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tions of isotropy and skewness mode angles are introduced for the improved parametric de-
scription of spherical (isotropic) and deviatoric (anisotropic) components of stress tensor. The
skewness angle is defined with pure shear employed as a comparison reference mode upon
observing that pure shear states can be interpreted as elementary (atomic) blocks of any
macroscopic deviatoric stress state. An original statistical-physical interpretation of the stress
tensor orthogonal invariants is provided. A micromechanical explanation for observed decrease
of the stress tensor anisotropy factor values, measured in terms of the tensor orbit diameter,
with stress deviator diverging from pure shear mode, is proposed. Explicit reasons explaining
why biaxial experimental layouts (simple shear and/or planar shear) are insufficient for the
comprehensive characterization of materials properties submitted to complex stress states load-
ings are presented. New explicit formulas for the triaxiality factor valid for biaxial stress states
are delivered.
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1. Introduction

Three-dimensional second order tensors were introduced into science and
engineering with a landmark lecture of Cauchy in 1822, and in written form
in 1823, cf. [4]. The brilliant idea of Cauchy remained in unchanged form till
nowadays, as his argument on the tetrahedron element and the forces acting on
it can be found in practically unchanged form in any respectable textbook de-
voted to continuum mechanics, technical physics, the strength of materials and
many more engineering and science fields. In his original presentation, Cauchy
was talking about pressures and not stress tensor simply because, at that time,
the tensor notion did not exist yet. From a philosophical point of view, Cauchy’s
introduction of the stress tensor concept can be treated as a step toward de-
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veloping a constitutive theory of forces. The Cauchy idea of describing force
interactions through surfaces can be understood as a certain (averaged) contin-
uum model description of the force interactions between molecules – transition
from molecular interactions toward continuum media interactions. Interesting
discussion of physical foundations underlying the stress tensor concept from
the above-mentioned perspective can be found in Chap. 3 of Maugin’s book
[13], and stimulating historical notes on the creation and unfolding of the stress
tensor idea can be found in Chap. 4 of Truesdell’s book [30]. The constitu-
tive theory of forces is practically undeveloped in comparison to the maturity
of the constitutive theory of materials. Eugster and Glocker have recently
published a work remaining within the stream of development of the constitu-
tive theory of forces, cf. [6]. The mathematical grounds of tensor analysis with
all the fundamental underlying formal apparatus were originally developed by
Ricci-Curbastro in 1888–1892, cf. Ref. (19) in Tonolo [29]. The motivation be-
hind his work was completely different from that of Cauchy. Namely, it was an
investigation on invariance of quadratic forms and Ricci-Curbastro called the
technique absolute differential calculus. Ricci-Curbastro can be regarded as the
father of tensor analysis as it is an invariance feature with respect to coordinate
frames, which is the essence and profound sense of tensorial objects. It is this
feature that determines the versatile usefulness of tensors, and their becoming
the language of all advanced technical sciences nowadays, see, e.g., Itskov [9]
or Spencer [28]. The term tensor, in its contemporary meaning, was coined by
Voigt in his work from 1898, cf., e.g., pages v–vi in [31].

Tensors gained their today’s omnipresence in science and technology – at-
tained the status of a common language, because they proved to be excellent
modeling objects. They enable the reliable description of many features of real
physical objects: state (e.g., temperature, velocity, stress, strain), as well as their
properties (e.g., thermal expansion, piezoelectricity, elastic behavior – with the
aid of second, third and fourth order tensors, respectively), and many other fea-
tures (e.g., mechanical, thermal and/or electromagnetic loadings). Tensors and
their eigenproperties – represented by their various invariants, by embodying
modeling idealization of physical reality indirectly enable its deeper understand-
ing. When the tensor of a specific type is found to reliably describe and/or pre-
dict a specific physical phenomenon, then it is reasonable to infer that the spe-
cific eigenproperties of the tensor deliver a somewhat clarified picture of specific
characteristics of a real physical situation, not blurred by disturbing secondary
effects. The feedback in the process of model development and its experimen-
tal validation can bring about more precise identification of key characteristic
features of the phenomenon itself and, in return, also its model.

The present work focuses on the Cauchy stress tensor treated as a generic
instance of any three-dimensional second order symmetric Eulerian tensor, more
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precisely, Cartesian one because in the prevailing part of the present work Carte-
sian orthonormal bases are used. In fixed tensorial basis generated by three
versors of a basis of three-dimensional Eulerian space – usually accepted as co-
ordinates frame, the second order symmetric tensor is fully characterized by its
representation, i.e., components of 3× 3 symmetric matrix. These components,
in an involved manner, contain information on six linearly independent parame-
ters, out of which there can be constructed a set of three linearly independent
invariants – with respect to change (rotation) of coordinates frame, and comple-
mentary set of three parameters being Euler angles describing the orientation of
the tensor object – its triad of principal directions, with respect to coordinates
frame. The Euler angles are not invariants as they do change with alteration
(rotation) of coordinates frame. Actually, infinitely many invariants can be con-
structed for the second order symmetric tensor, but only sets of maximum three
of them can be linearly independent. Actual physical interpretations of intrinsic
features (invariants) of the second order symmetric tensor can be quite diverse.
For example, when the tensor is used as modeling abstraction of a parcel, these
could be interpreted as “length”, “width”, “height”, when on the other hand, the
tensor is used as modeling abstraction of an animal, these can find interpretation
as “hue”, “brightness”, “saturation” of its fur. Higher order symmetric tensors
can deliver a more precise modeling description of real-life objects. For example,
the fourth order tensor with internal symmetries characteristic of Hooke’s tensor
is characterized by 18 invariants (eigenproperties).

In mechanical engineering, a trace of stress tensor has a very important phys-
ical interpretation of representing pressure (p = −tr(σ)). In the case of small
strains tensor, its trace only approximately describes volumetric changes of the
material (tr(ε) ≈ dV/dV0), while the precise characterization of material volu-
metric changes is assured by the determinant of a tensor of deformation gradient
(dV/dV0 = det(F)). Qualitative decomposition of parameters fully character-
izing the second order symmetric tensor, in a fixed basis, into two triple sets
composed of invariants and Euler angles delivers grounds for the idea that it is
natural and convenient to interpret second order symmetric tensor – in particular
stress tensor, as an oriented geometrical object (entity), which besides orientation
in space is characterized by some number of intrinsic features – eigenproperties.
These intrinsic features are described by some conveniently selected set of ten-
sor invariants. The proposed approach to treat tensors as autonomous directed
entities seems much more intuitive and useful in dealing with tensors as mod-
eling objects representing real physical objects than a standard mathematical
understanding of the tensor defined as some kind of algebraic structure.

Frequently, the impression that eigenproperties (invariants) of the stress ten-
sor are the most important features can be acquired. For example, this premise
finds reflection in the presently deep-rooted concept of effective (equivalent) stress
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notion σef (σ), which is a function of stress tensor only – the quantity universally
at present used in engineering sciences, cf., e.g., Leckie and Dal Bello [10].
Nevertheless, the interaction of stress tensor object with other objects creates
qualitatively different situations. For example, upon the interaction of the stress
tensor (loading) with Hooke’s tensor representing elastic material (external sys-
tem), the three Euler angles of the stress tensor (not invariant) and three Euler
angles of Hooke’s tensor (not invariant) transform together into definite three in-
variants. The effect can be better intuitively understood when one realizes that
the stress tensor orientation with respect to Hooke’s tensor orientation does
not depend on these objects’ individual orientations with respect to some freely
adopted common coordinates frame. Thus, in interaction with external system,
six parameters (components) fully characterizing any second order symmetric
tensor can be uniquely transformed into six invariants.

This observation gives grounds for assessment that much more versatile and
perhaps an accurate general measure of some limit condition – start of plastic
yield flow, cracking, damage or phase transition, is not equivalent stress but
some expression involving a combination of stress tensor and some fourth order
tensor (M) characterizing material under stress action, for example, quadratic
form σM (σ,M) = σMσ. The expression of this type was introduced by Misses
already in 1928 – cf. formula (1) in [15], but it receives relatively little attention.
The σM might be called weighted equivalent stress or Misses stress intensity,
since the stress tensor does not appear in it as a stand-alone, sovereign entity
but instead is pondered in interaction with external surroundings represented
by tensor M similarly, as in the case of investigating stability problems.

Here, a new generic parametrization of stress tensor invariants is introduced,
composed of stress modulus, isotropic angle and skewness angle (||σ||, θiso, θsk).
It enables the simplification of some useful formulas for example the one for
the anisotropy factor. A new statistical interpretation of stress tensor invariants
enabled introduction of the concept of internal entropy of stress tensor and re-
vealed existence of connections between the internal entropy and the anisotropy
degree of stress tensor.

Discussion on practical applications of newly introduced concepts and inter-
pretations in experimental mechanics is also delivered. In particular, new and
very simple explicit formulas are presented for the triaxiality factor expressed
in terms of skewness angle.

2. Tensors – definitions, important bases and representations

Tensors proved to be very convenient modeling objects of reality. Due to
that, it is important to understand what they actually are and what are their
properties because then real physical situation modeled with the use of tensors
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can be better understood. There exist at least several definitions of the tensor
notion.

2.1. Definitions and understanding of a tensor notion

2.1.1. Algebraic definition of a tensor. The most developed and mathema-
tically precise definition of a tensor is the algebraic definition. In engineering
sciences, so-called Euclidean tensors are used most frequently. Definition of Eu-
clidean tensor can be formulated as follows.

A Euclidean tensor of order q and dimension n is an algebraic structure, an
element of linear tensorial space Tq, which is generated by the q-fold tensorial
product of n-dimensional Euclidean vector spaces En. When the same basis is
accepted in all spaces En then any tensor T belonging to Tq can be presented
in the following form:

(2.1) T = Tij...m︸ ︷︷ ︸
components

ei ⊗ ej ⊗ ...⊗ em︸ ︷︷ ︸
basis

i, j, ...,m = 1, ..., n, T ∈ Tq, ei ∈ En,

where a set of n versors ei is a basis of Euclidean vector space En, a set of
nq simple tensors ei ⊗ ej ⊗ ... ⊗ em (q-fold tensorial products of versors ei) is
a basis of space Tq, and nq numbers Tij...m are called components of tensor T –
its representation in basis {ei⊗ej⊗ ...⊗em}. In the case of second order tensors
examined here, q = 2 and n = 3, as we are primarily interested in modeling real
physical space (T2 ≡ E3 ⊗ E3). A pair composed of a point O belonging to Eu-
clidean point space (O ∈ E3) and a set of basis versors {ei} of associated with it
Euclidean vector space (ei ∈ E3) is called coordinates frame (coordinates system)
(O, {ei}), i = 1, 2, 3. In shortcut, the coordinates frame is frequently noted by
the set of basis vectors {ei} only. It is a three-dimensional point Euclidean spa-
ce E3 with coordinates frame (O, {ei}), which is accepted as a convenient model
of real physical space in continuum mechanics1). When the basis {ei} compo-
sed of mutually orthonormal versors is adopted, then customarily Eulerian ten-
sors are called Cartesian tensors.

It is impossible to introduce here explicitly and in detail all the necessary ap-
paratus of tensorial calculus due to space limitations. The precise mathematical
definitions can be found in many popular textbooks on continuum mechanics
and/or tensorial calculus, see, e.g., Chap. 1 in Ogden [20] for a compact in-
troduction to the tensor theory, and, for example, Itskov [9] or Ostrowska-
-Maciejewska [21] for comprehensive and mathematically precise expositions.

The most important information to be acquired from the algebraic definition
of tensors (elements of a linear space) is that tensor makes the integrity of

1)Algebraic structure {E3, E3,⊕} composed of E3 treated as a set of points, associated with
this set vector space E3, and operation ⊕ defining adding of vectors to points makes an affine
space.
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basis and components (representation of the tensor in the basis). When the
basis is fixed, isomorphism exists between the tensor and its representation
(components) in this basis, i.e., the tensor can be equated with its components.
The tensor components transform in a specific (linear) manner with linear change
(rotation) of the basis.

Actually, the algebraic definition of a tensor is not very transparent nor
appealing as it requires extensive preliminary knowledge from linear algebra.
It is very difficult for conceptual, intuitive understanding, and thus using it in
modeling real-life phenomena. Its biggest advantage is the quantitative precision
necessary and required for obtaining any predictive numerical results when using
tensors for modeling purposes.

Let us point out some other definitions of tensor notion, which are more
convenient conceptually and, as it seems, more attractive for modeling purposes.

2.1.2. Operational definition of a tensor. A tensor L ∈ Tp+q is a linear ope-
rator transforming tensor P of order p (P ∈ Tp) into a tensor Q of order q
(Q ∈ Tq). It is realized by full contraction of tensors L and P (Q = L ·P).

For example, fourth order tensor L ∈ T4 upon its multiplication (contraction)
with second order tensor ε ∈ T2 transforms this tensor into some other second
order tensor (L · ε→ σ ∈ T2). It is clear that correct methodological execution
of whatever linear transformation anyway requires all the algebraic apparatus of
tensor calculus. However, in certain tasks, it is much easier to perceive the ten-
sor conceptually as a linear operator with specific properties than algebraic
structure.

Here, still another approach (interpretation) of a tensor, which somehow
returns to the roots of the tensor concept, is advocated.

2.1.3. Geometric definition of a tensor. A tensor is an oriented geometrical
object, i.e., the geometrical object for which orientation can be identified with
respect to some fixed reference frame2), and simultaneously characterized by
a certain number of features described by its invariants, i.e., properties not
changing with the rotation of the reference frame. The mathematically precise
definition and accessible elucidation of the concept of a geometrical object can
be found, for example, in Chap. II of Gołąb’s book [7].

2)Coordinates frame and reference frame “physically” are both sets composed of some anchor-
ing point and a set of basis vectors (O, {ei}). The difference is rather in their functionality. The
coordinates frame makes a reference for the determination of vector (tensor) components, while
the reference frame makes a reference for the examination of, e.g., motions (kinematics). Natu-
rally, the same pair (O, {ei}) can be adopted to be simultaneously coordinates frame and re-
ference frame or different pairs can be adopted depending on the need and convenience in
examining specific problem.
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In this approach, a second order symmetric tensor can be envisioned as an
autonomous entity whose direction in space is prescribed by the orientation of
a triad of its principal directions with respect to the prescribed laboratory (re-
ference) frame and possessing features described by three linearly independent
invariants. Again for actual quantitative calculations, all the algebraic tensorial
apparatus is still necessary when conceptually treating tensors as oriented geo-
metrical objects. This definition, at first sight, seems to be quite indistinct,
but in essence, it well reflects natural characteristics possessed by many real
physical objects. The situation is similar to the one from classical geometry, in
which point, line and plane are actually undefined prime notions, but everybody
knows what they are and/or how to understand them.

The usefulness of a specific definition and/or conceptual understanding of
tensors depend on their uses’s actual area, tasks and targets. However, in or-
der to grasp an intuitive and profound understanding of the tensor object as
a modeling tool and in this manner, e.g., indirectly comprehend some physi-
cal rule/law expressed by the tensorial relation, it is argued that geometrical
definition/interpretation of the tensor is very convenient. First of all, this is so
because one does not have to concentrate on technical (secondary) issues such
as numerous components, their indices and contexts resulting from an adopted
specific basis (coordinates frame).

2.2. Instances of convenient representations (bases and coordinate frames)
and reference frames of second order symmetric tensors

It is important to carefully distinguish different notations used for tensors as
information about them is differently distributed between the basis and the com-
ponents depending on the notation. The basis of second order tensors space T2

can be constructed from nine simple tensors – dyads {ii ⊗ ij}, i, j = 1, ..., 3. Fre-
quently, for the vectors ii elements of the orthonormal basis of three-dimensional
Euclidean vector space E3 are selected ii = ei; ii ⊗ ij → ei ⊗ ej . In the case
of symmetric second order tensors, its matrix representation components fulfill
the condition of symmetry σij = σji, cf. (2.2)1. The stress tensor is a symmetric
second order tensor (σ ∈ T s2 ). The following notations are very commonly used
to express stress tensor:

(2.2)

σ =
∑
i,j=1,3

σijei ⊗ ej ,

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

,
σ =

∑
K=1,6

σKaK , [σ1, σ2, σ3, σ4, σ5, σ6] ,

σ =
∑

J=I, II, III

σJNJ , NJ ≡ nJ ⊗ nJ , [σI, σII, σIII],
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where σI, σII, σIII denote principal values and nI, nII, nIII are principal directions
(eigenvectors) of the tensor σ (nJ = nJ(ei)). The following denotations are used
in (2.2)3:

(2.3)

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 =
√

2σ23, σ5 =
√

2σ13, σ6 =
√

2σ12,

a1 = e1 ⊗ e1, a2 = e2 ⊗ e2, a3 = e3 ⊗ e3, a4 =
1√
2

(e2 ⊗ e3 + e3 ⊗ e2),

a5 =
1√
2

(e1 ⊗ e3 + e3 ⊗ e1) , a6 =
1√
2

(e1 ⊗ e2 + e2 ⊗ e1),

aK · aL = δKL (K,L = 1, ..., 6),

 1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

a1

,

 0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

a2

,

 0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

a3

,
1√
2

 0 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

a4

,
1√
2

 0 0 1
0 0 0
1 0 0


︸ ︷︷ ︸

a5

,
1√
2

 0 1 0
1 0 0
0 0 0


︸ ︷︷ ︸

a6

.

In the last row of (2.3), the structure of tensors aK in a basis {ei⊗ej} is shown
graphically.

The top notation in Eq. (2.2) is a standard notation for three-dimensional se-
cond order tensors written in a nine-dimensional orthonormal basis {ei ⊗ ej}.
The middle notation in (2.2), also known as the Kelvin notation, results from
writing a second order symmetric tensor in a six-dimensional orthonormal sym-
metric basis {aK}. In the bottom notation, tensor σ is written in a very special
manner, in which all not diagonal terms of tensor representation are zero, i.e.,
σ = σInI ⊗ nI + σIInII ⊗ nII + σIIInIII ⊗ nIII. Information about the tensor
object is differently distributed between the basis and components in different
notations. In notation (2.2)1, the basis can be completely freely selected, so all
information about the specific tensor is contained in its components. In notation
(2.2)3 in view of the known symmetry of the tensor σ, the size of the basis was
reduced from nine to six elements and vector (simpler) recording of components
was introduced. However, again a symmetrical tensorial base can be freely se-
lected; thus, all the information about the tensor is contained in its components.
In the notation (2.2)5, the components do not bear all the information about
the tensor, as part of it is contained in a specially selected basis composed of
principal directions nJ – always orthogonal, cf., e.g., Ogden [20]). These direc-
tions cannot be freely selected but are specific functions of the general basis {ei}
(nJ = nJ(ei)). The triple of principal axes {nI,nII,nIII} is rotated with respect
to triple {e1, e2, e3} by three (Euler) angles θn = (θI, θII, θIII). All notations (2.2)

assure that the value of the norm of tensor σ
(
||σ||2 ≡ tr

(
σ2
))

is preserved when
computed using a standard for the specific notation operational rules. This prop-
erty is not preserved in the case of Voigt notation frequently used in numerical
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computations, for which (σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13,
σ6 = σ12). Notations (2.2) are valid regardless of the tensor σ interaction with
some external settings.

Let us also present one more notation (decomposition) of second order tensor
when its interaction with some external object is taken into account and which
seems not to be widely known nor sufficiently exploited. Let us assume that
the fourth order symmetric tensor is known S ∈ T s4 that may be recognized as
physically representing properties of some linear elastic material, i.e., Hooke’s
tensor. Then, the problem for eigenvalues (eigenstresses) of this tensor can be
solved, i.e., roots of the so-called characteristic equation for S can be found. The
characteristic equation of the fourth order symmetric tensor takes the form of
sixth order polynomial equation with real coefficients. In the most general case,
the solution of the characteristic equation is composed of six different eigenvalues
(λK) and, corresponding to them, six different eigentensors (ωK ∈ T s2 ). It has
been proved by Rychlewski, cf., for example, [23], that eigentensors ωK of S
corresponding to different in value eigenvalues λK are mutually orthogonal and
generate the whole space of second order symmetric tensors, i.e., the set ωK ,
K = 1, 6, make a basis of this space, and the set {ωK ⊗ωL} can be adopted
as the basis of T s4 :

(2.4)

S ·ω = λω→ det(S− λI(4s)) = 0

→ λK , ωK ∈ T s2 , ωK ·ωL = δKL, K, L = 1, ..., 6,

S = λIωI ⊗ωI + +λVIωVI ⊗ωVI,

I(4s) = ωI ⊗ωI + ...+ωVI ⊗ωVI,

where λK are so-called Kelvin moduli (λK ≥ 0 in view of the physical require-
ment of semipositiveness of Hooke’s tensor), ωK are corresponding to Kelvin
moduli eigentensors, I(4s) denotes unit tensor in the space of fourth order sym-
metric tensors (I(4s)

KL = δKL, K,L = 1, ..., 6, ∼ diag[1, 1, 1, 1, 1, 1]). The de-
composition (2.4)3 of tensor S – with only diagonal components having nonzero
values, is called the spectral decomposition of Hooke’s tensor.

Taking advantage of (2.4), the following decomposition of stress tensor can
be obtained:

(2.5)

σ = σ(1)ωI + . . .+ σ(6)ωVI = σ1 + σ2 + σ3 + σ4 + σ5 + σ6,

σ(K) ≡ σ ·ωK , σK · SσL = δKL, K, L = 1, ..., 6,

σ = I(4s) · σ = (ωI · σ)ωI + ...+ (ωVI · σ)ωVI.
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Notation (2.5)1 is also called the energy-orthogonal decomposition of stress
space for a given elastic body S, in view of (2.5)4. This decomposition is unique
when all the Kelvin moduli λK have different values. For fixed tensor S, the six
components σ(K) are scalar invariants of stress tensor σ, in the standard sense
that they do not change when the reference frame {ei} is changed (rotated).
It may also be said that σ(K) are invariants of σ in interaction with S (σσ↔S(K) ).
The parts σK can be classified as tensorial invariants of σ. The decomposition
(2.5)1 changes when tensor S changes. A detailed presentation of this issue can
be found in the original papers of Rychlewski, see, e.g., [23, 24].

It was already mentioned that the basis of tensor space can be freely selected.
A natural desire exists to select such a basis of tensor space T s2 to make analytical
and/or numerical computations executed on components of tensors, possibly
simple and/or effective. Let us list some convenient tensorial bases – coordinates
frames, useful in further discussion.

2.2.1. Laboratory basis. Such a basis set of dyads {ei ⊗ ej}, and corre-
sponding to it coordinates frame – set of versors {ei}, is selected for example
in view of convenience in expressing imposed boundary conditions, prescribing
loadings or constraints.

2.2.2. Symmetry basis. Such a basis and corresponding to it coordinates
frame is selected to be collinear with axes of some kind of material symmetry
or geometrical shape/layout of examined engineering structure/device. For ex-
ample, it is preset to be collinear, consistent with natural axes of symmetry of
(anisotropic) material of which the engineering device is made.

2.2.3. Principal axes basis. Such a basis set of dyads {nI ⊗ nJ}, and cor-
responding to it coordinates frame – set of principal directions vectors {nJ}, is
selected when it is a subject matter justified or convenient to work with principal
values of second order symmetric tensor. In 1920 Haigh [8] and independently
Westergaard [32], in search of the best manner to describe the strength of ma-
terials, intuitively assumed that for isotropic, linear elastic materials Euler angles
of stress tensor (loading) should not influence material strength and can be ne-
glected. Based on this assumption, they proposed to introduce three-dimensional
principal values vector space with orthogonal coordinates frame composed of
principal directions of the stress tensor, cf., notation (2.2)5. The principal val-
ues of the stress tensor σI, σII, σIII are Cartesian coordinates of points in this
space. The principal values space was given the name Haigh-Westergaard space,
see, e.g., p. 14 in Maugin [14].
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2.2.4. Eigentensors (eigenstresses) basis. Orthonormal, eigenstresses bases
composed of sets {ωK} – cf. (2.4), are convenient, for example, in construct-
ing models of materials effort (plastic yield, cracking, etc.). Let us now recall
a definition of isometric bases. Two orthonormal bases are called isometric with
respect to a group of proper orthogonal rotations, if such an orthogonal tensor Q
exists (QQT = I) – cf., e.g., [21], that

(2.6) pα = δiαQei, pα ⊗ pβ = δiαQei ⊗ δjβQej .

It is worth noting that all orthonormal bases in three-dimensional Euclidean
space are isometric.

An important property of orthonormal bases {ωK} is that, in general, they
are not isometric with orthonormal basis {aK} – cf. (2.3), i.e., there does not ex-
ist such an orthogonal tensor Q that will transform basis {aK} into basis {ωK}.
Let us take, for example, a set of second order tensors:

(2.7)

h1≡ 1√
3
1, h2≡ 1√

6
[2e1⊗e1−e2⊗e2−e3⊗e3],

h3≡ 1√
2

[e2⊗e2−e3⊗e3], h4≡ 1√
2

[e2⊗e3+e3⊗e2]=a4,

h5≡ 1√
2

[e1⊗e3+e3⊗e1]=a5, h6≡ 1√
2

[e1⊗e2+e2⊗e1]=a6,

1=e1⊗e1+e2⊗e2+e3⊗e3, hK ·hL=δKL, hK ∈T s2(n=3), K, L=1, ..., 6.

It is easy to verify by making direct calculations that tensors hK are the eigen-
states of the isotropic Hooke tensor (Ciso = λ1⊗ 1 + 2µI(4s), ∼Cisoijkl = λδijδkl+

2µ1
2(δikδjl+δilδkj)), i.e., they are the solution of the eigenvalue problem Cisohα =

λαhα, cf. (2.4), with eigenvalues λ1 = 3K = 3λ + 2µ, λ2 = λ3 = λ4 = λ5 =
λ6 = 2µ. The set {hK} makes an orthonormal basis of symmetric second or-
der tensors space hK ∈ T s2 and it is not isometric with orthonormal basis
aK ∈ T s2 , cf. (2.3). The tensor h1 is a spherical tensor and the other tensors hα
(α = 2, ..., 6) are deviators.

The isotropic tensors3) have identical representation in all isometric or-
thonormal bases, but they do not have the same representation in all orthonor-
mal bases.

3)Definition of isotropic tensors is recalled in the Supplement at the end of the present work.
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3. Various sets of useful second order symmetric tensor
invariants (eigenproperties)

3.1. Characteristics (eigenproperties) of second order symmetric tensor
and their physical interpretations

The second order symmetric tensor is fully characterized by six parameters –
its components in some basis, as it was recalled in the previous section. Usually,
the values of components are known from experimental or numerical tests. An
infinite number of invariants can be constructed out of them, but maximum
three are always linearly independent. The common set of second order tensor
invariants most frequently encountered in mathematical studies are so-called
basic invariants {Ib1, Ib2, Ib3}, see, e.g., Spencer [28]:

(3.1)

Ib1 ≡ tr (σ) = σ · 1,

Ib2 ≡ tr(σ2) = ||σ||2 = σ2 · 1,

Ib3 ≡ tr(σ3) = σ3 · 1,

where ||σ|| = (σijσij)
1/2 denotes modulus (norm) of a tensor, 1 (δij) denotes unit

tensor (also called identity tensor) in second order tensors space – in notation
(2.2)3 [1, 1, 1, 0, 0, 0] or in notation (2.2)5 [1, 1, 1]. The dot symbol denotes full
(double) contraction of second order tensors a · b (aijbij).

The popularity of basic invariants called main invariants in some publica-
tions comes from the computational (numerical) effectiveness of their determi-
nation, which requires only multiplication of tensor matrix representation for
which very effective numerical algorithms exist.

In continuum mechanics, an alternative set of linearly independent inva-
riants, so-called principal values {σI, σII, σIII} of second order symmetric tensor,
gained popularity and is widely used. The reason for that is their physical in-
terpretation, e.g., in the case of the stress tensor, they proved to be handy
in the relatively simple description of the effort state of engineering material
submitted to a specific stress loading. The principal values are determined as
roots of the so-called characteristic equation for principal values:

(3.2)

σn = σn→ (σ−σ1)n = 0→ det(σ−σ1) = 0→ σ3−I1σ
2+I2σ−I3 = 0

→ σI, σII, σIII, σ = σInI ⊗ nI + σIInII ⊗ nII + σIIInIII ⊗ nIII,

σnJ = σJnJ (!J)→ σnnJ = σJ
nnJ (!J) , J = I, II, III,

where nI, nII, nIII are principal directions (eigenvectors) of a tensor σ, the second
order unit tensor in notation (2.2)1 takes the form 1 = e1⊗e1 +e2⊗e2 +e3⊗e3,
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and (2.2)5 1 = nI ⊗ nI + nII ⊗ nII + nIII ⊗ nIII = NI + NII + NIII. Exclamation
symbol (!J) means no summation over index J . The naming convention that
σI ≥ σII ≥ σIII is adopted here. The following denotations were introduced
in (3.2):

(3.3)

I1 ≡ tr (σ) = 3σm (σii) ,

I2 ≡
1

2

[
(trσ)2 − tr

(
σ2
)] (

1

2

[
σnn

2 − σijσij
])
,

I3 ≡ det(σ)

(
1

6
εijkεpqrσipσjqσkr

)
,

symbol det(...) denotes determinant operation, σm is the mean value of principal
values, and εijk is the permutation symbol. Upon substituting principal values
σJ consecutively into characteristic Eq. (3.2)2, multiplying it by the correspond-
ing eigenvector nJ , taking advantage of the relations (3.2)3 for powers of σn,
and summing up three such obtained identities, the well-known Cayley-Hamilton
equation can be recovered:

(3.4) σ3 − I1σ
2 + I2σ− I31 = 0.

The set of three coefficients appearing in the characteristic equation for deter-
mining the principal values of second order tensor {I1, I2, I3} are called principal
invariants. In the case of symmetric second order tensor, all principal values are
real, and when they are unique, then three principal directions make an orthog-
onal triad, cf., e.g., Ogden [20].

3.2. Decomposition of a second order tensor into spherical (isotropic)
and deviatoric (anisotropic) parts and their attributes

Any second order tensor σ can be decomposed into spherical and deviatoric
parts – they are mutually orthogonal, cf. also Fig. 1:

(3.5)

σ = σsph + s, σsph ≡ σm1, σm ≡
1

3
σii =

1

3
I1, dev (σsph) = 0,

s ≡ σ− σm1, sij ≡ σij − σm, tr (s) = 0,

σsph · s = 0, ||σsph|| ≡
√
σ2
sph · 1 =

√
3 |σm| =

|I1|√
3
,

where σsph denotes the spherical part and s denotes the deviatoric part of a ten-
sor σ.
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The decomposition means that the sum of any two spherical tensors (a1, b1)
always gives a spherical tensor, and the sum of any two deviatoric tensors
(sa, sb) always gives a deviatoric tensor. Thus, the space of second order sym-
metric tensors can be divided into two separate (orthogonal) subspaces. Decom-
position (3.5)1 at the same time divides tensor σ into isotropic part (σm1) and
anisotropic part (s). The spherical part of the tensor is isotropic in conventional
sense, i.e., it does not change under applying any orthogonal tensor Q ∈ O,
where O is a group of all orthogonal tensors, cf. Supplement at the end of the
present work. A set {σQ} of all tensors that can be obtained by transformation
of σ with any orthogonal tensor Q ∈ O is called an orbit of tensor σ:

(3.6)

σQ = QσQT = σm1 + sQ,

sQ = QsQT; Q ∈ O
(
QQT = 1, detQ = ±1

)
,

{σQ} = {QσQT | Q ∈ O} – orbit of a tensor σ.

In analogy to the characteristic equation for principal values of complete
stress tensor, cf. (3.2)2, there can be formulated a characteristic equation for
eigenvalues of the tensor deviator s only, coefficients of which make a set of
principal invariants of tensor deviator {J1, J2, J3} defined as follows:

(3.7)

s3 − J1s
2 − J2s− J3 = 0→ sI, sII, sIII → s3 − J2s− J31 = 0,

J1 ≡ tr (s) = 0, J2 ≡
(

1

2

)
tr
(
s2
)
≥ 0

(
1

2
sijsij

)
,

J3 ≡ det(s) =
1

3
tr(s3)

(
1

6
εijkεpqrsipsjqskr

)
,

where s denotes the tensor deviator. The opposite sign in the definition of the
second invariant of deviator (J2) in comparison to the definition of the second
invariant of full tensor (I2) assures that it is always nonnegative. The J2 invari-
ant gained widespread use due to its physical interpretation of the shear stress
intensity measure.

Two tensors a, b are coaxial when they have the same principal directions.
It can be shown that the necessary and sufficient condition for coaxiality of two
tensors is that their single contraction products commute (ab = ba). It can be
shown by direct calculation that the tensor and its deviator products commute
σs = sσ. Hence, they have the same principal directions {nJ}.

The characteristic equation for principal values of deviator (3.7)1 can be

solved upon substitution for s = 2
(

1
3J2

)1/2
cos(θ) and taking advantage of the

following trigonometric identity 4 cos3(θ) − 3 · cos(θ) − cos(3θ) = 0 to obtain
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explicit formulas for stress deviator principal values {sI, sII, sIII}, cf. also p. 92 in
Malvern [12]. Then, the stress tensor and its principal values can be expressed
in the following form:

(3.8)

sI =
2

3
σef cos(θL), sII =

2

3
σef cos(120◦ − θL), sIII =

2

3
σef cos(120◦ + θL),

σJ =σm + sJ , J = I, II, III,

σ=σ (σm, σef , θL) = σm1 + sInI ⊗ nI + sIInII ⊗ nII + sIIInIII ⊗ nIII,

||σ||2 = ||σm1||2 + ||s||2 = 3σ2
m + 2J2, σef ≡

√
3J2 =

√
3

2
sijsij ,

cos(3θL)≡J3, θL ∈ 〈0, 60◦〉, J3 ≡
3
√

3

2

J3

J2
3/2

=
3
√

6J3√
(2J2)3

∈ 〈−1, 1〉,

where σef denotes so-called effective stress, θL is called the Lode angle, and the
term J3 is the normalized third invariant of deviator (4 cos(θ) cos(θ + 120◦) ·
cos(θ − 120◦) = cos(3θ)).

Let us return to the stress tensor anisotropy feature finding a source in its
deviatoric part only. Rychlewski in [25, 26] proposed that in order to quanti-
tatively evaluate magnitude of the tensor anisotropy, it is appropriate and con-
venient to employ the concept of the tensor orbit diameter, cf. (3.5)3. He defined
the tensor orbit diameter as the maximum distance between any two members
in the orbit of tensor σ – in the sense of tensorial norm, cf. (3.1)2. It can be
expressed as follows:

(3.9) d (σ) ≡ max
α,β∈{σQ}

ρ (α,β) = max
Q∈R

ρ
(
σ,QσQT

)
, ρ (α,β) ≡ ||α− β||,

where d denotes the diameter of the tensor orbit, ρ denotes distance generated
by the usual tensorial norm, α, β denote any two tensors in the tensor orbit,
and Q is any orthogonal tensor.

Rychlewski proposed the measure of tensor anisotropy, which he called degree
of anisotropy, to be expressed with the following formula, cf. relation (6) in [26]:

(3.10) ηani (σ) ≡ d (σ)

2 ||σ||
, σ 6= 0, ηani (σ) ∈ 〈0, 1〉.

Here, Rychlewski’s degree of anisotropy is called the anisotropy factor and
is denoted by ηani. The definition of anisotropy factor, Eq. (3.10), is actually
applicable to tensors of any degree.
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Rychlewski has proved that the diameter of the orbit of the second order
symmetric tensor is equal to d =

√
2 (σI − σIII) and next taking advantage of

this, by far not obvious result, he showed that the anisotropy factor (3.10) could
be expressed in the following form, cf. also formulas (32), (37) in [26]:

(3.11)

ηani =

√
2τmax

||σ||
=
||s||
||σ||

sin (θL + 60◦) ,

d (σ) =
√

2 · (σI − σIII) = 2
√

2 · τmax,

τmax =
1

2
(σI − σIII) =

1√
2
||s|| sin (θL + 60◦) ,

where τmax denotes the maximum shear stress of the tensor σ. It is clear from
the above that the anisotropy factor ηani is still another invariant of tensor σ,
and taking it formally makes a fundamental measure of the sensitivity of the
tensor σ to rotations.

When passing from vector space – natural model of real three-dimensional
physical space, to spaces of higher order tensors, many “obviously true” intuitive
feelings from a standard vector analysis fail. For example, while the full tensor
and its deviator are collinear – in a tensorial sense, their vector representations
utterly correctly obtained from a methodological standpoint are not parallel,
cf. Fig. 1. The collinearity of tensors does not translate into the parallelism of
vectors. The same failure of intuitive feelings one experiences when dealing with
the measure of the tensor orbit diameter, Eq. (3.9). The origins of this second

Fig. 1. a) Graphical illustration of structure of direct sum (orthogonal) decomposition of
a second order symmetric tensor into spherical (isotropic) part and deviatoric (anisotropic) part
(σ = σm1 + s, σm1⊥s) in the Haigh-Westergaard (H-W) principal values space, b) graphi-
cal illustration of elements involved in isomorphic – Murzewski, cylindrical coordinates, cf.

Subsec. 3.3.
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difficulty can be at least partially, intuitively grasped when one realizes that,
e.g., the distance between the unit tensor and any rotated unit tensor is zero
– in the sense of tensorial norm, more generally between any isotropic tensor
and its orthogonally rotated instance. The direct cause of this is that in any
rotated coordinates frame, a unit tensor 1 has the same values of components
(representation), namely δij . This effect is difficult to agree on with our everyday
experience because there do not exist isotropic vectors; actually, the only vector
whose components do not change under rotation of basis is the zero vector.

The invariants Iα, Jα, α = 1, 2, 3, can be expressed in terms of general
components of the stress tensor and in terms of its principal values as follows –
cf. also (2.2):

(3.12)

I1 = σ11 + σ22 + σ33 = σI + σII + σIII, J1 = sI + sII + sIII = 0,

I2 = σ11σ22 + σ22σ33 + σ11σ33 − σ12σ21 − σ23σ32 − σ13σ31

= σIσII + σIσIII + σIIσIII,

J2 =
1

6
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2] + σ2

12 + σ2
13 + σ2

23,

J2 = − (sIsII + sIIsIII + sIsIII) =
1

2

(
s2

I + s2
II + s2

III

)
≥ 0,

I3 =
1

6
εijkεpqrσipσjqσkr

= σ11σ22σ33 + σ12σ23σ31 + σ13σ32σ21 − σ11σ23σ32 − σ22σ13σ31

− σ33σ12σ21, I3 = σIσIIσIII,

J3 =
1

3
sijsjkski =

1

3
(s3

I + s3
II + s3

III) = sIsIIsIII

= (σI − σm)(σII − σm)(σIII − σm).

The following relations are valid for basic, principal and deviatoric invariants
Ibα, Iα, Jα:

(3.13)

J2(σ) = −I2(s)=
1

2
tr(σ2)− 1

6
(trσ)2 = 3σ2

m − I2(σ)=
1

3
I2

1 (σ)− I2(σ),

J3(σ) = I3(s) = det(s) =
1

3
tr(σ3)− 1

3
tr(σ)tr(σ2) +

2

27
(trσ)3

= I3(σ)− 1

3
I1(σ)I2(σ) +

2

27
I3

1 (σ),

I3(σ) = det(σ) =
1

3
tr(σ3)− 1

2
tr(σ)tr(σ2) +

1

6
(trσ)3

= J3 − J2 · σm + σ3
m.
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Relations (3.13)2,3 can be straightforwardly obtained upon double (full) con-
traction of the Cayley-Hamilton equation (3.4) with the unit tensor – taking the
trace of it. The Cayley-Hamilton equation written down for deviator leads di-
rectly to the relation s3 = J31 + J2s (3J3 = tr(s3)).

3.3. Sets of coordinates based on stress tensor invariants

Every set of three linearly independent invariants may be adopted as a system
of coordinates in three-dimensional stress principal values vector space – Haigh-
Westergaard (H-W) space, in place of the Cartesian system of principal values
coordinates. Such action actually involves modification of not only coordinates
but also the basis vectors (curvilinear in general), which after that are usually
no longer stress principal directions. A very popular set of coordinates system in
H-W space are (cylindrical) coordinates (p, σef , θL) – pressure, effective stress,
and Lode angle. They are used to present plastic flow yield, damage, failure
or phase transition critical surfaces for different materials in octahedral (p =
const, σef , θL) and/or meridional (p, σef , θL = const) cross-sections – frequently
(p, r =

√
2J2) coordinates are also encountered. The problem with the mentioned

coordinates is that they distort two-dimensional projection shapes of the actual
three-dimensional shape of the critical surfaces.

According to the present author’s literature survey, Murzewski was the
first researcher who in his work from 1960 – cf. [16], consciously introduced
isomorphic cylindrical coordinates into H-W space, i.e., coordinates preserving
correct shapes (distances and angles) of critical surfaces in H-W space cross-
sections. This system of coordinates is as follows – cf. Fig. 1:

(3.14)(
z=
√

3σm, r=
√

2J2, θL
)

isomorphic (Murzewski’s) cylindrical coordinates,(
p=−σm, σef =

√
3J2, θL

)
non-isomorphic cylindrical coordinates,

z ≡ I1√
3

=
√

3σm, σm = −p =
I1

3
, |z| ≡ ||σm1|| ,

r ≡ ||s|| =
√

2J2, ||σ|| =
√

3σ2
m + 2J2.

Murzewski, in his work [16], used the following denotations (z ↔ σA, r ↔ σD,
θL ↔ ωσ).

The stress tensor and its principal values expressed in Murzewski’s coordi-
nates take the following form:
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(3.15)

σI =
1√
3
z +

√
2

3
r cos(θL), σII =

1√
3
z +

√
2

3
r cos(θL − 120◦),

σIII =
1√
3
z +

√
2

3
r cos(θL − 240◦),

σ = σ (z, r, θL)=zNoct+r cos θLN
σI
oct+r sin θLN

σI⊥
oct , σsph=zNoct,

Noct =
1√
3

(NI+NII+NIII)=
1√
3
1, ||Noct||= ||NσI

oct||=
∣∣∣∣∣∣NσI⊥

oct

∣∣∣∣∣∣=1,

NσI
oct =

1√
6

(2NI −NII −NIII) , NσI⊥
oct =

1√
2

(NII −NIII),

where the second order tensors NI, NII, NIII are defined in (2.2)3. It is worth
pointing out that in the H-W space, an infinite number of non-coaxial tensors
having the same principal values but different orientation of principal axes re-
duce to a single point representation4), what actually means that a kind of strong
filter operates in the H-W space.

Tensorial decomposition of tensor σ into spherical (isotropic) and deviatoric
(anisotropic) parts (3.5)1 should be carefully distinguished from the vectorial
decomposition of octahedral traction vector (toct) into octahedral normal stress
vector (σoct) and octahedral shear stress vector (τoct), which values can be ex-
pressed in terms of principal values as follows:

(3.16)

toct = σnoct =
1√
3

(σInI + σIInII + σIIInIII) ,

toct = toctnt = σoctnoct+τoctnτ , toct= ||toct||=
√
σoct2+τoct2 =

1

3
||σ||,

σoct = toct · noct = noct · σnoct

=
1

3
(σInI + σIInII + σIIInIII) · (nI + nII + nIII) = σm,

τoct =
√
||toct||2 − σ2

oct =

√
2J2

3
=

r√
3
.

An alternative isomorphic coordinates for meridional cross-sections in H-W
space is pair of variables (σoct = σm, τoct = r/

√
3). These coordinates were

already used in 1929 by Burzyński − with denotation (ω1 ↔ σoct, ω2 ↔ τoct),

4)Note: In mathematical terms, H-W space can also be interpreted (understood) as a set
of numerical markers of stress tensors orbits (with respect to proper rotations group – special
orthogonal group SO3 ); every point of H-W space represents one orbit, an interested reader
can find more information on this aspect in Rychlewski’s book [27].
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in his work devoted to the formulation of extended plastic yield strength cri-
terion for linearly elastic, isotropic solids taking into account the influence of
pressure (first invariant), cf. formula (12) in [3]. Burzyński, in this work, cor-
rectly disregarded the Lode angle influence on such criterion, as it cancels out
from the expression for elastic energy in the case of isotropic, linearly elastic
solids, which is clearly expounded here below.

The stress tensor invariants σm, r and σef present in (3.14) have well-known
clear physical interpretations of pressure (with negative sign), shear magnitude
(norm) and total shear effort (intensity) of the material. The Lode angle θL as
yet does not have a clear physical interpretation. From a mathematical stand-
point, the Lode angle describes the angle between the projection of stress tensor
(vector) and projection of principal axis I versor (corresponding to the great-
est principal value of stress tensor) on the octahedral (deviatoric) plane, cf.
Fig. 1.

Upon (3.8)6, (3.15)4 and (3.15)8 it is easy to show by direct calculation that
the following formulas are valid, cf. also (3.8)1−3:

(3.17)

√
3

2
sI = NσI

oct · s = r cos(θL)⇒ cos(θL) =

√
3

2

sI
r
,

cos(θL − 120◦) =

√
3

2

sII

r
, cos(θL + 120◦) =

√
3

2

sIII

r
.

The above expressions show that the ordering of principal values actually
does not influence the effective definition and/or interpretation of the Lode
angle.

Formulas for the Lode angle in terms of principal values of deviator are
inconvenient because principal values of deviator have to be computed first –
a costly operation, before the Lode angle value can be determined. Formulas
for the Lode angle expressed in terms of stress invariants – cf. (3.8)7, are much
more convenient numerically. The present author, in his historical survey, found
Novozhilov’s paper from 1951 to be the earliest publication in which third in-
variant of deviator is explicitly expressed in terms of a trigonometric function,
cf. formula (1.13) in [19]. Actually, Novozhilov’s angle ζ is defined not with co-
sine but with sine function (sin(ζ) ≡ −J3). The ζ is just the negative of the
skewness angle introduced here below with (4.2)1 (ζ = −θsk).

Summarizing the present state-of-the-art review regarding eigenproperties of
second order symmetric tensors, it can be stated that the tensor treated con-
ceptually as oriented geometrical object exhibits fixed characteristics described
by the tensor invariants. A separate feature is the orientation of the tensor in
a space – laboratory frame, described with its Euler angles. Depending on the
internal symmetries of the tensor, its specific orientation can lead to the appear-
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ance or not of certain (directional) effects and can influence their magnitude.
Such directional sensitivity of a tensor becomes fully exposed only upon its in-
teraction with other tensorial objects, which takes place through Euler angles
characterizing uniquely mutual relative orientation of two tensors. A similar sit-
uation exists in the case of colliding objects when it is important whether one
object collides with its front or with its back with the other object and under
what angle. It is worth to indicate that isotropic tensors are insensitive to their
directional orientation in space, if it can be said they have one. Examination of
very interesting aspects of the influence of symmetry of causes on the symmetry
of effects can be found in Rychlewski’s book [27].

4. New structural parametrization of second order tensor
eigenproperties – the concept of isotropy angle (θiso)

and skewness angle (θsk)

A great variety of tensor eigenproperties parameterizations based on inva-
riants is possible, and the usefulness and applicability of a specific parameteri-
zation set depend on a particular area of interest. Let us introduce a new set of
invariant parameters characterizing second order symmetric tensors. The set
seems to be especially convenient because it leads to the simplification of for-
mulas expressing tensor properties and thus makes a more lucid characterization
of real physical phenomena described by it. The new generic structural parame-
terization transparently and clearly corresponds to the internal structure of the
tensor object and can also be conveniently used for constructing derivative sets
matched to specific applications.

Let us first introduce the concept of isotropy angle, defined as follows:

(4.1)

sin(θiso)≡ sign(σm)
||σsph||
||σ||

=

√
3σm
||σ||

=
z

||σ||
∈〈−1, 1〉,

cos(θiso)≡
||s||
||σ||

=

√
2J2

||σ||
∈〈0, 1〉, θiso∈〈−90◦, 90◦〉, ||σ||=

√
3σ2

m+2J2.

A graphical representation of the isotropy angle is shown in Fig. 2a. The
isotropy angle enables extraction of the spherical (isotropic) part and devia-
toric (anisotropic) part of the tensor in a very straightforward and convenient
manner. The sine and cosine functions of isotropy angle can also be treated
as convenient normalized factors (indexes) describing the magnitude of spheri-
cal and/or deviatoric parts relative to the overall magnitude of the tensor (its
modulus).
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Fig. 2. a) Illustrative drawing of direct sum decomposition, in the H-W principal values space,
of the second order symmetric tensor into spherical (isotropic) and deviatoric (anisotropic)
parts (σ = σm1 + s, σm1⊥s). Segments drawn with green color in octahedral planes mark
respective projections of hypothetical critical surface for some isotropic material (three projec-
tions of principal axes on the octahedral plane make symmetry axes of the isotropic material
critical surface), e.g., plastic flow yield surface σ0.2 (z, r, θsk). b) Isomorphic cylindrical coor-
dinates of tensor deviator drawn in the octahedral plane; θsk is the skewness angle and θL

denotes the Lode angle.

Let us further introduce the concept of skewness angle defined as follows:

(4.2)

sin(3θsk) ≡
1

2
· 3
√

3J3

J
3
2
2

=
√

2 · 3
√

3J3

r3

=
27

2
· J3

σ3
ef

= J3 ∈ 〈−1, 1〉, θsk ∈ 〈−30◦, 30◦〉,

µL ≡
2σII − σI − σIII

σI − σIII
=

3sII

sI − sIII

= −
√

3 tan θsk, cos(3θL) = sin(3θsk), θL = 30◦ − θsk,

where µL denotes the so-called Lode parameter introduced by Lode in 1925, cf.,
e.g., [11].

The skewness angle in mathematical terms describes the departure of the
actual tensor deviator from the corresponding reference pure shear, i.e., devi-
ator with the same modulus but with a third invariant equal to zero J3 = 0,
cf. Fig. 2b. The reasons why pure shear is considered appropriate comparison
reference, what physical interpretation can be assigned to skewness angle, and
why “skewness” is an appropriate name for the mode angle θsk are elucidated
in the next section. The skewness angle has a very simple (linear) connection
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with the Lode angle, at present, universally used in multiaxial stress studies,
cf. (4.2)5. The isotropy angle and skewness angle can be easily normalized to
the range 〈−1, 1〉, dividing them by 90◦ and 30◦, respectively.

Let us introduce generic structural parameterization of the second order sym-
metric tensor in the following form:

(4.3)
(||σ|| , θiso, θsk) , ||σ|| ≡

√
σijσij ∈ 〈0,∞),

θiso ∈ 〈−90◦, 90◦〉, θsk ∈ 〈−30◦, 30◦〉.

This set of parameters delivers convenient – a kind of military structural
characterization of the tensor object. The ||σ|| immediately tells about the over-
all strength of the entity, θiso allows to quickly evaluate what is the magnitude of
general purpose (non-oriented) forces ||σsph|| = ||σ|| sin(|θiso|) =

√
3|σm| = |z|

and the magnitude of special (oriented) resources ||s|| = ||σ|| cos(θiso) = r,
while θsk informs about a kind of versatility of the oriented resources of the
tensor entity. The newly proposed generic structural parameterization can be
conveniently adapted for the purposes of specific areas of application to form
derivative parameterizations. In particular, already introduced various sets of
invariants can be expressed in terms of newly proposed set, e.g., Murzewski’s
isomorphic coordinates (3.14)1 or principal values of stress tensor (3.15)1, upon
uncomplicated operations can be expressed as follows:

(4.4)

(z = ||σ|| sin(θiso), r = ||σ|| cos(θiso), θL = 30◦ − θsk)
– Murzewski’s isomorphic coordinates,

σI =
1√
3
z +

√
2

3
r sin(60◦ + θsk), σII =

1√
3
z +

√
2

3
r sin(−θsk),

σIII =
1√
3
z −

√
2

3
r sin(60◦ − θsk).

Substituting cos (θiso) for ||s||/||σ|| upon (4.1)2, and θL = 30◦ − θsk upon
(4.2)4 into (3.11)1, simple manipulations lead to an extremely simple and eluci-
dating formula for the anisotropy factor:

(4.5) ηani = cos (θiso) · cos(θsk), cos (θiso) ∈ 〈0, 1〉, cos (θsk) ∈

〈√
3

2
, 1

〉
.

The first term in formula (4.5) clearly shows that the anisotropy degree of
second order symmetric tensor grows with a growing fraction of its deviatoric
part, reaching maximum for tensors being pure deviators (cos (θiso = 0) = 1).
The second term shows that the most anisotropic deviators are pure shears
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(cos(θsk = 0) = 1). The anisotropy factor decreases with the deviatoric part
departing from the respective comparison pure shear mode. In the case of pure
deviators, it drops from 1 to a minimum value of ηani =

√
3
/

2 = 0.866 reached
at uniaxial tension or uniaxial compression (θsk = ±30◦).

Proposition on how to explain the reasons for this rather puzzling behavior
of anisotropy factor diminishing with departure from pure shears, cf. Fig. 3a, is
discussed in Sec. 5.

Fig. 3. a) Graphical illustration of the variation of anisotropy factor in dependence on isotropy
angle θiso and skewness angle θsk, b) graphical illustration of the variation of anisotropy factor

in octahedral π plane (σm = 0).

5. The special character of pure shear mode – elementary unit
of the microstructure of deviators

In order to recognize the physical interpretation of the skewness angle de-
fined through the normalized third invariant of deviator J3 – cf. (4.2), let us
give some thought to the problem of what is the most elementary (atom) non-
trivial form of second order tensor. It immediately comes to mind that it is the
tensor, which has a single nonzero entry on diagonal in its matrix representa-
tion diag(a, 0, 0), and the option of the single nonzero off-diagonal component is
excluded due to symmetry requirement. Such representation has, for example,
the uniaxial tension (extension) and/or uniaxial compression tensors. However,
upon further reflection, it can be realized that the uniaxial tension tensor is not
as simple as it seems, and in fact several elemental (atom) components can be
distilled from it along the lines of deviatoric decomposition (3.5)1. The most
elementary component of uniaxial tensor that can actually be identified as ir-
reducible to more simple modes, is the spherical tensor, spherical elementary
mode, having three identical in value diagonal components diag

(
1
3a,

1
3a,

1
3a
)
. It

can be physically interpreted as describing the simplest three-dimensional lay-
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out of action of forces in physical space, i.e., forces acting uniformly in all three
physical directions, or alternatively, three-dimensional kinematics of displace-
ments taking place uniformly in physical space, describing volume change. The
remaining deviator of uniaxial tensor, on the other hand, proves to be always
decomposable, in general in infinitely many ways, into the two most elemen-
tary irreducible deviator modes involving so-called pure shears, for example,
diag

(
1
3a,−

1
3a, 0

)
+ diag

(
1
3a, 0,−

1
3a
)

= diag
(

2
3a,−

1
3a,−

1
3a
)
. The pure shear,

deviatoric elementary mode, can be physically interpreted as the most simple
two-dimensional (plane) layout of action of forces in physical space, i.e., forces
operating uniformly in all parallel planes with fixed common normal axis (alter-
natively, two-dimensional kinematics of displacements taking place uniformly in
planes with common normal axis, and proportional to the distance from some
fixed plane, similarly as it is in the case of sliding tile of cards).

Let us recall, after Blinowski and Rychlewski [2], the precise mathemati-
cal definition of pure shear. A second order tensor τ is called a pure shear when
the following conditions are fulfilled; some other equivalent definitions can be
found in the original publication [2]:

(5.1) I1 = tr(τ) = 0, I3 = det(τ) = 0 ⇒ J3 = tr(τ3)/3 = 0.

Depending on the selection of the basis, the following two very characteris-
tic, easily recognizable tensor representations of pure shear can be specified as
follows:

(5.2)

τ = t (e1 ⊗ e2 + e2 ⊗ e1) , τ = t (n1 ⊗ n1 − n2 ⊗ n2),

te1 = τe2, te2 = τe1, tn1 = τn1, −tn2 = τn2,

n1 = (e1 + e2)/
√

2, n2 = (e2 − e1)/
√

2, n3 = e3,

where versors e1, e2 are called shear directions, and the plane determined by the
pairs (e1, e2) or (n1, n2) is called a shear plane. The line along versor e3 or n3

is called the shear axis. It is clear that pure shears are planar tensors, cf. Fig. 4.
In accordance with the above nomenclature, two very useful classes of pure

shears can be distinguished: shears with the common shear direction and shears
with the common shear axis. A two-parameter family of pure shears with com-
mon shear direction τ(n) and a family of pure shears with common shear axis
τ(k) can be expressed in the following mathematical form:

(5.3)

τ(n) = n⊗ x + x⊗ n, τ(k) = y ⊗ z + z⊗ y,

(x · n = 0) , (y · k = 0, z · k = 0, y · z = 0) ,

τ(n) ∼

 0 0 a
0 0 b
a b 0

, n = e3, τ(k) ∼

 a b 0
b −a 0
0 0 0

, k = e3.
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Fig. 4. Graphical illustration of the pure shear tensor τ shown in two bases (coordinate frames)
rotated by 45◦, which results in two very characteristic pure shear tensorial representations.

Thus, all possible pure shears having common shear direction n parallel to
axis e3 can be generated with freely selected vector x orthogonal to direction n,
cf. (5.3)1. All pure shears with common shear axis k parallel to axis e3 can
be generated with arbitrarily selected vector y orthogonal to shear axis k and
vector z mutually orthogonal to vectors k and y, cf. (5.3)2.

The pure shears prove to be excellent modeling idealizations of many com-
monly encountered, actual physical situations. For example, uniform plastic slip
deformation can be understood in modeling terms as a group of pure shears
with a common axis, while the formation of a compound martensitic twin can
be understood as a pair of two pure shears with a common shear direction.
Experimental setups leading to pure shear stress or strain are very frequently
used in experimental mechanics to determine material properties. This issue is
discussed here in more details in Sec. 8.
Blinowski and Rychlewski demonstrated in [2] that the population of

all pure shears generates a complete subspace of all deviators. They also proved
that any deviator, in infinitely many ways, can be decomposed into a sum of two
orthogonal pure shears, cf. formula (3.9) in [2] and accompanying text. Hence,
pure shears can be regarded as elementary building blocks of deviators subspace.
However, pure shears do not create a linear subspace because the sum of two pure
shears is not always a pure shear. It is worth noting that the sum of any num-
ber of pure shears will never result in a spherical tensor. All pure shears have
the same “shape” in the sense that any and all pure shears can be obtained
from arbitrary, preselected unit pure shear τ0 by its proportional scaling t and
rotating (τ = tQτ0Q

T; QTQ = 1). It is interesting to note that strictly non-
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orthogonal bases – any two basis tensors are not orthogonal, and/or strictly or-
thogonal bases of the five-dimensional subspace of deviators can be created
composed of pure shears only, cf., e.g., pages 488 and 498 in [2]. Blinowski and
Rychlewski, in their pivotal publication [2], rather open up than terminate
research devoted to pure shears, and reveal many more attractive properties of
pure shears.

The above discussion indicates the special role played by pure shears, which
can be regarded as two-dimensional (plane), irreducible basic modes (atoms) of
shearing making component parts of any deviator. This feature justifies their
use as comparison reference elements for any other deviatoric mode of second
order tensor and introduction of skewness angle notion as an appropriate quan-
titative parameter characterizing departure of specific given deviator from its
comparison’s pure shear. The following section presents an attempt to explain
in what physical sense such difference is and its other consequences.

6. Statistical interpretation of second order symmetric tensor
invariants, skewness angle as a measure of entropic part

of stress tensor anisotropy

It is interesting to note that there exist very simple and straightforward
connections between principal invariants of deviator Jα and quantities known
as statistical central moments µi, namely,

(6.1)

µ1 (s) = µ =
1

3
(sI + sII + sIII) =

1

3
J1 = 0,

µ2 (s) ≡ 1

3

(
s2

I + s2
II + s2

III

)
=

1

3
tr
(
s2
)

=
1

3
(2J2) ,

µ3 (s) ≡ 1

3

(
s3

I + s3
II + s3

III

)
=

1

3
tr
(
s3
)

= J3,

µi ≡
∑
k=1,n

1

n
(xk − x)i.

Please note that also, in the statistical sense, there exists an “orthogonal” de-
composition of the tensor σ into spherical and deviatoric parts in the sense that
for the spherical part, only the first central moment is different from zero and all
the remaining central moments are equal to zero (µ1(σm1) = σm, µi(σm1) = 0,
i = 2, ...), while for the deviator part it is (µ1(s) = 0, µi(s) 6= 0, i = 2, ...).

Substituting the relations (6.1)1,2 into the formula for the Fisher-Pearson
skewness coefficient – cf., e.g., formula (20.2.2.9) in Polyanin and Manzhi-
rov [22], and comparing it with expression (4.2)1 reveals the existence of the
following connection:
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(6.2)

g1 ≡
µ3√
µ2

3
= 3
√

3
J3√

(2J2)
3

= 3
√

3
sI

r

sII

r

sIII

r
=

1√
2
J3 ⇒ sin(3θsk) =

√
2g1 ∈ 〈−1, 1〉.

The connection (6.2)2 delivers grounds for assigning the name “skewness
angle” to the angle defined with formula (4.2)1. At the same time, this rela-
tion supplies lead to revealing one more unexpected physical interpretation of
the skewness angle of statistical character, which allows for an explanation of the
mysterious, at first sight, reduction of anisotropy degree of the tensor σ with
the increasing departure of its deviator from pure shear – cf. Fig. 3 and accom-
panying text.

In statistical literature, there exist very well-known interpretations of cen-
tral moments. The first is understood and linked with the mean value of the
population of objects. The square root of the second central moment is called
standard deviation and is understood as describing the magnitude of scatter,
or magnitude of non-uniformity, or disorder of the population around its mean.
The third central moment normalized with standard deviation is understood as
describing the non-symmetry or “skewness” of the population toward the left or
right wing of its statistical distribution.

It seems that these classical understandings of central moments must be
modified to take into account the specific situation of applying them to the de-
viator of a tensor, i.e., a quantity in which the first central moment is always
equal to zero. It seems that the classical interpretations should be shifted by one
in view of zeroing of the first central moment of the deviator, i.e., the second
central moment of the deviator should be interpreted as the mean value, and the
third central moment should be interpreted as scatter or disorder of the popula-
tion about the mean. This proposal finds support in Novozhilov’s work [18],
in which he demonstrated that the second principal invariant, which is linearly
proportional to the second central moment of deviator (µ2 = (2/3)J2), is pro-
portional to the average shear stress of tensor σ calculated over all directions
on the unit sphere:

(6.3)

τav =

√
3

5

√
µ2 ⇐= τav =

1√
5

√
2J2,

√
µ2 =

1√
3

√
2J2,

τav ≡

√
1

Ω

ˆ
τ2 dΩ,

τ2 = σ2
I l

2
I + σ2

IIl
2
II + σ2

IIIl
2
III − (σIl

2
I + σIIl

2
II + σIIIl

2
III)

2,

where τav is the average shear stress over all possible directions on the unit
sphere, also called by Novozhilov shear stress intensity, τ is shear stress operating
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on elementary surface dΩ of unit sphere, σI, σII, σIII are principal stresses, lI, lII,
lIII are direction cosines determining the orientation of normal to surface dΩ in
relation to principal directions of tensor σ.

Pursuing the above line of approach, it is shown that the normalized third
invariant of tensor deviator (J3) can be assigned an extra interpretation of the
standard deviation of “directional dipoles”, i.e., a parameter describing orienta-
tional (directional) spread or disorder of population of elementary shears around
their average value τav. For that purpose, let us first indicate that whenever some
directional entities have an influence on some total (macroscopic) orientational
property, an analogy with magnetic and/or electric dipoles immediately comes
to mind. Then, the more ordered directional units, the bigger the overall orien-
tational effect. As we have already indicated in the previous section, the tensor
deviator can be treated as a macroscopic parameter describing the overall (av-
erage) action of the population of pure shears (“directional dipoles”). A good
measure of such overall directional effect of the action of the population of pure
shears is maximum shear stress τmax. Novozhilov has shown that the following
relations are valid, cf. formulas (2.1)–(2.6) in [18]:

(6.4)

τmax =
1

2
(σI − σIII) =

1√
2
r cos θsk =

√
5

2
τav cos θsk,

√
3

2
≤ cos θsk ≤ 1,

⇒ 1.39 =

√
3

2
·
√

5

2
=
τmax (θsk = ±30◦)

τav

≤ τmax (θsk)

τav
=

√
5

2
cos θsk ≤

τmax (θsk = 0◦)

τav
=

√
5

2
= 1.58.

Inequalities (6.4)3 show that the ratio of maximum shear stress to average
shear stress τmax/τav (τav = r/

√
5 = 0.447r) attains maximum value – attains

maximum directional effect for pure shear mode and minimum value for uniaxial
tension or uniaxial compression.

In view of the presented above argumentation, this effect can be explained
when one accepts that the population of micro-shears generating macro pure
shear mode is the most ordered directionally, and the population of micro-shears
generating macro uniaxial tension/compression mode is the most scattered di-
rectionally. It is known from thermodynamics that entropy is a good measure
of the degree of internal ordering of any system.

Corollary 1. Decrease of the value of anisotropy factor of the second order
tensor with the departure of its deviator from the pure shear mode – growth
of absolute magnitude of the skewness angle, can be attributed to increase of
internal entropy of the tensor. This latter understood as the growth of orienta-
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tional scatter in the population of micro pure shears generating a specific mode
of the tensor deviator.

The above gives grounds to call the term cos(θsk) entropic part of ten-
sor anisotropy, while cos(θiso) can be called deviator modulus part of tensor
anisotropy.

The classical interpretation of the third central moment also does not lose its
validity. This is so because bias (skewness) of micro pure shears statistical distri-
bution generating specific macro stress state can be identified to be the reason
for shifting direction of its deviator from the direction of respective reference
pure shear mode 0.5(σI − σIII) toward either direction of the projection of the
first (σI) or the third (σIII) principal stress on the octahedral plane. Speaking
otherwise, although different pure shears are activated when generating uniaxial
tension mode and different ones when generating uniaxial compression mode,
their directional scatter about mean value is the same.

The present discussion can be concluded with the statement that the value
of the skewness angle delivers twofold information. Firstly, it informs about the
magnitude of internal entropy of the tensor reflected in the value of the ani-
sotropy factor – the greater the internal order, the bigger the value of the
anisotropy factor. Secondly, it informs about the skewness of the population
of micro pure shears generating the examined macro stress mode, which is re-
flected in the departure of the macro stress deviator direction from the direction
of the corresponding pure shear mode on the octahedral plane.

7. Stress tensor in interaction with external system
(environment)

7.1. Independence of linear elastic isotropic material elastic energy
from the skewness angle

In the previous sections, stress tensor was considered an autonomous object.
However, it is an examination of its interaction with other tensorial objects,
which allows for effective modeling of real physical phenomena. One of the clas-
sical problems of mechanics, still open and attracting the interest of many re-
searchers, is the formulation of criteria of material strength. Such criteria are
commonly proposed employing the concept of elastic energy stored in the ma-
terial macroelement under consideration. In order to obtain an expression for
elastic energy of macroelement, the interaction between the stress tensor and
fourth order Hooke’s tensor – describing elastic properties of the material under
consideration, has to be considered. The most simple case of Hooke’s tensor, ac-
tually the most commonly encountered in continuum mechanics literature and
being a starting point for more advanced studies, is the tensor describing proper-
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ties of linear elastic, isotropic material. This tensor leads to the following linear
constitutive relations between stress and strain tensors:

(7.1)

σ = S · ε = λ (trε)1 + 2µε,

ε = C · σ =
1

9K
(trσ)1 +

1

2µ
s, S ·C = I(4s),

σm = Kεv, s = 2µεd, εv ≡ tr (ε) ,

εd ≡ ε− 1

3
εv1, 1 (δij) , 1⊗ 1 (δijδkl) ,

3K = 3λ+ 2µ =
E

1− 2ν
, 2µ =

E

1 + ν
,

E =
µ (3λ+ 2µ)

λ+ µ
, 2ν =

λ

λ+ µ
,

S = λ1⊗ 1 + 2µI(4s) (Sijkl = λδijδkl + µ (δikδjl + δilδjk)) ,

I(4s)

(
I

(4s)
ijkl =

1

2
(δikδjl + δilδjk)

)
,

where S, C denote isotropic stiffness and compliance tensors of elasticity, re-
spectively, λ, µ denote Lame constants, µ = G is called the shear modulus, E,
K are Young’s and bulk modulus, respectively, ν denotes Poisson’s ratio, ε, εd

are strain and strain deviator, respectively, and I(4s) is a fourth order symmetric
unit tensor.

Relations (7.1)4,5 correspond to relation (7.1)1 upon its decomposition into
spherical and deviatoric parts. Taking the dot product (full contraction) of stress
σ – (3.5)3, and strain ε – (7.1)2 leads to the following expression for elastic energy
stored in a unit volume of the linear elastic isotropic material (σm1 · s = 0):

(7.2)
Φ(σ) ≡ 1

2
σ · ε =

1

2K
σ2
m +

1

4µ
s · s =

1

18K
I2

1 +
1

2µ
J2,

Φ(σ) = Φ(σm1) + Φ(s).

There can be formulated two important remarks ensuing from the formula (7.2).

Remark 1. Elastic energy of linear elastic isotropic materials decouples into
two parts, first depending on pressure and second depending on the shearing
part of the stress tensor, only – or speaking alternatively, first depending on the
first invariant of stress I1 and second depending on the second invariant of stress
deviator J2, only. The mixed term is not present. When the energy is expressed
in terms of small strains tensor, then the parts are connected with volumetric
and distortional parts of the strain tensor, respectively.
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Remark 2. Elastic energy of linear elastic, isotropic material does not depend
on the skewness angle θsk (Lode angle θL) – it does not depend on the third
principal invariant of stress tensor deviator J3.

It is worth to examine in detail how it occurs that the Lode angle θL (skew-
ness angle θsk) cancels out from the expression for elastic energy. For that pur-
pose, formulas (3.8)1−3 are instrumental:

(7.3)

s · s =

(
2

3
σef

)2 [
cos(θL)NI + cos

(
θL −

2

3
π

)
NII + cos

(
θL +

2

3
π

)
NIII

]
·
[
cos(θL)NI + cos

(
θL −

2

3
π

)
NII + cos

(
θL +

2

3
π

)
NIII

]
=

(
2

3
σef

)2 [
cos2(θL) + cos2

(
θL −

2

3
π

)
+ cos2

(
θL +

2

3
π

)]
=

(
2

3
σef

)2 3

2
=

2

3
σ2
ef = 2J2.

While formula (7.2) is very common knowledge, the present author has not
encountered in the literature an explicitly formulated statement similar to that
in Remark 2. Probably because it is so obvious, it very often escapes attention
or is somehow forgotten.

In numerous works devoted to more advanced materials research, linear elas-
tic, isotropic constitutive relation is assumed for the investigated material be-
havior to search in subsequent steps for “elastic energy criterion” of material
effort, which contains the Lode angle as an argument. In view of Remark 2,
such an approach leads to methodological inconsistencies, at best. Their re-
moval requires clearly formulated and well-justified additional assumptions in
each specific case, usually missing at present. What factors then can be identified
to be responsible for very often encountered in experimental works dependence
of, e.g., critical stress of plastic yielding on skewness (Lode) angle, while at the
same time material exhibits, with acceptable approximation, linear elastic and
isotropic behavior. There can be identified at least three such causes:

(i) material is actually not linear elastic,
(ii) material is not isotropic,

(iii) so-called internal constraints operate in the material – of force or kinematic
character, and of known or unknown physical origins.

The first factor (i) can be identified to be the primary reason, it is a standard
that elastic energy functions proposed for rubberlike and/or polymeric materials
as potentials for deriving their constitutive relations are proposed to be functions
of all three principal invariants of the strain tensor. Thus, it is rightly assumed
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that their elastic energy depends on the skewness (Lode) angle of the strain
tensor. Actually, the second factor also plays a role in polymers. Elasticity in
polymeric materials is physically generated by a change of internal entropy of
these materials and not internal energy, cf., e.g.,Müller [17] pp. 111–112. Due
to that, polymeric material, even when isotropic at zero loading, changes its
internal symmetry usually into a transversely isotropic one when subjected to
moderate strains. It returns to its original symmetry (isotropy) upon removal of
loading. The second factor (ii) does not require additional comments. A typical
situation when the third factor (iii) becomes important is in the case of, for
example, composite materials in which some kind of reinforcement elements are
present.

7.2. Mechanism of formation of six invariants of the stress tensor

Let us return to the eigenstates problem and Rychlewski’s energy orthogo-
nal decomposition of stress tensor [24], cf. formula (2.5) and accompanying text.
In the discussed above case of linear elastic material, isotropy is a special case of
interaction of stress tensor with Hooke’s tensor, which resulted in fully decoupled
decomposition of stress tensor into two parts spherical–deviatoric (pressure–
–shear). In the most general case of linear elastic material, the anisotropic ma-
terial stress tensor can be decomposed into six parts, an energy orthogonal in
the sense of (2.5)4. This sextuple is independent of any vector basis – reference
frame {ei}. Hence, its components actually make six linearly independent stress
tensor invariants. We may notice that in this manner, the very basic feature
underlying the tensor notion – i.e., invariance, is presented in its full light. The
statement about six invariants may seem to contradict an earlier statement that
only three linearly independent tensor invariants can be generated, but this is
not the case, as can be realized from the commentary below.

A very interesting loop has come full circle. Ricci-Curbastro motivated by
the idea of quadratic forms invariance, devised objects – and the whole mathe-
matical apparatus, which predict that in the case of second order symmetric
tensor its representation’s six components transform in a specific manner with
the change of reference frame. Next, it was identified that from these six compo-
nents there can always be formed a set of three linearly independent invariants
independent from the coordinates frame, and a set of another three parame-
ters changing with coordinates’ frame change. An analogy of free vector comes
to mind when a tensor is considered an autonomous object. When the tensor
is considered in some environment, in interaction with other tensors, then six
linearly independent invariants can be formed out of its representation com-
ponents – and the analogy of anchoring the vector to a fixed reference point
(frame) comes to mind.
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Let us consider the following situation in order to better understand in what
sense anchoring of the tensor takes place. Take two autonomous tensors, e.g.,
stress tensor σ and not coaxial with it strain tensor ε – a typical situation
for non-isotropic materials. Each of these tensors is fully described by three in-
variants and three Euler angles. The Euler angles characterize the orientation of
each tensor with respect to any conceivable reference frame. While these angles
change with the change of reference frame, the relative orientation of specific
stress tensor with respect to specific non-coaxial strain tensor does not change.
Upon their interaction – e.g., taking their scalar product, only their relative
orientation is important, which manifests itself in the possibility of generating
six invariants, as indicated by formula (2.5)1. So, anchoring of the tensor means
that the orientation of the principal axes of the first or the second tensor takes
over the role of the reference frame – and any other reference frame is not needed,
as it does not play any role.

Rychlewski’s energy orthogonal decomposition (2.5) resulting from the eigen-
values problem (2.4) delivers yet another very inspiring and prolific hint for
research works. It indicates that when with the initiation of some physical phe-
nomenon, e.g., plastic yield flow, there can be associated some fourth order
tensor such as, e.g., Hooke’s tensor in the case of elastic energy plastic flow
yield criterion, then loadings inducing the phenomenon can be divided, in the
most general case, into six classes of loadings, depending on specific symmetry of
Hooke’s tensor. This suggests, for example, that when the safety of a structure
is to be assured to preclude plastic yield flow, then for each identified class of
loadings different value of safety coefficient can be expected to be appropriate.
Issues discussed in this section can only be signaled due to space limitations.
More detailed treatment of interaction of second order tensor with environment
– other tensors and the consequences of it – deserve and require separate research
efforts and works.

8. Some remarks on conditions and applicability
of biaxial (planar) loadings for experimental examination

of the influence of skewness angle
on materials behavior

8.1. Simple shear versus planar shear experimental testing layouts

A considerable attention has been devoted in the present work to the theo-
retical issues connected with pure shear mode. Let us discuss at present two
major experimental layouts leading to the actual physical realization of the
pure shear mode as defined by (5.1), i.e., so-called “simple shear” and “planar
shear” experimental testing layouts. In experimental mechanics, they are usually
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considered in terms of strain rather than stress tensor. When the tested mate-
rial is isotropic, then this distinction bears no conceptual difference because,
in such a case, a simple equivalence of states exists between stress and strain
tensors due to their coaxiality. Many misunderstandings exist in the literature
regarding the difference between simple shear versus planar shear testing lay-
outs. Both these testing layouts belong to the class of biaxial tests and make
the practical realization of a pure shear state. In order to clarify the issues, it
is pointed out that no difference between planar shear and simple shear exists
in terms of definition (5.1), as in both cases trace and determinant of strain
tensor during experimental testing are with very good accuracy equal to zero
(tr(ε) = 0, det(ε) = 0). In the case of testing materials for which one or both of
these conditions are not fulfilled, variation of specimen thickness is also measured
to introduce relevant corrections. The difference exists between the kinematics
of two testing layouts, i.e., the motion of material points. While different kine-
matics results in different deformation gradients, the principal values of stretch
tensor U (F = RU) are exactly the same in both layouts, though differently
situated in the laboratory frame, cf. Fig. 5. Here, only the most important char-
acteristics of simple and planar shear are succinctly and explicitly formulated to
possibly facilitate the decision on selecting one or the other experimental layout
for attaining specific experimental research tasks. An interested reader can find
a more detailed discussion of planar shear and simple shear, for example, in
Ogden [20] and Ziółkowski [33].

Fig. 5. Difference between experimental testing layouts of simple shear (a) and planar shear (b)
is shown graphically. The ui denote Lagrangian principal axes, θL denotes the orientation angle
of Lagrangian principal axes with respect to fixed laboratory frame, E(0) denotes logarithmic

Lagrangian strain measure, and λJ are principal stretches.
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The major matching feature of simple shear and planar shear testing lay-
outs is the identical strain pattern shared by both layouts, finding reflection
in identical values of principal stretches. In the case of simple shear, they
are λssI = λss, λssII = 1/λss, λssIII = 1, where λss = γ/2 +

√
1 + (γ/2)2 and

γ denotes the so-called shear parameter. In the case of planar shear, prin-
cipal stretches take the form: λplsI = λpls, λplsII = 1, λplsIII = 1/λpls, where
λpls = ∆L/L0. When λss is equated to λpls one to one correspondence can
be immediately found between γ and ∆L. In both testing schemes, volume is
preserved det(F) = λssI λ

ss
II λ

ss
III = λplsI λplsII λ

pls
III = dv/dV = 1, where dv denotes

the elementary volume in the actual configuration and, dV is the elementary
volume in the initial configuration.

The major distinctive feature differing simple shear from planar shear is that
principal axes constantly rotate with the advancement of shear loading in simple
shear layout, but, in planar shear layout, principal axes remain constant (fixed)
relative to the laboratory frame at all times.

The simple shear testing layout is very popular (standard) in experimental
testing of behavior and/or properties of metallic materials. The planar shear
testing layout is very often used (standard) in examining polymeric materials.
Besides strain pattern, many additional factors may influence choosing one lay-
out or the other. For example, the stiffness of metallic samples prevents early
warping of the sample during simple shear testing. On the other hand, testing
metallic sheets in planar shear scheme might require considerably larger forces
in comparison to the simple shear scheme of testing. It is also worth indicating
that loadings used in testing of metallic samples as a standard do not induce
a change of symmetry of the material.

In the case of polymeric materials, loadings used in their testing as a standard
do induce a change of their symmetry – due to the entropic origin of polymeric
elasticity, e.g., initially isotropic polymeric material changes its symmetry to
transversely isotropic under testing load. From the above discussion, it can be
concluded that execution of simple shear and planar shear tests on the same ma-
terial allows to evaluate the influence of principal axes rotation on the behavior
of the material.

8.1.1. Efficient test for determining whether linear elastic material is isotro-
pic. A very interesting experimental application of pure shear modes is that the
results of five tests in which linear elastic material is submitted to a set of five
linearly independent pure shear loadings enable to uniquely determine experi-
mentally whether the material is elastically isotropic. The above suggestion is
a direct consequence resulting from Theorem 4.1 in Blinowski, cf. [2]. At the
same time, it gives information what is the minimum number of tests necessary
for finding out whether the material is isotropic. Indeed, when the linear elastic
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material is submitted to five tests with pure shear loadings, for example, the ones
listed by Blinowski in proof of Theorem 4.1 with the following representations
in the fixed laboratory frame:

(8.1)

τ1 =︷ ︸︸ ︷ 0 1 1
1 0 0
1 0 0

,
τ2 =︷ ︸︸ ︷ 0 0 1

0 0 0
1 0 0

,
τ3 =︷ ︸︸ ︷ 0 0 1

0 0 1
1 1 0

,
τ4 =︷ ︸︸ ︷ 0 0 0

0 1 1
0 1 −1

,
τ5 =︷ ︸︸ ︷ 0 0 0

0 1 0
0 0 −1

,
τ1 · τ2 6= 0, τ2 · τ3 6= 0, τ3 · τ4 6= 0, τ4 · τ5 6= 0,

and in response to these loadings, the shear moduli determined from elaborated
experimental data in charts εi = (1/ (2µi))τi will show to have the same value
µi = µ, i = 1, ..., 5. Then, this will prove that the tested material is isotropic lin-
ear elastic. The technical realization of such a testing cannot be further discussed
here due to limited space.

8.2. Deficiency of biaxial (planar) tests for finding experimentally material
behavior sensitivity to skewness (Lode) angle

In 1959 Davies and Connelly introduced the so-called triaxiality factor, de-
fined as the quotient of stress first principal invariant divided by effective stress(
ηDC ≡ I1

/√
3J2 = 3σm/σef ; σef 6= 0

)
, cf. formula (35) in [5]. They were mo-

tivated in this proposal by supposition, correct in view of their own and later
research, that spherical tension (σm > 0) called by them rather exotically tria-
xial tension, has a strong influence on the loss of ductility of metals, and the need
to have some parameter to describe this effect. The name triaxial tension for
spherical tension is rather unfortunate because it gives a false impression that
no (negative) pressure but general three-dimensional multiaxial stress states
are subject of description with this parameter. The triaxiality factor gained
considerable attention and use when Wierzbicki and his collaborators pointed
out that not only spherical tension (negative pressure) but also Lode angle
can considerably influence ductility and other properties of metals. The im-
portant issue in this was that in 2005 Wierzbicki and Xue found that in the
class of biaxial tests (σIII = 0) a unique relation exists between the Lode angle
– normalized principal third invariant of deviator, and the triaxiality factor in
the form J3 = cos(3θL) = −(27/2)η(η2 − 1/3) – cf. formula (8) in Bai and
Wierzbicki [1]. Wierzbicki and collaborators adopted a slightly modified defi-
nition of triaxiality factor than the original one (η ≡ σm/σef = ηDC/3). It seems
to be worth introducing the concept of isomorphic triaxiality factor, naturally
corresponding to isomorphic cylindrical coordinates, defined as follows – cf. for-
mulas (4.1):

(8.2) ηi ≡
z

r
, ηi = tan (θiso) =

3√
2
η.
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The class of biaxial tests is defined by the condition that always one of the
principal values of the stress tensor is equal to zero. According to the ordering
convention of principal values, this could be the smallest, middle or the largest
principal value (σIII ≤ σII ≤ σI), but usually, it is written conventionally that
the third principal value is zero, regardless of the standard ordering convention.
During any kind of biaxial tests, in view of σIII = 0, two control parameters,
e.g., two principal values of stress (σI, σII), uniquely determine any set of three
principal stress invariants fully characterizing properties of stress tensor treated
as a sovereign object, e.g., {σm, J2, J3}. Some other convenient pair of control
parameters can be selected, for example (σm, ∆σ ≡ (σI−σII)). Simple transfor-
mations lead to the following relations valid for biaxial stress states, cf. (3.12):

(8.3)

σIII = 0 ⇒ σm =
σI + σII

3
, ∆σ = (σI − σII) ,

sI = σI − σm, sII = σII − σm, sIII = −σm,

J2 = s2
III − (sIsII) =

1

3

[
σ2

I + σ2
II − σIσII

]
=

1

4

[
3σ2

m + ∆σ2
]
,

J3 = sIII (sIsII) =
1

27
(σI + σII) (σI − 2σII) (2σI − σII)

=
1

4
σm[∆σ2 − σ2

m] = σm[J2 − σ2
m].

Taking advantage of relation (8.3)6, it is easy to show that the following
inequalities are always valid for any planar (two-dimensional) stress state –
during any biaxial test:

(8.4)

σef =
√

3J2 =

√
9

4

[
σ2
m +

1

3
∆σ2

]
≥ 3

2
|σm| ≥ 0,

||s|| =
√

2J2 ≥
√

3

2
|σm| = 1.225|σm| ≥ 0.

The observation can be formulated in the form of the following property:

Property 1. The modulus of the deviatoric (shearing) part of any non-zero
(non-trivial) planar stress state is always greater than the modulus of its sphe-
rical part.

The direct conclusion from Property 1 is that no purely spherical (isotropic)
planar tensor exists or equivalently the only purely spherical planar tensor is
a zero tensor. Thus, it can be stated that in the case of any non-trivial planar
stress tensor – biaxial tests domain, its shearing part dominates over its spherical
part.
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Wierzbicki and Xue’s constraint relation valid for biaxial tests can be ex-
pressed in the equivalent form of classical third-power polynomial equation:

(8.5)

η3 − 1

3
η +

2

27
sin(3θsk) = 0, η ≡ σm

σef
,

J3 = sin(3θsk) =
27

2

[
1

3
η − η3

]
,

where the Lode angle is replaced by the skewness angle (J3 ≡ cos(3θL)).
This equation can be solved with the same method as the one used for finding

stress principal values from the characteristic equation, cf. (3.8). The solution
can be written in the following form:

(8.6)

sin(60◦ − θsk) =
3

2
η, η ∈

〈
2

3
,
1

3

〉
, θsk ∈ 〈−30◦, 30◦〉,

when σIII = 0 ≤ σII ≤ σI,

sin(θsk) =
3

2
η, η ∈

〈
−1

3
,
1

3

〉
, θsk ∈ 〈−30◦, 30◦〉,

when σIII ≤ σII = 0 ≤ σI,

sin(60◦ + θsk) = −3

2
η, η ∈

〈
−1

3
,
2

3

〉
, θsk ∈ 〈−30◦, 30◦〉,

when σIII ≤ σII ≤ σI = 0;

sign(θsk) = sign(J3), sign (η) = sign (σm) .

In the above, the standard denotation convention of principal stresses was
employed (σIII ≤ σII ≤ σI) and the following identities: 4 sin3(θsk)− 3 sin(θsk) +
sin(3θsk) = 0, sin(θ − 120◦) = − sin(60◦ + θ), sin(θ + 120◦) = sin(60◦ − θ).

Explicit relations (8.6) linking the triaxiality factor and skewness angle (η ↔
θsk), cf. Fig. 6, are three bijections (one to one relations) in three sharing edges

Fig. 6. Triaxiality factor as a function of the skewness angle η = η (θsk).
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separate subdomains, which altogether make the entire two-parameter domain
(half-plane) of biaxial tests stress states, see also Fig. 7.

From relation (8.5) it can be easily concluded that the constant value of
triaxiality factor η corresponds to the constant value of skewness (Lode) angle
θsk. However, it is not obvious, what are the curves of constancy paths of these
parameters in the biaxial tests domain (plane). The following Theorem I is
helpful in this issue.

Theorem 1. The radial lines (rays) coming out from the origin (σI = 0,
σII = 0) of the coordinates frame of the biaxial tests domain, i.e., half-plane
(σII ≤ σI), are lines of constant values of triaxiality factor η = const, and, at
the same time, lines of constant values of skewness (Lode) angle θsk = const.

Proof. The radial lines running from the origin can be described as follows:

(8.7)

σII = aσI (a = const)⇒ σm =

(
1

3

)
(σI + σII) =

(
1

3

)
(1 + a)σI,

σef =
√
σ2

I + σ2
II − σIσII =

√
1− a+ a2|σI|

⇒ η =
σm
σef

=
1

3

(1 + a)√
1− a+ a2

sign(σI),

a = const⇔ η = const⇔ θsk = const.

In the case σI = 0, σII can take any value, and it is η = −1
3 = const,

θsk = −300 = const. Q.E.D.

Theorem 2. The relations σm(σef , θsk), σef (σm, θsk), θsk(σm, σef ) resulting
from relations (8.6), valid for plane stress states, are bijections (one to one
relations) in three sharing edges but otherwise separate subdomains of the whole
domain of biaxial tests stress states, except on the line σm = 1

3(σI + σII) = 0,
on which η = θsk = 0 for any value of σef =

√
3|σI|.

Proof. It is straightforward to find that the skewness angle θsk maintains
constant value on radial lines running from the origin (σI = 0, σII = 0) of biaxial
tests domain coordinates frame, the mean value of stress σm maintains constant
value on 45◦ slanted lines, and the effective stress σef maintains constant value
on ellipsoids with centers in the origin (σI = 0, σII = 0) of biaxial tests domain,
cf. also Fig. 7.

In view of the above, at any specific point of three complementary subdo-
mains of the biaxial tests domain, the value of any variable chosen from the
triple set {σm, σef , θsk} can be uniquely determined by the values of the two
remaining ones. On line σm = 0 it is σm = σI + σII = 0 ⇒ J3 = 0, σef =√

3σI ⇒ η = θsk = 0. Q.E.D.
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Fig. 7. Graphical illustration of the biaxial tests domain parameterization in terms of param-
eters (σm, σef , θsk). The f(σcr) = 0 marks some hypothetical convex, critical surface (e.g.,
plastic yield), for which critical values of effective stress depend on skewness angle. The second
quarter of the chart (0, σI ≥ σII ≤ 0) makes the domain of states attainable in standard tests

on the tubular specimen (with no internal pressure).

An important open problem of experimental mechanics of materials com-
prises determining critical stress states surfaces conditioning initiation of some
physical processes in materials, for example, plastic yield flow, damage, cracking
or the start of phase transition. The following observation can be formulated by
taking advantage of Theorems 1 and 2.

Corollary 2. In the case of the convex critical surface, with the aid of any
type of biaxial test, for any fixed value of the mean stress (pressure) σm = σ∗m,
critical effective stress σ∗ef can be determined for only a single value of the
skewness (Lode) angle θ∗sk.

In the case of the convex critical surface, with the aid of any type of biaxial
test, for any fixed value of the skewness (Lode) angle θsk = θ∗sk, critical effective
stresses σ∗ef can be determined for only three values of the mean stress (pressure)
σm = σ∗m.

The direct conclusion from Corollary 2 is that planar (biaxial) tests, among
them very common tension (compression)-torsion tests on tubular samples –
also the ones with internal pressure, are not sufficient for executing methodo-
logically correct experimental examination of the influence of skewness (Lode)
angle on materials behavior. This is so because upon executing only biaxial tests,
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no adequate experimental data results can be collected to reliably separate the
influence of mean stress and/or skewness angle on the possible variations of
critical effective stresses. One value for any fixed pressure and/or three values
for any fixed skewness angle are indeed insufficient for such a purpose. This
observation delivers a clear incentive for the development and use of experimen-
tal techniques in which all three parameters characterizing stress state can be
independently controlled to induce in the specimen not only planar stress state
(two-dimensional) but fully three-dimensional stress state loadings. They should
make possible determining critical effective stress, or other critical parameters,
for example, effective fracture strains in the whole range of skewness angle values
at freely prescribed, fixed mean stress.

Relations (8.6) valid for biaxial (plane) tests show that in such a case, the
values of the triaxiality factor must always remain in the range η ∈ 〈−2

3 ,
2
3〉, while

in the general case of three-dimensional multiaxial tests, the triaxiality factor can
take any value from the range η ∈ 〈−∞,+∞〉. In many experimental mechanics
publications, in which results from biaxial tests are presented, values of triaxiality
factor exceeding the two-third value 2

3 < η can be observed, which may seem to
be incorrect. However, experimental observation of the triaxiality factor greater
than 2

3 rather indicates that the biaxiality condition of test was lost, and in the
sample general (three-dimensional) stress state started to exist. This delivers
a hint to develop experimental methodologies in which the triaxiality factor is
used as an effective indicator of passing from a plane state of stress to a three-
dimensional state of stress.

Relations (8.6) delivering explicit connection between triaxiality factor and
skewness angle θsk(η) are very convenient for numerical computations, because
they enable the determination of the value of the skewness (Lode) angle θsk
from the value of the triaxiality factor η much more efficiently numerically
than, e.g., from Wierzbicki and Xue’s formula, not to speak about comput-
ing it from definition formula what necessitates computation of the third in-
variant of deviator (J3). Selection of the correct subformula (8.6) is very easy
because it can be decided upon the value of η falling into a specific range of
values. For example, when η∗ = 0.51, then it belongs to the range η∗ ∈ 〈13 ,

2
3〉;

hence, θ∗sk = 60◦ − sin−1
(

3
2η
∗) = 10.1◦. The reverse of formulas (8.6) is not

so convenient because to select the correct reverse subformula (8.6) to compute
η (θsk), a combination of signs of two non-zero principal values of stress tensor
(sign (σI), sign (σII)) must be known.

Since the popularization of triaxiality factor η byWierzbicki [1], it started
to be very frequently used in charts as an argument (governing parameter) –
often together with Lode angle in a three-dimensional charts, to present ex-
perimental results obtained in biaxial tests in order to present the influence of
Lode angle on various properties of metals and other materials. However, the
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present study shows that the triaxiality factor, in general, is not a convenient
operand to be used for the presentation of experimental biaxial tests’ results.
This is so because when taken at its face value, it contains tangled together
information on two in principle linearly independent parameters characterizing
stress tensor (loading), i.e., σm and σef . Such an entanglement projected to the
presented results makes them somehow blurred. In the case of biaxial tests, one
to one relation exists between the triaxiality factor and skewness (Lode) angle,
i.e., the constant value of the triaxiality factor corresponds to the constant value
of skewness (Lode) angle. Due to that, it is advisable to directly use skewness
angle as governing parameter in charts presenting experimental results from bi-
axial tests. Possibly, with information indicating the mode of loading: tensioning
(0 < σI, σII), mixed (σI < 0 < σII) or compressive (σI, σII < 0). In this manner,
specific information presented in the chart from the biaxial test will be delivered
in a transparent, methodologically unambiguous manner.

Results obtained in the present section deliver sound methodological grounds
for rational and effective designing of experimental programs aiming at deter-
mining mechanical properties of complex materials, as they enable precise evalu-
ation of which material characteristics can be acquired in biaxial test and which
one can only be obtained in truly triaxial tests.

9. Concluding remarks

In the paper, a concise historical survey on the tensor notion was presented.
The survey gives grounds for the view that the key features, which decided that
tensors nowadays became the language of all advanced technological sciences,
are linearity and invariance. In view of the universal use of tensors to model real
phenomena in all kinds of applied sciences, a profound understanding of what
the tensors actually are, what their specific features are, and how they mutu-
ally interact is of great importance. The present work addressed these issues on
the example of the stress tensor, a generic instance of a second order symmet-
ric tensor. It was pointed out that tensors can be viewed and/or understood
from several perspectives as either: algebraic objects, linear transformations or
oriented geometrical objects. This versatility might be another feature that de-
termined the attractiveness of tensors. Attention was focused here on identifying
and finding possibly the best manner of description of eigenproperties of second
order symmetric tensors. The results and conclusions obtained here specifically
for stress tensor are of general character, and mutatis mutandis translate to sec-
ond order symmetric tensors, which may have other interpretations in modeling
real physical phenomena and/or objects.

The executed analysis showed that it is convenient to introduce new parame-
terization of second order tensor eigenproperties by introducing the concept of



282 A. ZIÓŁKOWSKI

isotropy angle and skewness angle. The first parameter allows for very quick and
transparent, at first sight, evaluation/separation of isotropic and anisotropic
parts of the tensor, which actually coincides with the decomposition of the
tensor into spherical and deviatoric parts. The special role played by pure shear
modes, which explains and justifies using them as comparison reference states
in the definition of the skewness angle, is elucidated. At the same time, a strong
rationale for replacing Lode angle with skewness angle in the characterization of
second order tensors, in view of a much clearer and more comprehensive physical
interpretation of the skewness angle, is given. A new, very simple formula was
presented for the anisotropy factor of the stress tensor, based on the tensor
orbit notion, expressed in terms of isotropy angle and skewness angle. An original
statistical interpretation of principal invariants of tensor deviator was developed,
which allowed explaining why the anisotropy factor of the second order tensor
diminishes with the departure of the tensor from pure shear mode. The reason for
that can be attributed to the growth of internal entropy of the tensor understood
as an increasing orientational disorder of elementary pure shears population
generating given macro stress state. It was shortly outlined that interaction
of second order tensor with other tensorial objects, e.g., fourth order Hooke’s
tensor representing elastic properties of a material, results in the possibility of
constructing not only three but six parameters of second order symmetric tensor
remaining invariant upon change of coordinates frame (basis). It was indicated
that this gives premises for introducing and developing the weighted effective
stress notion, which takes into account interaction of stress tensor with other
tensorial objects characterizing material to improve the classical effective stress
notion.

Several observations were presented concerning multiaxial tests targeted at
examining the influence of skewness angle on material behavior. In particular,
it was clearly demonstrated that the only difference between the two, very pop-
ular in experimental mechanics, testing layouts (simple shear and planar shear
tests), is that, in the first case, principal axes rotate constantly with increas-
ing loading while in the second case, the orientation of principal axes remains
all the time constant with respect to the laboratory reference frame. The kine-
matics, deformation gradient F, in the two tests is different, but the principal
stretches (strains) in both cases are exactly the same. New original formulae
have been derived, which deliver explicit relation between the so-called tria-
xiality factor and skewness angle (normalized third invariant of deviator) valid
for biaxial tests. It was shown that executing only biaxial tests does not allow
for the methodologically correct determination of critical surfaces, e.g., plas-
tic yielding, phase transition start or initiation of fracture (effective fracture
strain). This is so because, in the case of biaxial tests for any fixed value of
mean stress (pressure), only a single critical value can be determined of some
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indicator (e.g., effective stress, thermodynamic force of phase transition, effective
fracture strain, etc.) corresponding to only one value of skewness (Lode) angle
of critical stress. This situation calls for the development of new experimental
testing layouts enabling independent control of all three invariant parameters
characterizing stress loading of the test specimen. Such testing layouts should
enable determining critical values of stress (strain) loadings for the entire range
of skewness angles θsk ∈ 〈−30◦, 30◦〉 at a fixed value of pressure.

In view of rapid developments in computer technology, there can be noticed
a very strong need and demand for developing efficient methods of visualization
of not only vector but also second order (and higher) tensor fields. The classical
principal axes ellipsoid can be noted as the first attempt of this kind, which
completely fails when some principal values are negative. The present study
shows that due to the very rich structure of second order tensors, the task of
reasonably visualizing second order tensor fields grasping simultaneously all the
characteristics and flavors of these objects is rather desperate. At the same time,
it shows that the way out of this dilemma is proper structuralization of the
second order tensor to single out, construct parameters proper for describing
the specific problem of interest, and only later visualization of the fields of
such parameters. Otherwise, the visualization results may prove to be obscure,
incomprehensible and intricate. The proposed new parametrization of second
order tensor eigenproperties can be very helpful in such tasks.

Supplement

In order to make the work as self-contained as possible essential definitions
connected with the external symmetry of tensors are recalled here, cf., e.g., [21].

Definition S1. A set of second order tensors Q with properties:

(S.1) O =
{
Q ∈ T 2; QQT = QTQ = 1, detQ = ±1

}
,

is a group and is called the group of orthogonal tensors.

Definition S2. A subset of orthogonal tensors for which det(Q) = 1:

(S.2) R = {Q ∈ T 2; QQT = 1, det(Q) = 1}, R ⊂ O,

is a group and is called the proper orthogonal group or rotation group (SOn).

Definition S3. A group of external symmetry of tensor T ∈ T p (p denotes the
order of the tensor) we call a subset of all orthogonal tensors Q, which satisfy
the following condition:

(S.3) OT = {Q ∈ O; Q ∗T = T}, OT ⊆ O.
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Tensors T that satisfy condition (S.3) are called symmetric with respect to
orthogonal transformations Q ∈ OT .

Definition S4. Tensor is isotropic when the group of its external symmetry
is the whole set of orthogonal tensors OT = O, cf. (S.1).

Definition S5. Tensor is hemitropic (also called proper-isotropic) when the
group of its external symmetry is the whole set of proper orthogonal tensors
OT = R, cf. (S.2).

Note: The above definitions plainly show that symmetry property is a char-
acteristic of a tensor as an integrated entity of basis and representation (com-
ponents in the basis) and not the tensor components matrix (representation)
only.
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