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Abstract: Various technological challenges are essentially material problems in our times. New
functional and functional graded nanomaterials are constructed of components with predefined
properties. The design of nanostructures with predefined mechanical properties was considered in
this paper. This study applies the evolutionary algorithm (EA) to the optimization problem in the
design of nanomaterials. The optimal design combined EA with molecular dynamics to identify
the size of the void for the prescribed elastic properties in monolayer 2D MoS2 nanostructures. The
numerical results show that the proposed EA and the use of optimization method allowed accurately
obtaining nanostructures with predefined mechanical material properties by introducing elliptical
voids in the 2D MoS2 nanosheets.

Keywords: optimization; MoS2; nanostructure; mechanical properties

1. Introduction

In the ever-growing nanotechnology field, materials with unique properties have
continuously been presented to meet the growing demand for practical industries and
engineering. Therefore, it becomes vital to investigate the material properties of these nano-
materials to provide information to understand and then design nanostructures. Studies
on the numerous properties of monolayer 2D molybdenum disulfide MoS2 nanomaterial
have attracted many researchers in this field. Transition metal dichalcogenide (TMD) flat
MoS2 is a triple layer of molybdenum and sulfur atoms arranged in a hexagonal crystal
lattice. It has excellent mechanical [1] electrical and chemical properties [2,3]. Consequently,
MoS2 has been the focus of substantial research in recent years, ensuring that the material
can be used in a wide range of emerging technologies and future applications, includ-
ing, for example, nanoporous MoS2 membranes for efficient reverse osmosis desalination
and gas separation, membrane separation, desalination of water [4], DNA sequencing [5],
and power generation [6,7]. Therefore, the properties and behavior of monolayer MoS2
must be understood and accurately predicted under various conditions to introduce MoS2
to novel applications. However, fabricated MoS2 sheets typically contain a variety of
defects, including nanopores [8,9]. Thus, microstructural voids can profoundly impact
the properties of MoS2, which helps design the nanomaterial, ultimately influencing the
performance of MoS2-based devices. Likewise, during the growth and processing of MoS2,
different topological defects (such as vacancies, inclusions, dislocation, and grain bound-
aries) and other sizable defects (such as nano-holes and nano-cracks) are inevitable, which
can compromise the expected performance in the preparation and handling of MoS2-based
nanodevices [10]. In addition, such defects can also occur due to the conditions in which
MoS2-based devices are used [11]. Functional materials in nanosystems are often based
on well-known materials but with tuned material properties. The 2D MoS2 sheet can be
functionalized by introducing voids of appropriate sizes. The sizes of the voids determine

Materials 2022, 15, 2812. https://doi.org/10.3390/ma15082812 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15082812
https://doi.org/10.3390/ma15082812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-7616-6881
https://orcid.org/0000-0001-6640-1382
https://doi.org/10.3390/ma15082812
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15082812?type=check_update&version=1


Materials 2022, 15, 2812 2 of 9

the mechanical properties of the material. In recent years, researchers have carried out
investigations on the mechanical performance of monolayer MoS2 related to aspects such
as defects, inclusions, strength, damage, debonding, and failure that greatly influence its
properties [1,12].

This work aims to study the identification problem in order to find the parameters that
describe the shape of the void as a function of the properties of the prescribed material. This
approach can be used in future applications where functional or functional graded materials
or nanomaterials can be designed. Materials with a priori prescribed material properties
can be created by the introduction of voids. The method presented in the paper is based on
two components: a developed optimization algorithm and a direct problem solver. The
nanostructures were simulated using the molecular dynamics (MD) method. Monolayer
MoS2 with various mechanical properties can be computed by molecular statistics or MD
methods with a set of numerical tests comprising uniaxial tension, compression, and
shear [1,13–15]. The well-known MD code LAMMPS [16] was used in this study for
direct problem solving. In recent years, inverse methods have been widely applied to
predict the properties of structures and materials. These methods allow solving problems
regarding parameters using optimization techniques and a set of direct problem solutions.
Inverse methods were used for mechanical and thermomechanical problems in which the
properties of materials and their structures were searched [17]. Inverse problems can be
solved using direct problem formulations computed using numerical methods such as the
finite element method (FEM), boundary element method (BEM), and MD. The objective
function of optimization algorithms in inverse methods is, in most cases, multimodal;
thus, global optimization techniques are often used during the problem-solving process.
Applications of new approaches of evolutionary algorithms coupled with BEM computation
in optimization and identification for cracked structures and internal void defects under
thermomechanical and dynamical loading were shown in [17–19]. Sigmund [20] used the
inverse homogenization method to tune the elastic properties of the material for periodic
truss, frame, and continuum structures, as well as design microstructures with prescribed
elastic properties and negative Poisson’s ratios. An in-house implementation of EA was
used to search for new stable molecular graphene-like 2D materials [21–23].

In our earlier work [1], we computed the mechanical properties, i.e., independent
elastic properties, for monolayer MoS2 with single and multiple random defects. The
computational results from our previous work showed the significant influence of defects
on the elastic material properties of MoS2 nanosheets. In this work, we aimed to identify
the void size for the prescribed elastic properties defined by the user. We intuitively define
the prescribed elastic properties, assuming that the sheet contains a void, which should
be lower than the material without a void. Thus, we use the tools discussed earlier in the
implementation of EA coupled with LAMMPS. As a result, we obtained the size of the void
for the prescribed elastic properties.

The remainder of this work is arranged as follows: Section 2 presents the evolutionary
optimization and the evaluation of the objective function. Section 3 details the molecular
dynamics modeling of 2D MoS2 with voids and the evolutionary identification of voids
with prescribed properties by minimizing the objective function. Numerical identification
examples proving the ability of this method in solving the intended optimization problem
iteratively are also provided.

2. Materials and Methods
2.1. Optimization Problem Formulation

The goal of the optimization problem is to design in an automatic way MoS2 structures
with predefined material properties. The mechanical stiffness is taken into account in this
paper; however, the optimization problem can also be solved for thermal, optical, or other
properties of the microstructure. The objective function depends on the prescribed material
properties and the actual properties computed for each design of the microstructure. The
design vector ch may define the size, shape, and topology of the microstructure. The MoS2
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structure considered in this paper was modified by introducing voids with the properties
described using design variables gi. The optimization problem can be formulated as

f ind ch = (g1, g2, . . . . . . gN)
minimize f (ch) = ‖P− Pre f ‖

s.t giL ≤ gi ≤ giU

, (1)

where giL and giU are the lower and upper constraints of design variables. Tensor or vector-
containing tensor element P denotes the nanostructure properties obtained for design
vector ch, and Pre f describes the prescribed reference properties of the nanostructure.
The goal of minimizing the difference between current and reference material properties
is set as a function of design variables leading to an objective function equal to zero
(i.e., identical reference and obtained properties). Optimization with a small difference
between the reference and obtained properties is also acceptable. The paper is devoted to
the optimization of the nanostructure taking into account mechanical properties (in our
case, P and Pre f ) depending on the stiffness of the nanostructure with introduced voids. The
stress–strain relationship for small strains can be expressed with Voigh notation as follows:

σij = Pijεij, (2)

where εij denotes the strain components, and Pij denotes the elastic constants to be used
during objective function evaluation. The shape of the nanostructure is modified according
to ch by introducing an elliptic void, as shown in Figure 1.
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Figure 1. The nanostructure with an elliptical void described by two design variables.

The 2D infinite nanostructure was modeled using periodic boundary conditions, and
the maximum size of the void was defined by the unit cell size used in simulations. The
mechanical properties (stiffness in two directions) were computed using the MD approach.
The algorithm for determining the stiffness of the nanostructure is shown in Figure 2.

First, the void was introduced into the pristine 2D nanostructure. Next, relaxation
was performed, and the stress–strain curve was obtained in two directions during uniaxial
tensile load. In general, other loads can be applied to obtain, for example, shear stresses or
thermal and optical properties of the nanostructure.
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Figure 2. Determination of nanostructure stiffness in two directions. An ellipse is introduced into
the pristine nanostructure by removing atoms in black area. Next, the structure is relaxed, and two
analyses of microstructure stretching are performed in two different directions. Then, the stiffness is
computed on the basis of the MD results.

This paper contains examples of optimization based on the computation of an objective
function using MD results for stiffness computed in two directions for monolayer MoS2.
The atomic model consisted of about 10,000 atoms in the nanosheet for a domain size of
175 Å2. The Stillinger–Weber (SW) [24,25] potential was applied to describe interatomic
interactions between atoms. Before tensile deformation, the model was relaxed at 300 K
and 0 bar pressure through an isothermal–isobaric ensemble (NPT) for 30 ps (picoseconds).
All MoS2 tensile deformations were carried out at a constant temperature of 300 K. The
Nose–Hoover thermostat was used to maintain the temperature of the simulation system.
The position and velocity of all atoms were updated by the Verlet integration algorithm.
The LAMMPS software package and the Open Visualization Tool (OVITO) [26] were used
for molecular dynamics simulation, visualization, and output data analysis. Uniaxial tensile
deformation at a constant strain rate of 0.0001 ps−1 was applied to estimate the stiffness of
the structure. The stress tensor components [27] were calculated as follows:

σab =
1
V

1
2

N∗

∑
i

N

∑
j( 6=1)

f a
ijr

b
ij + miua

i ub
i

, (3)

where a and b denote the Cartesian components, fij is the force acting on atom i due to
another atom j, V, mi, and ui are the volume, mass, and velocity of atom i, and N is the
number of atoms. Figure 3 shows examples of two simulation results with a stiffness of
163 GPa and 158 GPa.
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The objective function value could be computed for such a case as the sum of the
absolute difference between computed stiffness and prescribed material properties.

2.2. Evolutionary Optimization

Optimization can be defined as selecting the best choice (according to some criteria)
from a set of available variants. There are mainly two groups of optimization methods.
The first group includes local optimization methods, mostly leading to the local optimum,
where the results depend on the starting vector values. The second group includes global
optimization techniques, mostly based on heuristics. Heuristic methods are best suited
for multimodal functions, where most algorithms fail to determine the global optimum.
Many optimization techniques are based on biologically inspired methods such as natural
selection, learning procedures, and probabilistic rules. Evolutionary algorithms [28] and
particle swarm optimization (PSO) [29] are examples of these techniques. These techniques
can solve multimodal optimization problems in mathematics and engineering. It is im-
possible to identify the best optimization techniques among those mentioned above, since
each algorithm has its strengths and weaknesses, and the performance depends on the op-
timization problems, constraints, and algorithms parameters. The evolutionary algorithm
(EA) searches the space of possible solutions on the basis of mechanisms taken from the
evolution of species.

The flowchart of our implementation of EA used in this work is shown in Figure 4. The
algorithm starts by generating an initial population of individuals generated in a random
or ordered way according to the requirements of the problem. The individual, containing
chromosomes, represents a single solution. Usually, in applications of EA, individuals
contain only one chromosome ch, with vectors of genes representing design variables gi.
Genes may contain coded design variables; however, in our approach, we used floating
point genes. Hence, additional coding was not needed.

For each individual, MD simulations and individual fitness functions were calculated
in the next step of the algorithm on the basis of the atomic structure defined by genes. The
selection procedure was performed to choose individuals for the next iteration considering
their fitness values. The probability of survival of an individual depends on the value of
the fitness function. An individual with good fitness has a better chance of survival during
the selection process. The ranking selection is performed in a few steps. First, individuals
are classified according to the values of the fitness function; then, a rank value is assigned
to each individual. This depends on the individual’s number and the rank function. The
best individuals obtain the highest rank value; the worst individuals obtain the lowest ones.
In the final step, individuals for the offspring generation are drawn, but the probability of
drawing particular individuals is closely related to their rank value. The process is repeated
iteratively until the termination condition is satisfied. The termination condition may be
formulated as a maximum number of iterations. In cases when the stop condition is not
fulfilled, the genes are modified using evolutionary operators. The algorithm in this paper
used evolutionary operators such as uniform and Gaussian mutation, as well as simple and
arithmetic crossover. The uniform and Gaussian mutations modify individuals randomly.
Simple and arithmetic crossovers create new chromosomes on the basis of two randomly
chosen chromosomes from the population. The modified individuals are introduced into
the population.
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The objective function (i.e., the fitness function for each chromosome) is computed on
the basis of a direct problem solution for each individual. The number of direct problems
solved in EA is quite large due to the number of chromosomes and the number of iterations
of the algorithms. To minimize the total optimization time (wall time), a parallel approach
is crucial, and it was used to compute the numerical examples presented in this paper.

3. Results

Nanostructure optimization by introducing a void according to prescribed mechanical
properties is illustrated using a few cases in the section. The tests were performed for a few
sets of prescribed material properties. The evolutionary algorithm featured two subpopula-
tions, a total number of individuals of 32, tournament selection with a tournament size of
5, uniform selection with a probability of 0.3, Gaussian mutation with a probability of 0.5,
simple crossover with a probability of 0.1, and arithmetic crossover with a probability of 0.1.
The parameters of the EA were chosen on the basis of previous experience gained during
the solving of structural optimization problems [19,21–23]. The number of EA iterations
was set as 50.

An optimized nanostructure with an approximate size of 170 Å × 170 Å containing
an elliptical void was used. The size of the void could range from 1 × 1 up to 50 × 50 Å
(radius of the elliptic void). The stop condition was formulated as the maximum number
of iterations.

The evaluation of the fitness function for each individual was performed as described
in Section 2. The LAMMPS software was used to solve two problems to obtain the stiffness
in two directions, and the objective function was calculated on the basis of these results. The
computing of the fitness functions in each iteration can be performed in parallel way with
very good efficiency when the number of processing units is equal to the number of MD
problems (number of individuals times number of mechanical properties; in our case, 64).
Additional processing units may also be used for parallelizing each MD simulation. Such
an approach can be used to perform computations with a high number of processing units.
The results presented in the section were obtained with the use of supercomputers Okeanos
and Karolina. Hundreds to thousands of processor cores were used during computations.

The changes in the best objective function over few iterations for adequate nanostruc-
tures with prescribed material properties Pref 11 = Pref 22 = 160 GPa are shown in Figure 5.
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during iterative generations for prescribed elastic properties Pref 11 = 160 GPa, Pref 22 = 160 GPa. The
corresponding void dimensions obtained during generations were (i) g1 = 46.06 Å and g2 = 2.95 Å,
(ii) g1 = 32.18 Å and g2 = 6.07 Å, (iii) g1 = 33.92 Å and g2 = 8.86 Å, (iv) g1 = 21.36 Å and g2 = 14.88 Å,
(v) g1 = 18.41 Å and g2 = 19.38 Å, and (vi) g1 = 28.12 Å and g2 = 23.15 Å.

A total of three distinct void identification analyses were performed for the MoS2
nanosheet with different prescribed material properties. The void (elliptical void) was
induced at the center of the sheet. Table 1 contains the values of the best obtained solutions
for the numerical tests. The obtained material properties (P11, P22) for the ellipse radius (g1,
g2) were not identical to those prescribed (Pref), as denoted by the errors eP11 and eP22. The
obtained properties were very close to the prescribed ones.

Table 1. The prescribed and resulting stiffness, ellipse radius, and error of obtained stiffness.

Case Pref11
(GPa)

P11
(GPa)

Pref22
(GPa)

P22
(GPa)

g1
(Å)

g2
(Å) eP11 (%) eP22 (%)

1 150.0 149.2 180.0 179.5 36.35 12.19 0.5 0.3
2 160.0 162.6 160.0 158.0 28.12 23.15 1.6 1.3
3 180.0 179.5 150.0 148.0 15.35 33.44 0.3 1.3

The resulting structures for the above cases are shown in Figure 6. The nanostructure
in the first case should have an ellipse with a bigger radius in the y-direction; the radii in in
the second case should be similar, whereas those in the third case should be similar to the
first case when considering the prescribed material properties. The MoS2 nanostructure
was not symmetric in the x (g1) and y (g2) directions; thus, we did not expect the same
ellipse radii for the second case in the x- and y-directions. The results agreed with the
intuitive approach and gave exact values of void size. The method can be used for any
prescribed stiffness values; however, it is of course limited by the size of the void and
maximum stiffness of the MoS2 sheet.
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The appearance of defects in MoS2 can weaken its mechanical properties, such as
fracture strength and Young’s modulus. However, such defects have potential in novel
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method to tune the material properties for a periodic monolayer MoS2 with a void as
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stants. Numerical examples proved that the proposed method could find the void size
with prescribed mechanical properties. The present study shows the potential of molecular
simulations for 2D nanostructures. It is revealed as an efficient method to design nanos-
tructures with prescribed properties. The method is generally applicable and can be used
to take into account the thermal or optical properties of the nanostructure by modifying the
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