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Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively

termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen

unloading from RBCs, which may compromise the efficacy of transfusions where the

clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large

real-world data linked longer storage with increased recipient mortality. Biochemical

rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore

gas-handling properties, but its implementation is impractical for most clinical scenarios.

We tested whether storage under hypoxia, previously shown to slow biochemical

degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber,

designed to rapidly switch between oxygenated and anoxic superfusates, was used for

single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were

also analyzed flow cytometrically for side-scatter (a proposed proxy of O2 unloading

kinetics), metabolomics, lipidomics, and redox proteomics. For benchmarking, units were

biochemically rejuvenated at 4 weeks of standard storage. Hypoxic storage hastened O2

unloading in units stored to 35 days, an effect that correlated with side-scatter but was

not linked to posttranslational modifications of hemoglobin. Although hypoxic storage

and rejuvenation produced distinct biochemical changes, a subset of metabolites

including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-D-glycerate, was a

common signature that correlated with changes in O2 unloading. Correlations between

gas handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs

preserves key metabolic pathways and O2 exchange properties, thereby improving the

functional quality of blood products and potentially influencing transfusion outcomes.

Introduction

Each year in Europe and North America, �35 units of blood are transfused per 1000 inhabitants. To sup-
port this demand, red blood cells (RBCs) are stored extracorporeally under conditions designed to pre-
serve quality.1 However, long-term storage results in donor-dependent2,3 biochemical and morphological
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Key Points

� Relative to standard
blood-bank protocols,
hypoxic storage
preserves faster O2

unloading from red
cells through
metabolic remodelling.

� Functional appraisal
of O2 handling
demonstrates a
beneficial effect of
hypoxic storage on
the quality and shelf
life of blood products.
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changes4-7 that are sensitive to the processing method.1,8,9 Although
multiple clinical trials found no effect of storage duration on clinical
outcomes,10-13 a recent analysis of large real-world data showed that
transfusion of RBC units stored for more than 1 to 2 weeks is associ-
ated with higher recipient mortality.14 This seminal finding suggests a
negative impact of storage lesions on transfusion efficacy and high-
lights the need for optimized storage conditions.

Any efforts to improve storage regimes must be guided by appropri-
ate functional readouts of RBC quality. Because the primary physio-
logical role of RBCs is to transport and exchange oxygen, the most
appropriate means of gauging quality should explicitly relate to this
process. Our current understanding of the effect of storage on
RBCs has been based on biochemical studies as gas-handling
assays have not been routinely performed. An emerging paradigm
of storage lesion formation is that of oxidative damage,15 manifest-
ing as posttranslational changes in proteins (eg, hemoglobin,16

peroxiredoxin 2,16-18 anion exchanger 1 [SLC4A1],19 catalase, pyru-
vate kinase, glucose 6-phosphate dehydrogenase20) and depletion
of redox metabolites (eg, glutathione).21 Specifically, the oxidation of
glyceraldehyde 3-phosphate dehydrogenase has been linked to
the depletion of 2,3-diphosphoglycerate (2,3-DPG) during the first
2 weeks of storage.5,8,9,22,23 Based on these observations, hypoxic
storage has been proposed as a way of evading oxidative dam-
age.24,25 Indeed, storage under hypoxia has been shown to pre-
serve 2,3-DPG,26 protect proteins against oxidative damage (eg,
hemoglobin26), and improve end-of-storage cell morphology.25 Part
of these benefits is due to the alkalinizing effect of hypoxic/hypo-
capnic storage, which boosts the activity of bisphosphoglycerate
mutase.27 Previously, alkaline additives have been shown to improve
the biochemical and biophysical qualities of stored RBCs,28,29

although a recent study found no effect on posttransfusion recov-
ery.29 In contrast, transfusion of RBCs stored under hypoxia produ-
ces better outcomes in a rodent model of trauma and hemorrhage
compared with standard storage,30 indicating a more complex effect
of hypoxic storage, beyond alkalinization.

Although the biochemical consequences of hypoxic storage are well
described, their relationship with the primary physiological function
of RBCs remains elusive. Certain metabolites, such as 2,3-DPG
have known effects on Hb-O2 stability; however, another factor
influencing gas exchange relates to the cytoplasmic diffusion dis-
tance,31 which expands under storage because of spherical remod-
eling6,32; its metabolic dependence, however is less understood
Thus, it remains to be tested whether the sum of all metabolic
responses to hypoxic storage truly improves RBC gas-handling
function. Moreover, it is unclear which metabolic changes should be
prioritized for normalization by improved storage regimes. To
address these issues, we developed single-cell oxygen saturation
imaging that measures the O2 storage capacity and unloading time
constant from individual RBCs.31 Previously, we used this approach
to describe how standard storage implemented by the English
National Health Service Blood and Transplant (NHSBT), among
others, impairs O2 unloading.33 Slower O2 release to respiring tis-
sues may reduce the efficacy of transfusions when an immediate
restoration of gas transport is required, for instance, after a profound
hemorrhage or in critical care. The kinetic derangement inflicted by
standard storage could be rescued by biochemical rejuvenation
using a formulation based on adenine, inosine, and pyruvate, mar-
keted as Rejuvesol. This striking effect indicated that impaired gas
handling relates to a deterioration in RBC biochemistry, but the

dominant influence remains unclear as numerous metabolites
respond to rejuvenation.34

This study tested whether hypoxic storage is superior to standard
conditions in preserving physiological levels of O2 handling by
RBCs. To address this question, we performed kinetic measure-
ments at various timepoints during storage and benchmarked the
effect of hypoxic storage against biochemical rejuvenation. We used
a purpose-built microfluidics device capable of rapid superfusate
exchange in an air-impermeable system. Impermeability of the cham-
ber is necessary to maintain anoxia in 1 of the streams for driving
O2 unloading from cells. Rapid solution exchange between anoxic
and normoxic streams was achieved by a system of coordinated
valves. This ensured that switching is rapid and not rate-limiting for
the evoked cellular response. Rapid fluid exchange between micro-
streams was previously achieved using a double-barreled micropi-
pette positioned near the cells on a coverslip,31 which was
technically challenging. The innovative engineering solution offers a
more robust and higher throughput alternative that outperforms the
previously used technique. In parallel, samples were processed for
flow cytometric, proteomic, metabolomic, and lipidomic analyses to
seek correlations and identify common patterns with the effects of
biochemical rejuvenation. We show profound improvement in RBC
O2 handling during the first 35 days of storage under hypoxic condi-
tions, reaching an efficacy comparable to rejuvenation, and implicat-
ing a set of common biochemical responses. We also corroborate
that side-scatter (SSC) is a good proxy of RBC gas handling.

Methods

Blood storage

Donors gaving fresh blood samples gave consent for use of their
blood in research. Data were anonymized and not traceable. Whole-
blood units were collected in citrate phosphate dextrose, leukocyte
depleted and manufactured as “leukocyte-reduced red cell concen-
trates” in isotonic phosphate-adenine-glucose-guanosine-saline-man-
nitol (Fresenius Kabi AG, Homburg, Germany) within 27 hours of
venipuncture, according to standard NHSBT protocol. A total of 6
pools were prepared, each by pooling 3 immunocompatible
leukocyte-reduced red cell concentrates units. Pools were split 3
ways: 2 stored in standard bags and the third prepared for storage
under hypoxic conditions (Hemanext Inc, Lexington, MA).35 The hyp-
oxic bag and 1 of the standard storage bags were sampled at vari-
ous time points, whereas the second standard storage bag was
used for biochemical rejuvenation at 28 days. See Figure 2 for sam-
ple processing schematic. Sampling was via needle-free spike (Ori-
gen Biomedical, Austin, TX) into syringes (confirmed as gas-tight)
that were stored overnight at 4 6 2�C and analyzed the following
day. Blood bank quality measures were made as previously
described.33,36 Freshly obtained venous blood from 6 volunteers
was used for reference values.

Design and fabrication of microfluidic devices

The microfluidic device for superfusing RBCs consisted of 2 input
lines, each branching into a network of 8 capillary channels laid on
a plane of 2 circles. Channels delivered solution to a central cham-
ber (2.4 mm diameter, 0.2 mm height) with an open bottom, onto
which a borosilicate coverslip is attached. See supplemental Meth-
ods for further details and supplemental Figure 1 for a schematic
diagram.
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Single-cell oxygen saturation imaging

O2 handling was measured using a modified version of a technique
developed in our laboratory31 (see supplemental Methods).

Flow cytometry

Blood samples were analyzed on Sysmex XN1000, involving treat-
ment with Cellpack DFL (Sysmex Europe GmbH, Norderstedt, Ger-
many). RET-RBC-Y and RET-RBC-Z channels, corresponding to
RBC forward-scatter (FSC) and SSC, were measured.

Metabolomics, lipidomics, and proteomics

Metabolomics were performed as described previously.37 Lipidomics
were performed via ultra-high-performance liquid chromatography-
tandem mass spectrometry.37 Proteomics were performed by FASP
digestion and nano ultra-high-performance liquid chromatography-
tandem mass spectrometry identification.38 See supplemental Meth-
ods for further details.

Statistical analysis

Summary data are presented as mean 6 standard error of the
mean unless stated otherwise. Blood bank measures were tested
by repeated measures 2-way analysis of variance (ANOVA) with a
multiple comparisons posttest. Large datasets were tested for signif-
icant effects of treatment and storage duration by 2-way ANOVA
(Metaboanalyst). Correlations were performed against the change in
time constant or SSC using Pearson test. Multiple regression analy-
sis was performed using MATLAB.

Results

Measuring RBC oxygen handling using a

microfluidic device and fluorescence imaging

To interrogate oxygen-handling kinetics, RBCs were exposed to
alternate flows of normoxic and anoxic solutions controlled by a
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Figure 1. Measuring oxygen handling by RBCs. (A) Microfluidic chamber showing 16 channels supplied from 2 different solutions, and feeding into a central chamber

where cells are superfused. (B). Rate of solution exchange was gauged by including 15 mM fluorescein in 1 of the solutions. The exchange time constant is better than

33 ms. (C) Imaging of RBCs loaded dually with CellTracker DeepRed and Calcein. (D) Fluorescence ratio (DeepRed/Calcein) during a rapid solution exchange, from

normoxia to anoxia and back. The datapoints (black) are fitted to a monoexponential curve (red). (E) Histogram of time constant (t) and (F) oxygen carrying capacity (k)

obtained for RBCs drawn from a nonanemic donor. A total of 1263 cells imaged from 18 fields of view and 2 loadings.
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system of electronically operated valves. Anoxic solutions were pro-
duced and maintained by continuous bubbling with N2 and the addi-
tion of 2 mM dithionite, with fresh solution was prepared every 2
hours. The 2 solutions were gravity fed to the inputs of the microflui-
dic device, where each line branched into 8 radially positioned
channels feeding into a central chamber wherein cells are plated on
a glass coverslip (Figure 1A; supplemental Figure 1). This microflui-
dic system produced rapid solution exchange, with a time constant
faster than 33 ms as determined by labeling 1 solution with fluores-
cein (ie, not rate-limiting relative to the rate of O2 unloading from
RBCs) (Figure 1B). To image O2 handling, RBCs were dually
loaded with CellTracker DeepRed and Calcein and imaged using a
fast camera system during superfusion with N-2-hydroxyethylpipera-
zine-N9-2-ethanesulfonic acid-buffered media (Figure 1C). At their
respective optimal emission peaks, red fluorescence is strongly
quenched by oxyhemoglobin; thus, the red/green ratio provides a
readout of the RBCs’ oxygenation state.31 The rate and degree of
O2 unloading was determined by analyzing the fluorescence
response to a rapid and transient decrease in extracellular O2 ten-
sion, from atmospheric to anoxic and back. Best-fitting to a monoex-
ponential curve informed the time constant and extent of O2

unloading (Figure 1D). Because the method has single-cell resolu-
tion, it can describe a population of RBCs in terms of frequency his-
tograms of O2 unloading time constant (t; Figure 1E) and capacity
(k; Figure 1F), illustrated here using venous blood drawn from a
nonanemic volunteer.

Oxygen-handling properties of RBCs are improved

under hypoxic storage

Single-cell oxygen saturation imaging was performed on samples of
blood taken at various points during hypoxic and standard storage
(Figure 2). The effect of hypoxic storage was benchmarked against
biochemical rejuvenation of blood stored for 28 days. Oxygen satu-
ration in standard bags was 54.4 6 9.9% (mean 6 standard devia-
tion) on day 7, rising to 81.6 6 4.8% on day 49; in contrast,
hypoxic storage system maintained significantly lower levels
throughout storage (eg, 10.4 6 2.1% at day 49; Figure 3A). A sim-
ilar pattern was reported for O2 partial pressure (Figure 3B). Hyp-
oxic units had lower CO2 partial pressure (Figure 3C), lower
bicarbonate (Figure 3D), and a more rapid decline in pH (Figure 3E).
Starting from day 14, cellular ATP levels were significantly higher in
hypoxic vs standard pools (Figure 3F). Hypoxic storage trended
with �0.2% more hemolysis than standard storage for 5 of the
pools (A-E), whereas the sixth hypoxic pool (F) appeared to be an
outlier (Figure 3G). RBCs leaked potassium at a slightly increased
rate under hypoxia (Figure 3H). Units were confirmed to be free of
bacterial contamination at the end of storage. Hypoxic storage was
associated with a profound increase in 2,3-DPG levels, peaking at
day 21, followed by depletion by day �35; in contrast, 2,3-DPG
levels became depleted within only a week of standard storage
(Figure 3I).

Exemplar histograms for the evolution of t and k at various time
points along 49-day storage under hypoxic and standard conditions
are shown in Figure 4A for 1 of the 6 blood pools. Measurements
from freshly drawn venous blood from 6 nonanemic volunteers are
included for comparison (supplemental Table 1 shows additional
donor information). Compared with standard conditions, hypoxic
storage was able to preserve faster O2 unloading t for up to 35
days, indicated by a left shift in the histograms. The effect of hypoxic

storage did not alter the width of the distribution, implying a uniform
effect on all RBCs rather than a specific subpopulation. The peak
effect of hypoxic storage was comparable to that of biochemical
rejuvenation performed at 4 weeks. The beneficial effect of hypoxic
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Figure 2. Protocol for storing RBC units. A total of 6 pools of blood were

produced, each from 3 donors to reduce variation. Pools were split so that 1 set

was stored under standard conditions, 1 under hypoxic conditions, and a third

under standard conditions for end-point rejuvenation. Color coding of units is

consistent throughout the data figures: standard storage in black, hypoxic storage

in red, biochemically rejuvenated units in blue. At the time points indicated, RBC

units were sampled for measurements the day after.
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storage was detected in all 6 blood pools studied, as illustrated for
day 21 of storage in Figure 4B. In terms of capacity k, the effect of
hypoxic storage was less profound; with modest increases in capac-
ity observed in some pools.

Aliquots of blood were also tested flow cytometrically for changes
in FSC and SSC, on the basis that the latter was previously corre-
lated with changes in oxygen unloading kinetics.33 Whereas FSC
remained constant over the duration of storage and largely unaf-
fected by hypoxia, SSC was significantly higher under hypoxic stor-
age, compared with standard conditions, to at least 21 days of
storage (Figure 4C). Although the red cell factors determining this
SSC response are not fully elucidated, its significance as a quality
marker is supported by the fact that biochemical rejuvenation also
increased SSC.

The effect of hypoxia and rejuvenation on physiological (t, k) and
flow cytometric (SSC, FSC) parameters is presented in Figure 4D
as the percentage change relative to time-matched controls under
standard storage. A beneficial effect of hypoxia was measurable
within a week of storage, and the maximum effect was observed
around day 21. By day 49, however, there was no difference
between standard and hypoxic storage. It is noteworthy that hypoxic
storage maintained a favorable effect on RBC gas-handling kinetics
for 35 days, whereas 2,3-DPG levels were protected for a shorter
period. This observation indicates that the beneficial effect of hyp-
oxic storage on RBC function is not solely related to 2,3-DPG, but
that other processes and metabolites are of significance. In contrast
to kinetics, the O2 carrying capacity (k) was less responsive to hyp-
oxic storage and did not change in a consistent manner. In agree-
ment with earlier observations, the responses of t and SSC
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Figure 4. Hypoxic storage improved RBC physiological function. (A) Histograms of O2 unloading time constant (top) and O2 carrying capacity (bottom) for bloods in

pool C, sampled at various time points indicated during 49-day storage under standard condition (black lines) or hypoxia (red lines). Rejuvenation at 28 day was included as

a benchmark (blue lines). Each histogram is constructed from at least 500 cells collected from at least 2 loadings and measurements from 6 fields of view. (B) Histograms
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correlated negatively. FSC, in contrast, was relatively unaffected by
storage regime.

The effect of hypoxic storage on physiological

function is not related to posttranslational

modifications of relevant proteins

Standard storage protocols are associated with a depletion of anti-
oxidants, which may affect the posttranslational state of proteins
implicated in gas handling. To test whether differences in the levels
of proteins, or their posttranslational modifications, underpin the
effect of hypoxic storage on RBC physiological function, proteomic
analyses were performed on samples normalized to input total pro-
tein (Figure 5A-B). There was no consistent effect of storage regime
on the level of any protein detected, except for a modest effect on
synuclein a (SNCA; Figure 5C). In terms of posttranslational modifi-
cations, the only statistically significant effect of hypoxic storage
was on the oxidation of SLC4A1, parkinsonism-associated degly-
case (PARK7), DNA-damage inducible homolog 2 (DDI2), protein-
L-isoaspartate O-methyltransferase (PCMT1), glucose transporter 1
(SLC2A1), and phosphoglycerate kinase 1 (PGK1) (Figure 5C).
Although the effect size was small, these catalytically active proteins
are among the most abundant components in the proteome of
mature RBCs. Of note, some of these components, specifically
SLC4A1 and PCMT1, play a role in RBC metabolic reprogramming
in response to oxidant stress and had been previously identified as
targets of the storage lesion under normoxic, but not hypoxic stor-
age.19,38 Hemoglobin isoforms (HBA1, HBB, HBG1, and HBD),
catalase (CAT), and glucose 6-phosphate dehydrogenase (G6PD)
showed a progressive increase in oxidation, consistent with prior
observations39; however, hypoxic storage or biochemical rejuvena-
tion did not significantly affect this specific posttranslational modifi-
cation (Figure 5D). The implemented hypoxic storage protocol did
not change the degree of methylation nor cysteine conversion to
dehydroalanine (via b-elimination of thiols), which had been noted in
prior studies.40 Thus, the observed beneficial effect of hypoxic stor-
age on RBC gas handling does not relate to the levels of relevant
proteins or their posttranslational modifications.

Biochemical analyses define the metabolic

signature of restored gas handling

To seek biochemical mechanisms for the preservation of RBC phys-
iological function under hypoxic storage, metabolomic and lipidomic
analyses were performed on samples normalized to total protein.
Because both hypoxic storage and biochemical rejuvenation
increased O2 unloading rate and SSC, concordant changes in metab-
olites and lipids were sought as potential candidates for the underly-
ing functional rescue.

Relative to standard storage, hypoxic storage or biochemical rejuve-
nation affected a total of 126 metabolites (Figure 6A; supplemental
Table 2). Of these, 35 were significantly affected by hypoxic storage
but not rejuvenation; notable examples in this set included
3-phosphonopyruvate and phosphoenolpyruvate. Eighteen metabo-
lites were affected by rejuvenation but not hypoxia, and 34

responded in an opposite manner to hypoxic and rejuvenation treat-
ments. Thirty-nine metabolites responded concordantly under hyp-
oxic storage and with rejuvenation. Among the 3 key ingredients of
rejuvenation solution, adenine and pyruvate were substantially
increased under hypoxia and following rejuvenation, whereas inosine
was not significantly affected. Enrichment analysis of the concor-
dantly responding set identified the Warburg effect as the most sig-
nificant pathway affected (false discovery rate 5 3 3 10-5).
Substances with the greatest fold-change included adenine, sedo-
heptulose 1-phosphate, 1,3-bisphosphoglycerate, 2/3-phosphoglyc-
erate, D-fructose 1,6-bisphosphate, and 2-oxoglutarate (Figure 6B).
Many of these substances correlated significantly with effects of
storage on gas handling (Figure 6C). The most significantly correlat-
ing metabolites were pyruvate, sedoheptulose 1-phosphate,
2/3-phosphoglycerate (negatively; Figure 6D), and L-cysteine, doco-
sahexaenoic acid, and 5-hydroxyisourate (positively; Figure 6E). The
best metabolite correlates with the effect of storage on SSC were
noted for urate, 5-oxoproline, L-phenylalanine (negative; Figure 6D),
D-glyceraldehyde 3-phosphate, AMP, and a-D-ribose 1-phosphate
(positive; Figure 6E). Multivariate regression using the top 3 nega-
tive and top 3 positive metabolic correlates produced good predic-
tions for the O2-unloading time constant and SSC (Figure 6F).
Overall, the single best correlate to kinetic properties was pyruvate,
yet this was not as strong as the correlation between t and SSC. In
turn, SSC could be very accurately described ratiometrically from
the ratio of D-glyceraldehyde 3-phosphate to urate, which was supe-
rior to t alone.

Hypoxic storage or biochemical rejuvenation affected more than
1200 lipids, relative to standard storage (Figure 7A). Many of the lip-
idomic responses could be divided into those that decreased during
hypoxic storage only (n 5 236; for example, m/z 5 757.55597
[decrease], 258.1833 and 406.27198 [increase]) or changed
selectively after rejuvenation (n 5 276), indicating that these treat-
ments produced distinct lipid signatures (Figure 7B; supplemental
Table 3). In this group, multiple lipid peroxidation products (oxylipins)
are noted (supplemental Table 2). As many as 237 lipids responded
in opposite directions to hypoxic storage and rejuvenation and are
thus unlikely correlates to physiological function. However, 110 lip-
ids showed a coordinated response to hypoxic storage and rejuve-
nation (eg, a-amino-b,g-dihydroxybutyrate [increase]). Most of these
concordantly responding lipids were among substances that corre-
late positively with the change in t (ie, decreased as O2 unloading
accelerated under hypoxic storage) (Figure 7C). The top lipid
correlates to t and SSC are shown in Figure 7D (negative) and
Figure 7E (positive). Using regression analysis, the top 3 negative
and positive lipids produced good predictions for the effects of stor-
age on SSC or t (Figure 7F). Overall, however, metabolites yielded
better correlations with SSC/t compared with lipids.

Discussion

The primary physiological rationale for RBC transfusions is to
improve the delivery of oxygen to respiring tissues. Consequently,
the superiority of alternative storage regimes should be assessed

Figure 4 (continued) of O2 unloading time constant (top row) and O2 carrying capacity (bottom row) for all 6 pools at day 21 of storage. (C) Effect of hypoxic storage and

rejuvenation on flow cytometric parameters: FSC (top) and SSC (bottom). Mean of 2 flow cytometric experiments per time point. Star symbols show effect of rejuvenation

relative to its control. (D) Average data from 6 pools for physiological and flow cytometric indices. *P , .05; **P , .01 (t-test).

27 SEPTEMBER 2022 • VOLUME 6, NUMBER 18 HYPOXIC STORAGE IMPROVES RED CELL O2 HANDLING 5421

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/6/18/5415/1921904/advancesadv2022007774.pdf by guest on 23 Septem

ber 2022



Storage day

200

100

0

20

10

0

CAT

CAT

0 20 40 60

0 20 40 60

15

10

5

0

2

1

0

G6PD

G6PD

0 20 40 60

0 20 40 60

1000

0

100

0

HBB

HBB

0 20 40 60

0 20 40 60

50

0

5

0

HBG1

HBG1

0 20 40 60

0 20 40 60

100

0

20

10

0

HBD

HBD

0 20 40 60

0 20 40 60

200

100

0

40

20

0

SLC4A1

SLC4A1

0 20 40 60

0 20 40 60

50

0

5

0

PGK1

PGK1

0 20 40 60

0 20 40 60

20

10

0

5

0

DDI2

DDI2

0 20 40 60

0 20 40 60

20

10

0

5

0

PCMT1

PCMT1

0 20 40 60

0 20 40 60

0

10

5

0

20

40
SLC2A1

SLC2A1

0 20 40 60

0 20 40 60

To
ta

l
Ox

ida
tio

n

0

200

100

0

500

1000

HBA1

HBA1

0 20 40 60

0 20 40 60

To
ta

l
Ox

ida
tio

n

100

0

4

2

0

PRDX2

PRDX2

0 20 40 60

0 20 40 60

To
ta

l
Ox

ida
tio

n

20

0

5

0

PARK7

PARK7

0 20 40 60

0 20 40 60

30
20
10

0

0

1

2

0 20

SNCA

SNCA

40 60

0 20 40 60

To
ta

l
Ox

ida
tio

n

Storage day

P
ro

te
om

ic
s

U
n

fi
lt

er
ed

D
ay

s

S S S S
S S S

Pre Rej

H H H
H H H

D
ay

s

P
ro

te
om

ic
s

o
xi

d
iz

ed
 p

ro
te

in
s

S S S S
S S S

Pre Rej

H H H
H H HA

C

D

B

Figure 5. Posttranslational modifications to proteins do not correlate with changes in RBC oxygen-handling function. (A) Proteomic analysis of RBC lysates
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Figure 6. Biochemical correlates of changes in RBC oxygen-handling function. (A) Metabolomics of RBC lysates. Heatmap shows 130 metabolites significantly

affected by hypoxic storage or rejuvenation (2-way ANOVA: time and treatment with P , .05). (B) Scatter plot shows effect of hypoxic storage or rejuvenation for the

differentially abundant metabolites. Green symbols show concordantly responding metabolites. Black symbols show metabolites that respond oppositely to hypoxia and

rejuvenation. Red symbols show metabolites affected by hypoxic storage only. Blue symbols show metabolites affected by rejuvenation only. Paired t-test, P , .05. Inset

highlights the 3 chemical components of rejuvenation solution. (C) Pearson’s correlation coefficient between specific metabolite and time constant (t; top) or SSC (bottom).

Color coding refers to scheme described in panel E. (D) Top 3 negative correlations to time constant (top) or SSC (bottom). Bars show time constant or SSC data from

Figure 2; circles show metabolite levels. Number in italics refers to correlation coefficient. (E) Analysis for the top 3 positive correlations. (F) Multivariate regression analysis

using the top 3 negative and top 3 positive correlates. For time constant t: R2 5 0.6482, F 5 10.75, P , .0001. For SSC: R2 5 0.9128, F 5 71.53, P , .0001.
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Figure 7. Lipidomic correlates of changes in RBC oxygen-handling function. (A) Lipidomics of RBC lysates. Heatmap shows �1200 lipids identified as responding

to hypoxic storage or rejuvenation (2-way ANOVA: time and treatment with P , .05). (B) Scatter plot shows effect of hypoxic storage or rejuvenation for the differentially

abundant lipids. Same color coding as in Figure 6B. (C) Pearson correlation coefficient between specific metabolite and time constant (top) or SSC (bottom). (D) Top 3

negative correlations to time constant (top) or SSC (bottom). Bars show time constant or SSC data from Figure 2; circles show lipid levels. Number in italics refers to

correlation coefficient. (E) Analysis for the top 3 positive correlations. (F) Multivariate regression analysis using the top 3 negative and top 3 positive correlates. For time

constant t: R2 5 0.6415, F 5 10.44, P , .0001. For SSC: R2 5 0.8133, F 5 29.77, P , .0001.
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based on functional measures of RBC quality, rather than on bio-
chemical changes, which are merely indirect proxies of cellular phys-
iology. Our previous work31 established that O2 release from intact
RBCs is a diffusion-reaction phenomenon, in which both Hb-O2

binding kinetics and cytoplasmic diffusion distance influence cellular
gas handling kinetics. Under standard storage, the functional attri-
tion of RBCs continued even after 2,3-DPG depletion,33 which indi-
cates that O2 unloading is not solely a function of HbO2 affinity, but
also determined by other factors, such as diffusion distance that
expands in spherically remodeled cells. Considering this complexity,
it has not been possible to predict whether the sum of metabolic
changes observed with an alternative storage regime has a net ben-
eficial effect on O2 unloading, nor to identify which specific meta-
bolic normalization has the greatest impact on gas handling. Such
information would allow a more targeted approach to selecting the
best storage regimes. Previous studies have correlated metabolomic
data to posttransfusion recovery20,41,42 and hemolysis,3,43 but no
study has undertaken a functional characterization of O2 release
from RBCs stored under alternative storage regimes. Here, we
applied single-cell oxygen saturation imaging to compare the physio-
logical outcomes of storage under standard vs hypoxia, a newly
available storage regime. With this approach, we established a ben-
eficial effect of hypoxic storage on oxygen unloading from RBCs
and identified the metabolites that correlate best with this functional
improvement.

RBC units stored under hypoxic conditions preserved faster O2

unloading kinetics compared with the standard storage protocols
implemented by a large national blood provider. The most profound
effect of hypoxic storage was noted for the first 35 days of storage;
that is, the longest permissible shelf-life of blood in the United King-
dom and many European jurisdictions. In clinical practice, the
median storage duration of transfused units is 21 days, and at this
point, the beneficial effect of hypoxic storage was consistent in all 6
blood pools studied. Storage under hypoxia produced similar effects
on O2 unloading to that of biochemical rejuvenation following stan-
dard storage. Both interventions share many common metabolic
responses, but for logistic and regulatory reasons, the former is
more readily implementable for clinical use, as it can be conducted
on units in bulk and before dispatch to hospitals.

Overall, 41 metabolites and 343 lipids correlated with the O2

unloading time constant, of which 18 metabolites and 30 lipids
showed concordant responses to hypoxic storage and rejuvena-
tion. Because gas handling is an ensemble diffusion-reaction
process that involves multiple biochemicals and proteins, correla-
tions with individual metabolites or lipids will be, at best, modest,
but such analysis highlights the most critical biochemical pro-
cesses for normalization during storage. The most prominent bio-
chemical correlate against physiological function was for
pyruvate, which highlights its importance as an ingredient of the
rejuvenation cocktail. An emerging pattern from these observa-
tions is that pathways related to high-energy purine (eg, ATP)
breakdown and deamination (eg, urate) correlated with the deg-
radation in physiological function. This is relevant, considering
the association of these pathways with poorer posttransfusion
recoveries.44 Additionally, hypoxic storage prevented the accu-
mulation of storage-induced lipid peroxidation products, a marker
of poor posttransfusion recovery in rodent models of storage
quality.42

Preservation of physiological function correlated strongly with SSC,
a flow cytometric composite measure relating to the shape and con-
tents of RBCs (ie, a gauge of their diffusive milieu). This observation
strengthens the emerging case for using SSC as a proxy of gas
handling in clinical laboratories. Interestingly, several metabolites cor-
related very strongly with SSC, which sheds new insights into the
biochemical basis of changes underpinning this flow cytometric
measure. Overall, 110 metabolites and 1843 lipids correlated with
SSC, of which 30 and 93, respectively, showed a concordant
response under hypoxia and rejuvenation. Changes in SSC could
be very accurately described in terms of the ratio of urate to D-glyc-
eraldehyde 3-phosphate. The effect of hypoxic storage on increas-
ing SSC may relate to the preservation of more discoid cellular
shape, which favors smaller diffusion distances31 and a reduced
degree of vesiculation and subsequent altered deformability.6 This
may benefit transfusion efficacy because prolonged storage under
normoxic conditions is linked to a higher rate of intravascular
hemolysis.45

Among routinely measured blood-banking parameters, pO2, pCO2

(and consequently [HCO3
2]) were maintained at low levels by the

hypoxic storage protocol. We observed higher mean levels of hemo-
lysis in the hypoxic storage arm, compared with standard storage
following the oxygen-reduction step that involves agitation. We saw
more hemolysis than previously reported under hypoxic storage35

possibly from operator inexperience and a particularly high value in
1 unit. This outlier had a higher degree of hemolysis than the regula-
tory limit of 0.8% hemolysis at day 35, although our study was not
designed to assess production compliance to that specification.
Supernatant potassium levels were slightly raised in the hypoxic arm
compared with standard, although within a range comparable to his-
torical reference data for our laboratory.35,46

Interventions that accelerate O2 unloading are predicted to benefit
respiring tissues because RBCs have only a few seconds to com-
plete gas exchange during their capillary sojourn.47,48 Because of
the diffusion-reaction nature of O2 unloading, tissue acidosis (which
destabilizes HbO2) may not be sufficient to fully restore O2 release
because low pH is not expected to improve gas diffusion across
cytoplasm. Mathematical models31 based on O2 unloading rates
measured in fresh blood predict that tissue oxygenation can
become rate-limiting at higher perfusion rates or when the O2

unloading process is slowed (eg, in spherical RBCs). Given that
standard storage can slow the O2 unloading time constant to 2 to 3
seconds, we speculate that inferior gas-handling kinetics may
impact the efficacy of transfusions for patients requiring an immedi-
ate improvement to tissue oxygenation, such as those in critical
care. In these instances, the �30% acceleration of O2 release
attained under hypoxic storage may bring tangible benefits to tissue
oxygenation. Indeed, recent studies have shown superiority of hyp-
oxic storage in 2-arm cross-sectional studies on posttransfusion
recovery in healthy autologous volunteers.41 It must be noted that
numerous clinical trials have failed to detect an effect of storage
duration on clinical outcomes,10-13 but these studies have typically
recruited people with stable anemia for whom a prompt restoration
of oxygen release is not critical,49 rather than patients requiring mas-
sive transfusion to restore tissue oxygenation (ie, cohorts for whom
impaired gas exchange kinetics is most relevant). Moreover, these
trials have typically correlated clinical outcomes with storage dura-
tion, which is not the most appropriate choice of independent vari-
able because of its complex relationship with RBC quality. Indeed,
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the molecular age of a unit is affected by donor biology44 and
genetics,50 processing strategies,51 and even exposures (eg, alco-
hol, caffeine, smoking, and drugs52). The progression of storage
lesion is not a strict function of duration, thus relying on storage
time for treatment allocation introduces noise and compromises the
statistical power to resolve effects in randomized clinical trials.49

Based on our findings, we argue that the preservation of O2 unload-
ing may enhance the physiological quality of stored blood units, par-
ticularly those intended for restoring gas exchange immediately on
transfusion such as with major trauma or intensive care, or in
patients with sickle cell disease who would benefit from transfusates
with better O2 release to compensate for HbS RBCs. The impact
of O2 release kinetics on transfusion outcomes is yet to be tested.
Our results provide a framework for assessing the functional quality
of stored RBCs for future clinical trials testing the transfusion effi-
cacy of alternative storage regimes.
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