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Abstract: Silicon carbide foam is a material that can be used as reinforcement of interpenetrated
composites. This paper presents an analysis of such a foam subjected to low and fast compression. The
analysis is performed using the peridynamics (PD) method. This approach allows for an evaluation
of failure modes and such effects of microcracks nucleation, their growth, and, finally, fragmentation.
Furthermore, the material appears to behave qualitatively and quantitatively differently while
subjected to low- and high-speed steel piston movement. Under slow compression case, damage
appears in the entire specimen, but the shape of the structure is not changing significantly, whereas
during the fast compression the sample is dynamically fragmented.
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1. Introduction

The designing process of advanced composites having optimal thermal and mechan-
ical features is strictly related to different phases used for creating novel materials and
conditions of the manufacturing process for their production. Different matrix materials are
applied for the fabrication of new composites. The most popular are polymers [1–6], ceram-
ics [7–21], cement [22,23], or metal [24–30], which joint different kinds of reinforcements,
e.g., particles, fibres, and others. The above novel multiphase materials are demanded
for space and cars, industrial applications [16], etc. The advanced space systems should
ensure the implementation of the scientific and commercial tasks of the missions. Therefore,
each composite phase poses different requirements for designing final materials properties,
including its architecture. Various internal composite microstructures with different phases
contents and reinforcement geometries can be manufactured, from completely disordered
structures passing to specially designed architectures in layered, sandwich, or functionally
graded materials [31–35], and nanostructures composites [36,37].

A special case of matrix materials can be open-cell foams made of polymer [38–44],
metal [45–50], and ceramics [51–60]. Two types of ceramic foams are important: SiC—
silicon carbide foam (SCF) [51,52] and SiOC silicon oxide carbon one [53,54]. Moreover,
the rapid progress in nanotechnology leads to the creation of SiC nanostructures in the
form of nanowires, nanotubes nanorods [61,62]. Porous SiC nanocrystals are generally
produced using two techniques (1) electrochemical etching of bulk materials or (2) embed-
ding SiC crystallites in matrix such as Si [61]. These types of structures exhibit excellence
luminescent properties.

Both mentioned classical foams SFC and SiOC are very good materials for elevated
and high-temperature engineering applications, particularly in interpenetrating composites,
after filling the foam with the second phase material. The SiC has low thermal conductivity
and thermal expansion coefficient [51–56]. Various methods are applied for manufacturing
of SCFs [55–60,63]. They are enabling the fabrication of materials with different levels of
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open or closed porosity which strongly influence the final macroscopic thermo-mechanical
features. Open porosity ceramics are used for various filters in diesel engines, fuel cells, etc.
The closed porosity ceramics is applied in case of necessity to get outstanding mechanical
strength or thermal insulation.

The internal microstructure architecture is characterised by pore size distribution,
orientation, and interconnection. It is related to applied manufacturing technology and
strongly influences the mechanical behaviour of the SCFs. The rate of heating during
the foaming of SCFs, the ultimate ceramization temperature, and various compositions
of starting raw material (including the application of other phases or the existence of
impurities) are key factors deciding the final thermo-mechanical characteristics of the SFCs.
For example, better thermal insulation requires the SiC to have a higher porosity level. A
small amount of porosity in ceramics leads to higher mechanical strength.

Filling the open porosity ceramic foam with metal alloy one can get a relatively new
class of materials called interpenetrated phase composite (IPC). This particular case of
advanced composite and all others cited above are frequently used for space, military, and
car structural parts, which are subjected to extremal loadings during the exploitation like
high-velocity dynamic loading, and thermal shocks developing in a very short time interval.

In this paper, we limit theoretical analysis to ceramic foams subjected to compressive
loading. The SCFs are typically tested under quasi-static compression (dual ceramic
Al2O3/SiC [57] and single-phase foam Al2O3 [64] or SiC [65]), using a strain rate of
0.5 mm/min according to ASTM E9 standard. Many factors affect compressive strength,
such as open or closed porosity, cell size, strut thickness, and degree of sintering. The
strength of the struts has a direct effect on the crushing strength. The foam’s compres-
sive strength increases with the sintering temperature and hence with increased struts
strength [57]. However, to the author’s knowledge, there are no papers studying modelling
ceramic foam’s behaviour subjected to low, moderate, or higher compressive strain rates.
The first attempt to elaborate numerical analysis of the dynamic behaviour of the SCFs
subjected to external impact was made in [66], where the foam sample hit the metallic plate
with a range of velocities from 15 m/s up to 800 m/s. The highest values of velocities
correspond to military applications.

Therefore, in this paper, the numerical analysis of the gradual degradation process of
the SiC foam subjected to low, moderate, and high compressive strain rates was modelled
starting from the pure elastic response and passing through gradual brittle damage of the
struts system, and ending on final fragmentation. The presented analysis demonstrates that
the behaviour of the SiC ceramic foam under a low strain rate is qualitatively and quantita-
tively different in comparison to high strain rate deformation or impact loading [66].

The numerical analysis was performed using the peridynamical approach, which
allows for the description of damage initiation, and further degradation growth, leading
to fragmentation of the SiC foam. A characteristic feature of the method that starts from
crystal mechanics is its non-locality [67–69]. In particular, the paper [69] introduces the
non-local mechanical field approaches. The paper [70] presents the theory of elasticity in
terms of PD. The generalisation of a bond-based model [71] is the state formulation of
PD [72]. The latter was applied to materials of brittle behaviour. The monographs [73–75]
present state-of-the-art of PD. The works [73–78] give a broad insight into the examples of
the PD description of the behaviour of brittle materials.

The major conclusion resulting from the numerical analysis is that under the high-
strain rate loading, the SiC foam load carrying capacity is much higher. Compared to
high-impact velocities, damage initiates in high-strain rates much slower.

The next paper will deal with a similar analysis for IPC made of SiC foam filled with
AlSi12 alloy.
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2. Constitutive Model and Formulation

The ceramic foam is fabricated from the elastic material SiC. The material model
depends on peridynamics states, [72], Figure 1. On the left, the original configuration is
given, and to evaluate the deformation of the body, two points Q and x are chosen.
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Figure 1. Determination of body deformation.

In this non-local model, the deformation is dependent on the change in the distance
between positions Q and x which means bond length ξ:

ξ = Q− x (1)

When observing the initial configuration, X is a function that acts on the bond X(ξ).
The deformation depends on the new position of the point x in the deformed configuration
of the body y(x) and coordinate Q, namely, y(Q):

Y(x,ξ) = y(x + ξ)− y(x) (2)

Y(x,ξ) = y(Q)− y(x) (3)

Now, the displacements are expressed as follows:

U(x,ξ) = u(x + ξ)− u(ξ) (4)

U(x,ξ) = u(Q)− u(x) (5)

The scalar stretch state of the bond e(Y) equals:

e(Y) = |Y| − |X| (6)

The scalar stretch state is split up into spherical ei and deviatoric ed contributions:

e = ei + ed (7)

The force state t(Y) is the sum of its spherical and deviatoric terms:

t(Y) =
(

3kθ

m

)
ωx + αωed (8)

In the formula above, k, θ, and m are the bulk modulus, dilatation, and weighted vol-
ume, respectively. Further on, ω, x=|ξ|, α=15 µ/m are the influence function, scalar state,
and a factor dependent on the weighted volume m and the shear modulus µ, respectively.

The bond breaks down if the stretch passes the critical threshold, ecr, Figure 2. The
damage is an unreversible phenomenon, and the total damage determines the sum of
failed bonds.
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Figure 2. The elastic law and the bond failure condition.

The bond-related model [71,72,75] is a particular case of the state-related model. The
following relation rules:

f = ceς(x, t, ξ) (9)

where c = (18k)/(πh4) is dependent on the horizon h and bulk modulus k. The force f
reaches a maximum when the bond stretch is lower than ecr, f = 0 if e > ecr. The function
ς equals:

ς =

{
1 for e < ecr
0 for e = ecr

(10)

In this model, progressive degradation of the foam skeleton depends on GI that is the
fracture energy. In our case, it is assumed that the fracture is dominated by mode I. The
critical stretch depends on the fracture energy, as follows:

ecr =

√
5GcI
9kh

(11)

where GcI is the fracture energy associated with the fracture mode I, k is the bulk modulus
and h is the horizon. The fracture energy is associated with mode I cracking:

GcI =
(1− ν2)KI

2

2E
(12)

In the formula above, the fracture toughness KI is evaluated experimentally, E is
Young’s modulus, and ν is Poisson’s ratio.

In peridynamics, the damage parameter at a calculation point is defined as:

d(x, t) = 1−

∫
Γ

ς(x, t, ξ)dv∫
Γ

dv
(13)

If d = 0, the material is pristine, namely, without microcracks. When d grows and
falls in <0, 1>, the material becomes partially damaged. When d = 1, the material is
fully damaged.

The integration at each calculation point is made in the domain V, which means a part
of the considered body Ω surrounding the point with a sphere of the radius h, namely the
horizon, Figure 3.
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3. Material Properties and Numerical Model

The system under consideration is presented in Figure 4a. It consists of an anvil, a
foam sample, and a piston. The piece is 34.7 mm in height, 8.9 mm thick, and 18.6 mm in
width. A piston compresses the sample against an anvil with constant velocity V.
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Figure 4. The system under consideration (mm): (a) General scheme of the system; (b) Structure of
the SiC material.

The internal structure of the sample is obtained using micro-CT scanning with Sky
Scan 1174 (Bruker) apparatus [79]. A fragment of the microscopic image of the material is
shown in Figure 4b. First, the MIMICS program [80] is applied to reconstruct the geometry
of the sample and receive the initial structured tetrahedral discretization. Then, the GMSH
program [81,82] is applied to convert the initial mesh into the unstructured mesh. Before
entering the GMSH, the outer triangularized surface of the initial 3D mesh is taken using
the GiD [83] program. Then, the surface is smoothed using MSC Patran [84]. Finally, the
3D tetrahedral mesh is obtained with the GMSH.

The SiC sample is placed between the piston and the anvil, Figures 5 and 6. The contact
conditions are assumed between the sample, piston, and anvil. The penalty formulation
with the penalty number 1.0 × 1012 is used. The friction coefficient is taken as 0.3. Since
the shape of the foam is complex with irregular branches and openings, general contact
conditions, including self-contact, are applied.
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Figure 6. The PD discretized view from atop, without piston (mm).

The SiC sample discretization counts 261,496 calculation points. The anvil and the
piston are discretized with 100,000 calculation points each. The horizon value for the anvil
and the piston is assumed to be 30.0 × 10−04 m, and for the SiC sample is 6.5 × 10−04 m.
The dimensions of the horizon fulfil the requirement of their minimum size, which is three
times bigger than the maximum distance between the calculation points. The criterion has
been evaluated in [85].

The material properties of the SiC sample are as follows: the elastic properties of the
foam, namely, Young’s modulus is 430.0 GPa, Poisson’s ratio is 0.37, and mass density
is 3200 kg/m3. In addition, the fracture toughness is 4.1 MPa.m1/2 [86]. Therefore, the
calculated critical value for the SiC sample is ecr = 1.0646 × 10−05. The piston and the anvil
are fabricated of steel of Young’s modulus 210 GPa, Poisson’s ratio 0.3, and mass density
7850 kg/m3.

The sample is subjected to fast compression with the velocity of the piston ranging
from V = 40 m/s up to 440 m/s. The calculations are made with the dynamic explicit solver
of the system Peridigm [85,87]. The program is reliable since it has been verified with many
examples so far [76,78,88]. The time of the analysis is 3.06 × 10−05 s. The stable time step is
3.06 × 10−08 s. During the integration, the constant time increment of 2.0 × 10−08 s is used.
The applied time increment is well below the stable time step. The program is implemented
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on the high-performance Cray XC60 Linux cluster, where the calculations were done. The
production run required 4100 s using 1920 cores.

In the course of the analysis, the damage variable is followed at the six points in the
three cross-sections, A-A, B-B, and C-C, as indicated in Figure 5b. The observed points are
shown in Figures 7 and 8.
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4. Numerical Results

The piston presses the SiC foam sample from the top, Figure 5a. While compressed,
the sample undergoes damage and, in the case of high-velocity compression, fragmentation.
The foam was subjected to compression with the piston velocities of the range V = 40 m/s
to 440 m/s. There are chosen three velocities of the piston to present the results, namely
V = 40 m/s, 240 m/s, and 440 m/s.

In Figure 9 the total damage of the foam versus time plots is presented. It has been
arbitrarily assumed that the volume of the material surrounding the calculation point is
fully damaged when the d parameter is higher than 0.95. For low- and medium-velocity
of the piston, the damage growth stabilizes approximately at 1.22 × 10−05 s. In the high-
velocity case, three growth stages can be recognized, namely,

(1) damage growth;
(2) damage stabilization;
(3) fast damage growth.

For this case, the fast damage growth phase starts close to the end of the process at
about 2.7 × 10−05 s.
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Furthermore, we analysed the damage growth in three cross-sections at selected points
as indicated in Figures 7 and 8. The damage versus time plots are given in the cross-sections
A-A, B-B and C-C in Figures 10–12, respectively. Due to the foam’s complex and irregular
shape, the selection of the points is quite arbitrary. Therefore, the observed curves allow for
quantitative conclusions rather than qualitative ones only. The damage variable is observed
at the time interval 0.6 × 10−06 s. In general, the damage is the lowest at the points R and U
of the cross-section A-A closest to the anvil, Figure 10. The damage appears at points P and
S of the cross-section C-C near the piston almost immediately, Figure 12, which contrasts
the cross-sections B-B, Figure 11, and A-A, where a delay occurs. The biggest delay in
damage presence is at point U located in the cross-section A-A. The time instances at which
the damage appears, and the damage values are collected in Tables 1–3.
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Table 1. Time instance (s) when damage appears at observed points and the damage value, cross-
section A-A.

Cross-Section A-A

Point R U

Velocity t (s) d t (s) d

40 m/s 0.18 × 10−05 0.10 × 10−01 0.36 × 10−05 0.30 × 10−01

240 m/s 0.18 × 10−05 0.26 0.30 × 10−05 0.32 × 10−01

440 m/s 0.18 × 10−05 0.40 0.3 × 10−05 0.58 × 10−01

Table 2. Time instance (s) when damage appears at observed points and the damage value, cross-
section B-B.

Cross-Section B-B

Point Q T

Velocity t (s) d t (s) d

40 m/s 0.18 × 10−05 0.48 0.12 × 10−05 0.16 x 10−02

240 m/s 0.12 × 10−05 0.37 0.12 × 10−05 0.19

440 m/s 0.12 × 10−05 0.47 0.12 × 10−05 0.27

Table 3. Time instance (s) when damage appears at observed points and the damage value, cross-
section C-C.

Cross-Section C-C

Point P S

Velocity t (s) d t (s) d

40 m/s 0.6 × 10−06 0.62 0.6 × 10−06 0.48

240 m/s 0.6 × 10−06 0.81 0.6 × 10−06 0.55

440 m/s 0.6 × 10−06 0.85 0.6 × 10−06 0.57

Figures 13 and 14 present damage development along the sample’s height at the
beginning of the process. The last instant, namely, 0.42 × 10−05 s, is chosen when damage
appears in the entire sample compressed with the highest velocity. The damage advances
faster in the case of high-velocity compression, which is visible in Figures 13b and 14b,
the most distinctly. When the sample undergoes high-velocity compression, the damage
appears almost in the whole sample at time 0.42 × 10−05 s. However, in the case of
low-velocity compression, the undamaged regions still exist, Figures 13c and 14c.
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(b) 0.3 × 10−05 s; (c) 0.42 × 10−05 s.

A significant difference exists between the state of the sample when subjected to the
low-velocity action of the piston and the high-velocity action, Figures 15 and 16, respectively.
In the case of low-velocity motion of the piston, the shape of the foam sample remains
similar to the original one. In contrast, at the high-velocity compression when the sample
deforms one can observe fragmentation at the end of the degradation process. The out-
of-plane displacement appears late in the process and is sudden, resembling buckling. It
corresponds with the fast growth of damage as well.
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Figure 16. Damage distribution and shape of the foam under piston velocity 440 m/s at the end of
the process: (a) X-Z plane view; (b) Y-Z view.

A comparison of the damage distribution for the cases of low- and high-velocity
compression is shown in Figure 17. There are shown points at which damage variable d is
higher than 0.95. The damage is more advanced closer to the piston than the anvil side in
both cases. A characteristic feature of damage distribution is the creation of “chains” of
damaged points in the foam branches where the damage starts to develop.

The further analysis concerns detailed observations of the failure of the foam. It has
been chosen three regions arbitrarily, namely o1, o2, and o3, Figure 18. The regions are
presented in detail in Figure 19. They are slightly rotated to enhance the small rods that
constitute the foam cells. The selected rods are of interest since they are crushing during the
loading process. We focused our attention on the end of the analysed impact process with
the piston velocity 440 m/s. This is because the sample becomes fragmented during failure.
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The cells of the foam are opened, Figure 19. It is due to the fabrication process and
technological requirements. A fluid or fluid-like metal can easily penetrate the sample. The
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structure of each cell contains several elements that can be considered thin rods. The rods
are destroyed first during the impact process, which is presented further.

Figures 20–22 present Mises stress, damage parameter distribution and displacement
field in the selected regions. The displacement field is shown in the deformed configuration.
The latter allows for presentation of the failure mechanism of the cells. Therefore, hints con-
cerning the failure of the entire foam can be obtained. When observing Figures 21 and 22,
it has been found that the rods fail first. The failure takes place in the regions where Mises
stress concentrates and the damage parameter is high. The thin rods failure appears in each
of the regions that are observed. Therefore, it can be concluded that the thin rods failure
happens in almost entire foam. In consequence, it is the mechanism of failure of entire
brittle structure.
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5. Conclusions

In this paper, the analysis of fast and slow compression of a SiC porous sample ap-
plying the peridynamics method is presented. This approach allows for the evaluation
of failure modes and such effects as microcracks nucleation and growth, and finally frag-
mentation. The investigated system for dynamic compression (Figure 4a) consists of an
anvil, a foam sample, and a piston. The piston compresses the sample against an anvil with
different velocities V = 40 m/s, 240 m/s, and 440 m/s.

It has been observed qualitatively different behaviour and failure of the specimen
depending on the speed of the piston. The main conclusions are as follows:

• When the specimen undergoes fast compression, contact between the branches appears;
• In the slow compression case, damage appears in the entire specimen, but the shape

of the structure is not changing significantly, which means the specimen undergoes
failure due to microcracks;

• In the fast compression conditions, the specimen is fragmented, and the displacements
become large and out of the plane; The final shape resembles buckled structure;

• In the observed time interval, the strongly damaged volume (d > 0.95) stabilizes in
time for low and medium piston velocities, but for high piston velocity, the damaged
volume starts to grow fast at the end of the interval. It corresponds to fragmentation
phenomenon in this case;

• Failure of the thin rods in the open cells happens in almost the entire structure of
the foam;

• Failure of the thin rods is the main reason for the change in the foam configura-
tion and the foam fragmentation due to loss of continuity between the fragments of
the structure.

The porous SiC material serves as a skeleton of the alumina-infiltrated composite.
Further research will focus on the dynamic behaviour of such a composite.
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66. Postek, E.; Sadowski, T.; Beniaś, J. Simulation of impact and fragmentation of SiC skeleton. Phys. Mesomech. 2021, 24, 578–587.
[CrossRef]

67. Rogula, D. Nonlocal Theory of Material Media, 1st ed.; Springer: Vienna, Austria; New York, NY, USA, 1982. [CrossRef]

http://doi.org/10.1017/CBO9781139878326
http://doi.org/10.1111/j.1475-1305.2002.00029.x
http://doi.org/10.1016/j.polymertesting.2006.05.005
http://doi.org/10.1016/j.commatsci.2010.04.014
http://doi.org/10.1016/j.acme.2016.12.009
http://doi.org/10.1177/1099636217690500
http://doi.org/10.1016/j.compstruct.2020.112548
http://doi.org/10.1016/B978-0-7506-7219-1.50025-8
http://doi.org/10.1016/j.jallcom.2018.10.160
http://doi.org/10.1016/j.compositesa.2021.106516
http://doi.org/10.1088/1742-6596/451/1/012002
http://doi.org/10.1557/jmr.2013.176
http://doi.org/10.1016/j.ceramint.2017.10.123
http://doi.org/10.1016/j.ceramint.2018.06.083
http://doi.org/10.1111/j.1151-2916.2001.tb00996.x
http://doi.org/10.1016/j.jeurceramsoc.2011.09.009
http://doi.org/10.1016/j.jascer.2013.07.003
http://doi.org/10.1016/j.ceramint.2012.03.030
http://doi.org/10.1177/0021998306068081
http://doi.org/10.1016/j.ces.2007.03.027
http://doi.org/10.1016/j.ceramint.2020.04.108
http://doi.org/10.1016/j.ceramint.2020.06.047
http://doi.org/10.1016/j.pmatsci.2006.02.001
http://doi.org/10.1002/pssb.200982321
http://doi.org/10.1016/j.ceramint.2016.06.104
http://doi.org/10.1016/S0272-8842(02)00039-1
http://doi.org/10.1016/j.matpr.2021.01.212
http://doi.org/10.1134/S102995992105009X
http://doi.org/10.1007/978-3-7091-2890-9


Materials 2022, 15, 8363 17 of 17

68. Kunin, A. Elastic Media with Microstructure, One Dimensional Models, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York,
NY, USA, 1982. [CrossRef]

69. Eringen, A.C. Nonlocal Continuum Field Theories, 1st ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA„ 2001.
[CrossRef]

70. Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 2000, 48, 175–209.
[CrossRef]

71. Silling, S.A.; Askari, E.E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005,
83, 1526–1535. [CrossRef]

72. Warren, T.L.; Silling, S.A.; Askari, A.; Weckner, O.; Epton, M.A.; Xu, J. A non-ordinary state-based peridynamic method to model
solid material deformation and fracture. Int. J. Solids Struct. 2009, 46, 1186–1195. [CrossRef]

73. Madenci, E.; Oterkus, E. Peridynamic Theory and Its Applications, 1st ed.; Springer: New York, NY, USA, 2014. [CrossRef]
74. Bobaru, F.; Foster, J.T.; Geubelle, P.H.; Silling, S.A. Handbook of Peridynamic Modeling; CRC Press: Boca Raton, FL, USA, 2017.

[CrossRef]
75. Voyadjis, G.Z. Handbook of Nonlocal Continuum Mechanics for Materials and Structures; Springer: Cham, Switzerland, 2019. [CrossRef]
76. Littlewood, D.J. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of

the ASME 2010 International Mechanical Engineering Congress & Exposition, Vancouver, BC, Canada, 12–18 November 2010;
pp. 209–217. [CrossRef]

77. Ha, Y.D.; Bobaru, F. Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 2010, 162, 229–244.
[CrossRef]

78. Littlewood, D.J.; Volgler, T. Modeling Dynamic Fracture with Peridynamics, Finite Element Modeling and Contact. In Proceedings
of the 11th US National Congress on Computational Mechanics, Minneapolis, MN, USA, 25–28 July 2011. Available online:
https://www.osti.gov/servlets/purl/1106568 (accessed on 15 August 2022).

79. Available online: https://www.bruker.com (accessed on 15 August 2022).
80. Materialise Mimics. Available online: https://www.materialise.com (accessed on 15 August 2022).
81. Geuzaine, C.; Remacle, J.-F. A Three-Dimensional Finite Element Mesh Generator with Built-In Pre- and Post-Processing Facilities.

Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]
82. GMSH. Available online: https://gmsh.info/ (accessed on 15 August 2022).
83. GiD. The Personal Pre- and Postprocessor. Available online: https://www.gidhome.com/ (accessed on 15 August 2022).
84. MSC Software. Available online: https://www.mscsoftware.com/product/patran (accessed on 15 August 2022).
85. Parks, M.L.; Littlewood, D.J.; Mitchell, J.A.; Silling, S.A. Peridigm Users Guide; Sandia Report 2012-7800; Sandia National

Laboratories: Albuquerque, NM, USA, 2012. Available online: https://www.osti.gov/servlets/purl/1055619 (accessed on
15 August 2022).

86. AZO Materials. Available online: https://www.azom.com/article.aspx?ArticleID=3735 (accessed on 15 August 2022).
87. Open Source Peridigm Program Repository. Available online: https://github.com/peridigm/peridigm (accessed on

15 August 2022).
88. Littlewood, D.J. Introduction to Peridynamic Modeling and Applications; Sandia Report SAND2017-13417C; Sandia National

Laboratories: Albuquerque, NM, USA, 2017. Available online: https://www.osti.gov/servlets/purl/1511976 (accessed on
15 August 2022).

http://doi.org/10.1007/978-3-642-81748-9
http://doi.org/10.1007/b97697
http://doi.org/10.1016/S0022-5096(99)00029-0
http://doi.org/10.1016/j.compstruc.2004.11.026
http://doi.org/10.1016/j.ijsolstr.2008.10.029
http://doi.org/10.1007/978-1-4614-8465-3
http://doi.org/10.1201/9781315373331
http://doi.org/10.1007/978-3-319-58729-5_27
http://doi.org/10.1115/IMECE2010-40621
http://doi.org/10.1007/s10704-010-9442-4
https://www.osti.gov/servlets/purl/1106568
https://www.bruker.com
https://www.materialise.com
http://doi.org/10.1002/nme.2579
https://gmsh.info/
https://www.gidhome.com/
https://www.mscsoftware.com/product/patran
https://www.osti.gov/servlets/purl/1055619
https://www.azom.com/article.aspx?ArticleID=3735
https://github.com/peridigm/peridigm
https://www.osti.gov/servlets/purl/1511976

	Introduction 
	Constitutive Model and Formulation 
	Material Properties and Numerical Model 
	Numerical Results 
	Conclusions 
	References

