j , the reinforcement learning algorithm will use the following updating

sequence and derivative of the cost functional:

(4) K∗+
j = K∗

j − αj

(

dJ

dK∗
j

)

|K∗

j

,
dJ

dK∗
j

= (umax − umin)
s
∑

i=1

pT (τi)Bj x(τi)x(τi)x
T (τi) .

In (4), p and {τi}i=1,...,s denotes respectively the adjoint state associated to the cost functional (3) and the

sequence of time instants t ∈ [0, TL] when xT (t)K∗
j x(t) = 0. The sequence in (4) is initialized with K0

j . The

step size αj > 0 is selected by trial and error, to assure substantial decreases of the cost functional value.

3 . Case study and results

We study an aluminum beam structure characterized by length L = 1 [m], moment of inertia I =
0.7210−10[m4], mass per unit length µ = 0.2[kg/m]), and simply supported at both ends with the additional

support of the semi-active device mounted at the position 0.4L. The structure is subjected to the periodic force

acting at the location 0.6L. For the semi-active supports, we assume the elastic and damping forces that they

generate depend linearly on the control variable u. Using this assumption and the finite element model for the

beam structure, we eventually represent the considered system in the form of (1). To perform the reinforcement

learning algorithm based on (4), we repeat 500 excitations of the duration TF = 0.2[s], frequency 25[Hz],

and amplitude 200[N]. The scenario is repeated three times assuming the learning time windows TL = 0.4TF ,

TL = 0.75TF , and TL = TF . After the learning process, we compare the established RL control to the optimal,

passive, and heuristic [4] strategies. Summarizing the simulation results (see Table 1), we conclude that the RL

control in the cases of TL = 0.4TF and TL = 0.75TF provides suboptimal performance. The observed minor

drop of the performance in the case of TL = TF results from a slower convergence of the update sequence (4)

that is concerned with the increased difficulty in the selection of the step size α. The observations remain intact

when for the learning process we include relatively small random perturbations of the excitation frequency (up

to 20%).

Passive strategy
RL control

Heuristic control Optimal control
TL = 0.4TF TL = 0.75TF TL = TF

1.0000 0.6416 0.6412 0.6956 0.8186 0.6340

Table 1: Cost functional J values for the considered control cases (normalized to the passive case).
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