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A B S T R A C T

Being able to reposition tumors from prone imaging to supine surgery stances is key for bypassing current
invasive marking used for conservative breast surgery. This study aims to demonstrate the feasibility of
using Digital Volume Correlation (DVC) to measure the deformation of a female quarter thorax between
two different body positioning when subjected to gravity. A segmented multipart mesh (bones, cartilage and
tissue) was constructed and a three-step FE-based DVC procedure with heterogeneous elastic regularization
was implemented. With the proposed framework, the large displacement field of a hard/soft breast sample
was recovered with low registration residuals and small error between the measured and manually determined
deformations of phase interfaces. The present study showed the capacity of FE-based DVC to faithfully capture
large deformations of hard/soft tissues.
1. Introduction

According to the World Health Organization, ‘‘as of the end of
2020, there were 7.8 million women alive who were diagnosed with
breast cancer in the past 5 years, making it the world’s most prevalent
cancer.’’ In breast cancer treatment, surgery is one of the most common
practices (DeSantis et al., 2019). In breast-conserving surgery, the imag-
ing procedure (i.e., MRI) is conducted in prone configurations while
surgery is performed in supine stance (Rajagopal, 2007; Rajagopal
et al., 2010; Georgii et al., 2016; Mazier et al., 2021). Thus, the surgeon
has to mentally predict tumor deformations or use invasive markings
such as harpoons or radioactive markers to follow tumor motions.
Numerical methods may bypass the marking step, which induces addi-
tional uncertainties of the procedure. Biomechanical simulations may
predict such complex tumor deformations yet require patient-specific
data (e.g., material properties, organ geometry, loading and boundary
conditions).

Accurately characterizing large and complex deformation fields, as
is likely to occur with soft tissues, is challenging and several studies
tackled such problem (Gavaghan et al., 2008; Rajagopal et al., 2008;
Lee et al., 2010). Few of them presented satisfying results or only
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validated surface displacement fields (Eiben et al., 2016). Most of the
time, these methods solely rely on the finite element method combined
with free-form deformers (e.g., B-spline warping of images) or are
lacking clinical validation. In this work, it is proposed to measure 3D
displacement fields based on ex vivo medical images. Usually, women
diagnosed with breast cancer undergo MRI and/or mammography,
which are the starting point of surgical procedures (Gavaghan et al.,
2008; Lee et al., 2010; Duraes et al., 2019). Digital Image Correlation
(DIC), stereocorrelation or Digital Volume Correlation (DVC) use simi-
lar inputs and provide experimentally measured displacement fields of
surfaces or in the bulk (Sutton et al., 2009; Sutton, 2013). DVC may
allow for the development of patient-specific models to estimate tumor
motions due to changes in stance between imaging and intra-operative
configurations, and will drastically enrich the surgeon’s knowledge,
thereby helping procedure planning. Previous studies showed the pos-
sibility of using DIC and stereovision principles on breasts to measure
surface stretches. Khatam et al. (2015) manually tracked drawn surgical
markers and then assessed surface stretches. Such approaches do not
give access to fields in the breast bulk, especially internal strain maps.

DVC is an experimental technique that allows for the measurement
of displacement fields in three dimensions (Bay et al., 1999). It is
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used to extract strain maps in solid mechanics, but mostly for stiff
materials (Bay, 2008; Buljac et al., 2018a) such as bones (Bay et al.,
1999; Liu and Morgan, 2007; Benoit et al., 2009; Hussein et al., 2012;
Gillard et al., 2014; Peña Fernández et al., 2022; Palanca et al., 2022;
Wu et al., 2022) and often relies on the hypothesis of infinitesimal
strains between two successive configurations to ensure convergence.
DVC is gaining interest in the biomechanical field (Palanca et al.,
2015; Disney et al., 2018; Dall’Ara et al., 2022). Recently, DVC was
applied to study the spine (Tozzi et al., 2017; Ruspi et al., 2019).
Several works used DVC to map strain fields for arteries (Santamaria
et al., 2020), tendons (Sartori et al., 2021), intervertebral disks (Dis-
ney et al., 2019, 2022), tissue interfaces with prosthetics (Rankin
et al., 2020) or even the mitral valve (Pierce et al., 2016). Optical
coherence elastography/tomography techniques (e.g., for the identifi-
cation of elastic properties) based on DVC with 3D infinitesimal strain
measurements were performed ex vivo on mesoscopic (i.e., millimetric
regions of interest) human (Nahas et al., 2013) and chicken (Meng
et al., 2019) breast tissues. As DVC requires high quality images to
properly converge, the regions of interest are usually of the order of
centimeters (due to technical limitations of setups). A breast subjected
to gravity from prone to supine positions undergoes large deformations,
which calls for registrations of large regions of interest via DVC. As
MRIs are expensive and uncomfortable, one envisions that only two
MRI scans would be performed. Therefore, two main challenges arise
when dealing with breasts, namely, the strain levels may become high
between two consecutive acquisitions (i.e., they do not satisfy the small
strain hypothesis) and the dimension of the region of interest may be
large.

The following study is a proof of concept that aims to prove the
feasibility of using DVC to measure experimental displacement fields
for a breast subjected to its weight when imaged in two different
angular configurations wrt. gravity. First, the image acquisition, pro-
cessing and mesh generation procedures are described. Then, DVC
and heterogeneous regularization are recalled. Next, a three-step DVC
pipeline is discussed to measure the large amplitude deformations of
the studied breast. Last, the results are presented and discussed.

2. Material and methods

2.1. Image acquisition

A left quarter of a thorax (of size 0.27m × 0.26m × 0.06m) was
extracted from a female corpse. Fifteen biomarkers were put on the
surface and inside the breast to provide some displacement informa-
tion (Fig. 1(a)). These markers were placed by the medical team and
assumed rigidly attached to the sample using an adhesive surface. The
breast was injected with physiological serum to get closer to an in vivo
configuration and to mimic its initial mechanical properties.

The medical images were acquired at Arnaud de Villeneuve Hospital
(Montpellier, France) by Prof. Guillaume Captier and AnatoScope com-
pany. The use for research purposes of body donations and removals
was in accordance with French law according to the decree of April 27,
2022. The patient-specific geometry was imaged via micro-computed
tomography using an RX Solutions scanner with a 0.34mm resolution.
This resolution may be considered as low-quality for tomographies as
the X-ray scanner allows for values down to 15 μm. The choice of such
resolution was motivated by 3 reasons. First, high-resolution acquisi-
tions are usually lengthy (i.e., between 3 to 4 h). Second, the cadaver
tissues will quickly degrade, thereby preventing from performing a
second acquisition. Last, the present CT-scans and clinical MRI images
have similar resolutions.

Two different configurations were acquired, namely, −45° and −60°
in the axial plane with no intermediate states (Fig. 1(b,c)). The angles
were reached using a inclined wooden support on which the breast
was fastened using four plastic straps to be compatible with medical
imaging procedures. The assembly was manually moved to go from
2

one configuration to the other. The hardware parameters are reported
in Appendix A. As the images were not acquired for DVC purposes,
different (Tukey) filtering values were used resulting in variable gray
level ranges.

2.2. Mesh generation

Based on the gray levels (Fig. 2(a)) and anatomic knowledge, three
entities (phases) were created, namely, breast tissue, bones, and carti-
lage. A growth from seeds algorithm was manually initialized (i.e., sev-
eral slices in each 𝑋, 𝑌 ,𝑍 direction of the volume were manually
‘‘painted’’ so the algorithm was able to identify regions and gray levels
belonging to each individual phase) within the 3D Slicer software (Fe-
dorov et al., 2012). The result was smoothed, thereby allowing for
mesh generations without too small interface segments as nodes in
different phases had to coincide on interfaces to enforce kinematic
compatibility. Last, an artificial outer layer (15 voxel (vx) thick) was
added to the tissue, see Fig. 2(b). This ‘‘artificial skin’’ was added to
help DVC register the external surface. Each mask was converted into
a sub-mesh and the considered mesh was the coarsest that was obtained
using ScanIP Simpleware software. With such mesh, sub-voxel elements
were avoided.

Fig. 2(c) shows the resulting volumetric meshes and screenshots of
Simpleware software, courtesy of Synopsys. The mesh was composed
of 41,454 linear tetrahedra with a characteristic element length of
9.3±2.8 vx (i.e., 3.2±0.9 mm). To avoid too small elements, 25 of them
with length less than 3 vx were deleted.

2.3. Regularized digital volume correlation

2.3.1. Digital volume correlation
DVC relies on the conservation of gray levels upon transformations

between two scanned configurations. The cost function 𝛷2
𝑐 to be min-

imized in global (e.g., FE-based) DVC is generally expressed as (Buljac
et al., 2018a)

𝛷2
𝑐 =

∑

𝑅𝑂𝐼
(𝐼0(𝐱) − 𝐼𝑡(𝐱 + 𝐮(𝐱)))2 (1)

here 𝐱 is the position of any voxel in the reference configuration,
(𝐱) the corresponding continuous displacement vector, and ROI the
egion of Interest. The gray levels corresponding to the 3D image of the
eference configuration are denoted by 𝐼0, and those of the deformed
onfiguration 𝐼𝑡.

In the present case, FE-based DVC was considered with 4-noded
etrahedra (i.e., T4 elements, Hild et al., 2016). The ROI to be registered
uring the minimization procedure was defined by the considered mesh
Fig. 2(c)). Consequently, the unknowns were the nodal displacements
athered in the column vector {𝜐𝜐𝜐} such that

(𝐱) =
∑

𝑖
𝜐𝑖 𝐍T4

𝑖 (𝐱) (2)

here 𝐍T4
𝑖 denotes the vectorial shape functions of T4 elements. A

odified Gauss–Newton scheme was used to minimize 𝛷2
𝑐 with respect

to the sought nodal displacements {𝜐𝜐𝜐} (Hild et al., 2016)

𝜐𝜐𝜐}⋆ = argmin
{𝜐𝜐𝜐}

𝛷2
𝑐 ({𝜐𝜐𝜐}) (3)

hich leads to iteratively solving linear systems of equations

𝐇]{𝛿𝜐𝜐𝜐} = {𝐡} (4)

here [𝐇] is the DVC Hessian matrix, {𝐡} the residual vector, and {𝛿𝜐𝜐𝜐}
he correction nodal displacement vector.
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Fig. 1. (a) Left quarter of a female thorax (0.27m×0.26m×0.06m in size) injected with physiological serum and fastened to a wooden plate using plastic straps. Fifteen biomarkers
were placed on the surface and inside the breast. −60◦ (b) and −45◦ (c) positions in the CT-scanner for the studied configurations.
Fig. 2. Phase-based mesh construction of the −60◦ configuration in the axial plane. (a) Phase segmentation (tissue in pink, bones in white and cartilage in yellow) shown on the
original scan. (b) Section of a segmented image with the different phases and the artificial skin layer that was added. (c) Phase-based mesh (courtesy of Synopsys) is shown on
the original scan.
2.3.2. Heterogeneous regularization
As noted in Section 2.1, the images were not originally acquired for

DVC purposes. In particular, the gray level contrast was not optimal.
To overcome this issue, mechanical regularization was considered. It
consists in adding a penalty term to mitigate displacement fluctuations.
In regularized DVC, equilibrium is enforced at the local level by intro-
ducing a cost function based on the equilibrium gap (in the absence of
body forces) (Claire et al., 2004)

[𝐊]{𝜐𝜐𝜐} = {𝐟res} (5)

where [𝐊] is the stiffness matrix, and {𝐟res} the residual force vector.
The principle of regularization is to supplement the minimized cost
function with the following penalty term

𝛷2
𝑚 = ‖{𝐟res}‖2 = {𝜐𝜐𝜐}⊤[𝐊]⊤[𝐊]{𝜐𝜐𝜐} (6)

One may note that the DVC Hessian matrix [𝐇] is a 0th order operator
with respect to displacements (i.e., [𝐇] depends on the shape functions
𝐍T4
𝑖 themselves, and not on any spatial derivative), and [𝐊] is a second

order operator (Mendoza et al., 2019); thus [𝐊]⊤[𝐊] is a fourth-order
operator. To have dimensional consistency between 𝛷2

𝑐 and 𝛷2
𝑚, a

regularization length 𝓁reg is defined so that the regularization weight
𝑤𝑚 ∝ 𝓁4

reg. The total cost function 𝛷2
tot

𝛷2
tot = 𝛷2

𝑐 +𝑤𝑚𝛷
2
𝑚 (7)

was minimized iteratively (Hild and Roux, 2012). Convergence was
reached when the L2-norm of the displacement corrections becomes
less than 10−2 vx.

In the present study, the ROI covered three different materials
(i.e., soft tissue, cartilage, and bones). To account for the fact that their
elastic properties were very different, heterogeneous regularization was
utilized (Tsitova et al., 2021). As a consequence, each element 𝑒 was
assigned an elastic contrast 𝐶𝑒 whose value was the ratio of the Young’s
modulus of the phase it belonged to divided by that of the soft tissue.
Thus, 𝐶𝑒 > 1 corresponds to a phase stiffer than the soft tissue.
3

The regularization length, 𝓁reg, scales with the square root of the
elastic contrast 𝐶𝑒 (Naylor et al., 2019). For example, if 𝐶𝑒 = 100,
then the regularization length is ten times higher (i.e.,

√

100 factor) for
the considered element in comparison to the tissue elements. In all the
analyses reported herein, the regularization lengths refer to the softest
phase.

A convergence study was carried out to determine the best regu-
larization length. Let us refer to the bone with the index ∙𝑏, cartilage
with the index ∙𝑐 , and to tissue with the index ∙𝑡. The bone Young’s
modulus was found to vary between 5 to 50 GPa (Rho et al., 1993;
Hunt et al., 1998; Seedhom et al., 2004), and that of cartilage from
8 to 40 MPa (Forman and Kent, 2011; Huwe et al., 2018; Griffin
et al., 2020). Breasts are made of different materials such as adipose,
fibroglandular, skin, or fascia tissues. In addition to a wide variability
between patients, the differences between in vivo/ex vivo or compres-
sion/tension mechanical tests give a large range of Young’s moduli
ranging between 0.2 to 28 kPa (Payan and Ohayon, 2017; Mîra et al.,
2018). Therefore, the elastic contrasts were set to 𝐶𝑏 = 106, 𝐶𝑐 = 104

and 𝐶𝑡 = 1. Comparisons were also performed to results with two other
contrasts, namely, 𝐶𝑏 = 103, 𝐶𝑐 = 102, 𝐶𝑡 = 1 and 𝐶𝑏 = 𝐶𝑐 = 𝐶𝑡 = 1
(i.e., homogeneous properties).

2.3.3. DVC steps to measure breast deformation
Regularized DVC was applied to measure breast deformation be-

tween −60◦ axial to −45◦ axial configurations. The analysis consisted
of the following three steps.

For the first step, an initial evaluation of the mean deformation
gradient tensor, 𝐅, was obtained, which was based on the motion of
𝑚 = 15 biomarkers. They were manually identified while segmenting
the scans. For each configuration, their position was measured as
the geometric barycenter of their segmentation. Therefore, one may
consider that the resulting positions include some user uncertainty
resulting from the segmentation procedure. This first step corresponds
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Fig. 3. Sections of segmented volumes corresponding to (a) −60◦ and (b) −45◦ configurations. Phase-based images were created for the second DVC step (i.e., cartilage in white,
bones in light gray, tissue in dark gray and air in black). The phase of confined air was included.
to current practices in which markers are put on the external surface
of the breast, and their motions are sought for tumor repositioning.

Let 𝐱𝑚 denote the position of the 𝑚th marker in the reference
configuration, and 𝐱𝑚 + 𝐮𝑚 its position in the deformed configuration.
Considering the deformation gradient tensor 𝐅, the translation vector
𝐭, and the second order identity tensor 𝐈, the approximated field 𝐮𝑎
reads

𝐮𝑎(𝐱𝑚,𝐅, 𝐭) = (𝐅 − 𝐈)𝐱𝑚 + 𝐭 (8)

where the components of 𝐅 and 𝐭 were obtained by least squares
minimization

[𝐅⋆, 𝐭⋆] = argmin
𝐅,𝐭

‖𝐮𝑚 − 𝐮𝑎(𝐱𝑚,𝐅, 𝐭)‖2 (9)

For the second step, a better approximation of the initial displace-
ment field was computed with homogeneous regularized DVC applied
to the segmented images created for each configuration (Fig. 3) includ-
ing internal air. Because the histograms of the raw images were not
fully conserved, using such images allowed the gray levels to be made
identical for each segmented phase. This DVC step was initialized by
the marker-based displacement estimate. No elastic contrast was con-
sidered to allow for the correct positioning of the bones. Given the fact
that the three phases had uniform gray levels, the gray level contrast
(i.e., gradient of image) was nonzero only for a very limited number of
voxels (i.e., at interfaces between phases). This property leads to very
steep cost functions about the optimal solution. Blurring the volume
smoothens the cost function and induces faster convergence of the
Newton-based minimization scheme. Thus to improve convergence, the
two volumes were blurred (with a Gaussian filter with a radius of 3 vx).

For the third step, the previously measured displacement field was
used to initialize the heterogeneous regularized DVC calculation on
the original volumes (Fig. 4), with no filtering of the gray levels.
The elastic contrasts were set to the values given in Section 2.3.2.
The regularization length was set according to the convergence study
(Appendix B).

While the gray level residuals 𝜌(𝐱) = 𝐼0(𝐱) − 𝐼𝑡(𝐱 + 𝐮(𝐱)) of DVC
analyses provide a quality indicator for the measured displacement
field (see Eq. (1)), the Root Mean Square Error (RMSE) was used as
a metric for evaluating the trustworthiness of surface displacements.

𝚁𝙼𝚂𝙴2 = 1
𝑁

𝑁
∑

𝑖=1

(

𝐱𝙳𝚅𝙲𝐢 − 𝑠𝑒𝑔(𝐱𝙳𝚅𝙲𝐢 )
)2 (10)

For each phase of both initial and deformed configurations, a surface
(STL) mesh was generated from the volumetric mesh by identifying
4

the boundary elements. Then, the measured displacement field was
applied to the initial surface nodes. For each phase, the error between
the assessed 𝑁 deformed nodes from DVC 𝐱𝙳𝚅𝙲 and the refined mesh
resulting from the segmentation of the deformed image 𝑠𝑒𝑔 was
computed as the root mean square error (RMSE). As the meshes did
not have the same number of nodes, a projection operator 𝑠𝑒𝑔 of the
DVC deformed nodes onto 𝑠𝑒𝑔 was assessed using an Iterative Closest
Point (ICP) algorithm (Besl and McKay, 1992).

2.3.4. Uncertainty quantification
As pointed out above, the imaging conditions were not optimal for

DVC purposes and thus may degrade the measurement uncertainties.
Furthermore, common practice requires at least two repeat scans to
be acquired to quantify kinematic uncertainties a priori (Buljac et al.,
2018b,a). In the present case, no repeat scan was performed. Thus
another (a posteriori) route was followed. At the end of any global DVC
analysis, the quality of registration is probed by analyzing the gray
level residuals 𝜌, which contain information about acquisition noise
and artifacts, as well as indications about the trustworthiness of the
selected kinematic bases (Hild et al., 2015; Buljac et al., 2018a). It
was thus decided to artificially create a new volume by applying a
0.5 vx translation along all three Cartesian coordinates to the reference
volume. White Gaussian noise was also added (Fig. 5(b)), whose stan-
dard deviation 𝜎𝜌 was that of the gray level residuals corresponding
to the result of the DVC analysis that was deemed the most trust-
worthy in the sequel. This volume was correlated with the reference
volume (Fig. 5(a)). The displacement uncertainties correspond to the
standard deviations of nodal displacements in each direction. Similarly,
the strain uncertainties were assessed as the standard deviations of
elementary strains. As regularized DVC was carried out, the fine mesh
was not altered but the regularization length 𝓁reg was varied to assess
standard uncertainties (Leclerc et al., 2011; Taillandier-Thomas et al.,
2014).

3. Results and discussion

3.1. DVC results

In the following results, the mean element size was equal to 10 vox-
els, and the mean spatial resolution was 17 voxels (the physical voxel
size was 0.34 mm).

The marker-based displacement field was computed and applied to
the mesh as an initial guess (Fig. 6), which provided a good approx-
imation to recover the overall shape of the sample in the deformed
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Fig. 4. Sections of −60◦ (a) and −45◦ (b) configurations obtained with an RX-Solutions CT-scanner (voxel size of 0.34mm) in the axial plane. These volumes were used during the
third step of the DVC procedure.
Fig. 5. Sections of −60◦ original volume (a) and translated volume (b) corrupted with white Gaussian noise whose standard deviation was equal to 18.3 gray levels.
Fig. 6. (a) Reference (−60◦) and (b) deformed (−45◦) meshes based on the marker motions. The wireframe meshes are superimposed over orthoslices of their respective volumes.
The biomarkers are shown as colored disks.
configuration. Because the biomarkers were mainly placed on the sur-
face, the initial guess suffered from inaccuracies in the bulk (e.g., near
bones) and led to high RMS residual (63 gray levels).

This first estimate served as initialization for the DVC analysis
between the segmented images (for which the gray level distribution
5

was almost the same (Fig. 7(b))). Therefore, gray level conservation
was enforced. The regularization length was set to 35 vx to properly
converge (i.e., only 48 DVC iterations were needed). The use of these
segmented images allowed for further reducing the gray level residuals
(Fig. 7(b)). The final RMS residual was 10.6 gray levels (Fig. 7), which
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Fig. 7. (a) Gray level residuals are shown within the region of interest defined by the considered mesh. (b) From left to right: gray level histograms of the reference volume 𝐼0,
deformed volume 𝐼𝑡, and DVC residuals 𝜌 shown in sub-figure (a).
Fig. 8. Displacement field expressed in voxels (1 vx ≡ 0.34 mm) for the DVC analysis on the segmented images. (a) 𝑢𝑥, (b) 𝑢𝑦 and (c) 𝑢𝑧 components plotted on the deformed mesh.
is deemed low given the complexity of the deformation and acquisition
conditions. It is worth noting that the initial RMS level was equal to
62.7 gray levels, which proves that the current practice (i.e., first step)
was not sufficient for a precise determination of the tumor position.

Fig. 8 shows the measured displacement field. The tissue phase
shifted downward, thereby creating an inframammary fold (Fig. 11(d)).
Thanks to the segmented images, this complex configuration could be
recovered. Adding the artificial skin layer was a key step to ensure
tracking of the interface between the tissue and air. Without such
gray level contrast, the procedure could have converged to the wrong
positions. However, this result is only the first approximation as no
gray level contrast existed inside each phase (Fig. 3). It is worth noting
that the displacement amplitudes were very high in all three directions.
Without good initialization, such levels are not accessible with only two
volumes to register. The biomarkers on the one hand, and the artificial
skin on the other hand were key to getting such results.

In the final step, DVC was run with the actual 3D images when
initialized with the displacement field shown in Fig. 8 applying a
contrast of 𝐶𝑏 = 106, 𝐶𝑐 = 104, 𝐶𝑡 = 1. To probe the effect of
regularization, the analysis was started with a large regularization
length (i.e., 𝓁reg = 40 vx). Once convergence was achieved, a new
analysis was run with a lower regularization length (i.e., 𝓁reg = 20 vx),
and so on down to 0.5 vx. The upper bound was selected as higher
values led to bad conditioning of the DVC Hessian matrix, especially
when heterogeneous elastic contrasts were considered.

Fig. 9(a) shows the change of the RMS gray level residual as a
function of the regularization length. There is a very significant de-
crease in RMS residual with 𝓁reg, thereby indicating that results with
large regularization lengths should not be kept. This trend can be
understood from the fact that body forces were not negligible for the
tissue. In the present case, the penalty term follows the hypothesis of
6

vanishing body forces. This is not valid as the soft tissue deformed due
to gravity contrary to the other phases, which are stiffer and do not
deform. Therefore the penalty term should be as small as possible and
very small regularization should be applied. Since the elastic contrasts
were very high for the bone and cartilage, the regularization in the
tissue was essentially vanishing for the lower regularization lengths.
This trend was observed for the three considered contrasts. However,
when 𝐶𝑏 = 106, 𝐶𝑐 = 104, 𝐶𝑡 = 1, the residual significantly increased
before the other two cases. This difference is due to the large value
of regularization length of bone and cartilage, which degrades the
conditioning of the Hessian matrices.

To analyze convergence of the DVC algorithm, the number of it-
erations to reach convergence is displayed in Fig. 9(b). As the regu-
larization length was decreased, the number of iterations augmented
for all the applied contrast triplets. This trend was expected as less
and less weight (i.e., smaller 𝓁reg) was put on the tissue phase. Given
the complexity of the sought deformation and the fact that the gray
level contrast was not very high, such trend was unavoidable. For
regularization lengths less than 3 vx when 𝐶𝑏 = 106, 𝐶𝑐 = 104, 𝐶𝑡 = 1
(or 3 vx when 𝐶𝑏 = 103, 𝐶𝑐 = 102, 𝐶𝑡 = 1 and 8 vx when 𝐶𝑏 = 𝐶𝑐 =
𝐶𝑡 = 1), the number of iterations became very high (i.e., convergence
in terms of L2-norm of the displacement corrections less than 10−2 vx
was no longer satisfied before the maximum number of iterations was
reached).

It is worth noting that to properly capture the inframammary fold
(Fig. 11(d)), a significant number of iterations was needed when 𝓁reg =
4 vx (Fig. 9(b)), which led to a solution with one of the lowest RMS
residuals (Fig. 9(a)) for the highest considered elastic contrast. Further
convergence studies are shown in Appendix B. By introducing elastic
contrast, it was also possible to lower the regularization length in the
tissue (i.e., 4 vx for 𝐶 = 106, 𝐶 = 104, 𝐶 = 1 instead of 20 vx for
𝑏 𝑐 𝑡
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Fig. 9. Convergence analysis. (a) RMS gray level residuals and (b) number of iterations of the DVC algorithm as functions of the regularization length 𝓁reg for three different
elastic contrast settings.
Fig. 10. (a) Gray level residuals for the last DVC analysis. (b) From left to right: gray level histograms of the reference volume 𝐼0, deformed volume 𝐼𝑡, and DVC residuals 𝜌
shown in sub-figure (a).
𝐶𝑏 = 1, 𝐶𝑐 = 1, 𝐶𝑡 = 1) to reach a lower final residual (18.3 instead
of 20.2 gray level for homogeneous regularization). Introducing elastic
contrast allowed for strongly penalizing the hard phase and limiting the
regularization over the soft phase, which was therefore freer to move.
All three convergence curves (Fig. 9(a)) have the same trend but higher
contrasts allowed for significantly relaxing the constraints on the soft
tissue.

From these two different quantities, the results obtained for a
regularization length of 4 vx with heterogeneous regularization (𝐶𝑏 =
106, 𝐶𝑐 = 104, 𝐶𝑡 = 1) were kept. 292 iterations were required to
converge. The RMS residuals were equal to 18.3 gray levels (Fig. 10(a)).
They were almost two times higher than those observed for the seg-
mented volumes. However, given the fact that no special care was
taken in the acquisition process, such levels are more than acceptable.
Fig. 10(b) shows an almost centered distribution of the residuals with
minimal bias, even though gray level conservation was not fully sat-
isfied because of the followed acquisition protocol. As the scans were
not acquired for DVC purposes, no effort was put into keeping the same
filter values, which resulted in slightly different gray level distributions.

Fig. 11 shows the measured displacement field. Similarly to the
results achieved with the segmented volumes, the tissue moved down-
ward and created an inframammary fold (Fig. 11(d)). In all three
directions, the displacement amplitudes were high (i.e., of the order of
centimeters). The mask-based initialization allowed the DVC analysis
to be started from a good initial guess, and the presence of gray level
contrast in the phases gave more accurate and local information on
7

the displacement field (as an example, see 𝑢𝑧 component in Figs. 8(c)
and 11(c)).

The soft tissue experienced very large displacements, part of them
due to rigid body motions (i.e., translations and rotations), but also
to mechanical strains. In the present case, the Green–Lagrange strains
(𝐄 = 1

2

(

𝐅⊤𝐅 − 𝐈
)

) are reported. They were estimated from the exact
differentiation of the shape functions of the 4-noded tetrahedra (i.e., T4
elements) to evaluate the deformation gradient tensor 𝐅. Fig. 12 shows
that the soft tissue underwent large strains (including shear in particu-
lar in the inframammary fold) up to 25% in magnitude, which is large
between two scans only.

3.2. A posteriori uncertainty quantification

The DVC results obtained for a regularization length of 4 vx with
𝐶𝑏 = 106, 𝐶𝑐 = 104, 𝐶𝑡 = 1 led to residuals whose standard deviation
was equal to 18.3 gray levels. With this information, the standard
uncertainties 𝜎 were assessed a posteriori by varying the regularization
length 𝓁reg. Fig. 13(a) shows that the larger the regularization length,
the lower the standard displacement uncertainty. This dependence
illustrates the trade-off between measurement uncertainty and spatial
resolution (here corresponding to the regularization length) (Leclerc
et al., 2012; Taillandier-Thomas et al., 2014). The power law interpo-
lation with exponent −1.5 describes very well the reported results in
accordance with the hypothesis of white Gaussian noise (Leclerc et al.,
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Fig. 11. Displacement fields expressed in voxels (1 vx ≡ 0.34 mm) for the last DVC analysis displayed on the mesh without the outer skin layer. (a) 𝑢𝑥, (b) 𝑢𝑦 and (c) 𝑢𝑧 components
plotted on the deformed mesh. (d) 𝑢𝑦 component from another viewpoint to highlight the displacement discontinuity around the inframammary fold (black ellipse).

Fig. 12. Strain fields for the last DVC analysis displayed on the mesh without the skin layer. (a) E𝑥𝑥, (b) E𝑦𝑦, (c) E𝑧𝑧, (d) E𝑥𝑦, (e) E𝑥𝑧 and (f) E𝑦𝑧 components. The soft tissue
underwent large strains (including shear in particular in the inframammary fold) up to 25% in magnitude.
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Fig. 13. Standard displacement (a) and strain (b) uncertainties as functions of the regularization length 𝓁reg for an elastic contrast of 𝐶𝑏 = 106, 𝐶𝑐 = 104 and 𝐶𝑡 = 1. The dashed
lines show power law interpolations with exponent −1.5 for the displacements (a) and −2.5 for the strains (b).
Table 1
RMSE computed between the DVC deformed surface and the corresponding segmented
surface. The data in parentheses correspond to homogeneous regularization and the
other ones to the highest elastic contrasts.

Phase RMSE (mm)

Soft tissue 2.2 (2.3)
Cartilage 3.1 (3.2)
Bones 2.6 (2.7)

2011, 2012). Similarly, the standard strain uncertainties also follow
very closely a power law with exponent −2.5 (Fig. 13(b)).

With the selected regularization length (𝓁reg = 4 vx) and elastic
contrasts (𝐶𝑏 = 106, 𝐶𝑐 = 104, 𝐶𝑡 = 1), the standard displacement un-
certainties were of the order of 0.1 vx, and the corresponding standard
strain uncertainties were less than 5 × 10−3. These levels are deemed
sufficiently low in comparison to the reported results (Figs. 11 and 12).

3.3. Further validation

Last, the overall shape of the sample was well recovered (Fig. 14).
In addition to the gray level residuals, in Table 1 the RMSE (Eq. (10))
was used as a metric for evaluating the trustworthiness of surface
displacements. The measured error was a few millimeters (between 2.2
to 3.1 mm, which corresponds to a range of 6.8 to 9.4 vx). When the
highest elastic contrasts were considered, all errors decreased about
0.1 mm in comparison to homogeneous regularization, which further
validates their use. As the error was lower than the mean element size
(i.e., 10 vx) and the mean spatial resolution (i.e., 17 vx), the measured
displacement field was very realistic. It is worth remembering that this
error included those due to the segmentation steps. As this multiphase
sample had a complex morphology, and internal gray level contrast,
the segmentation relied on coupling of growing from seeds algorithms,
and smoothing with operator-dependent steps. The latter ones explain
parts of the observed mismatches.

4. Conclusion

The objective of this work was to demonstrate the feasibility of
using DVC to measure large biomechanical deformations. More specif-
ically, the displacement field was measured for a breast subjected to
gravity in two different positions when imaged via computed tomog-
raphy. To obtain satisfactory results, a three-step DVC pipeline was
implemented. The first step consisted in determining the motions of 15
biomarkers, which corresponds to one of the current clinical practices.
It was shown that these motions were not sufficient to properly map
the whole deformation field of the breast. The second step used the
9

Fig. 14. Superposition of the deformed mesh resulting from DVC (red) with the
expected mesh obtained from the segmentation of the deformed configuration (black).

previous initial guess to assess breast deformation with segmented
volumes in which the three phases (i.e., bone, cartilage and soft tis-
sue) were distinguished. An external skin was added to allow for the
inframammary fold to be better captured. With these new motions, a
final set of DVC analyses was performed on the original reconstructed
volumes accounting for elastic contrasts in the three phases.

The results of this proof of concept study highlighted the efficiency
of the DVC technique for a breast including the inframammary fold.
Elastic contrasts were set according to literature data. The studied
breast had regions with very high elastic contrast (106 between bones
and tissue, and 104 for cartilage), which was accounted for in the
regularized DVC scheme used herein. Few DVC iterations were needed
to quickly pre-converge to a suitable displacement field with a low RMS
residual. The convergence study wrt. the regularization length showed
that a rather low value could be chosen to obtain accurate results. If the
regularization length was too large, meaningful displacement fluctua-
tions were filtered out. Conversely, when the regularization length was
too small, then convergence issues arose. Similar trends were observed
for two other sets of elastic contrasts, thereby showing that the higher
the contrast, the lower the regularization length (i.e., having a higher
contrast, less regularization was applied to the soft tissue leading to
lower registration residuals).

The present study had several limitations. First, the tomographic
acquisitions were not optimal for DVC purposes. In particular, no
repeat scans were performed for uncertainty quantifications. As only
two scans were available, an a posteriori route was followed to assess
standard kinematic uncertainties. Furthermore, CT-scans (but MRIs) are
generally not used in clinical applications. Therefore, further studies
are needed to investigate the feasibility of the present DVC pipeline
when applied to MRIs. Second, the experiment was carried out on
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an ex vivo injected cadaverous breast to be close to in vivo testing
onditions. Therefore, this study may be extended to living tissues.
t is hypothesized that blood flow between various acquisitions may
mpact the resulting gray levels and thus DVC results. This study
lso had user-dependent steps to be followed. The segmentation was
anually assessed and the biomarker positions were assessed from

heir segmentation. For the patient geometry, some uncertainties and
ismatches were observed between the gray level images and the asso-

iated segment (i.e., the mesh needed sufficiently regular elements and
implifications of the geometry, namely, smoothing and simplification
f the regions were necessary). Future studies are needed to automate
hese steps to reduce likely user-impact on the results.

Last, the results obtained herein may then be used in a calibration
ipeline to get patient-specific material parameters. As the displace-
ent field was computed for a finite element (FE) discretization, links
ith finite element simulations are straightforward. One would be able

o predict the deformation of the organ in surgical positions. The DVC
nalysis may also be coupled with finite element analyses in cases of
self-)contact. The computed FE displacement field may then serve as
nitialization for DVC registrations. Its trustworthiness would then be
robed thanks to the gray level residuals.

RediT authorship contribution statement

T. Lavigne: Writing – review & editing, Writing – original
raft, Visualization, Methodology, Investigation, Conceptualization.
. Mazier: Writing – original draft, Supervision, Data curation. A.
erney: Methodology. S.P.A. Bordas: Writing – review & editing,
upervision, Funding acquisition. F. Hild: Writing – review &
diting, Writing – original draft, Software, Resources, Methodology,
nvestigation, Formal analysis, Conceptualization. J. Lengiewicz:

riting – original draft, Visualization, Supervision, Methodology,
nvestigation, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgments

This study was supported by the European Union’s Horizon 2020
esearch and innovation program under grant agreement No 811099,
he Marie Skodowska-Curie, Luxembourg grant agreement No. 764644,
nd the FNR Project No. C20/MS/14782078/QuaC. JL would like to ac-
nowledge the support from EU Horizon 2020 Marie Skodowska Curie
ndividual Fellowship MOrPhEM under Grant 800150. The medical
mages used in the present study were obtained at Hopital Arnaud de
illeneuve, Département de Gynécologie Obstétrique in collaboration
ith Dr. Gauthier Rathat, Prof. Guillaume Captier, and AnatoScope.
he authors would like to thank Synopsys for its support in providing
ccess to the Simpleware software to generate the meshes used in
his project, and RX-Solutions for their support and answers about the
achine settings that were used. Last, the authors sincerely thank the
erson who donated her body to science so that anatomical research
ould be performed.
10
ppendix A. DVC hardware parameters

Orientation −60◦ −45◦

Tomograph EasyTom 150 (RX
Solution)

EasyTom 150 (RX
Solution)

Target/Anode W (reflection
mode)

W (reflection
mode)

Voltage 120 kV 120 kV
Current 202 μA 202 μA
Focal spot size 50 μm 50 μm
Tube to detector 610 mm 610 mm
Tube to object 430 mm 430 mm
Detector Varian 25 × 20 cm Varian 25 × 20 cm
Definition 1920 × 1536 pixels 1920 × 1536 pixels
Projection definition 1840 × 728 pixels 1840 × 728 pixels
Number of
projections

2111 1407

Angular amplitude 360° 360°
Frame average 15 per projection 15 per projection
Frame rate 30 fps 30 fps
Acquisition duration 28 min 08 s 18 min 40 s

Reconstruction
algorithm

Filtered
back-projection

Filtered
back-projection

Filter Tukey (75%) Tukey (0%)

Gray levels
amplitude

8 bits 8 bits

Volume size 768 × 781 ×
216 voxels
(after crop)

768 × 781 ×
216 voxels
(after crop)

Field of view 261.12 × 265.54 ×
73.44 mm3

(after crop)

261.12 × 265.54 ×
73.44 mm3

(after crop)

Image scale 0.34 mm/voxel 0.34 mm/voxel

Appendix B. Convergence analysis

The deformed meshes obtained in the convergence analysis for
homogeneous regularization (i.e., 𝐶𝑏 = 𝐶𝑐 = 𝐶𝑡 = 1, see red dotted
urve of Fig. 9(a)), are displayed in Fig. B.15 when the regularization
ength was relaxed from an initially very high value (𝓁reg = 500 vx)
o a very small one (𝓁reg = 5 vx). In the last case, virtually no
egularization was applied. As shown in Fig. 9(a), the RMS residuals
ecreased with the regularization length. Fig. 9(b) shows that a high
egularization may help to converge quickly but tends to an unsatis-
actory solution for which the lower fold cannot be captured. When
he regularization length was lowered, the fold was better recovered
ntil a minimum length was reached (i.e., about 10 vx in the present
ase, see Fig. B.15(e)). For low regularization lengths, the minimization
rocedure no longer converged (Fig. 9(b)) to a trustworthy solution.
t is worth remembering that the main cause of the soft tissue to
eform was due to gravity. Since mechanical regularization was based
n minimizing the equilibrium gap, its weight should not be too high
o avoid nonphysical solutions. The results shown hereafter illustrate
his phenomenon.
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Fig. B.15. Evolution of the deformed mesh with the regularization length. Segmentation results are in a black wireframe and the DVC results are in red. (a) 𝓁reg = 500 vx,
(b) 𝓁reg = 200 vx, (c) 𝓁reg = 100 vx, (d) 𝓁reg = 50 vx, (e) 𝓁reg = 20 vx and (f) 𝓁reg = 5 vx.
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