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1. Introduction 

      Gum Metals is innovative β Ti alloy, 

characterized by outstanding properties, e.g. : a low 

value of Young's modulus ≈ 60 GPa (similar to 

bone), a large range of reversible strain up to 2.5% 

(10 times higher than other alloys), high strength 

(>1000 MPa), favorable machining properties, 

thermal characteristics stable in the range of -200°C 

to +250°C [1-3]. The unique properties combined to 

high biocompatibility of the alloy create large 

application possibilities in biomedical industry, 

rehabilitation and sport facilities, robotics, 

automotive and space [4,5]. The goal of the research 

is to investigate the impact of the strain rate on the 

mechanical characteristics, the related temperature 

changes and the microstructure evolution of the 

Gum Metal samples subjected to compression 

loading in a wide spectrum of the strain rates.   

2. Experimental details 

     To this end, a quasistatic testing machine MTS as 

well as Split Hopkinson Pressure Bar (SHPB) system 

was used [6]. The cylindrical samples 5 x 5 mm were 

used and the obtained strain rates equaled to 10-3s-1, 

1s-1, 940 s-1, 1460 s-1 and 2200 s-1. The results gained 

under quasi-static and dynamic loadings confirmed 

the high sensitivity to the strain rate (Fig. 1).   

Fig. 1 Stress vs. strain of Gum Metal at 2 quasi-

static and 3 dynamic compression loadings [7].  

 

      It was found that the elastic-plastic transition 

during quasi-static compression of the Gum Metal 

appears at the stress level between 900 MPa and 

1000 MPa, whereas under high strain rate loading 

~1200 ÷ 1400 MPa, respectively. Moreover, a little 

strain hardening was observed for the strain rate of 

10-3 s-1, whereas a significant strain softening is 

visible for the strain rate of 100 s-1 and at the higher 

strain rates. Furthermore, the temperature change of 

the Gum Metal sample was estimated by using a fast 

and sensitive infrared camera. The maximal 

temperature was estimated for the highest applied 

strain rate and equals over 200 ºC. Valuable results 

were also obtained from the structure investigations.  

A          

B     

Fig. 2 (A) SEM images of Gum Metal after 

dynamic testing at the strain rate of 2270 s-1 taken in 

the selected areas (a)-(d) chosen in Fig. 2 (B) [7]. 
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 Microstructural deformation mechanisms 

regulating strain hardening and strain softening 

were identified. A crack and an adiabatic shear band 

formed at ~ 45 deg with respect to the loading 

direction, and widely spaced deformation bands 

(kink bands) were observed (Fig. 2). Dislocations 

within the channels intersecting with twins may 

cause strain hardening while recrystallized grains 

and kink bands with crystal rotation inside the 

grains may lead to strain softening [7].  

The microstructural features of the Gum Metal 

samples after the loading and deformation were 

evaluated using optical microscopy SEM and EBSD 

techniques. Based on the experimental results, the 

mechanical responses of the Gum Metal have been 

described using the modified Johnson–Cook model.  

 
 

Fig. 3. Fitting the model curve of stress vs. strain to 

experimental data of Gum Metal under compression at 

the strain rate of 1 s-1 [7].  

3. Conclusions 

The drowned conclusions are as follows:  

1. The mechanical behavior of Gum Metal 

presented in the stress–strain curves obtained 

for the alloy tested under monotonic and 

dynamic loadings revealed a strain-softening 

effect which intensified with increasing strain 

rate.  

2. The plastic flow stress was observed to increase 

both for static and dynamic loading conditions 

with increasing strain rate. In turn, the strain 

rate sensitivity was seen to decrease with 

increasing strain rate.  

3. Microstructural deformation mechanisms 

regulating strain hardening and strain softening 

were identified. A crack and an adiabatic shear 

band formed at ~ 45 deg with respect to the 

loading direction, and widely spaced 

deformation bands (kink bands) were observed. 

Dislocations within the channels intersecting 

with twins may cause strain hardening while 

recrystallized grains and kink bands with crystal 

rotation inside the grains may lead to strain 

softening.  

4. Good agreement between the experimental and 

numerical data obtained using the modified 

Johnson–Cook model was achieved. 
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