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A B S T R A C T
Objective: Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring
its effects after each dose of drug therapy. The aim is to isolate responding and non-responding tumors prior
to surgery in order to increase patient safety and select the optimal medical follow-up.
Methods: A new method of monitoring NAC therapy has been proposed. The method is based on image
quality indexes (IQI) calculated from ultrasound data obtained from breast tumors and surrounding tissue.
Four different tissue regions from the preliminary set of 38 tumors and three data pre-processing techniques
are considered. Postoperative histopathology results were used as a benchmark in evaluating the effectiveness
of the IQI classification.
Results: Out of ten parameters considered, the best results were obtained for the Gray Relational Coefficient.
Responding and non-responding tumors were predicted after the first dose of NAC with an area under the
receiver operating characteristics curve of 0.88 and 0.75, respectively. When considering subsequent doses of
NAC, other IQI parameters also proved usefulness in evaluating NAC therapy.
Conclusions: The image quality parameters derived from the ultrasound data are well suited for assessing the
effects of NAC therapy, in particular on breast tumors.

1. Introduction

The use of neoadjuvant chemotherapy (NAC) for breast cancer
treatment continuously increases [1–3]. In the case of locally advanced
breast cancers and Stage 2 or 3, HER-2 positive or triple-negative breast
cancers [4–6], it is a standard procedure preceding radical mastectomy
and radiation therapy. The purpose of NAC is to reduce tumor mass,
recurrence, and the risk of metastases and micrometastases [7,8]. How-
ever, NAC therapy is not successful in every case, the meta-analysis [9]
based on the results from 18,000 patients shows the full effective-
ness of therapy in only 21.5% of cases. Therefore, monitoring the
effects of NAC after each dose of the drug therapy and detecting non-
responding tumors as well as detecting, prior to surgery, responding
tumors is important as it may influence the choice of further medical
procedures. Early isolation of non-responding chemotherapy-resistant
tumors avoids unnecessary patient exposure to treatment side effects
and may result in a change in the treatment regimen. This is important
because over 40% of patients demonstrate a poor pathological response
to NAC treatment [10]. Identification of tumors that respond very well
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to therapy can increase the percentage of patients treated with breast-
conserving therapy, which also significantly affects the psychological
condition of the patient [11].

The post-surgical histopathology and assessment of tumor cellular-
ity is a standard approach to determine tumor response to NAC. Current
attempts for pre-surgical reliable monitoring of the response to the NAC
include MRI, CT, PET, palpation, and ultrasonography [12]. Functional
imaging techniques, including PET and MRI, enable imaging of the
microstructure and physiology of the tumor [13]. However, the use
of these modalities is associated with a high cost, long data collection
time, and the need to administer exogenous contrast agents. These
factors limit their availability and applicability to monitoring patients
during NAC.

Methods that allow non-destructive evaluation of local tissue prop-
erties and changes are, if not better, certainly complementary and
supportive to methods based on the assessment of changes in tumor
size. Quantitative ultrasound (QU) techniques have demonstrated their
ability to evaluate tissue structure and its physical properties [14]. This
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Fig. 1. Areas for which IQI parameters were determined, superimposed on the B-mode
image of the lesion.  — the rectangular area inside the lesion,  — corresponds
exactly to the shape of the lesion outlined by the radiologist,  — the rectangular
area containing the tumor and surrounding tissue,  =  −  — the area near the
lesion border.

Fig. 2. The mean values of the  parameter (LOG, , 22.5%) together with the
standard deviation, calculated after consecutive NAC cycles for three groups of tumors.
Group of unresponsive tumors (grades 1–2 of MP) — dashed line, grade 3 of MP (dotted
line) and responding tumors (grades 4–5 of MP) — solid line.

non-invasive technique has been used to aid in the ultrasound diagnosis
of tumors and to monitor neoadjuvant chemotherapy in breast cancer.

The QU methods were applied for monitoring the responsiveness
of human breast cancer xenografts in mice [3] using spectral features
calculated from RF data and allowed for the prediction of response
after the first course of NAC. The classification method based on the
integrated backscattering coefficient and the homodyned K distribution
shape parameter [15] gave an area under the receiver operating char-
acteristics curve (AUROC), for the shape parameter, equal to 0.69 after
the first week of the chemotherapy. The other QU parameters (mid-
band fit, spectral slope) were used to determine QU parametric maps.
From each map, texture features (such as contrast, correlation, homo-
geneity, and energy) were evaluated. The homogeneity extracted from
the spectral slope map distinguished responding and non-responding
patients with an accuracy of 0.79 [16]. The deep learning models
were also used to monitor the response to NAC. Siamese convolutional
neural network was proposed to calculate the neural features of the
lesions. Additionally, the morphological features were determined from
tumor images. After the first course of NAC, the neural, morphological,
and neural plus morphological methods achieved the AUROC values of
0.826, 0.792, and 0.827, respectively [17].

It needs to be noted that the published results of studies on the
monitoring of NAC therapy by ultrasound concern a limited number
and types of tumors due to difficulties in collecting data, which is
slow, laborious and dependent on the changing condition of the patient.

Fig. 3. Determining responding cases. AUROC values evaluating classification models
based on each of the eight parameters considered, applied after the first dose of NAC.
The color of the bar identifies the area of tissue from which the ultrasound data was
collected. Area  — the rectangular area inside the lesion,  — corresponds exactly to
the shape of the lesion outlined by the radiologist,  — the rectangular area containing
the tumor and surrounding tissue,  =  −  — the area near the lesion border as
depicted in Fig. 1.

Table 1
The highest AUROC values after the first NAC cycle along with the standard error, and
sensitivity and specificity for detecting responders.
Parameter (Region,
Window size, Type)

AUROC
[a.u.]

Std. error
[a.u.]

Sensitivity Specificity

GRC (, 3 mm, HIL) 0.885 0.063 0.833 0.923
CORR (, 3 mm, LOG) 0.872 0.061 0.833 0.692
Q (, 3 mm, LOG) 0.872 0.061 0.833 0.692
RMSE (, 1 mm, HIL) 0.859 0.083 0.833 0.846

Therefore, each new, effective parameter is valuable, increases the
reliability of quantitative ultrasound methods, and can be used in
a multi-parameter model, potentially increasing the effectiveness of
monitoring.

In this work, parameters calculated from ultrasound data are evalu-
ated for monitoring NAC therapy. They are based on the classic Image
Quality Indexes (IQI). For example, the grey relational coefficient –
GRC – parameter has previously been used to compare computed
tomography images after compression [18] and ultrasound images of
fatty liver [19]. Here, it is applied to ultrasound data from breast
tumors and its ability to evaluate the results of NAC therapy is assessed
and achieves results at least as good as more complex methods in the
literature.

2. Materials and methods

2.1. Data collection

The ultrasound data used for analysis were collected from 29 pa-
tients with 38 tumors (two trifocal lesions, five bifocal lesions, twenty-
two monofocal lesions). AT (doxorubicin, docetaxel), AC (doxorubicin,
cyclophosphamide), and paclitaxel were used in the neoadjuvant treat-
ment. The age of patients ranged from 32 to 83 years (mean 57, median
55, standard deviation 14). The study was approved by the Maria
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Fig. 4. Determining non-responding cases. AUROC values evaluating classification
models based on each of the eight parameters considered, applied after the first dose
of NAC. The color of the bar identifies the area of tissue from which the ultrasound
data was collected. Area  — the rectangular area inside the lesion,  — corresponds
exactly to the shape of the lesion outlined by the radiologist,  — the rectangular area
containing the tumor and surrounding tissue,  =  −  — the area near the lesion
border as depicted in Fig. 1.

Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology
in Warsaw, Poland. All patients signed an informed consent form for
participation in the study.

Before NAC, all patients underwent a core needle biopsy for the
assessment of histologic grade in breast cancer and the determination
of molecular subtype by immunohistochemical markers. All examined
tumors type were non-specific (NST). Six (of 38) tumors were luminal
A, nine were luminal B HER2+, nine were luminal B HER2–, five were
TNBC, and nine were HER2+. All tumor samples were evaluated by the
same pathologist.

Raw RF echoes and B-mode images were acquired using an Ultra-
sonix SonixTouch scanner (formerly Ultrasonix Medical Corporation,
Richmond, BC, Canada) with an L14-5/38 linear array transducer (a
128-element transducer with 0.3 mm element pitch, 0.02 mm kerf and
70% fractional bandwidth, excited by two cycles signal of frequency
equal to 10 MHz). Each scan consisted of 512 signal lines (filling the
38 mm width of the transducer) recorded at the sampling frequency
of 40 MHz. That resulted in about 3376 samples per line. The trans-
ducer’s focus was always positioned in the middle of the lesion. All
examinations were performed by the same radiologist who followed the
American College of Radiology BI-RADS guidelines [20]. Each lesion
was scanned at various cross-sections to obtain four slices of the region
of interest (radial, radial + 45◦, anti-radial, anti-radial + 45◦). The
longest diameter of the tumor was measured. The collected data had
the tumor area detected, described and outlined by a radiologist after
each ultrasound measurement.

The chemotherapy was followed by mastectomy with lymphadenec-
tomy. In order to categorize the tumor’s pathological response to NAC
according to the Miller–Payne (MP) scale [21], residual malignant cells
(RMC) were quantified using the samples obtained from the biopsy
before treatment and the material collected after the treatment and
surgery. According to the histopathological results, the tumors were
divided into three groups: the group of MP grades 1–2 where 70%–
100% of tumor cells remain after chemotherapy, MP grade 3 where

Table 2
The highest AUROC values after the first NAC cycle along with the standard error, and
sensitivity and specificity for detecting nonresponding tumors.
Parameter/Region/
Window size/Type

AUROC
[a.u.]

Std. error
[a.u.]

Sensitivity Specificity

GRC (, 22.5%, LOG) 0.759 0.086 0.889 0.69
PSNR (, 3 mm, HIL) 0.757 0.081 0.889 0.667
CORR ( , 1 mm, HIL) 0.751 0.086 0.778 0.621
Q ( , 3 mm, LOG) 0.743 0.088 0.778 0.759

Table 3
AUROC values after the first, fifth and sixth NAC cycle along with the standard error,
and sensitivity and specificity for detecting responders.
Parameter NAC

course
AUROC
[a.u.]

Std. error
[a.u.]

Sensitivity Specificity


1st 0.696 0.101 0.667 0.731
5th 0.813 0.088 0.750 0.812
6th 0.985 0.043 1.000 0.861


1st 0.872 0.080 0.833 0.923
5th 0.852 0.086 0.875 0.750
6th 0.875 0.091 0.833 0.917

Table 4
AUROC values after the first, second and third NAC cycle along with the standard
error, and sensitivity and specificity for detecting nonresponding tumors.
Parameter NAC

course
AUROC
[a.u.]

Std. error
[a.u.]

Sensitivity Specificity


1st 0.716 0.100 0.667 0.828
2nd 0.718 0.096 0.778 0.538
3rd 0.831 0.096 0.889 0.778


1st 0.625 0.097 0.667 0.552
2nd 0.758 0.082 0.667 0.750
3rd 0.844 0.082 0.889 0.778

10%–70% of tumor cells remain after chemotherapy, and MP grades
4–5 where only at most 10% of tumor cells remain. In our study, the
group of MP grades 4–5 was treated as responding and the group of MP
grades 1–2 as non-responding.

2.2. Data analysis

Calculation of quantitative measure of lesion change
Image quality based parameters: the mean square error — MSE,

and its root — RMSE, signal to noise ratio — SNR, peak SNR —
PSNR [22], grey relational coefficient — GRC [23], correlation based
parameters as CORR, Q [24], structural similarity index — SSIM [25]
were used as a measure of the difference between two datasets obtained
from ultrasound data. In particular, we focused on the GRC parameter
that is used to compute the correlations of discrete sequences. This is
equivalent to finding a correlation coefficient between the pixel values
in the two grayscale image windows, if the pixel values have been set
to sequences. The  parameter was computed as (1):

 =
 + 

0 + 

, (1)

where

0 =

√1


∑
=1

[0()]2

and  - the number of pixels in the image, 0 - the matrix of absolute
values of the differences between the reference image (pre-NAC data,
marked 0) and examined image (data after th course),  and 
denote the minimum and the maximum of 0 matrix, respectively.

Each parameter was calculated using the reference data taken before
NAC and data collected after the respective course of chemotherapy. To
make calculations reliable, the geometrical mass center of the outlined
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Fig. 5. The values of GRC Wu parameter and change in diameter calculated for all available cases (RF data, region , averaging window of size 1 × 1 mm). The size of the point
is proportional to the change in diameter (the largest point corresponds to the diameter reduction of 63%). Upward and downward triangles indicate increasing and decreasing
change in the maximum diameter of the lesion, respectively. Cases are grouped according to the MP scale. Each case consists of four datasets obtained from different slices.

Fig. 6. ROC curves for classification of responding (RMC < 10%) after the 1st, 5th and 6th NAC course. The classifiers are based on  (left) and  (right). The markers
indicate the operating points for which the parameters are shown in Table 3.

tumor at prechemotherapy measurement was adjusted to the mass
center of the lesion after each of the subsequent NAC cycles. Then, four
areas of interest around the mass center were defined (Fig. 1). Region 
(inside the tumor) was half the horizontal and vertical diameter of the
tumor before NAC. The tumor area was designated as the  . Region
 was larger than the lesion. It contained the tumor and peritumoral
tissue. The dimensions of this rectangular area were equal to the
horizontal and vertical diameters of area  multiplied by 1.32. This
coefficient was selected to get equality of the area differences between
the rectangle , the rectangle circumscribed on the tumor  , and the
rectangle . Region  was equal to the difference between  and .

The parameters were calculated in the respective regions using a
two-dimensional sliding window. Three types of windows were used,
two square ones with a fixed side of 3 mm and 1 mm, and rectangular
window with sides depending on the size of the tumor and constituting
22.5% of its horizontal and vertical dimensions.

The size of the 3 mm window was adopted in accordance with [26],
where it was shown that it is the size necessary for the proper de-
termination of scattering properties in tissues. On the other hand, the
1 mm dimension ensures adequate tumor coverage [27]. The purpose
of the window, the size of which was scaled by the size of the tumor,
was to create similar conditions to the analysis of tissue structures
dependent on the size of the tumor. In the case of area , this window
was determined based on the thickness of the area. The windows were
moved in the analyzed region with a step of one pixel (the window
size in pixels was equal to 38 × 156 [horizontal × vertical dimension]
for the 3 mm × 3 mm window and 13 × 52 for 1 mm × 1 mm, the size
in pixels of the window 22.5% varied depending on the tumor size).
The value of the IQI parameter was calculated for each window in the
examined tissue region. The mean value of the parameter determined
for all windows in the region and for four tumor sections was used as
a parameter to predict tumor response to NAC.
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Fig. 7. AUROC values assessing classification models differentiating responding tumors
and the remaining group of tumors for subsequent NAC cycles. Parameters shown: #1
 (HIL, , 22.5%); #2  (RF, , 1 mm); #3  (HIL, , 22.5%); #4 Tumor
diameter change.

All calculations were applied to the ultrasound raw, post beam-
formed data (RF), the Hilbert transform based envelope data (HIL) and
log-compressed envelope data (LOG). The RF data contains complete
ultrasonic echo information, i.e., amplitude and phase information of
the wave backscatter. Envelope data is echo amplitude data often
used in quantitative ultrasound to characterize tissues. Log compressed
envelope data is very similar to B-mode image data, but is free from
the distortion introduced by the signal processing used in ultrasonic
scanners for image enhancement. The following notation was used
in the description of the IQI characteristics. After the IQI name, in
parentheses, we have the data collection area, the type of signal pre-
processing and the size of the window used. For example,  (, HIL,
3 mm) means that the  value was determined for the data from the
 region, the signal amplitude calculated from the raw data using the
Hilbert transform, and the 3 mm × 3 mm window was applied in the
calculations. The Matlab (Mathworks inc.) software was used for the
data processing.

Additionally, although Response Evaluation Criteria in Solid Tumors
(RECIST) was not originally developed for use in ultrasound data,
studies show no difference in the accuracy of RECIST based tumor
diameter assessed using MRI and ultrasound data [28]. Therefore, the
changes in tumor diameter are also used here to evaluate the effects of
NAC.

Statistical analysis
The diagnostic suitability of each parameter as a binary classifier

was estimated using ROC analysis. When analyzing the capability of pa-
rameters for the differentiation of responders and non-responders, the
result of postoperative histopathology (RMC value) was the reference.
Two classification models were considered, distinguishing responding
from all other patients as well as non-responding from all other pa-
tients. The area under the ROC curve (AUROC) with the standard error
as well as the sensitivity and specificity were determined. The cutoff
value, providing a tradeoff between sensitivity and specificity, was
found by maximizing the Youden index [29]. ROC analysis was carried
out (using SPSS software, IBM) for the 0.05 significance level.

3. Results

Changes in cancer tissue, caused by successive doses of NAC affect
ultrasound scattering, so they should be reflected in IQI values and then
may be used to predict the final result of NAC therapy. The mean values
of one of the analyzed parameters () during NAC for the three
tumor groups, responding (grade 4–5 of MP), non-responding (grade 1–
2 of MP) and others (partially responding — grade 3 of MP) are shown
in Fig. 2. At each stage of the therapy, the parameter was calculated

using the data from the current NAC cycle and pre-chemotherapy data.
The mean value of  is almost constant after subsequent doses of
NAC in the case of tumors non-responding to treatment. On the other
hand, for tumors responding to chemotherapy, a monotonic decrease
in the  value is observed.

Since the answer to the question of whether chemotherapy works
or not on cancer cells should be obtained as soon as possible, the
separability of the responding and non-responding groups of patients
after the first chemotherapy was analyzed at the beginning. The curves
of receiver operating characteristics (ROC) and the areas under them
(AUROC) were determined. The analysis assumed the division of the
whole group of tumors into responding (grade 4–5 of MP) and others.
The results presented in Fig. 3 show the maximum AUROC values
obtained for all parameters considered.

In Table 1, the results obtained for those parameters, after the first
NAC dose, AUROC reached the value above 0.85 are presented.

Also when looking for tumors non-responding to NAC, the results
(AUROC values from all analyzed windows and data types and tissue
areas) obtained after the first dose of the chemotherapy are shown in
Fig. 4. The best results were obtained for ,  and  and
additionally for  and the details were summarized in Table 2.

Values of GRC parameter calculated for all considered cases after
the first course of chemotherapy along with the respective change in
diameter of the lesion (depicted as the size of the symbol) are shown
in Fig. 5. The parameter’s values were obtained for RF data, region ,
and averaging window of size 1 × 1 mm. The different symbol colors
indicate the category of Miller–Payne scale to which the case belongs
after chemotherapy. The size of the point is proportional to the change
in diameter of the respective case (RECIST like index) - the largest
change in the considered cases is the diameter reduction of 63%.

The usefulness of image quality indexes for the assessment of NAC
was analyzed using data collected from tumors after all subsequent
chemotherapy cycles and from all the considered four areas of the
tumor. The results presented are showing the greatest ability to reflect
tissue changes based on differences in IQI.

In the analysis of the applicability of IQI parameters for the as-
sessment of the effects of NAC in subsequent chemotherapy courses,
two parameters, the  and the  are presented. Because the
relationship between tissue changes caused by successive chemother-
apeutic doses and ultrasound wave scattering, which is the source
of changes in IQI parameters, is not fully established, the analysis is
focused on results for those IQI parameters that increased or at least
maintained the AUROC value during successive chemotherapy cycles.

ROC curves for classification by  and , selecting tumors
responding to NAC therapy, are presented in Fig. 6. In Table 3, AUROC
values with standard error and values of sensitivity and specificity cal-
culated for the cut-off points marked on the ROC curves are presented
for classification after the first, fifth and sixth NAC cycle.

The results of predicting the positive response of tumors to NAC
based on the parameters of  and  in subsequent cycles
of chemotherapy are presented in Fig. 7. Additionally, the predictions
based on the change in tumor size are included there.

The effectiveness of predicting tumor non-responding to NAC after
subsequent treatment cycles was then determined. ROC curves for
predicting tumor failure to respond to NAC therapy using  and
 parameters are shown in Fig. 8.

AUROC values with standard error and values of sensitivity and
specificity calculated for the cut-off points marked on the ROC curves
(Fig. 8) are presented in Table 4 for classification after the first, second
and third NAC cycle.

As in the case of responding tumors, it is assumed that the classi-
fication results should not decrease with subsequent treatment cycles.
From all considered IQIs, ,  and  were chosen (Fig. 9).
In addition, the classification results based on the size of the tumor are
presented.
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Fig. 8. ROC curves for classification of non-responding tumors (RMC > 70%) after the first 3 NAC courses. The classifiers were based on  (LOG, , 22.5%) (left), and 
(RF,  , 1 mm) (right). The markers indicate the operating points for which the parameters are shown in Table 4.

Fig. 9. AUROC values assessing classification models differentiating non-responding
tumors and the remaining group of tumors for subsequent NAC cycles. Parameters
shown: #1  (LOG, , 22.5%); #2  (RF,  , 1 mm); #3  (RF, ,
1 mm); #4 Tumor diameter change.

4. Discussion

For tumors responding to NAC, six IQI parameters achieved AUROC
value above 0.8 when calculations were performed on data from  or
 area (Fig. 3). This may suggest that in tumors that respond to NAC,
the tissue changes first occur in the outskirts of the tumor. Similarly,
the usefulness of ultrasound data from the edge of breast tumors in de-
termining the response of breast cancer to neoadjuvant chemotherapy
has been demonstrated in [30]. Also, in differentiating between benign
and malignant breast tumors, the importance of ultrasound data from
the tissue surrounding the tumor was indicated [31].

The classification using the  parameter determined for the
constant window size (3 × 3 mm), which worked very well after the
first NAC cycle, ranked worse in the subsequent NAC cycles. The 
parameter, calculated for a variable-sized window, classified tumors
much better. This may be due to the fact that the window of the size
related to the tumor dimensions, indirectly uses information about the
tumor size. As a result, treatment-responsive tumors, which are often
smaller than non-responsive tumors, also have a smaller averaging
window, allowing the detection of small local tissue changes that occur
as chemotherapy progresses. As it turns out, this window yields 
parameter values that are more representative of changes in the tumor
and its surroundings caused by chemotherapy.

The AUROC value for the -based classification is almost
constant throughout the NAC treatment and is about 0.85 (see Fig. 7).
Classification based on the  improves with successive doses of ther-
apy and after the last dose, the corresponding AUROC value approaches

the level close to 1. This applies to the calculations carried out on both
data from area  and data from area . Since area  covers only the
central part of the tumor and area  the entire tumor, including area
, it can be concluded that in this case, the data from the tumor center
is the most useful for classification. However, it should be remembered
that the reliability of the results obtained from the data collected after
the 6th NAC course is lower because the calculations were carried
out for a smaller number of cases (18 tumors — NAC therapy was
discontinued before the sixth course in some cases). Assessment of the
effects of NAC based on changes in tumor dimensions was significantly
worse when predicting NAC effects for well-responding tumors.

For tumors non-responding to NAC, the obtained AUROC values are
lower than in the case of the tumors responding to NAC. The best results
in predicting not responding tumors were obtained with ultrasound
data collected from the tumor itself (area  and  described in Fig. 1),
in contrast to tumors that responded well to NAC, for which the area
of the peripheral and surrounding tissue was particularly important.
In both cases, tumors with good and poor response to NAC, the same
parameters (, , and ) produced the best classification
results.

In the case of tumors not responding to NAC, it is important that
the information is obtained as soon as possible. The effectiveness of
detecting unresponsive tumors increases significantly for all presented
IQI parameters with subsequent doses of the drug therapy (Fig. 9). The
prognosis of a negative therapy result based on the  obtained the
value of AUROC = 0.84 and 0.86, after courses 3 and 4, respectively,
and analogously for the  parameter, AUROC values = 0.85 and
0.9. Assessment of the effects of chemotherapy on the basis of 
values was very effective, AUROC = 0.988, but only after the 5th dose
of the chemotherapeutic agent. Again, the classification based on tumor
diameter was much worse.

The AUROC values obtained in this paper along with State-of-the-
art results achieved in the prediction of NAC outcome after the first,
second and third course are summarized in Fig. 10. Tumor stiffness as
a response marker resulted in AUROC values equal to 0.64 after the
1st cycle [32], 0.75 after the 2nd cycle [32] and 0.73 after the 3rd
cycle of NAC [36]. The study [36] also evaluated the discriminative
performance of the maximum diameter of the lesion and it allowed
to gain accuracy of 0.68. Integrating quantitative contrast-enhanced
ultrasound parameters with clinicopathological features increased pre-
diction efficacy from 0.75 to 0.84 [34]. Combined ultrasound and
clinicopathological classifiers achieved AUROC of 0.73 at the initial-
baseline stage and 0.79 after two cycles of NAC [33]. Neural networks
were also used to predict the NAC response. The prediction model
based on neural or morphological features resulted in AUROC values
ranging from 0.74 to 0.83 [17]. Another developed model using deep
learning radiomics achieved an AUROC of 0.81 after the second course
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Fig. 10. AUROC values achieved in the prediction of NAC outcome after the first, second and third course in several works [17,32–36] (ordered by publication date). Each symbol
shape corresponds to a single published work, multiplied symbols were used to present the results of different approaches. Black circles are the AUROC values obtained in this
work.

Fig. 11. Parametric images,  (HIL, , 3 mm), of the responding (a) and non-responding (b) breast tumor after the first NAC cycle. The color scale shows the values of the
 parameter. The lines represent the border of the lesion before chemotherapy (white line) and after the first cycle (black line).

of NAC [35]. Compared to previous studies (AUROC = 0.64–0.84), our
method presented the feasibility of predicting NAC outcomes with a
higher AUROC value (AUROC = 0.885 after the first stage). The results
suggest that the combination of proposed IQI parameters and other
modalities features may strongly improve the final result.

The idea of NAC impact assessment using IQI is presented. Para-
metric maps showing the distribution of  parameter values in the
tumor after the first chemotherapy for two selected tumor cases, a
tumor well responding and a tumor not responding to NAC therapy are
presented in Fig. 11. This is the case where none of the tumors change
size after chemotherapy, but the  values are significantly different.
These differences in  values illustrate the differences in ultrasound
scattering in the tissue of the tumors studied.

5. Conclusions

The results show that IQIs applied for ultrasound data are well
suited to assess the effects of NAC therapy. It is particularly important
due to the non-invasive nature and low cost of ultrasound diagnostics.

Our research shows that IQI parameters are particularly well suited to
predict the effects of NAC on tumors that respond well to therapy. The
results obtained show the important role of the tissue surrounding the
tumor in predicting a good outcome of NAC therapy. Conversely, for
treatment-resistant tumors, a better classification was obtained using
data from the tumor itself. The number of analyzed cases is not enough
to draw more general conclusions. However, our results indicate that
there is great potential to use IQI determined from ultrasound data
to observe tissue changes. In the case considered here, these were
lesions induced by NAC therapy, but it can be anticipated that also
other tissue disease processes, not necessarily related to cancer lesions
or chemotherapy, can be detected by the presented method using IQI
parameters of ultrasound data.
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