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Abstract
The problem of adaptive semi-active control of transient structural vibration
induced by unknown harmonic excitation is studied. The controller adaptation
is attained by using a specially designed reinforcement learning algorithm that
adjusts the parameters of a switching control policy to guarantee efficient dissipa-
tion of the structural energy. This algorithm relies on an efficient gradient-based
sequence that accelerates the learning protocol and results in suboptimal control.
The performance of this method is examined through numerical experiments
for a span structure that is equipped with a semi-active device of controlled
stiffness and damping parameters. The experiments cover a selection of control
learning scenarios and comparisons to optimal open-loop and heuristic state-
feedback control strategies. This study has confirmed that the developedmethod
has high stabilizing performance, and the relatively low computational bur-
den of the incorporated iterative learning algorithm facilitates its application to
multi–degree-of-freedom structures.

1 INTRODUCTION

1.1 Motivation

The rapid growth of the scale and complexity of mod-
ern designs in civil and mechanical engineering (e.g.,
bridges, overpasses, skyscrapers, and also automotive, rail-
way, aerospace, and robotic technologies) and the evidence
that large-scale systems can be exceptionally sensitive to
external perturbations have motivated intensive research
into the design of reliable and high-performance structural
controllers (Ghaedi et al., 2017; Gutierrez Soto & Adeli,
2017c; Li & Adeli, 2018). In line with the recent concept
of smart cities (Li & Adeli, 2018) and smart structures
(Adeli & Saleh, 1997), special attention has been devoted
to adaptive controllers that can operate in dynamic and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals LLC on behalf of Editor.

uncertain environmental conditions (Bitaraf et al., 2012;
Li & Adeli, 2016; Naderpoor Shad & Taghikhany, 2022;
Wang & Adeli, 2015b), adjusting their control decisions to
changes in the internal system parameters or the exter-
nal excitation forces. Given that these changes are usually
unpredictable and rapid, the major challenge in design-
ing an online adaptive controller is to find a compromise
between the control performance and the computational
complexity of the involved algorithms.

1.2 Literature background

A typical approach to adapting control functions is based
on model predictive control (MPC), which employs repet-
itive solutions to a finite horizon optimal control problem
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where the time horizon is constantly rolled back (this is
often referred to as receding horizon control). Even though
MPC controllers rely on the system model by definition,
some level of uncertainty in the model parameters or inac-
curacies in forecasting the external disturbances can be
compensated by a state-feedback loop that accommodates
the actual system response in the subsequent optimal con-
trol problems. Numerous MPC applications can be found
in the optimization of industrial processes (Bordons &
Camacho, 1998) and traffic flows (Ferrara et al., 2015),
where the controllers are used to cope with time-varying
parameters and evolving boundary conditions. MPC is of
special importance for the coordination of wind farms
(Vali et al., 2019), which are subject to permanent changes
in wind direction. The MPC-based controllers have also
confirmed their efficiency for autonomous driving, where
vehicles confront dynamic obstacles (Babu et al., 2018).
In structural control, the majority of MPC controllers rely
on specifically designed dynamic models that predict the
evolution of the external excitation forces. Oveisi et al.
(2018) developed a recursive least squares algorithm to esti-
mate the disturbance signal, which is constantly updated
and used to determine the receding horizon control. The
method was successfully validated for a piezo-laminated
beam subjected to harmonic disturbances. In Wasilewski
et al. (2019), earthquake excitation is recovered from an
autoregressive model and fed-forward to the MPC con-
troller, which stabilizes the vibration of a multistorey
buildingwith hydraulic actuators. In Zelleke andMatsagar
(2019), an energy-based predictive control algorithm was
developed to suppress the vibration of a multistorey build-
ing subjected to wind excitation. An alternative method
to mitigate the vibration of slender buildings exposed to
uncertain excitation, based on the probabilistic robust con-
trol approach, was proposed by Yuen et al. (2007). Five
optimal and suboptimal MPC methods were tested in
Takacs and Rohal’-Ilkiv (2014) to determine their com-
putational complexity and capabilities for online imple-
mentation to mitigate the free, steady-state, and transient
vibration of a cantilever beam equipped with piezoce-
ramic control devices. The authors observed no significant
diversity in the control performance between optimal and
suboptimal strategies. They suggested that in practice
the computationally efficient suboptimal methods (e.g.,
minimum-time explicit or Newton–Raphson’s MPC) may
be implemented for systems of larger dimensions without
a considerable loss of performance.
The majority of the MPC-based adaptive methods have

been confirmed to have a decent stabilization perfor-
mance. Nevertheless, due to the high computational com-
plexity of the search for the optimal solution, they are
mostly restricted to applications in linear structures with
active force control actuators. The recent trend in struc-

tural control promotes the use of semi-active devices
(Cundumi & Suárez, 2008; Gutierrez Soto & Adeli, 2019;
Naderpoor Shad & Taghikhany, 2021), in particular, those
based on intelligent materials (Ostrowski et al., 2021;
Szmidt et al., 2019) that offer robust, energy-efficient opera-
tion, and relatively easy deployment. However, semi-active
devices introduce nonlinearities, which in the case of
multi–degree-of-freedom systems result in highly com-
plex optimal control problems. It is therefore essential
to search for alternative approaches that allow for effi-
cient online control adaptation.Appealing perspectives are
offered by recent nonclassical computational approaches
such as replicator dynamics (Gutierrez Soto&Adeli, 2017b,
2017a, 2018) or reinforcement learning (RL). The latter
is a subfield of machine learning (Adeli & Hung, 1994;
Amezquita-Sancheza et al., 2020) that is grounded on the
idea of learning from interaction (Sutton & Barto, 2020).
In view of the adaptive control design, an RL algorithm
enables the control decisions to be adjusted based on the
controller–system interaction. Therefore, the knowledge
of the system model and its parameters may be much
poorer than in the case of the MPC control. Furthermore,
the computational complexity of successive updates of RL
control is significantly lower than in the case of searching
for the optimal control solutions.

1.3 RL approaches

Approaches based on RL have recently achieved excep-
tionally successful results in a variety of hard real-world
control-like problems, ranging from a superhuman level
of proficiency in the games of chess and Go (Silver et al.,
2018), through the thermal soaring of gliders (Reddy et al.,
2016) and swimming by body undulation (Jiao et al., 2021),
to bus traffic control (Shi et al., 2021) and autonomous car
driving (Sallab et al., 2017; Shi et al., 2022). Despite these
outstanding achievements and the conducive algorithmic
structure, the possibilities offered by RL are only occasion-
ally exploited in the field of structural control. There is
only a handful of related publications. Although pioneer-
ing, they concern only active control or structures with a
very limited number of degrees of freedom.Qiu et al. (2021)
adopted a deep deterministic policy gradient RL algorithm
to train the neural networks that are responsible for con-
trolling a flexible hinged plate. The control was realized
through piezoelectric actuators. The experiments con-
firmed that the developed method is superior to a PD (pro-
portional derivative) controller. In Nagendra et al. (2017),
three RL algorithms (i.e., temporal-difference, policy gra-
dient actor–critic, and value function approximation) were
studied in the context of stabilizing a benchmark cart-pole
system with no prior knowledge of its parameters. The
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authors compared the algorithms for their convergence
and control performance, and concluded that the value
function approximation method was the most preferred
option. In Khalatbarisoltani et al. (2019), the Q-learning
RL algorithm was applied to tune a fuzzy-PD controller to
stabilize the vibration of a high-rise building. The method
was successfully verified for a selection of seismic scenar-
ios, while taking into account time delays in the control
loop. The potential of using RL to control the shape of an
active tensegrity structure was studied in Adam and Smith
(2008). The developed algorithm combines case-based rea-
soning and learning from errors. It has an increased con-
trol quality, while reducing the time for control computa-
tion. Dengler and Lohmann (2018) employed the RL actor–
critic algorithm to stabilize a swinging chain at the desired
position. The proposed active force control used incom-
plete state information. Although this method was outper-
formed by the control relying on the analytic solution, it
can be viewed as a viable alternative for classical control
designs if the model cannot be sufficiently accurate.

1.4 Objectives and organization of this
paper

This paper proposes a new RL-based control method to
mitigate the transient vibration of semi-active structures
subjected to an unknown repetitive harmonic excitation
force. This method is dedicated for a class of bilinear sys-
tems that represent a wide range of structures of controlled
internal parameters. The main contribution lies in the
control design, where due to the nonlinear nature of the
considered dynamical system, it is necessary to constitute
a new unique control policy that guarantees the asymp-
totic stability of the homogeneous system and facilitates
an efficient optimization to suppress the transient vibra-
tion induced by unknown excitation. The optimization is
performed by using a specially developed RL actor-only
algorithm that relies on the state measurements and struc-
tural model parameters, with no information from the
external excitation force. It adapts the control policy using
the derivatives of the assumed energy-related cost func-
tional, which is defined directly over the parameter space
of the assumed control policy. This technique exploits the
convergence that is naturally inherited from the incorpo-
rated gradient descent method, accelerating the iterative
learning protocol, and results in a suboptimal control. The
proposed method is validated by numerical experiments
for a span structure equipped with a semi-active device
with controlled stiffness and damping parameters. The
convergence and performance are examined for several
learning scenarios, including random perturbations in the
frequency of the excitation force. The designed RL con-

troller is compared to the optimal open-loop solution and
the heuristic strategy, which relies on an equivalent control
function that is precomputed offline. The relatively low
computational complexity of the iterative learning algo-
rithm opens up new perspectives for its application in
large-scale complex structures.
The remainder of this work is structured as follows.

Section 2 provides the assumptions and definitions of
the considered system. The problem of RL control under
unknown excitation force is formulated and resolved in
Section 3: The switching parameterized control policy is
defined, and then an updating sequence for the policy
parameter is defined and accommodated in an iterative
learning algorithm. A definition of comparative control
methods is given in Section 4. In Section 5, the proposed
controller is investigated by means of numerical experi-
ments. The concluding remarks are given in Section 5.

2 THE INVESTIGATED SYSTEM

This paper studies a class of semi-active vibrating struc-
tures that are governed by the following dynamical equa-
tion:

�̇�(𝑡) = Ax(𝑡) +
𝑚∑

𝑗=1

𝑢𝑗(𝑡)𝐵𝑗𝑥(𝑡) + 𝑓(𝑡), 𝑥(0) = 𝑥0. (1)

In Equation (1), 𝑥 = 𝑥(𝑡) ∶ [0, 𝑇𝑐] → ℝ𝑛 represents the
state vector at time 𝑡 ∈ [0, 𝑇𝑐], where 𝑇𝑐 > 0 is a con-
sidered control time. The initial state is denoted by
𝑥0. Each of the control inputs 𝑢1, … , 𝑢𝑚 is assumed to
be bounded by the minimum and maximum admissi-
ble values; that is, 𝑢𝑗(𝑡) ∶ [0, 𝑇𝑐] →  = [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥], 𝑗 =

1,… ,𝑚, 𝑢𝑚𝑖𝑛 < 𝑢𝑚𝑎𝑥. These bounds correspond to the
physical constraints of a semi-active device (e.g., extreme
voltages). The 𝑛 × 𝑛 matrices 𝐴 and 𝐵𝑗 , 𝑗 = 1,… ,𝑚 are
assumed to be constant. The 𝑛 × 1 vector 𝑓(𝑡) represents
a repetitive excitation defined by a harmonic function
with unknown amplitude, frequency, and phase shift (see
Figure 1), which repeats in identical time windows corre-
sponding to the control time interval [0, 𝑇𝑐]. For each time
window the excitation force 𝑓(𝑡) ≠ 0 is acting on a struc-
ture for 𝑡 ∈ [0, 𝑇𝑓], where𝑇𝑓 < 𝑇𝑐. The time𝑇𝑓 is assumed
to be sufficiently small, so that the vibrations in the whole
time interval [0, 𝑇𝑓] are transient (the steady-state vibra-
tion is not considered here). For the remaining control
time—that is, for 𝑡 ∈ (𝑇𝑓, 𝑇𝑐]—the problem of controlling
free vibration is considered by setting 𝑓(𝑡) = 0.
Equation (1) can represent a wide range of semi-

actively controlled structures, such as cantilever beams
with elastomer-based blocks (Szmidt et al., 2017), span
structures supported with magneto-rheological dampers
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F IGURE 1 The assumed repetitive harmonic excitation with
unknown amplitude, frequency, and phase shift. For the adaptation
of the control decision, some learning time window denoted by 𝑇𝑙

will be used.

(Pisarski & Myśliński, 2017; Wasilewski & Pisarski, 2020),
frames with dry friction-based joints (Popławski et al.,
2019), vehicular suspensions (Pepe & Carcaterra, 2016), or
buildings with semi-active tuned mass dampers (Runlin
et al., 2002). The assumed excitation is typical for repet-
itive industrial operations, such as drilling or grinding.
Similar characteristics can model the influence of vehicle
formations on the neighboring infrastructure. Tempo-
rary harmonic excitation is also found in the repetitive
starting-up of rotor machines (e.g., mills, blowers, pumps,
compressors), which is a result of subsynchronous reso-
nances that are induced by electro–mechanical interaction
between the motor’s electric circuit and shaft structure
(Szolc et al., 2019).

3 RL-BASED CONTROL DESIGN

The aim is to design state feedback control functions
𝑢1, … , 𝑢𝑚 (referred to as policy) for the system Equation (1)
(environment in the RL terminology) that guarantee effi-
cient suppression of the vibration induced by the excitation
𝑓. Regarding the excitation structure (Figure 1), two
control phases are distinguished:

Phase I. The first phase is concerned with the tran-
sient vibration that is observed for 𝑡 ∈ [0, 𝑇𝑓].
Here, an actor-only RL algorithm will be devel-
oped that allows the policy to be adapted to
unknown characteristics of the excitation 𝑓(𝑡) ≠
0. The algorithm will employ state measure-
ments 𝑥(𝑡) for some learning time window 𝑡 ∈

[0, 𝑇𝑙] (where 𝑇𝑙 ≤ 𝑇𝑓) and it will provide suc-
ceeding reductions of the value of the cost
functional:

𝐽(𝑇𝑙) = ∫
𝑇𝑙

0

𝐸(𝑡)d𝑡. (2)

In Equation (2), 𝐸(𝑡) stands for the structural
energy:

𝐸(𝑡) =
1

2
𝑥𝑇(𝑡)Qx(𝑡), (3)

where 𝑄 ≻ 0 is a positive definite 𝑛 × 𝑛 matrix.
Phase II. For the free vibration at 𝑡 ∈ (𝑇𝑓, 𝑇𝑐], a policywill

be used that assures the asymptotic stability of
Equation (1) for 𝑓(𝑡) = 0. It will be derived using
the Lyapunov functions method and structural
energy matrix 𝑄.

3.1 Parameterized policy

To construct a policy that is uniform for the control phases
I and II, a parameterized state-dependent control law is
employed. For each control time 𝑡 ∈ [0, 𝑇𝑐], the switch-
ing policy 𝑢1(𝑡), … , 𝑢𝑚(𝑡) is defined for Equation (1) as
follows:

𝑢𝑗(𝑡) =

{
𝑢min, 𝑥

𝑇(𝑡)𝐾𝑗(𝑡)𝑥(𝑡) ≥ 0

𝑢max, 𝑥
𝑇(𝑡)𝐾𝑗(𝑡)𝑥(𝑡) < 0, 𝑗 = 1,⋯,𝑚.

(4)

Here, 𝐾𝑗(𝑡) is an 𝑛 × 𝑛 matrix referred to as the pol-
icy parameter. Each of the policy parameters 𝐾𝑗(𝑡), 𝑗 =

1,… ,𝑚 is structured by two subparameters. The first is
denoted by 𝐾∗

𝑗
and iterated online by the learning algo-

rithm in phase I; that is, for the time 𝑡 ∈ [0, 𝑇𝑓], where
nonzero excitation force is acting on a structure. The sec-
ond subparameter is 𝐾0

𝑗
. It is precomputed offline based

on the system structuring and remains constant for the
free vibration in phase II, that is, for 𝑡 ∈ (𝑇𝑓, 𝑇𝑐] when
𝑓 = 0. Formally, the policy parameters can be written as
follows:

𝐾𝑗(𝑡) =

{
𝐾∗

𝑗
, 0 ≤ 𝑡 ≤ 𝑇𝑓

𝐾0
𝑗
, 𝑇𝑓 < 𝑡 ≤ 𝑇𝑐.

(5)

Themethod for iterative learning of𝐾∗
𝑗
, 𝑗 = 1,… ,𝑚will

be discussed in detail in the next section. First, computing
the constant parameters 𝐾0

𝑗
, 𝑗 = 1,… ,𝑚 is considered. For

each 𝐾0
𝑗
, 𝑗 = 1,… ,𝑚, it is assumed that:

𝐾0
𝑗
= 𝑃𝐵𝑗. (6)

where 𝑃 is an 𝑛 × 𝑛 symmetric matrix, which is computed
as the solution to the following Lyapunov equation:(

𝐴𝑇 +

𝑚∑
𝑗=1

𝑢max𝐵
𝑇
𝑗

)
𝑃 + 𝑃

(
𝐴 +

𝑚∑
𝑗=1

𝑢max𝐵𝑗

)
= 𝑄. (7)
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In Equation (7), the matrix 𝑄 ≻ 0 is the same as in
the definition of the energy function Equation (3). The
assumed structuring of the policy parameters 𝐾0

𝑗
= 𝑃𝐵𝑗

guarantees that the system Equation (1) for 𝑓(𝑡) = 0 is
asymptotically stable. To inspect this, let 𝑉 = 𝑉(𝑥) be the
Lyapunov function, which is defined by; see, for example,
Sastry (1999):

𝑉(𝑥) = 𝑥𝑇Px. (8)

The time derivative of 𝑉 is:

�̇� = �̇�𝑇Px + 𝑥𝑇𝑃�̇�. (9)

The insertion of Equation (1) with 𝑓(𝑡) = 0 into Equa-
tion (9) yields:

�̇� = 𝑥𝑇𝐴𝑇Px + 𝑥𝑇PAx +

𝑚∑
𝑗=1

𝑢𝑗𝑥
𝑇𝐵𝑇

𝑗
Px +

𝑚∑
𝑗=1

𝑢𝑗𝑥
𝑇𝑃𝐵𝑗𝑥,

(10)
which can be written in the following form:

�̇� = 𝑥𝑇

(
𝐴𝑇 +

𝑚∑
𝑗=1

𝑢max𝐵
𝑇
𝑗

)
Px + 𝑥𝑇𝑃

(
𝐴 +

𝑚∑
𝑗=1

𝑢max𝐵𝑗

)
𝑥

+

𝑚∑
𝑗=1

(𝑢𝑗 − 𝑢max)𝑥
𝑇𝐵𝑇

𝑗 Px +

𝑚∑
𝑗=1

(𝑢𝑗 − 𝑢max)𝑥
𝑇𝑃𝐵𝑗𝑥. (11)

From the Lyapunov equation (7) and the symmetry of
the matrix 𝑃 = 𝑃𝑇, it can be eventually concluded that:

�̇� = −𝑥𝑇Qx + 2

𝑚∑
𝑗=1

(𝑢𝑗 − 𝑢max)𝑥
𝑇𝑃𝐵𝑗𝑥. (12)

The application of the switching policy Equation (4)
ensures that:

𝑚∑
𝑗=1

(𝑢𝑗 − 𝑢max)𝑥
𝑇𝑃𝐵𝑗𝑥 ≤ 0. (13)

From 𝑄 ≻ 0 and Equation (13), it follows that �̇� < 0 for
every 𝑥, which guarantees the asymptotic stability of the
closed-loop system Equation (1) with Equations (4) and (5)
for 𝑡 ∈ (𝑇𝑓, 𝑇𝑐].

3.2 Policy parameter update

The policy parameter 𝐾∗
𝑗
, 𝑗 = 1,… ,𝑚 in Equation (5) will

be updated using an approach that is in line with the
method of actor-only RL. The actor-only method relies
on the optimization of a cost functional that is defined

directly over the parameter space of the policy (Grondman,
2015).Here, the energy-related objective functional 𝐽 that is
defined in Equation (2) will be optimized for the parameter
space 𝐾∗

𝑗
, 𝑗 = 1,… ,𝑚. For each matrix 𝐾∗

𝑗
, the admissible

set is defined as:

∗
𝑗
=

{
𝐾∗

𝑗
=
{
𝐾

∗𝑗
qr

}𝑛

𝑞,𝑟=1
∶ 𝐾∗

min
≤ 𝐾

∗𝑗
qr ≤ 𝐾∗

max

}
, (14)

where 𝐾∗
𝑚𝑖𝑛

< 𝐾∗
𝑚𝑎𝑥 are given real constants. The solution

𝑥(𝑡) to the system Equation (1) depends continuously on
the policy parameters 𝐾∗

𝑗
, 𝑗 = 1,… ,𝑚 (see Chicone, 2006,

Theorem 1.3). This result implies the continuity of the cost
functional 𝐽 in Equation (2) with respect to𝐾∗

𝑗
, 𝑗 = 1,… ,𝑚

on the admissible set ∗
1 × ⋯ ×∗

𝑚 ⊂ 𝑅𝑚⋅𝑛2 . This set is
finite-dimensional and compact in 𝑅𝑚⋅𝑛2 . Therefore, from
the Weierstrass theorem (Liberzon, 2012), it follows that
there is a set of policy parameters 𝐾∗

𝑗
, 𝑗 = 1,… ,𝑚 that

minimizes 𝐽. The method of steepest descent is used to
search for the optimal policy parameters, which relies on
the following updating sequence:

𝐾
∗(𝑧)
𝑗

= 𝐾
∗(𝑧−1)
𝑗

− 𝛼𝑗

(
d𝐽

d𝐾∗
𝑗

)
|𝐾∗

𝑗
=𝐾

∗(𝑧−1)
𝑗

, 𝑧 = 1,⋯, 𝑧max,

(15)
where 𝛼𝑗 > 0, and 𝑧𝑚𝑎𝑥 is the maximal number of
learning iterations. The sequence Equation (15) will
be initialized by setting 𝐾

∗(0)
𝑗

= 𝐾0
𝑗
, 𝑗 = 1,… ,𝑚,

where 𝐾0
𝑗

is computed as in Equation (6).

To derive the formula to compute the derivative of objec-
tive functional 𝐽 with respect to the policy parameters 𝐾∗

𝑗
,

𝑗 = 1,… ,𝑚 for Equation (15), the policy Equation (4) is
first rewritten for 𝑡 ∈ [0, 𝑇𝑙] using the unit step function (⋅), as follows:

𝑢𝑗(𝑡) = 𝑐1 + 𝑐2
(
𝑥𝑇(𝑡)𝐾∗

𝑗
𝑥(𝑡)

)
, 𝑗 = 1,⋯,𝑚. (16)

Here, it is assumed that

𝑐1 = 𝑢max, 𝑐2 = 𝑢min − 𝑢max. (17)

Next, the Hamiltonian for the cost functional Equa-
tion (2) is defined:

𝐻(𝑥, 𝑝, {𝐾∗
𝑗
}𝑗=1,…,𝑚)

= 𝑝𝑇

(
𝐴𝑥 +

𝑚∑
𝑗=1

(
𝑐1 + 𝑐2 

(
𝑥𝑇 𝐾∗

𝑗
𝑥
))

𝐵𝑗 𝑥 + 𝑓

)

−
1

2
𝑥𝑇 𝑄 𝑥 (18)
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with the adjoint state𝑝 = 𝑝(𝑡) ∶ [0, 𝑇𝑙] → 𝑅𝑛 satisfying the
following differential equation:

�̇� = −
𝜕𝐻

(
𝑥, 𝑝, {𝐾∗

𝑗
}𝑗=1,⋯,𝑚

)
𝜕𝑥

= −𝐴𝑇𝑝 −

𝑚∑
𝑗=1

(
𝑐1 + 𝑐2

(
𝑥𝑇𝐾∗

𝑗
𝑥
))

𝐵𝑇
𝑗
𝑝

−

𝑚∑
𝑗=1

𝑐2𝑝
𝑇𝐵𝑗𝑥

(
𝐾∗

𝑗
+ 𝐾∗

𝑗

𝑇
)
𝑥𝛿

(
𝑥𝑇𝐾∗

𝑗
𝑥
)

+ Qx

𝑝(𝑇𝑙) = 0, (19)

where 𝛿(⋅) stands for the Dirac delta function. From Equa-
tion (3) and Equation (18), the cost functional Equation (2)
can be represented by:

𝐽 = ∫
𝑇𝑙

0

(
𝑝𝑇�̇� − 𝐻(𝑥, 𝑝, {𝐾∗

𝑗
}𝑗=1,⋯,𝑚)

)
d𝑡. (20)

Let the functions 𝛿𝑥 ∶ [0, 𝑇𝑙] → 𝑅𝑛 and 𝛿𝑝 ∶ [0, 𝑇𝑙] →

𝑅𝑛 denote perturbations of the functions 𝑥 and 𝑝 with
respect to the infinitesimal changes d𝐾∗

𝑗
∶ 𝑅𝑛 × 𝑅𝑛 →

𝑅𝑛 × 𝑅𝑛, 𝑗 = 1,… ,𝑚 of 𝐾∗
𝑗
, respectively. From the differ-

entiability of the state vector 𝑥 with respect to 𝑡, it follows
that

𝛿�̇� =
𝑑

dt (
𝛿𝑥) . (21)

Now let 𝐾∗𝑟
𝑗
, 𝑟 = 1,… , 𝑛 denote the vector correspond-

ing to the 𝑟th column of the matrix 𝐾∗
𝑗
. Consistently,

d𝐾∗𝑟
𝑗
, 𝑟 = 1,… , 𝑛 will stand for the perturbation of the vec-

tor corresponding to 𝑟th column of the matrix 𝐾∗
𝑗
. From

Equation (20), it follows that the differential d𝐽 of the
cost functional Equation (2) with respect to perturbations
d𝐾∗

𝑗
, 𝑗 = 1,… ,𝑚 is given by

d𝐽 = ∫
𝑇𝑙

0

⎛⎜⎜⎝−
𝑚∑

𝑗=1

𝑛∑
𝑟=1

(
𝜕𝐻

𝜕𝐾∗𝑟
𝑗

)𝑇

d𝐾∗𝑟
𝑗

−

(
𝜕𝐻

𝜕𝑥

)𝑇

𝛿𝑥
⎞⎟⎟⎠ d𝑡

+ ∫
𝑇𝑙

0

(
𝑝𝑇𝛿�̇� +

(
�̇� −

𝜕𝐻

𝜕𝑝

)𝑇

𝛿𝑝

)
d𝑡. (22)

Recall that (Chicone, 2006):

�̇�(𝑡) =
𝜕𝐻(𝑥, 𝑝, {𝐾∗

𝑗
}𝑗=1,⋯,𝑚)

𝜕𝑝
, (23)

and thus the last term in Equation (22) can be canceled.
Furthermore, integration by parts yields:

∫
𝑇𝑙

0

𝑝𝑇𝛿�̇�d𝑡 = −∫
𝑇𝑙

0

�̇�𝑇𝛿𝑥d𝑡 + [𝑝𝑇𝛿𝑥]
𝑇𝑙

0 . (24)

From 𝑝(𝑇𝑙) = 0 and the initial condition in Equation (1)
that implies 𝛿𝑥(0) = 0, it follows that the last term in
Equation (24) vanishes:

[𝑝𝑇𝛿𝑥]
𝑇𝑙

0 = 𝑝(𝑇𝑙)𝛿𝑥(𝑇𝑙) − 𝑝(0)𝛿𝑥(0) = 0. (25)

Taking into account Equations (23), (24), and (25) and
inserting this into Equation (22), one obtains:

d𝐽 = ∫
𝑇𝑙

0

⎛⎜⎜⎝−
𝑚∑

𝑗=1

𝑛∑
𝑟=1

(
𝜕𝐻

𝜕𝐾∗𝑟
𝑗

)𝑇

d𝐾∗𝑟
𝑗

−

(
𝜕𝐻

𝜕𝑥

)𝑇

𝛿𝑥
⎞⎟⎟⎠ d𝑡

− ∫
𝑇𝑙

0

�̇�𝑇𝛿𝑥d𝑡 = −∫
𝑇𝑙

0

𝑚∑
𝑗=1

𝑛∑
𝑟=1

(
𝜕𝐻

𝜕𝐾∗𝑟
𝑗

)𝑇

d𝐾∗𝑟
𝑗
dt

− ∫
𝑇𝑙

0

(
�̇� +

𝜕𝐻

𝜕𝑥

)𝑇

𝛿𝑥d𝑡. (26)

From the definition of the adjoint state in Equation (19),
it can be observed that:

d𝐽 = −∫
𝑇𝑙

0

𝑚∑
𝑗=1

𝑛∑
𝑟=1

(
𝜕𝐻

𝜕𝐾∗𝑟
𝑗

)𝑇

d𝐾∗𝑟
𝑗
d𝑡 (27)

From Equation (27), it follows that the derivative of the
functional 𝐽 with respect to the matrix 𝐾∗

𝑗
is given by:

d𝐽

d𝐾∗
𝑗

= −∫
𝑇𝑙

0

𝜕𝐻

𝜕𝐾∗
𝑗

d𝑡. (28)

Using the definition of the Hamiltonian (18), it follows
that:

d𝐽

d𝐾∗
𝑗

= −𝑐2 ∫
𝑇𝑙

0

𝑝𝑇𝐵𝑗xx𝑥𝑇𝛿(𝑥𝑇𝐾∗
𝑗
𝑥)d𝑡. (29)

Applying the Dirac delta function’s sifting property, the
explicit formula is obtained:

d𝐽

d𝐾∗
𝑗

= −𝑐2

𝑠∑
𝑖=1

𝑝𝑇(𝜏𝑖)𝐵𝑗𝑥(𝜏𝑖)𝑥(𝜏𝑖)𝑥
𝑇(𝜏𝑖), (30)

where 𝜏1, … , 𝜏𝑠 denotes the sequence of time instants
when the argument of the Dirac delta function in
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Equation (29) equals zero:

{𝜏1,⋯, 𝜏𝑠} = {𝑡 ∈ [0, 𝑇𝑙] ∶ 𝑥𝑇(𝑡)𝐾∗
𝑗
𝑥(𝑡) = 0, 𝑗 = 1,⋯,𝑚}.

(31)
To evaluate the cost derivative Equation (30) and per-

form the updating of the policy parameters Equation (15),
the method has to rely on the information of the state
𝑥(𝑡) and adjoint state 𝑝(𝑡) for 𝑡 ∈ [0, 𝑇𝑙]. While the state
is assumed to be measurable or accessible through a state
observer, the collection of the adjoint state requires an inte-
gration of the differential equation (19). The right-hand
side of Equation (19) includes the Dirac delta function
term, so that the solution is piecewise continuous and com-
posed of a set of limiting functions; see Nedeljkov and
Oberguggenberger (2012, Proposition 2.1). A convenient
way to generate the trajectory of 𝑝(𝑡) is to start by detecting
the sequence of time instants 𝜏1, … , 𝜏𝑠 as in Equation (31).
Next, the sequence of time steps 0 = 𝑡0, 𝑡1, … , 𝑡𝑣 = 𝑇𝑙 is
assumed for the purpose of the backward integration of the
equation:

�̇�(𝑡) = −𝐴𝑇𝑝(𝑡) −

𝑚∑
𝑗=1

(
𝑐1 + 𝑐2 

(
𝑥𝑇(𝑡)𝐾∗

𝑗
𝑥(𝑡)

))
𝐵𝑇
𝑗
𝑝(𝑡)

+𝑄𝑥(𝑡), 𝑝(𝑇𝑙) = 0 (32)

for 𝑡 ∈ [𝜏∗
𝑠 , 𝑇𝑙]. Here, 𝜏∗

𝑠 denotes the time step that is the
closest to the time instant 𝜏𝑠, that is,

𝜏∗
𝑠 = argmin

𝑖=0,1,⋯,𝑣
|𝑡𝑖 − 𝜏𝑠|. (33)

Then, for 𝑡 = 𝜏∗
𝑠 the following jump is performed:

𝑝(𝜏∗
𝑠 ) = 𝑝(𝜏∗

𝑠 ) + Δ𝑝(𝜏∗
𝑠 ), (34)

where the increment of the adjoint state Δ𝑝(𝜏∗
𝑠 ) is com-

puted applying the Dirac delta function’s sifting property
and the specific structuring of the right-hand side of
adjoint state dynamical equation (19):

Δ𝑝(𝜏∗
𝑠 ) = 𝑐2𝑝

𝑇(𝜏∗
𝑠 )𝐵𝑗𝑥(𝜏

∗
𝑠 )
(
𝐾∗

𝑗
+ 𝐾∗

𝑗

𝑇
)
𝑥(𝜏∗

𝑠 ). (35)

Next, taking into account the value of 𝑝(𝜏∗
𝑠 ) updated

by the jump Equation (34), the backward integration of
Equation (32) is continued until 𝑡 = 𝜏∗

𝑠−1; that is, until
the time step that is the closest to the time instant 𝜏𝑠−1

and found in analogy to Equation (33). Again, a jump
for 𝑡 = 𝜏∗

𝑠−1 is made in the same manner as in Equa-
tion (34). The operation is repeated unless 𝑡 = 𝑡0. A
complete procedure for updating the policy parameters
is demonstrated in Algorithm 1. In Figure 2, the RL pro-

A l g o r i t hm 1 Iterative learning algorithm to update the policy
parameters 𝐾∗

1 , … , 𝐾∗
𝑚.

Step 1. Set 𝑧 = 0 and the initial matrices 𝐾∗(𝑧)
𝑗 = 𝐾0

𝑗 , 𝑗 = 1,… ,𝑚

using Eq. (6).Select small positive numbers
𝛼1, … , 𝛼𝑚, 𝜖 ∈ (0, 1).
Set the maximal number of iterations 𝑧𝑚𝑎𝑥 .
Select the learning time window [0, 𝑇𝑙].

Step 2. Apply the policy 𝑢1, … , 𝑢𝑚 as in Eq. (4).
Collect the state information 𝑥(𝑡) for 𝑡 ∈ [0, 𝑇𝑙].

Step 3. Using the state trajectory 𝑥(𝑡) detect the time instants as
in Eq. (31) and compute the adjoint state trajectory
𝑝(𝑡) for 𝑡 ∈ [0, 𝑇𝑙] employing backward integration
and Eqs. (32)–(35).

Step 4. Evaluate the derivatives d𝐽

d𝐾∗
𝑗

, 𝑗 = 1,… ,𝑚 as in Eq. (30)

using the trajectories 𝑥(𝑡), 𝑝(𝑡) and matrices 𝐾∗(𝑧)
𝑗

,
𝑗 = 1,… ,𝑚.

Step 5. Set 𝑧 = 𝑧 + 1 and compute the updated
policy parameters 𝐾∗(𝑧)

𝑗 , 𝑗 = 1,… ,𝑚 using Eq. (15) and

𝐾
∗(𝑧−1)
𝑗

, d𝐽

d𝐾∗
𝑗

, 𝑗 = 1,… ,𝑚.

For every 𝑗 = 1,… ,𝑚 project matrix 𝐾
∗(𝑧)
𝑗

by Eq. (14)
onto admissible set∗

𝑗 , 𝐾
∗(𝑧)
𝑗

= Proj∗
𝑗
(𝐾

∗(𝑧)
𝑗

).

Step 6. Check if any of the terminal conditions is
fulfilled:‖ d𝐽

d𝐾∗
‖|𝐾∗=𝐾∗(𝑧−1) < 𝜖 or 𝑧 = 𝑧𝑚𝑎𝑥 .

If yes, then STOP. Otherwise go to Step 2.

cess is visualized in the context of an actor–environment
interaction.

Remarks 1.

R1. The value of the cost derivative in Equation (30)
is related to the number of time instants 𝜏1, … , 𝜏𝑠
defined in Equation (31). To guarantee a substantial
decrease of the cost functional value when executing
the sequence Equation (15), the selection of the step
sizes 𝛼1, … , 𝛼𝑚 ∈ (0, 1) in Step 1 should depend on the
number 𝑠, and may vary for subsequent iterations 𝑧.
Here, it will be assumed that 𝛼𝑗 = �̄�𝑗∕𝑠, 𝑗 = 1,… ,𝑚

for some small positive numbers �̄�1, … , �̄�𝑚.
R2. Respecting the structuring of the admissible sets

Equation (14), the projection Proj𝑗
(𝐾∗

𝑗
) = {𝐾

∗𝑗
𝑞𝑟 }

𝑛
𝑞,𝑟=1

used in Step 5 is defined as follows:

𝐾
∗𝑗
𝑞𝑟 =

⎧⎪⎨⎪⎩
𝐾∗

𝑚𝑖𝑛
if 𝐾

∗𝑗
𝑞𝑟 < 𝐾∗

𝑚𝑖𝑛
,

𝐾
∗𝑗
𝑞𝑟 if 𝐾∗

𝑚𝑖𝑛
≤ 𝐾

∗𝑗
𝑞𝑟 ≤ 𝐾∗

𝑚𝑎𝑥

𝐾∗
𝑚𝑎𝑥 if 𝐾

∗𝑗
𝑞𝑟 > 𝐾∗

𝑚𝑎𝑥.

(36)

R3. The norm of the cost derivative in the terminal con-
dition in Step 6 is defined as the maximal value of
the absolute entries of matrices Equation (30) for
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F IGURE 2 Scheme of the reinforcement learning process. Updating the control policy parameters 𝐾∗
1 , … , 𝐾∗

𝑚 to the unknown excitation
force is based on the actor–environment (controller–dynamic system) interaction.

𝑗 = 1,… ,𝑚, that is,

‖‖‖‖ d𝐽

d𝐾∗

‖‖‖‖ = max𝑗=1,..,𝑚max𝑞,𝑟=1,..,𝑛

||||||
d𝐽

d𝐾
∗𝑗
qr

|||||| . (37)

4 COMPARATIVE CONTROLS

To assess the efficiency of the developed method, it will be
compared with the optimal open-loop solution, a heuris-
tic control, and a passive strategy. The focus will be on
optimality in suppressing the transient vibration in the
control phase I. For that purpose, the open-loop optimal
control for 𝑡 ∈ [0, 𝑇𝑓] will be computed assuming a com-
plete information of the excitation 𝑓(𝑡). An examination
of the overall stabilization capabilities, including the con-
trol phase I and the free vibration in the control phase II
(i.e., for 𝑡 ∈ [0, 𝑇𝑐]), will be performed by comparison to
the heuristic and passive strategies.

4.1 Open-loop optimal control

The open-loop optimal control 𝑢𝑂
1 (𝑡), … , 𝑢𝑂

𝑚(𝑡) for 𝑡 ∈

[0, 𝑇𝑓] will be established as the solution to the problem
of minimizing the cost functional 𝐽(𝑇𝑓) as in Equation (2),
that is,

{𝑢𝑂
1 ,⋯, 𝑢𝑂

𝑚} = argmin
𝑢1,⋯,𝑢𝑚∈

𝐽(𝑇𝑓)

=
1

2 ∫
𝑇𝐹

0

𝑥𝑇(𝑡)Qx(𝑡)d𝑡

subject to �̇�(𝑡) = Ax(𝑡) +
𝑚∑

𝑗=1

𝑢𝑗(𝑡)𝐵𝑗𝑥(𝑡) + 𝑓(𝑡),

𝑥(0) = 𝑥0. (38)

Assuming the set of admissible controls  =

[𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] and employing the Pontryagin Maximum
Principle (Pontryagin et al., 1962) lead to the following
solution to the problem Equation (38):

𝑢𝑂
𝑗
(𝑡) =

{
𝑢min, 𝑝

𝑇(𝑡)𝐵𝑗𝑥(𝑡) ≤ 0

𝑢max, 𝑝
𝑇(𝑡)𝐵𝑗𝑥(𝑡) > 0, 𝑗 = 1,⋯,𝑚,

(39)

where 𝑝(𝑡) stands for the adjoint state that is computed
using the Hamiltonian associated to the problem Equa-
tion (38) (seeMohler, 1973). To determine the trajectories of
𝑢𝑂
1 (𝑡), … , 𝑢𝑂

𝑚(𝑡), the method based on the gradient descent
will be used (see Pisarski, 2012).

4.2 Heuristic control

Heuristic control is based on the concept of instantaneous
optimization of the rates of change of the system energy
(Pisarski, 2018). The control functions 𝑢𝐻

1 (𝑡), … , 𝑢𝐻
𝑚(𝑡) for

𝑡 ∈ [0, 𝑇𝑐] that provide the best instantaneous decrease of
the energy 𝐸(𝑡) (see Equation (3) are given as the solution
to the following problem:

𝑢𝐻
𝑗
(𝑡) = argmin

𝑢1,⋯,𝑢𝑚∈
�̇�(𝑡), 𝑗 = 1,⋯,𝑚. (40)

Computing the time derivative of the energy function
(see Equation 3):

�̇� = �̇�𝑇Qx + 𝑥𝑇𝑄�̇�, (41)
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F IGURE 3 Scheme of the system used in the simulations: A simply supported aluminium beam subjected to unknown excitation and
equipped with 11 state sensors and a semi-active device of controlled stiffness and damping parameters

using the symmetry of the matrix 𝑄 and inserting the state
equation, Equation (1), into Equation (41) leads to

𝑢𝐻
𝑗
(𝑡) =

{
𝑢min, 𝑥

𝑇(𝑡)𝑄𝑗𝐵𝑗𝑥(𝑡) ≥ 0

𝑢max, 𝑥
𝑇(𝑡)𝑄𝑗𝐵𝑗𝑥(𝑡) < 0, 𝑗 = 1,⋯,𝑚.

It can be observed that the control Equation (42) guar-
antees the asymptotic stability of Equation (1) if 𝑓(𝑡) = 0

and 𝐴 is a Hurwitz matrix (the last condition is fulfilled
for a majority of structures as a consequence of material or
viscous damping).

4.3 Passive strategy

In this method, constant control functions 𝑢𝑃
1 (𝑡), … , 𝑢𝑃

𝑚(𝑡)

for 𝑡 ∈ [0, 𝑇𝑐] will be assumed, where each actuator oper-
ates at themaximal admissible value; that is, 𝑢𝑃

𝑗
(𝑡) = 𝑢𝑚𝑎𝑥,

𝑗 = 1,… ,𝑚. In the majority of the semi-active controlled
structures, this operation is equivalent to the optimal
passive strategy (see, e.g., Szmidt et al., 2017).

5 CASE STUDY

5.1 The analyzed structure

A span structure supported by a semi-active actuator will
be investigated as depicted in Figure 3. For the span, a
slender elastic body is assumed that is subjected to small
deflections. The height and the depth of the span are small
when compared to the length 𝐿. The span can be thus
represented by the Euler–Bernoulli beam equation param-
eterized by the bending stiffness 𝐸𝐼 and length density 𝜇.
It is subjected to an external damping of air that is char-

TABLE 1 Parameters of the investigated structure and actuator

Length of the beam (𝐿) 1 (m)
Young’s modulus (𝐸) 70 (GPa)
Moment of inertia (𝐼) 0.7142 ⋅ 10−10 (m4)
Mass per unit length (𝜇) 0.2 (kg/m)
External damping coefficient (𝜎) 0.01 (Ns/m)
Actuator’s stiffness coefficient (𝑘) 200 (N/m)
Actuator’s damping coefficient (𝑐) 0.5 (Ns/m)

acterized by the coefficient 𝜎. The semi-active actuator
is attached at position 𝑎𝑢 = 0.4𝐿. Note that the ith mode
shape of the assumed simply supported beam at the coor-
dinate 𝜉 is characterized by 𝜃𝑖(𝜉) = sin (𝑖𝜋𝜉∕𝐿), and for the
first fourmodes 𝑖 = 1, … , 4 the assumed actuator’s position
guarantees 𝜃𝑖(𝑎𝑢) ≠ 0. Therefore, the actuator’s position
allows the first four modes to be controlled, but besides, it
is selected arbitrarily. For the actuator, a controlled input
𝑢 is assumed that influences the damping 𝑐(𝑢) and stiff-
ness 𝑘(𝑢) parameters. Each of these parameters depends
linearly on the control variable, that is,

𝑘(𝑢) = uk, 𝑐(𝑢) = uc, (43)

where 𝑘 and 𝑐 are assumed to be constant. The force
generated by the actuator is assumed to be equal to the
sum of the elastic and damping forces that are, respec-
tively, proportional to the beam’s traverse deflection and
velocity at point 𝑎𝑢. The unknown external force 𝐹 is of
short duration and acts on the span at point 𝑎𝐹 = 0.6𝐿.
The parameters assumed for the simulations are listed in
Table 1.
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A deflection of the span at the coordinate 𝜉 and time 𝑡 is
denoted by𝑤(𝜉, 𝑡). The Dirac delta function 𝛿(𝜉) is used to
describe the contact point between the span and actuator
or external force. Based on these assumptions, the struc-
ture can be represented by the following partial differential
equation:

EI
𝜕4𝑤(𝜉, 𝑡)

𝜕𝜉4
+ 𝜎

𝜕𝑤(𝜉, 𝑡)

𝜕𝑡
+ 𝜇

𝜕2𝑤(𝜉, 𝑡)

𝜕𝑡2

= −

(
𝑢(𝑡)kw(𝑎𝑢, 𝑡) + 𝑢(𝑡)𝑐

𝜕𝑤(𝑎𝑢, 𝑡)

𝜕𝑡

)
𝛿(𝜉 − 𝑎𝑢)

+𝐹(𝑡)𝛿(𝜉 − 𝑎𝐹). (44)

The left-hand side of Equation (44) consists of the com-
mon elements of the Euler–Bernoulli beam equation that
characterize the potential, air damping, and inertial forces
of the span. On the right-hand side there are the terms
that stand for the viscoelastic forces generated by the
semi-active actuators and unknown force acting on the
structure. The assumed endpoint supports (see Figure 3)
enforce the boundary conditions:

𝑤(0, 𝑡) = 0, (𝐿, 𝑡) = 0,
𝜕2𝑤(0,𝑡)

𝜕𝜉2
= 0,

𝜕2𝑤(𝐿,𝑡)

𝜕𝜉2
= 0.

For each simulation, a zero initial condition is assumed:

𝑤(𝜉, 0) = 0, �̇�(𝜉, 0) = 0for𝜉 ∈ [0, 𝐿]. (46)

The finite element method is employed to represent
Equation (44) in the form of an ordinary differential
equation, as in Equation (1). For the span structure, 10
identical elements and 11 uniformly distributed nodes
are used (nodes 1 and 11 are located at positions 𝜉 = 0

and 𝜉 = 𝐿, respectively). Introducing the vector of nodal
displacements (𝑌1, … , 𝑌11) = (𝑤1, … ,𝑤11) (𝑤𝑖 , 𝑖 = 1, … , 11

represents the span’s displacement at the 𝑖th node’s posi-
tion) and angles of rotation (𝑌12, … , 𝑌22) = (𝜙1, … , 𝜙11)

(𝜙𝑖 , 𝑖 = 1, … , 11 represents the span’s angle of rotation
at the 𝑖th node’s position), the system Equation (44)
can be approximated by the second-order differential
equation:

𝑀�̈�(𝑡) + 𝐷�̇�(𝑡) + 𝑆𝑌(𝑡)

= −𝑢(𝑡)𝐻2�̇�(𝑡) − 𝑢(𝑡)𝐻1𝑌(𝑡) + �̄�(𝑡) (47)

In Equation (47),𝑀, 𝐷, and 𝑆 are, respectively, the 22 ×

22 mass, damping, and stiffness matrices, 𝐻1,𝐻2 are the
22 × 22matrices that accommodate the elastic and damp-
ing forces generated by the actuators, and �̄� represents the

22 × 1 vector that incorporates an unknown external force.
The composition of these terms results from a standard
finite element approach that involves the shape functions
based on a third-degree polynomial (Bathe, 1996). Define
the state vector:

𝑥 = [𝑥1,⋯, 𝑥44]
𝑇 = [𝑌1,⋯,𝑌22, �̇�1,⋯, �̇�22]

𝑇, (48)

the system matrices as:

𝐴 =

[
0 𝐼

−𝑀−1𝑆 −𝑀−1𝐷

]
, 𝐵 =

[
0 0

−𝑀−1𝐻1 −𝑀−1𝐻2

]
,

(49)
and the external force vector:

𝑓(𝑡) =

[
0

𝑀−1�̄�(𝑡)

]
. (50)

In Equation (49), 0 and 𝐼 denote 22 × 22 zero and iden-
tity matrix, respectively. In Equation (50), 0 stands for
22 × 1 zero vector. Using Equations (48)–(50), the system
Equations (44)–(46) can be eventually represented in the
form of a first-order ordinary differential equation, as in
Equation (1):

�̇�(𝑡) = Ax(𝑡) + 𝑢(𝑡)Bx(𝑡) + 𝑓(𝑡), 𝑥(0) = 0. (51)

From Equations (47) and (48), it follows that the energy
matrix 𝑄 in Equation (3) is computed as:

𝑄 =

[
𝑆 0

0 𝑀

]
. (52)

To reconstruct the state vector Equation (48), it is
assumed that 11 state sensors are located at the structure’s
node positions (see Figure 3). The sensors permanently
collect the local information of the transverse displace-
ments 𝑤1,… ,𝑤11, the transverse velocities �̇�1, … , �̇�11, the
angles of rotation 𝜙1, … , 𝜙11, and the angular velocities
�̇�1, … , �̇�11.

5.2 Controller settings

For each control function 𝑢 (Section 3.1), 𝑢0 (Section 4.1),
𝑢𝐻 (Section 4.2), and 𝑢𝑃 (Section 4.3), it is assumed
that 𝑢𝑚𝑖𝑛 = 0.02 and 𝑢𝑚𝑎𝑥 = 1. To simulate the transient
response of the semi-active device, any change between
the extreme control values is realized at a constant rate,
and this change takes 0.002 (s); for an alternative filter-
ing approach, see Wang and Adeli (2015a). For the control
time, 𝑇𝑐 = 2 (s) is selected (see Figure 1). An unknown
excitation force 𝐹(𝑡) ≠ 0 is acting on a structure for 𝑇𝑓 =

0.2 (s).
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For the designed RL algorithm, the maximal number of
iterations 𝑧𝑚𝑎𝑥 = 500 (Step 1) was assumed and the termi-
nal condition parameter 𝜖 = 0.001 (Step 6). The learning
process was repeated for three lengths of the learning time
window: 𝑇𝑙 = 0.4 𝑇𝑓 , 𝑇𝑙 = 0.75 𝑇𝑓 , and 𝑇𝑙 = 𝑇𝑓 . Based on
several test runs, the step size for the updating sequence
Equation (15) was selected as 𝛼𝑗 = 0.0015∕𝑠 for 𝑇𝑙 = 0.4 𝑇𝑓

and 𝑇𝑙 = 0.75 𝑇𝑓 , and 𝛼𝑗 = 0.0005∕𝑠 for 𝑇𝑙 = 𝑇𝑓 , where 𝑠

was computed at each iteration using Equation (31) (see
Step 1 and remark R1). To solve the adjoint state equa-
tion (Step 3), the Runge–Kutta fourth-order scheme was
employed with a time step of 0.0001 (s). The controller was
implemented in theMATLAB programming language and
run using a workstation with an Intel Xeon, 3.00 GHz, 16
GB, that operated on the Linux platform.

5.3 Simulation results

The proposed method will be examined for three scenar-
ios of the external excitation force𝐹(𝑡). In the first scenario
(Case A), the excitation will repeat at each learning itera-
tion with an identical frequency. The convergence of the
policy parameters will be then analyzed, as well as the
stabilization performance, in comparison to the optimal,
heuristic, and passive strategies. The two subsequent sce-
narios (Cases B and C) will validate the robustness of
the learning process. Here, the policy parameter will be
updated for the excitation forcewith either a randomly per-
turbed frequency (Case B) or an additional high-frequency
harmonic perturbation of a random amplitude (Case C).
For the comparisons, the cost functional as in Equation (2)
will be used that is computed either for the transient vibra-
tion in the control phase I—that is, applying 𝐽(𝑇𝑓)—or for
the overall process, including the transient and free vibra-
tion in control phases I and II, assuming 𝐽(𝑇𝑐). Finally, the
computational effort will be assessed by varying the num-
ber of finite elements that compose the structure from 10
to 100.

5.3.1 Case A

The external excitation is assumed to constantly repeat
for 𝑇𝑓 = 0.2 (s) with an identical characteristic given by
𝐹(𝑡) =  sin(2𝜋𝜔𝑡), where amplitude  = 100 (N) and
frequency𝜔 = 25 (Hz) are constant. The duration between
subsequent repetitions is assumed to be sufficiently large.
Therefore, for each repetition, zero initial conditions are
assumed for Equation (51). It can be emphasized that
the specified excitation parameters are unknown to the
designed controller. The reader can also observe that
the proposed controller does not require any informa-

F IGURE 4 Evolution of the derivative norm with respect to
the updating iteration for the assumed learning time windows. For
each case, the norm is normalized to its initial value.

F IGURE 5 Evolution of the cost functional value computed
for the assumed learning time windows. For each case, the cost is
normalized to its initial value.

tion on which point of a structure the force is acting
on.
To investigate the proposed control learning process

realised through Algorithm 1, the evolution of the deriva-
tive norm (see Equation 37) with respect to the updating
iterations can be analyzed for the assumed learning time
windows, as depicted in Figure 4. For each case, the opti-
mization procedure was terminated by the condition 𝑧 =

𝑧𝑚𝑎𝑥. For each of the curves, smooth sections can be
observed that are separated by instant jumps. The lat-
ter indicates the iterations where the derivative changes
the number 𝑠 of added up components (see Equation 31).
Although there are the sections where the value of the
derivative norm is increasing, the general downward trend
(for each case the final value is lower than the initial
one) validates the convergence of the sequence for updat-
ing the policy parameter Equation (15). The convergence
of the steepest gradient procedure can also be inspected
by analyzing the evolution of the cost functional value
Equation (2), as presented in Figure 5. Here, a substan-
tial decrease in the value of the cost functional can be
observed for each of the assumed learning time windows
𝑇𝑙 = 0.4 𝑇𝑓 , 𝑇𝑙 = 0.75 𝑇𝑓 , and 𝑇𝑙 = 𝑇𝑓 . The notably slower
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TABLE 2 Comparison of the cost functional 𝐽(𝑇𝑓) obtained in the case of the designed method and comparative controls. For each of the
control cases, the values are normalized to the passive strategy.

RL control
Passive strategy 𝑻𝒍 = 𝟎.𝟒𝑻𝒇 𝑻𝒍 = 𝟎.𝟕𝟓𝑻𝒇 𝑻𝒍 = 𝑻𝒇 Heuristic control Optimal control

Case A 𝐽(𝑇𝑓) 1.0000 0.6416 0.6412 0.6956 0.8186 0.6340

F IGURE 6 Comparison of the beam’s deflection for the
considered controllers measured for the control phase I at the
actuator’s position

convergence rate in the case of 𝑇𝑙 = 𝑇𝑓 follows from the
selection of a lower step size compared to the remaining
cases (see Section 5.2). This selection was motivated by
the fact that a longer learning time window has a larger
variation in number 𝑠 (see Equation 31), which in turn
implies a larger variation in the derivative value Equa-
tion (30). The assumed lower step size in the case of the
largest time window allowed overshooting to be avoided
and guaranteed a stable reduction of the cost functional
value. It should be noted that a too short learning timewin-
dow may significantly degrade the control efficiency. The
piecewise sections in the cost trajectories are concerned
with the discrete-time solution of Equation (51), which for
some subsequent algorithm iterations results in identical
switching times of the control policy functionEquation (4).
The effect of some policy parameter updates on the state
response cannot be then detected.
After completing Algorithm 1 for 𝑇𝑙 = 0.4 𝑇𝑓 , 𝑇𝑙 =

0.75 𝑇𝑓 , and 𝑇𝑙 = 𝑇𝑓 , the comparative study can be per-
formed. Regarding the assumed cost functional Equa-
tion (2), which is computed for the transient state vibra-
tion at the control phase I—that is, for 𝑡 ∈ [0, 𝑇𝑓] (see
Section 3)—the RL-based control (in short, RL control)
exhibits a comparable performance for all of the assumed
learning time windows (see Table 2). Moderately poorer
efficiency in the case of 𝑇𝑙 = 𝑇𝑓 is concerned with the pre-
viously investigated convergence in the learning protocol.
Assuming 𝑇𝑙 = 0.75 𝑇𝑓 , the RL control is marginally out-
performed by the optimal one by 1.13%. Compared to the
heuristic and passive strategies, this RL control obtains a
cost reduction of 27.6% and 55.9%, respectively. Figure 6
depicts the beam’s deflection simulated for the control

F IGURE 7 Comparison of the system’s energy for the
considered controllers measured for the control phase I

phase I at the location of the semi-active device 𝑎𝑢 for the
RL controller of the learning time window 𝑇𝑙 = 0.75 𝑇𝑓

with the other controllers. It can be observed that the RL
and optimal control result in almost identical responses for
𝑡 < 0.5𝑇𝑓 . For the remaining time, a gradual divergence of
the trajectories generated by the RL and optimal control
can be detectedwith 30.6%of the relative difference in their
last peak amplitudes at 𝑡 ≈ 0.9 𝑇𝑓 . A significantly larger
divergence in the deflection trajectories can be found in the
case of heuristic and passive strategies, where (compared
to the RL control) the final peak amplitude has increased
by 84.8% and 221%, respectively. The similarity of the
dynamic response of the system to the RL and optimal con-
trol is also confirmed by the characteristics of the energy
function Equation (3), as demonstrated in Figure 7. For
the ending time of control phase I, the RL control results
in a negligible increase of 1.91% of the energy when com-
pared to the optimal solution. For the heuristic and passive
methods, this increase is 31.0% and 72.1%, respectively.
Figure 8 compares the switching patterns of the RL con-

trol of 𝑇𝑙 = 0.75 𝑇𝑓 and the optimal open-loop control.
They do not match, although both functions are gener-
ated through the optimization of the same cost functional.
This mismatch is essentially concerned with the state-
feedback structuring that is imposed on the RL control.
To a lesser, but not negligible, extent, the observed mis-
match is caused by different selections of the time horizon
assumed for the optimization (respectively, 0.75 𝑇𝑓 and 𝑇𝑓

in the case of the RL and optimal control). Even though
the RL control is unable to reproduce the optimal control
pattern, the critical switches of the optimal control are here
replicatedmuchmore accurately than in case of the heuris-
tic control. In particular, the first two switching actions of
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F IGURE 8 Comparison of the control signals for the control
phase I

the RL and optimal controls at 𝑡 ≈ 0.03 𝑇𝑓 and 𝑡 ≈ 0.11 𝑇𝑓

almost coincide, while these switching times are evidently
advanced and retarded in the case of the heuristic control.
The overall stabilization performance of the proposed

method can be justified by investigating the deflection
(Figure 9a), energy (Figure 9b), and frequency (Figure 9c)
characteristics that are obtained for the transient and free
vibration—that is, for 𝑡 ∈ [0, 𝑇𝑐] (control phases I and II)—
where the RL control of 𝑇𝑙 = 0.75 𝑇𝑓 and the heuristic
strategy were employed. For deflection and energy tra-
jectories, the RL control resulted in a reduction of the
peak amplitudes for phase I and faster convergence to the
equilibrium for phase II. The reduction of the deflection
amplitudes is also confirmed by the frequency characteris-
tics (Figure 9c), wherewe observe a decrease of 19.4% of the
peak value at 6 Hz, which corresponds to the first natural
frequency of the beam structure. The implementation of
the RL control also resulted in a decrease of the cost func-
tional value 𝐽(𝑇𝑐) by 15.2% and 47.8% when compared to
the heuristic and passive methods, respectively.

5.3.2 Case B

The following simulation was carried out to investigate
how the changes in the frequency of the excitation force
during the realization of Algorithm 1 influence the effi-
ciency of the resulting RL control. For this purpose, the
learning time window 𝑇𝑙 = 0.75 𝑇𝑓 was selected and 𝑧 =

500 iterations were performed following Steps 2–6. At each
iteration, for the excitation force, 𝐹(𝑡) =  sin(2𝜋(𝜔 +

𝛿𝜔(𝑧)) 𝑡) was assumed. Here, similarly to Case A, the con-
stant amplitude  = 100 (N) was used, but the frequency
was given by 𝜔 + 𝛿𝜔(𝑧), where 𝜔 = 25 (Hz) and 𝛿𝜔(𝑧) is
a perturbation that was selected randomly at each itera-
tion 𝑧 and fulfilled the condition max𝑧=1,…,500|𝛿𝜔(𝑧)|∕𝜔 ≤
𝛿𝜔. The learning protocol was performed while assum-
ing different frequency perturbation magnitudes 𝛿𝜔, from
0.05 to 0.20. For each perturbation magnitude, the algo-
rithm was repeated three times. Next, each of the obtained

RL controls was applied to the unperturbed case—that
is, assuming 𝐹(𝑡) =  sin(2𝜋𝜔𝑡). Eventually, for each per-
turbation magnitude, the cost functional value 𝐽(𝑇𝑓) was
computed and averaged for the assumed three repetitions.
The attained controls were compared to the correspond-
ing RL control computed in the previous section; that is,
for 𝛿𝜔 = 0 (see Table 3). The increase of the cost functional
value remains below 0.5% for all of the considered cases,
which confirms that moderate perturbations have no sig-
nificant impact on the control performance. The learning
protocol was also carried out for 𝛿𝜔 > 0.2, where difficul-
ties gradually appeared in selecting a relevant step size for
a stable cost descending (concernedwith an increased vari-
ation in the cost derivative values). As a result, there was a
loss in the control performance (8.2% increase in the cost
functional value for 𝛿𝜔 = 0.3).

5.3.3 Case C

In order to examine the developed method for a more
complex excitation force, Algorithm 1 was executed
assuming 𝐹(𝑡) =  sin(2𝜋𝜔𝑡) +𝑑(𝑧) sin(2𝜋𝜔𝑑𝑡). Here,
the first term stands for the dominant harmonic excita-
tion where—as in Case A—the constant amplitude  =

100 (N) and frequency 𝜔 = 25 (Hz) were assumed. The
second term characterizes an additional harmonic dis-
turbance of a constant frequency 𝜔𝑑 = 100 (Hz) and an
amplitude 𝑑(𝑧) that was randomly selected for each
learning iteration 𝑧 = 1,… , 500 and fulfilled the condi-
tion 0 ≤ max𝑧=1,…,500𝑑(𝑧) ≤ 𝑑. Assuming the learning
time window 𝑇𝑙 = 0.75 𝑇𝑓 , the procedure was carried out
for different values of 𝑑, ranging from from 20 to 100
(N); that is, 10%–50% of the amplitude  of the dominant
excitation. For each limiting value 𝑑 the procedure was
repeated three times. The obtained RL controls were then
applied in two scenarios. In the first scenario (Case C1),
it was assumed that the excitation force is unperturbed;
that is, inserting 𝐹(𝑡) =  sin(2𝜋𝜔𝑡). In the second sce-
nario (Case C2), the applied excitation force included the
additional harmonic disturbance with a constant ampli-
tude equal to half of the limiting value𝑑, namely, 𝐹(𝑡) =

 sin(2𝜋𝜔𝑡) + 0.5𝑑 sin(2𝜋𝜔𝑑𝑡). For each scenario and
limiting value 𝑑, the cost functional value 𝐽(𝑇𝑓) was
computed and averaged for the assumed three repeti-
tions (see Table 4). Analyzing the cost values obtained for
Case C1, where the drop of the control performance for
each of the perturbed cases remains below 1.9%, it can
be concluded that the learning algorithm is robust to dis-
turbances imposed on the dominant characteristic of the
excitation. Furthermore, the results obtained for Case C2
confirm that the method can be successfully applied for
more complex polyharmonic forces, also in the case of
random perturbations of the amplitude.
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(a)

(b)

(c)

F IGURE 9 Comparison of the beam’s deflection for the RL and heuristic controllers measured for control phases I and II at the
actuator’s position (a). Comparison of the system’s energy for the RL and heuristic controllers measured for control phases I and II (b).
Frequency characteristics of the deflection signals presented in (c)

TABLE 3 Comparison of the cost functional 𝐽(𝑇𝑓) in the case of the RL control of 𝑇𝑙 = 0.75 𝑇𝑓 where the updating algorithm is
performed with different magnitudes of perturbations in the frequency of the excitation force. For each perturbation magnitude the cost
functional value was averaged for the assumed three repetitions and normalized to the case with no perturbation.

Frequency perturbation 𝜹𝝎 = 𝟎 𝜹𝝎 = 𝟎.𝟎𝟓 𝜹𝝎 = 𝟎.𝟏𝟎 𝜹𝝎 = 𝟎.𝟏𝟓 𝜹𝝎 = 𝟎.𝟐𝟎

Case B 𝐽(𝑇𝑓) 1.0000 1.0002 1.0011 1.0026 1.0044

5.3.4 The computational effort

The final set of simulations was performed to investigate
the capabilities of the designed algorithm with respect to
systems with a larger number of state variables. The aim
was to analyze the computational time required for updat-

ing the policy parameter (Steps 3–6 in Algorithm 1), when
assuming different sizes for the dynamic Equation (51). In
Cases A–C, the investigated structure was represented by
10 finite elements that resulted in the state vector of 44
components. The learning procedure was repeated assum-
ing 20, 40, 60, 80, and 100 elements in the finite element
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TABLE 4 Comparison of the cost functional 𝐽(𝑇𝑓) in the case of the RL control of 𝑇𝑙 = 0.75 𝑇𝑓 where the updating algorithm is
performed with an additional harmonic disturbance of the constant frequency and a randomly selected amplitude limited by different
boundaries𝑑 . In Case C1, each value is averaged taking into account the assumed three repetitions and normalized to the case with no
disturbance; that is, when𝑑 = 0. In Case C2, each value is averaged taking into account the assumed three repetitions and normalized to the
case where the learning protocol was carried out for constant amplitude of the additional disturbance that was equal to the half of the limiting
value𝑑 .

Disturbance amplitude 𝒅 = 𝟎 𝒅 = 𝟐𝟎 𝒅 = 𝟒𝟎 𝒅 = 𝟔𝟎 𝒅 = 𝟖𝟎 𝒅 = 𝟏𝟎𝟎

Case C1 𝐽(𝑇𝑓) 1.0000 1.0001 1.0006 1.0033 1.0079 1.0186
Case C2 𝐽(𝑇𝑓) 1.0000 1.0002 1.0011 1.0016 1.0028 1.0074

TABLE 5 Comparison of the computational times required for
updating the policy parameter when assuming different numbers of
elements in the finite element model Equation (47)

Number of finite elements 10 20 40 60 80 100
Computational time (s) 0.077 0.124 0.552 0.818 1.209 8.163

model, which resulted in the state vector in Equation (51)
of the size 84, 164, 244, 324, and 404, respectively. The
greatest computational cost was concerned with the inte-
gration of the adjoint state equation in Step 3 (performed
using the Runge–Kutta fourth-order scheme), which for
the assumed time step of 0.0001 (s) and learning time
window 𝑇𝑙 = 0.75 𝑇𝑓 required 1500 time samples. The
obtained computational times are summarized in Table 5.
A single iteration in the case of 60 finite elements (244
components in the state vector) remained below 1 (s).
Furthermore, the use of the steepest descent approach to
update the policy parameter guaranteed that an increase
in the size of the system did not significantly influence the
rate of convergence in the overall learning process (in the
case of the 60 finite elements, the algorithm required 612
iterations to reach the same cost functional value as inCase
A). It can be concluded that the method can be effectively
used in multidimensional systems.

6 CONCLUSIONS

An RL-based semi-active control method for suppressing
structural vibration that is induced by unknown har-
monic excitation has been proposed. This method relies
on a state-feedback switching control law that includes a
parameter matrix to be updated bymeans of the developed
actor-only iterative learning algorithm. In view of the sta-
bilization performance, this method can be perceived as
suboptimal. Its efficiency has been validated via numerical
experiments for a span structure that is equipped with an
actuator of controlled stiffness and damping parameters.
In terms of the assumed energy-related cost functional,
the method resulted in a marginal degradation (of 1.13%)
when compared to the optimal open-loop control, while it

significantly outperformed a heuristic control (by 27.6%)
that employed an analogous control law and an identical
amount of state information. The relatively low computa-
tional burden of the proposed iterative learning algorithm
allows this method to be applied to multidimensional sys-
tems (a single iteration required less than 0.08 (s) for the
system represented by the state vector of 44 components).
The method has been designed and validated for repetitive
transient vibration. Nevertheless, assuming an appropri-
ately selected moving learning time window, the proposed
algorithm can also be adapted to a steady-state vibration.
The ongoingworks include the development of an adaptive
scheme to select the moving learning time window that
guarantees the best convergence of the updating sequence
and the design of a test stand platform that simulates a real
environment for experimental validation.
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APPENDIX: LIST OF SYMBOLS

𝑥, 𝑝 State and adjoint state vectors
𝑢1, … , 𝑢𝑚 Control policies
𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 Min and max admissible control value
𝐾∗

1 , … , 𝐾∗
𝑚 Iterated policy parameters

𝐾0
1 , … , 𝐾0

𝑚 Initial policy parameters
𝐴, 𝐵1, … , 𝐵𝑚 System matrices
𝑓 Excitation vector
𝐽 Cost functional
𝐸 Structural energy
𝑄 Energy weighting matrix
𝑉 Lyapunov function
𝑃 Solution to the Lyapunov equation
𝐻 Hamiltonian function
𝑡 Simulation time
𝑇𝑙 Learning time window
𝑇𝑓 , 𝑇𝑐 Force acting time, total control time
𝜏1, … , 𝜏𝑠 Switching times
𝑀,𝐷, 𝑆 Mass, damping, and stiffness matrices
𝐻1,𝐻2 Matrices accommodating control forces
𝐹 Excitation force
𝜔, Frequency and amplitude of 𝐹
𝜔𝑑 ,𝑑 Frequency and amplitude of the disturbance
𝑤 Deflection of the beam
𝑎𝑢, 𝑎𝐹 Positions of the actuator and excitation force
𝛼1, … , 𝛼1 Step sizes for policy parameter updating
𝑧𝑚𝑎𝑥 Maximal number of iterations
𝜖 Terminal condition parameter
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