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This paper presents an algorithm of structural reliability evaluation based on
design sensitivity analytical approach. To calculate the design derivatives of the
field variables the direct differentiation (DDM) and the adjoint variable (AVM)
methods are used. The DDM is applied to the structures with nonlinear behaviour.
The presented algorithm is applied to RC plate — shell structures. The attention
is focused on the analysis of an RC nuclear containment vessel.
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1. Introduction

The application of the reliability analysis and reliability based design is
very wide. The analysis is particularly useful in the case of taking into account
; different types of material and geometric imperfections. An example of the
‘ sensitivity based approach, Refs. [1, 3, 9], is presented herein.

2. Reliability, general algorithm

Considering a stochastic process as a vector of random variables U which
specific realization is the vector x = {x*, x?}, where x* and x° are the

vectors of the mean values and standard deviations of the probability distri-
butions, the following failure function is introduced:

g9(x) =0. (2.1)

Transforming the vector x to a system of standard variables u using the
Rosenblatt transformation x = T'(u), the definition of the reliability index
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takes the form, cf. (3, 5],
B = ||u*|| = min||u|| with the condition g(u) =0. (2:2)

The failure function g depends on the stochastic parameters vector x(u)
and the performance measure ¥, i.e. displacements q or the stress vector S

depending also on x
o{x(w), ¥x(u)]} =0 (2.3)

The first derivative of the failure function w.r.t. the standard variables vector
takes the form

by _ d90x | 99 9% ox -

du  OxOu OV Ixou’ )
The first derivative of the failure function is required during the optimization
procedure, Eq. (2.1). The derivatives dg /0T and dg/du are usually calculated
explicitly. The derivatives 0x/du are obtained exploiting the transformation
x = T(u). The derivatives 9¥/0x are the sensitivities (design derivatives)
and are calculated using the methods described in [2].

3. Constraints functions

Let us consider a performance function depending on the state variables
(stresses S, nodal displacements q) determined in the domain € and its
boundary 89, fulfilling the displacement and stress boundary conditions.
The function depends on the stresses and displacements determined at time
¢ 4+ At. The UL approach is used [11]. The stresses and the displacements are

dependent implicitly on the design variable h. The function takes the form

ALY (S, g5 h) = f G(tHAtS, tHaig; ) dO + [ s(t+Btq; h) d(09%) . (3.1)
Qs a0k

The total derivative of the function, Eq.3.1 w.r.t. the design parameter h
reads

dt+At‘I’ 3 / Q(_;dt+AtS + -(‘:'Eat-i-ﬂtq + a_G_ th
“dh ) |88S dh " 9q dh  Oh
Qt
33 dt‘l’Atq as
v f [%Th Jﬁ] ae0L). (32)
aas,

EES———

o
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particular case of the function, Eq. (3.1) may be considered

U=lgl—¢"<0 (3.3)
where ¢ is a choosen displacement and q” is its allowable value

4. Adjoint variable method

At is i
- Calfjfj; ti:_he A\f/M is 1.ntroduced. The method is applied due to avoiding of
lon of the displacement design derivatives directly. The adjfint

method may be understood
as the Lagrange multipli
the augmented Lagrange function in the form: PSRy

L(q:A:h) :(I)_’\T(KQ_Q)a (41)

Eher_f:* A ig the V. ~diT1%en.siona,I Lagrange multipliers vector (
t qhﬁ Q is the equilibrium equation. The stationary con
0 the displacements imposed on Eq. (4.1) is of the form:

adjoint variables),
dition with respect

_— ‘£ f—
5q = 3q ~NK=0. (4.2)

Consideri . . .
ti;}ﬁmdegmg the stationarity condition it is possible to calculate A. Diff
ng Lq. (41) w.r.t. the design variables vector h . Obtain. . eren-

_ T4 dx\"
dh dh ki (Kq - Q) - (EH) (Kq — Q). (4_3)

Considering that the equilibri i
quilibrium equation is fulfilled for i
th
perturbed value of the parameter h, Eq. (4.3) takes the fofnil-ommal wnd the

dL 4o
dh - ah (4.4)
Now, we may calculate the derivative of the au

instead of the derivative of the function Eq. (3
expressed as follows: o

gmented function, Eq. (4.1)
.1). The design derivative is

dL 8L OLdq OLdA

dh ~ 3h ' dqdh  9xdh (@D
So, the total derivative of the function ® is of the form:
d® 9% d
@ _ 0% gd . BL d
&= A K- Q)+ (% ~ATK ﬁ. (4.6)
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The last term in Eq. (4.6) disappears because of the stationarity condition,
Eq.(4.2). It is clearly seen that it is possible to calculate the design derivative
of the function (3.1) without calculation of the displacement design deriva-
tives. However, it is necessary to introduce the additional linear adjoint equa-

Kk = (@?)T , (4.7)

The r.h.s of Eq. (4.7) is the explicit partial derivative of the function (3.1).
Finally the expression for the design derivative of the function (3.1) takes

the form:
o o0 (2K, 02) 9

Ezah Eh,_q_ dh

tion:

For the particular case of the function (3.1) in the form of Eq. (3.3), the r.h.s.
of the adjoint equation is expressed as follows:

) 1
7a sign(q) [0’ 0 qa’O’ ’0:\ ( )

When applying the adjoint method it is necessary to solve as many adjoint
equations as the design constraints. So, it is worthy to apply the method if the
number of the constraints is lower than the number of the design variables.
The direct differentiation method is useful in the opposite case.

5. Direct differentiation method

The design derivative of the incremental equation of equilibrium reads:

dAS 0AQ
T - - =, ’
f B ¥V = on o

Qt

Taking into account the explicitly integrated constitutive equation the de-
sign derivative of the stress increment AS is calculated. The elasto-plastic
matrix C) and the strains increment depend on the design derivative h.
Simultaneously, the elasto-plastic matrix is a function of the total stresses S
and internal variables vector . The stress increment takes the form

AS = CP (18, ty, h) Ae(h). (5.2)

e
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Differentiatin - =
] g Eq. (5.2) w.r.t. the desi
Increment design derivative takes the %:rﬁlarameter the relation for the stress
dAS _ [9CP) dts  gClen) gty pclen)

dh 25 dh T oy EJ?JFT%T} €
4 C(ep) tS t dAe
(°S, ", 1) — (53)

Substituting the design derivative stres

and having in mind the styat S increment in Eq. (5.1) to Eq. (5.3)

displacement relation written in FE form:

( )

the expression f; i
or the displacem itivi
ent sensitivity incre i
ment 1s obtained ag

/BEC(EP)BL dOt dAq _ 94Q — TdAS
/ T 5 BL}T dQt. (5.5)
Ot
Aq(h)=const
The first com
ponent of the above e i
TR il e g Xpression stands for the tangent stiffness

ing that the di . vative of the nodal int

S g B (gl?))laifem_ent increment is independent of thsrg al forces‘assurn_

a1 Varia,ble-,-s ir.1c: the displacement increments as well as the eilgn Varla,l')le -

in ti rements and their design derivati N
time. 1ves have to be accumulated

6. A constituti
nstitutive model for concrete: design derivati
ives

An outline of the DSA algorith

_ m fo ituti .
RC structures is presented herein b ot g 2Bble £

[6]. The constitutive relations for plane

1ves acting in the principal directions for

compression- i
pression-compression state are presented below:

0; = Eqein

| ERICRE)
s Eie Eic
2
s (2) | ’
[1_’_(%_2)6_5%4_(@‘22, :
E; Eie Eio
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where E, is the initial tangent modulus, F is the secant modulus, &;, are the
equivalent uniaxial strains, €;c are the maximum equivalent uniaxial strains
and ;e are the maximum equivalent uniaxial stresses in plane stress state.
The relations for o and for ;. are determined by the Kupfer-Gerstle curve,

1+ 3.65 o)
09¢c = E?ﬁ—)gfm Oic = P02, Eic = Ec (3% - 2) )

£20 = E¢ [—1.6 (gf}f)?’ +2.25 (”—J}E)g +0.35 (fflc—c)} .

f. and & are the maximum

(6.2)

where 3 is the principal stresses ratio o1/02,
strength and maximum strains taken from the uniaxial compression test.
The r.h.s. of Eq. (5.5) appropriate for reinforced concrete acting in plane

stress state is of the form

dAF _ /BEdC(Ei,u) L
dh Aq(h)=const dh

Ot

dcC(ep)
T /B}“ >T 40| . (63

Qt
The matrix C is the constitutive matrix of the orthotropic material depending

on the actual tangent moduli in the pricipal directions 7. The matrix cler)
is the elasto-plastic matrix for the reinforcing steel acting in the uniaxial

direction.
The stress increment in the direction ¢ depen

material may be expressed as follows
Ai = B 1e(8, 1), 1c(8, 1)) A (6.4)

takes the form

ding on the state of the

The design derivative of the stress increment, Eq. (6.4)
dAo; . dAei | dE;
= = E; ah +— Ny (6.5)

The design derivative of the tangent moduli is of the form

@ . 3E¢' dE-iu 8E1' (36@ 3856
dh ~ Ogjy dh  Oeic \ OB oh

aEi 801-,3 d,ﬁ 30‘,‘,,3 6E1
B0 ( 8 dh | Oh ) +on - (69

The partial derivatives in Eq. (6.6) can be obtained differentiating the ex-

pressions (6.1), (6.2), the ordinary derivatives are accumulated in time.
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7. Computer program, general description, features

The computer program consists of two main modules: the reliabil;
;1(1;1 lsl?:)\;illlfn thi é)}z;)blen; defined by Eq. (2.2) and the module sol\}ilzgl’igg ST;?;
i iSpnec em formulated by Eq: (5.1) with the implemented DSA
o Standa‘rdizedessatry for Fhe calculation of the design derivatives w.r t.
e stendard Evarla;bies given by Eq. (2.4). The general DSA formulatic-m.
COMREL-TI )[:1] qr;‘-h(e -nz)nairilrfeéf -z‘z;),tr'rhe re'lli'all)bility i e
4 ic equilibrium problem, Eq. (5.1
:;J}flet}iSA, Eq. (5.5) or Eq. (4.7) are solved by a significantly exten(gle(d ve)zr;i)lg
program NASHL [6]. The AVM is used for the linear problems and

the DDM for the nonlinear
ones. The i
workstations and a mainframe. RS mplemented on UNIX

8. i
Numerical example, nuclear containment vessel

T :
” m)h;n Izluclzar conta%nment vessel structure consists of a cylinder (radius
-l .ah ome, height of the structure is 64 m, Fig. 1. The vessel is dis
Systezrz O\fvi . c?40 sheiil e}llements, Fig. 2. The structure is prestressed with a
ons and the action of the active reinf i
the action of the external istri g |
! pressure distributed approximately i i
with the zones division. The Sy el ey
. number of nodes is 2600 and i
12800. More detailed description is given in [10]. nmber of do i

liner circumf. reinf. cireumf. reinf.

R
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TRIER

B
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meridion. reinf.

¢ 1.0 0568
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1

FIGURE 1- ont, ent v oy y Cross- t I
C alnim eSSe]., Ver tl(:a\! cross-section (left) a.nd at plcal SS-Sect1o f
O

the wall (right).
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FiGURE 2. FE discretization, shrink plot (left), reinforcement zones (right).

Young modulus of the reinforcement steel of the liner and the passive | i
reinforcement is 2.1-108 kN/m? and the prestressed one is 1.025-108kN/ m?. $ AT i
The yield limits of the steel used for the liner, passive and prestressed re- ’ Lt
inforcement are 1.68-10° kN/m?2, 4.2:10°kN/m? and 3.2:10° kN/m?, respec-:
tively. The hardening modulus for all types of steel is 3.0-107 kN/m?. The
initial Young modulus for concrete is 3.0-107 kN/m?, yield limit in compres-
sion is 3.2-10*kN/m?, strength in tension is 3.2.103 kN/m?. L s comm. o |

Max = .1398-13

The behaviour of concrete is described by the constitutive model pre- s 2 i
sented above and steel is modelled using elasto-plastic model with isotropic Nosh o Sirene
hardening. Aspects of the equilibrium analysis, DSA and crude Monte-Carlo
method have been described in [7, 8].

8.1. Linear case: AVM

The adjoint variable method is very suitable to solve linear problems with
high number of design variables [1]. Consequently, the method is very efficient
when attempting to solve this 4type of reliability problems.

An example of such a stochastic system is created. The stochastic param-
oters are the thicknesses of the reinforcement layers in particular elements
and load multiplier. The normal distributions are assumed for the steel lay-
ers with the standard deviations as follows: 0.15, 0.15, 0.015, 0.15, 0.15, 0.16,
counting from the liner to the most external layer. For the load multiplier the
log-normal distribution is assumed and the standard deviation is 0.20. The

§aa7e-1s
}.959E-14
f.743E-14
.528E-14
.3138-14
.972E-15
-.118E-14
-.3338-14
-.5495-14
-.764E-14

whole stochastic model consists of 3841 variables. The structure is loaded FIGURE 3. Shape of the st ; -

: : S ot - e S ructure for the considered load level (u di |

with the external equivalent pressure and the reliability index is evaluated sensitivity w.r.t. the thicknesses of the liner in particular el Bues), CRpESIRERE ‘
- . i . 3 & . u L

for the internal pressure load multiplier 6.5. The failure function is described solution (lower). elements, deterministic
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by the excessive horizontal displacement of the point (651) in the midspan
of the cylinder, g(z) = ¢* — gf%s; . Its allowable value is 0.15-10=2m.

The deterministic solution is presented in Fig. 3. The shape of the struc-
ture and the design sensitivity field of the choosen horizontal displacement
are shown. The design variables are the thicknesses of the liner in particular
elements. The deterministic displacement is (0.4824.10~3
solute sensitivity gradients are in the neighbourhood of
on the sides (left and right) of the cylinder.

The estimated reliability index is 6.08 and corresponds to the probabil-
ity of violation of the allowable displacements — 6.169-10~1°, The beta index
sensitivities with respect to the mean values and standard deviations are pre-
sented in Fig. 4. The distribution of the beta, index sensitivities (Fig. 4, upper)
is qualitatively similar to the design sensitivities of the chosen displacement

el: FE5STHX
Ef--l: CONVERGENCE CODE: ©
Step: 1 LOARD LEVEL: 0
Gauss GRAD-M DMSGR
Max = 1.44 Min = -.976
Resulcs shown:
Mean on element

and the highest ab-
the constraint and

calculated during the deterministic solution. The distribution of the beta in-
‘ :11:2 dex derivatives w.r.t the standard deviation is qualitatively different from the
B design sensitivities, the lowest beta index sensitivities corresponds to the the
Egﬁ‘ highest design
=

sensitivities in the deterministic solution. A more extended
analysis of the vessel in the linear range is given in [10].

The run of the program for this example takes about 5 hours CPU and
the reliability solution is reachead after 17 iteration

s. This example was cal-
culated on SUN HPC Enterprise 10000 platform.

Model: FG5THX
Ll---1: CDNVERGBHCE CODE: 0

Step: 1 LOAD LEVEL: 0
Gauss GRAD-S DSSCR
Max = -,924B-11

Min = -.121E-1
Results shown:

Mean on element

8.2. Nonlinear case: DDM

The design sensitivity analysis of the vessel is carried out for the range of
load starting from the prestressing phase (external pressure) passing to the

J increase of uniform internal pressure up to failure. The design parameter is

,‘ the thickness of the internal circumferential reinforcement layer in a chosen
! element (141).

The results of the design sensitivity analysis are presented in Figs. 5 and 6.

— The shape of the structure in the prestressing phase is presented in Fig. 5 (up-
it per) and the corresponding design sensitivity field is given in Fig. 6 (upper). |

:5%1:2 The shape of the structure in the fajlure phase is given in Fig.5 (lower)

e and the displacement sensitivity field is shown in Fig.6 (lower). The corre-

e sponding internal pressure is 10.64 kN /m? and the horizontal displacement

of a point in the midspan of the cylinder is 0.174m. A qualitative difference

is manifested when comparing the design sensitivity fields for both phases.

e itivity w.r.t. mean values (upper) and standard During thfe prestressing phase the' behavi(_n%r .of the s_tructure is almost lin-

FIGURE 4. 'Reli?llz)::;f) 1;151:;(::11112;2’;538;:& Sires Tirmiie particular elements. ear, the highest values of the design sensitivity gradients are concentrated

deviations

mostly close to the investigated element whereas in the failure phase when
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T N
/L[ / ==
Ao = LN
Model: N5
Model: NOX e L2B-16: CONVERGENCE CODE: 0 [f—frifrt—t— [ Y
L1B--2: CONVERGENCE CODE. Step: 3 LOAD LEVEL: 10.6 7S5, f T DN W
Step: 4 LOAD LEVEL: .97 Nodal DISPLACE VEC.DISP L T 17 | A0, LY
Nodal DISPLACE VEC.DISP Max = .4B7 Min = ¢ 1 L.t 1L T T A
Max = .B79E-2 Min = 0 Factor = 13.1 ,l.!' T 1 1 T 1
Factor = 726 1 T it Pl
: 7 i il
/f [ 5. g e 1 (A
f LT T
/ I_Jj__l,’ {f ] !
/ 11 /] T
| T

e
N
-

4

i

L1

|

=

A
.

Model: NOX
L1C--2: CONVERGENCE CODE: 0O
Step: 4 LOAD LEVEL: .972
Nodal DISPLACE VEC.DISP
Max = .809E-2 Min = 0

Model: N5
L2C-18: CONVERGENCE CODE: 0
St LOAD LEVEL: 10.6
ISPLACE VEC.DISP

-57 Min = 0

Noda
Max = §

F 3682 :5.05

¥ ge2E-2 1ass

3 sgeE-2 T4.05

! s1sE-2 3.58

L441E-2 ja.04

1 368E-2 2.53

I 2g4E-2 z 12002

z 22182 =1.5:
A : 147E-2 & H
1 .T36E-3 X < !év .506

Xao i I

FIGUR.E. 6: Increase of the internal pressure, shape of the structure (upper), displacement
sensitivity field (lower), design parameter — thickness of reinforcement layer, internal,
circumferential, element 141.

FicUre 5. Shape of the structure, prestressing phase (upper), displacen.lent sensitivity
field (lower), design parameter — thickness of reinforcement layer, internal,
circumferential, element 141.
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the nonlinear behaviour of the material is very significant the high values of
the gradients are distributed over the whole structure.
, In the next step the reliability analysis of the system is performed. The
ﬁm ( ”‘ stochastic parameters are the distances of whole reinforcement laters from
1573, Conmpommee cone, 0 f2 the midsurface. The stochastic system consists of 6 parameters connected
Edcms:fi = with the reinforcement and load multiplier.
ey gy Normal distributions are assumed for the distances from the midsurface
=i of the shell with the following standard deviations: 0.008, 0.004, 0.005, 0.005,
‘ : 1] 0.001, 0.005. The log-normal distribution with standard deviation 0.20 is
e A assumed for the load multiplier.
| I The displacement failure function is considered. As in the linear case the
Il ; e e “J design constraint is set on the horizontal displacement of the point 651 in
A S | O L 1 the midspan of the cylinder. The horizontal displacement should not exceed
T . “_LJ 0.035m. The shape of the structure is given in Fig. 7 (upper) and the design
_,4,.._-::;—;:"____"_4‘“_‘% sensitivity field from the deterministic solution is presented in Fig. 7 (lower).
e - The reliability analysis is carried out for the load level 415kPa. The determin-
. T W istic displacement for this load level is 0.186-10~2. The obtained reliability
p o W —H index is 6.561.
e Full run of the equilibrium and sensitivity analyses up to failure phase
takes about 20 hours CPU (DEC Alpha, 677 MHz, 4 CPU). One iteration of
the reliability module for the investigated failure function with the assumed
constraint above and the considered pressure level takes 12 hours CPU. The
’éiilp;;shggzigg‘gifﬁs : reliability index was reached in 49 iterations. Total CPU time of the reliability
fas e NEL W0 ‘ module stands for almost negligible per-cent of the total CPU needed.

9. Final remarks

A short description of an algorithm concerning the reliability index eval-
uation is described. The sensitivity coefficients are calculated employing the
DDM and AVM along with the analytical approach. The effectiveness of the
algorithm is proved by presenting the numerical example. The computational

P effort is still very high, however, it may be decreased by further improvement

e of the efficiency of the equilibrium and the design sensitivity analyses using

s the vectorized and parallel solvers.

B '
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Computing technology for investigating
failures of gas pipeline systems

V.E. SELEZNEV, V.V. ALESHIN and K.I. DIKAREV

Computation Mechanics Technology Center of
SPE VNIIEF-VOLGOGAZ Ltd., Russia

Gas pipelines of Fuel and Energy Facilities are related to high-energy systems.
Failures of gas pipelines can entail very serious consequences for the population,
service personal, and the surrounding environment.
Currently in the world there are methods of probability theory and mathematical
statistics implemented for the risk assessment of pipeline systems. The attrac-
tiveness of stochastic methods for the risk assessment mostly is conditioned by
their simple mathematical formalization and saving the required computational
resources. The main drawbacks of these methods are: the absence of a reliable
priority value for probabilistic characteristics of failure events; the necessity to use
subjective expert estimations. As for complex objects and single events, the usage
of these methods does not allow to obtain the accurate estimations while forecast-
ing and analyzing failures. To avoid the above insufficiency, computing technology
for integrated high accuracy modelling of failures, based on up-to-date numerical
methods of continuum mechanics, qualitative theory of differential equations and
mathematical optimization, are used. The computing technology for investigat-
ing failures of gas pipelines has been developed at the Computation Mechanics
Technology Center of SPE VNIIEF-VOLGOGAZ Ltd.
The computing technology for high accuracy mathematical modelling of failures
of gas pipelines consists of the following main modules: gathering and analy-
sis of actual source information on failure; statement of problem and specifying
the approaches for its formalization; fluid dynamic analysis of pipeline systems
in nominal (during pre-failure period) and failure operation modes; non-linear
structural analysis and modelling of pipeline fracture; modelling and forecast-
ing harmful impact on the population and surrounding environment caused by
failures of pipelines; analyzing the results of modelling and developing compu-

tation scenarios for failures; developing scientifically valid recommendations for
preventing such failures.

1. Introduction

Gas pipelines of Fuel and Energy Complex (FEC) are related to high-
energy systems. Failures of gas pipelines can entail very serious consequences
for the population, service personal, and surrounding environment.



