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Abstract The size-dependent buckling problem of cracked micro- and nanocantilevers, which have many
applications as sensors and actuators, is studied by the stress-driven nonlocal theory of elasticity and Bernoul-
li–Euler beam model. The presence of the crack is modeled by assuming that the sections at the left and right
sides of the crack are connected by a rotational spring. The compliance of the spring, which relates the slope
discontinuity and the bending moment at the cracked cross section, is related to the crack length using the
method of energy consideration and the theory of fracture mechanics. The buckling equations of the left and
right sections are solved separately, and the variationally consistent and constitutive boundary and continuity
conditions are imposed to close the problem. Novel insightful results are presented about the effects of the
crack length and location, and the nonlocality on the critical loads and mode shapes, also for higher modes of
buckling. The results of the present model converge to those of the intact nanocantilevers when the crack length
goes to zero and to those of the large-scale cracked cantilever beams when the nonlocal parameter vanishes.

1 Introduction

Cantilever beams with micro- and nanoscale dimensions, known as micro- and nanocantilevers, have vast
applications in the micro- and nanoelectromechanical systems (MEMS and NEMS) as sensors and actuators.
The mechanical sensors based on the micro- and nanocantilevers are compact and cost-effective and offer high
sensitive and real-time detections. They are being used for sensing biological and chemical entities such as
DNA, protein, viruses, and volatile organic compounds [1, 2]. The micro- and nanocantilever sensors have
generally higher sensitivity to a mass change if they are thinner, and this makes them more prone to instability
issues such as buckling. In addition, the presence of an undetected defect such as an edge crackmay significantly
affect the response of themicro- and nanocantilever sensors. This paper is aimed at studying the size-dependent
buckling problem of the micro- and nanocantilevers with an edge crack.

It is well known that the structural elements exhibit size-dependent mechanical response at the micro- and
nanoscales. Many discrete and continuum mechanics-based models are available in the literature to capture
the size-dependent mechanical response of structures, e.g., [3–8]. On the one hand, the atomistic models [9],
which are accurate to capture the size dependency, are computationally expensive. On the other hand, Eringen’s
theory [10–16] based on the nonlocal continuum mechanics may be mathematically ill-posed once applied to
micro- and nanocantilevers [17–20]. A computationally affordable and yet accurate enough tool for studying
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the size-dependent mechanical response of the micro- and nanocantilevers is offered by the stress-driven
nonlocal theory of elasticity formulated in [21]. The main idea of the stress-driven theory is to use a nonlocal
constitutive equation which defines the strain at each point of the body by a convolution integral in terms of the
local elastic stresses at all points and a kernel function toweight the contributions of the long-range interactions.
The kernel function depends on a material characteristic length parameter and can be calibrated by static and
dynamic experiments [22]. Assuming an exponential form for the kernel function, the integral form of the
nonlocal constitutive equation is converted to a differential equation subjected to two constitutive boundary
conditions. Within the framework of the stress-driven theory, the Bernoulli–Euler governing equations are
six-order differential equations in terms of the transverse displacement (i.e., the deflection of the nanobeam),
which are two orders higher than those of the local Bernoulli–Euler beam model. The well-posedness of the
problem is assured by the two additional constitutive boundary conditions. The applications of the stress-driven
theory to different nanostructural problems can be found, for example, in [23–34].

One important extension of the stress-driven theory is presented in [23, 24], where a set of mathematically
consistent continuity conditions associated with the integral form of the constitutive equation is derived.
Using this formulation, it is possible to apply the stress-driven theory to problems whose solutions require
discretization of the domain, such as cracked nanostructures [35, 36]. The stress-driven theory is recently used
in [37] to study free transverse vibrations of cracked nanobeams.

The presence of cracks and defects can significantly change the macroscopic response and properties of
materials and structures [38–40]. In a beam, an edge crack causes a local flexibility and results in discontinuities
of displacements and slopes at the cracked cross sections. In the beam theories, the effect of the crack is
usually modeled by introducing rotational and translational springs which relate the slope and the transverse
displacement at the cracked cross section to the bending moment and the shear force transmitted through it
[41–43]. The compliances of the springs can be related to the crack length using the method of the energy
consideration and the theory of fracture mechanics [44, 45]. It is shown in [37] that the translational spring
associated with the shear force has an important effect on the higher modes of the free transverse vibration of
the nanobeams with long cracks. However, in the buckling problem of the slender Bernoulli–Euler cantilever
beam under the compressive load, the effect of the translational spring is negligible [46] and, therefore, has
been usually disregarded (see, for example, [47–49]). Note that this is true for the beams with the clamped-
free boundary condition, and the effect of the translational spring might be important when dealing with the
buckling of cracked beams with other types of the boundary conditions.

In this work, the model presented in [23, 24] is used to study the size-dependent buckling problem of
cracked micro- and nanocantilevers. To solve the problem, the domain is divided into two sections connected
to each other by a rotational spring at the cracked cross section. The slope discontinuity at the cracked cross
section is assumed to be proportional to the bending moment transmitted through it. The buckling equations
associated with the Bernoulli–Euler beam and the stress-driven theories are solved separately at each section.
The variationally consistent and constitutive boundary and continuity conditions are imposed to determine the
buckling loads and the mode shapes. Novel insightful results are presented about the effect of the crack and
the nonlocality on the buckling response of the micro- and nanocantilevers. In this paper, only the conservative
forces are considered; the extension of the present work to the instability of the cracked nanobeams subjected to
the nonconservative forces should be presented elsewhere as the previous investigations on the flutter instability
of the large-scale beams resulted in important understandings [50–54]. The problem definition and formulation
are presented in Sect. 2. In Sect. 3, results are presented and discussed for different cases by varying the effective
parameters. Conclusions of the work are given in Sect. 4.

2 Problem definition and formulation

The size-dependent buckling problem of an isotropic Bernoulli–Euler nanocantilever subjected to the compres-
sive load P, as shown in Fig. 1, is considered. The nanocantilever has a rectangular cross section and deforms
under the plane stress conditions. The length, in-plane thickness, and out-of-plane width of the nanocantilever
are, respectively, L, h, and b. A Cartesian coordinate system x − y is placed at the mid-thickness with origin at
the left end of the nanocantilever. The nanocantilever has a crack at xcrack with the length of a, which divides
the domain into the left and right sections. The crack is assumed to remain open during the deformation.
Throughout the formulation, the notation f (x)(i) denotes the ith derivative of the function f (x) with respect
to x.

In order to account for the effect of the crack on the deformation of the nanocantilever, a rotational spring
is placed at the cracked cross section, which causes a discontinuity in the slope proportional to the bending



Buckling of cracked micro- and nanocantilevers

Fig. 1 Cracked nanocantilever with a rectangular cross section under the compressive load P. The length, in-plane thickness, and
out-of-plane width of the nanocantilever are, respectively, L, h, and b

moment, while satisfies the transverse displacement continuity. The spring model has been widely used in the
literature to account for the presence of the crack in structural problems, e.g., [37, 44, 45, 55–61]. Therefore,
the compatibility conditions at the cracked cross section xcrack are:

Rightv(1)(xcrack) − Leftv(1)(xcrack) � ccrackM(xcrack),
Leftv(xcrack) � Rightv(xcrack) (1)

where Rightv and Leftv are the transverse displacements of the right and left sections. The slopes of the right and
left sections are Rightv(1) and Leftv(1), and M(xcrack) is the bending moment at the cracked cross section. The
parameter ccrack is the crack compliance which can be related to the mode I stress intensity factor due to the
bending moment. Using the method of energy consideration and the theory of fracture mechanics, the crack
compliance can be derived in terms of the stress intensity factor [44, 45], which takes the following form for
a rectangular beam with an edge crack under plane stress conditions [45]:

ccrack � 12Ch
∫ ζ

0
F2
M (ζ )dζ for 0 ≤ ζ ≤ 0.6,

FM (ζ ) �
√
tan

πζ

2

0.923 + 0.199
[
1 − sin πζ

2

]4

cos πζ
2

,

ccrack � 2.65335Ch
∫ ζ

0

1

(1 − ζ )3
dζ for 0.6 < ζ < 1

(2)

where ζ � a/h is the relative length of the crack with respect to the nanocantilever thickness. The parameter
C is the local elastic compliance of the nanocantilever associated with the Bernoulli–Euler beam theory, and
is given as C � 1/(E I ) with E being Young’s modulus and I � bh3/12. The intact cross section can be
modeled by assuming a � 0 which results in ccrack � 0 and therefore the continuity of the slopes of the right
and left sections Rightv(1) � Leftv(1).

The compatibility conditions in Eqs. (1) and (2) are applicable only to the open cracks subjected to the
bending moment. However, at the nanoscale level the van der Waals forces between the atoms located at the
surfaces of the crack tend to close it, and this might affect the kinematic compatibility conditions (1) and
(2). In addition, these compatibility conditions might be further affected by the presence of the compressive
load which tends to close the crack. These two effects might become less pronounced in longer nanobeams
where the effect of the bending moment is predominant. Nevertheless, the compliance of the cracked cross
section in the nanocantilever is expected to be different from that predicted by Eq. (2). Studying the effects
of the above-mentioned phenomena on the kinematic compatibility conditions at the cracked cross sections in
the nanobeams requires a throughout investigation. Here, in order to simplify the presentation of the results
and shed light on the effect of the crack on the buckling loads of the nanobeams, the kinematic compatibility
conditions at the cracked cross sections are determined based on Eqs. (1) and (2).

2.1 Governing equations

The constitutive equation based on the stress-driven nonlocal elasticity theory [21] is:

χ(x) �
∫ L

0
φLC (x − ξ)CM(ξ)dξ (3)
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where χ is the curvature. The kernel function φLC (x) is usually assumed as [23, 24, 35, 37]:

φLC (x) � 1

2LC
e

(
− |x |

LC

)
(4)

with LC being a material length scale related to the microstructural properties. This form of the kernel function
allows to replace the integral form of the constitutive Eq. (3), which is over the entire nanobeam length, with
the following differential equations within the right and left sections [23, 24, 35, 37]:

Leftχ − L2
C
Leftχ (2) � CLeftM for 0 ≤ x ≤ xcrack,

Rightχ − L2
C
Rightχ (2) � CRightM for xcrack ≤ x ≤ L

(5)

subjected to the constitutive continuity conditions at the cracked cross section:

Leftχ (1)(xcrack) � − 1

LC

[
Leftχ(xcrack) −

∫ L

xcrack

(
1

LC
e
xcrack−ξ

LC CRightM(ξ)

)
dξ

]
,

Rightχ (1)(xcrack) � 1

LC

[
Rightχ(xcrack) −

∫ xcrack

0

(
1

LC
e

ξ−xcrack
LC CLeftM(ξ)

)
dξ

]
,

(6)

and the constitutive boundary conditions [21]:

Leftχ (1)(0) � 1

LC

Leftχ(0),

Rightχ (1)(L) � − 1

LC

Rightχ(L).

(7)

The derivation of Eqs. (5)–(7) can be found in [23, 24, 35, 37].
Accounting for the curvature–deflection relation of the Bernoulli–Euler beam, χ � v(2), Eqs. (5)–(7) are

written in terms of the transverse displacements:

Leftv(2) − L2
C
Leftv(4) � CLeftM for 0 ≤ x ≤ xcrack,

Rightv(2) − L2
C
Rightv(4) � CRightM for xcrack ≤ x ≤ L , (8)

Leftv(3)(xcrack) � − 1

LC

[
Leftv(2)(xcrack) −

∫ L

xcrack

(
1

LC
e
xcrack−ξ

LC
[Rightv(2)(ξ) − L2

C
Rightv(4)(ξ)

])
dξ

]
,

Rightv(3)(xcrack) � 1

LC

[
Rightv(2)(xcrack) −

∫ xcrack

0

(
1

LC
e

ξ−xcrack
LC

[Leftv(2)(ξ) − L2
C
Leftv(4)(ξ)

])
dξ

]
,

(9)

Leftv(3)(0) � 1

LC

Leftv(2)(0),

Rightv(3)(L) � − 1

LC

Rightv(2)(L).

(10)

The Euler–Bernoulli buckling equation of the deformed configuration, M (2) + Pv(2) � 0, can be written in
terms of the transverse displacement for the left and right sections using the constitutive Eq. (8):

L2
C
Leftv(6) − Leftv(4) − CP Leftv(2) � 0 for 0 ≤ x ≤ xcrack,

L2
C
Rightv(6) − Rightv(4) − CP Rightv(2) � 0 for xcrack ≤ x ≤ L.

(11)

The governing differential Eqs. (11) are sixth-order ordinary differential equations, which differ from the
classical fourth-order equation of the Bernoulli–Euler beam theory. The higher-order differential equations
justify the necessity of the higher-order constitutive boundary and continuity conditions given in Eqs. (9) and
(10). The solutions of Eq. (11) are in terms of twelve unknown constants, which must satisfy four constitutive
boundary and continuity conditions in Eqs. (9) and (10), as well as the following four variationally consistent
continuity conditions at the cracked cross sections:
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Rightv(1)(xcrack) − Leftv(1)(xcrack) � ccrack

(
Rightv(2)(xcrack) − L2

C
Rightv(4)(xcrack)

)
C

,

Leftv(xcrack) � Rightv(xcrack),
Leftv(2)(xcrack) − L2

C
Lefttv(4)(xcrack) � Rightv(2)(xcrack) − L2

C
Rightv(4)(xcrack),

1

C

[
Leftv(3)(xcrack) − L2

C
Lefttv(5)(xcrack)

]
+ P Leftv(1)(xcrack)

� 1

C

[
Rightv(3)(xcrack) − L2

C
Rightv(5)(xcrack)

]
+ PRight v(1)(xcrack). (12)

The first and second equations account for the compatibility conditions at the cracked cross section as given
in Eq. (1). The third and fourth equations, respectively, satisfy the continuity of the bending moment and the
shear force at the cracked cross section.

The remaining four clamped-free boundary conditions are:

Leftv(1)(0) � 0,
Leftv(0) � 0,
Rightv(2)(L) − L2

C
Rightv(4)(L) � 0,

1

C

[
Rightv(3)(L) − L2

C
Rightv(5)(L)

]
+ PRightv(1)(L) � 0. (13)

The formulation presented in this Section is also applicable to the micro- and nanobeams with other types
of constraints by replacing the clamped-free boundary conditions given in Eq. (13) with appropriate edge
conditions.

2.2 Dimensionless equations

Introducing the following dimensionless parameters:

λ � LC

L
; η � v

L
; x � x

L
; h � h

L
,

P � PL2C

π2 ; ccrack � ccrack
CL

(14)

the governing Eqs. (11) in terms of the dimensionless parameters are:

λ2Leftη(6) − Leftη(4) − Pπ2Leftη(2) � 0 for 0 ≤ x ≤ xcrack,

L2
C
Rightη(6) − Rightη(4) − Pπ2Rightη(2) � 0 for xcrack ≤ x ≤ 1.

(15)

Similarly, the constitutive boundary and continuity conditions in Eqs. (9) and (10) in terms of the dimen-
sionless parameters are:

Leftη(3)(xcrack) � −1

λ

[
Leftη(2)(xcrack) −

∫ 1

xcrack

(
1

λ
e
xcrack−ξ

λ
[Rightη(2)(ξ) − λ2 Rightη(4)(ξ)

])
dξ

]
,

Rightη(3)(xcrack) � 1

λ

[
Rightη(2)(xcrack) −

∫ xcrack

0

(
1

λ
e

ξ−xcrack
λ

[Leftη(2)(ξ) − λ2 Leftη(4)(ξ)
])

dξ

]
(16)

and

Leftη(3)(0) � 1

λ

Leftη(2)(0),

Rightη(3)(1) � −1

λ

Rightη(2)(1).
(17)
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Also, the variationally consistent continuity and boundary conditions (12) and (13) in terms of the dimen-
sionless parameters are:

Rightη(1)(xcrack) − Leftη(1)(xcrack) � ccrack
[Rightη(2)(xcrack) − λ2 Rightη(4)(xcrack)

]
,

Leftη(xcrack) � Rightη(xcrack),
Leftη(2)(xcrack) − λ2 Leftη(4)(xcrack) � Rightη(2)(xcrack) − λ2 Rightη(4)(xcrack),[
Leftη(3)(xcrack) − λ2 Leftη(5)(xcrack)

]
+ Pπ2 Leftη(1)(xcrack)

�
[
Rightη(3)(xcrack) − λ2 Rightη(5)(xcrack)

]
+ Pπ2 Rightη(1)(xcrack), (18)

and

Leftη(1)(0) � 0,
Leftη(0) � 0,
Rightη(2)(1) − λ2 Rightη(4)(1) � 0,[
Rightη(3)(1) − λ2 Rightη(5)(1)

]
+ Pπ2Rightη(1)(1) � 0. (19)

The dimensionless equations governing the buckling of the left and the right sections of the nanobeam and
given in Eq. (15) are linear homogeneous sixth-order ordinary differential equations with constant coefficients.
These equations are solved in closed form using the solution technique developed in [26] and briefly outlined
in the following. The solution of these equations has the general exponential form of Aeβx with A and β being
unknown constants. Substituting the general forms of the solutions into the equations, sixth-order algebraic
characteristic equations associated with the differential Eqs. (15) are derived. The characteristic equations are
then solved in closed form by expressing them in terms of the third-order algebraic equations using the change
of variable technique. Having the roots of the characteristic equations, the closed-form solutions of Eq. (15) are
obtained in terms of twelve unknown constants. The closed-form solutions are then used to impose the twelve
boundary and continuity conditions (16)–(19). This results in a homogeneous system of algebraic equations
whose nontrivial solution exists only if the determinant of the coefficient matrix vanishes. This leads to the
calculation of the buckling loads of the cracked nanocantilevers.

3 Results and discussion

The presented formulation in Sect. 2 is applied here to determine the buckling loads and associated mode
shapes of cracked nanocantilevers. First, the validity of the model is tested against the available results in the
literature for the intact and cracked local and nonlocal cantilever beams. Then, the effects of the crack length
and location, as well as the nonlocal parameter, λ, on the buckling loads and mode shapes are studied, also for
higher modes of buckling.

3.1 Verification

The ratios between the buckling loads of a nonlocal cantilever beam with a crack at the mid-span and those of
a local cantilever beam presented in [61] are shown in Fig. 2a on varying the nonlocal parameter. The crack
has the length of a

/
h � 0.31, and the thickness-to-length ratio is h

/
L � 0.05. The predictions of the present

model converge to those given in [61] based on the local Bernoulli–Euler beam theory for λ → 0.
The ratios between the buckling loads of the cracked nanocantilevers and those of the intact nanocantilevers

given in [26] based on the stress-driven nonlocal theory and the Bernoulli–Euler beam model are presented
in Fig. 2b on varying the mid-span crack length. The thickness-to-length ratio is h

/
L � 0.05. Results are

presented for the nonlocal parameter λ equal to 0 (local model) and 0.5. As shown in the Figure, the results of
the present model tend to those of the model in [26] for shorter crack lengths.
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Fig. 2 a Ratios between the buckling loads of the nonlocal and local nanocantilevers with a crack at the mid-span on varying
the nonlocal parameter. The dimensionless crack length and the thickness-to-length ratio are a

/
h � 0.31 and h

/
L � 0.05.

Results tend to those given in [61] for the local cracked beam. b Ratios between the buckling loads of the cracked and intact
nanocantilevers on varying the crack length. The crack is located at the mid-span and h

/
L � 0.05. Results are presented for the

nonlocal parameter λ equal to 0 (local model) and 0.5, and tend to those given in [26] for the intact nanobeams

3.2 Effects of crack and nonlocality

The ratios between the buckling loads of the cracked and intact nanocantilevers with h
/
L � 0.05 are shown in

Fig. 3a on varying the crack length. The crack is located at the mid-span. Results are presented for the nonlocal
parameter λ equal to 0 (local model), 0.25, and 0.5. The buckling loads of the nanocantilevers decrease for
longer crack lengths due to the additional compliance brought to the system by the crack. The reduction in
the buckling loads of the cracked nanocantilevers is higher for higher values of the nonlocal parameter. This
shows that the buckling loads of the nanocantilevers are more sensitive to the presence of edge cracks than
the large-scale cantilever beams. For example, the presence of a crack with the length of a

/
h � 0.5 at the

mid-span of a local nanocantilever (i.e., λ � 0) reduces the buckling load by 15%. This percentage reduction
for the nanocantilevers with the nonlocal parameter equal to 0.25 and 0.5 is, respectively, 20 and 27%.

Similar to the observation in [26] for the intact nanobeams, the nonlocality increases the buckling loads of
the cracked nanocantilevers due to the additional stiffness brought to the system by the nonlocality associated
with the stress-driven formulation. This is illustrated in Fig. 3b, where the ratios between the buckling loads of
the nonlocal and local nanocantilevers with h

/
L � 0.05 are presented on varying the nonlocal parameter. The

crack is located at xcrack � 0.2. Results are given for the crack length a
/
h equal to 0 (intact nanocantilever), 0.3,

and 0.6. For all the cases, the buckling load increases by increasing the nonlocal parameter, i.e., nanocantilevers
made of materials with the characteristic lengths comparable with the nanocantilever dimensions. However,
the effect of the nonlocal parameter on the buckling loads decreases for nanocantilevers with longer cracks.
For instance, changing the nonlocal parameter from 0 to 0.5 increases the buckling load by 97, 84, and 45%
for the cases with the crack length a

/
h equal to, respectively, 0 (intact nanocantilever), 0.3, and 0.6.

The crack location is also an important parameter which may significantly affect the buckling loads. This
is shown in Fig. 4, where the ratios between the buckling loads of the cracked and intact nanocantilevers are
presented on varying the dimensionless crack location for the nonlocal parameter λ equal to 0 (local model),
0.25, and 0.5. Results are presented for h

/
L � 0.05 and the crack length a

/
h equal to 0.1, 0.3, and 0.5. For

all the cases, the effect of the crack is higher when it is located closer to the clamped end. This is because
the bending moment associated with the first mode of the buckling is higher at the cross sections closer to the
fixed end, and based on Eq. (1), the discontinuity of the slope at the cracked cross section is higher.
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Fig. 3 a Ratios between the buckling loads of the cracked and intact nanocantilevers on varying the crack length. The crack is
located at the mid-span and h

/
L � 0.05. Results are presented for the nonlocal parameter λ equal to 0 (local model), 0.25,

and 0.5. b Ratios between the buckling loads of the nonlocal and local nanocantilevers on varying the nonlocal parameter. The
nanocantilevers have one crack at xcrack � 0.2, and the thickness-to-length ratio is h

/
L � 0.05. Results are presented for the

crack length a
/
h equal to 0 (intact nanocantilever), 0.3, and 0.6

The buckling loads are more sensitive to the crack location for the nanocantilevers with higher nonlocal
parameters and longer cracks. For example, changing the crack location xcrack in the nanocantilever with
λ � 0.25 from 0.5 to 0.1 reduces the buckling load by 1, 5, and 15%, for the cases with a

/
h equal to,

respectively, 0.1, 0.3, and 0.5. This percentage reduction in the nanocantilever with a
/
h � 0.5 is 12, 15, and

18%, is for the cases with λ equal to, respectively, 0, 0.25, and 0.5.

3.3 Higher modes of buckling

The formulated model can be readily applied to calculate the buckling loads of the higher modes. The critical
loads of the first three modes of buckling are presented in Table 1 for nanocantilevers with h

/
L � 0.05 and

one crack at the mid-span. Results are presented for the crack length a
/
h equal to 0 (intact nanocantilever),

0.2, and 0.4, and for the nonlocal parameter λ equal to 0 (local model), 0.25, and 0.5.
It can be understood from the results in the Table that the effect of the nonlocal parameter is higher for the

higher modes of buckling. The first, second, and third buckling loads of the nanocantilever with a
/
h � 0.4

increase, respectively, 35, 132, and 178%, due to the change of the nonlocal parameter from 0 to 0.25. Also for
the higher modes of buckling the critical load reduces by increasing the crack length. However, the reduction
depends on the bending moment at the cracked cross section and is not necessarily higher for higher modes
of buckling. For example, the presence of the mid-span crack with a

/
h � 0.4 in the nanocantilever with

λ � 0.25 reduces the buckling loads of the first and second modes by 12 and 11%, respectively, compared to
those of the intact nanocantilever.

The mode shapes associated with the first three modes of buckling of intact and cracked nanocantilevers
are presented in Fig. 5. The crack has the length of a

/
h � 0.4 and is located at xcrack � 0.7. The mode

shapes are shown for the nonlocal parameter λ equal to 0 (local model) and 0.5. The presence of the crack
significantly changes the higher mode shapes, but has a negligible effect on that of the first mode. When the
characteristic length scale is comparable with the geometrical dimensions, i.e., the nonlocal nanocantilever,
the mode shapes are different from those of the local nanocantilever. For instance, the effect of the crack on
the second and third modes of buckling is more noticeable in the nonlocal nanocantilever.
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Fig. 4 Ratios between the buckling loads of the cracked and intact nanocantilevers on varying the dimensionless crack location
for the nonlocal parameter λ equal to a 0 (local model), b 0.25, and c 0.5. Results are presented for h

/
L � 0.05 and the crack

length a
/
h equal to 0.1, 0.3, and 0.5

4 Conclusions

The mechanical sensors based on the micro- and nanocantilevers are being used for sensing biological and
chemical entities. The size-dependent buckling problemof crackedmicro- and nanocantilevers has been studied
in this paper. The influence of the crack has been modeled by introducing a rotational spring, which relates
the slope discontinuity and the bending moment at the cracked cross section. The crack compliance has been
related to its length using the available equations in the literature based on the method of energy consideration
and the theory of fracture mechanics. The buckling equations of the portions of the nanocantilever at the left
and right of the cracked cross section have been derived and solved separately, based on the stress-driven
nonlocal theory and the Bernoulli–Euler beam model. The variationally consistent and constitutive boundary
and continuity conditions have been imposed to define the buckling loads and the mode shapes. It has been
shown that the results of the present model converge to those of the intact nanocantilevers available in the
literature for vanishing crack lengths.Moreover, the results tend to the available results in the literature for local
cracked cantilever beams when the nonlocal parameter goes to zero. It has been observed that the buckling
loads of the micro- and nanocantilevers reduce for longer cracks. The effect of the crack on the buckling loads
is more highlighted when it is located closer to the fixed end. The nonlocality increases the buckling loads.
However, the effect of the nonlocality on the buckling loads is weaker when the micro- or nanocantilever has
an edge crack. It has been shown that the effect of the crack on the mode shapes is more noticeable for higher
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Table 1 Dimensionless buckling loads of a nanocantilever with h
/
L � 0.05 and one crack at the mid-span having the length-

to-thickness ratio a
/
h equal to 0 (intact nanocantilever), 0.2, and 0.4

Crack length First mode

λ � 0 λ � 0.25 λ � 0.5

a
h � 0 0.250 0.353 0.492
a
h � 0.2 0.245 0.343 0.472
a
h � 0.4 0.229 0.310 0.412

Crack length Second mode

λ � 0 λ � 0.25 λ � 0.5

a
h � 0 2.250 5.378 12.088
a
h � 0.2 2.205 5.244 11.550
a
h � 0.4 2.060 4.775 9.400

Crack length Third mode

λ � 0 λ � 0.25 λ � 0.5

a
h � 0 6.25 27.873 82.713
a
h � 0.2 6.125 24.154 50.904
a
h � 0.4 5.733 15.939 23.949

Results are presented for the first three buckling modes and for the nonlocal parameter λ equal to 0 (local model), 0.25, and 0.5

Fig. 5 First three buckling mode shapes of local and nonlocal (λ � 0.5), intact and cracked nanocantilevers with h
/
L � 0.05.

The crack has the length of a
/
h � 0.4 and is located at xcrack � 0.7

modes of buckling. The formulation presented in this paper is also applicable to the micro- and nanobeams
with other types of constraints by adopting appropriate boundary conditions.
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