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Abstract— Understanding the relationship between acoustic 

properties of breast lesions and resulting ultrasound images 

may contribute to an earlier and more accurate diagnosis of the 

most common cancer in women. In addition to in vitro studies, 

in silico tumor models can provide a lot of crucial information 

due to the possibility of precise determination of the influence 

of changes in tissue structure on the resulting ultrasound echoes. 

The purpose was to develop the numerical phantom of the 

breast with the tumor for a reliable simulation of ultrasound 

images. In modeling the tissue structures of the breast, the 

VICTRE phantom, developed by the FDA for the simulation 

of X-ray mammography, was used.  The numerical ultrasound 

model of breast cancer allows the simulation of ultrasound 

signals and images. It could be used to interpret, validate and 

develop new ultrasound methods for cancer diagnosis.1  
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imaging 

I. INTRODUCTION 

Breast cancer is the most common malignant tumor 
in women, accounting for about 24.5% of all tumors [1]. Every 
year, more than 2,000,000 new cases are diagnosed worldwide 
[1]. In 2020, breast cancer was the leading cause of female 
death worldwide, causing more than 680,000 female deaths 
[1].  

An early and accurate diagnosis of breast cancer allows for 
effective therapy. One of the primary methods of imaging 
diagnosis of breast lesions is ultrasonography, which is a safe, 
inexpensive and easily accessible test. Based on the obtained 
image, a BIRADS category is assigned, which determines the 
method of treatment [2]. To support effective image 
assessment, methods using quantitative ultrasound [3], [4] 
or machine learning [5] are being developed. 

Classification algorithms can be evaluated using 

numerical simulations. It requires a reliable numerical 

phantom of the breast and tumor. To date, two numerical 

phantoms of the breast have been created for ultrasound 

imaging simulations [6], [7]. Both models were created based 

on magnetic resonance imaging data, from which the tissue 

structures of the breast (glandular-fibrous tissue and tumor) 

were segmented [6], [7]. In the study [7], randomly 

distributed structures such as Cooper's ligaments, milk ducts 

and intraglandular fat were also added to the phantom. The 

developed models were used in ultrasound simulations with 

the use of Field II software [8]. 

                                                           

This work was supported by the Polish National Centre for 

Research and Development (INFOSTRATEG-I/0042/2021),  

As part of the VICTRE (Virtual Imaging Clinical Trials 

for Regulatory Evaluation) project, the U.S. Food and Drug 

Administration (FDA) has developed a numerical phantom 

of the breast consisting of seven tissue structures: adipose 

tissue, glandular tissue, skin, milk ducts, Cooper's ligaments, 

muscle and blood vessels [9]. This phantom was created for 

simulations of X-ray mammography, so far it has also been 

used in simulations of X-ray tomography [10], photoacoustic 

tomography [11] and digital breast tomosynthesis [12]. Until 

now, it has not been used to simulate ultrasound imaging. 

The aim of the work was to develop the numerical 

phantom of the breast with the tumor for a reliable simulation 

of ultrasound images. The development of a 3D in silico 

model of normal tissue together with a breast tumor will 

enable simulations of different microscopic and macroscopic 

structures. The obtained images and radio frequency (RF) 

signals will allow to explain the relationship of ultrasound 

image features with the acoustic properties of tissues, thus 

improving the efficiency of tumor classification. 

II. METHODS 

A numerical model of the breast consisting of normal 
tissue (using the VICTRE phantom) and cancerous tissue was 
created. The VICTRE phantom was adapted to ultrasound 
simulations. Geometric transformations were performed 
in order to obtain the geometrical characteristics of the 
patient's supine position and to apply the ultrasound probe 
in the radial/anti-radial position. 

The numerical tumor phantom takes into account various 
features of benign and malignant lesions (shape, orientation, 
margin - distinct, spiculated) according to the BI-RADS atlas 
[2]. Using the created phantom, ultrasound simulations were 
carried out using k-Wave software [13]. 

The phantom voxel size was 0.054mm, which allowed for 
transmitting a maximum frequency of 12MHz. The 
transducer’s parameters are similar to the technical 
specifications of ultrasonic systems used in clinical practice 
(Ultrasonix Sonix Touch, L14-5/38). The number of elements 
was set to 128, element pitch to 0.3mm, focus depth to 20mm 
and the transducer was excited by two cycles signal 
of frequency equal to 5MHz. 

The method of adding the tumor to the phantom was 
consistent with the system used by doctors to report the 
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location of the tumor in the breast, i.e. by quadrant, distances 
from the nipple and the skin layer. The acoustic properties 
of normal breast tissues as well as benign and malignant 
tumors used in the simulations were adopted on the basis 
of data collected in over 30 scientific studies. 

III. RESULTS AND DISCUSSION 

The results are presented for three breast densities, i.e. for 
breasts with fatty, heterogenous and dense structure. The ratio 
of fat to glandular tissue was equal to 0.4, 0.7 and 0.9 for fatty, 
heterogenous and dense breast, respectively. Tumors were 
placed in the upper outer quadrant at a distance of 2cm from 
the nipple and at a distance of 1.5cm from the subcutaneous 
fascia, this position corresponds to the most common location 
of tumors. An example of a velocity map of the phantom 
cross-section in the plane of the ultrasound transducer 
is shown in Fig. 1. 

A tissue-specific sound velocity, density and attenuation 
coefficient values were assigned to each of the phantom's grid 
voxels. The acoustic properties used in the simulations are 
shown in Table 1. 

The simulated images for cancer in the fatty, heterogenous 
and dense breast and the corresponding similar real B-mode 
images are shown in Fig. 2. B-mode tumors images were 
chosen from public databases [14],[15]. 

For the tumor located in the adipose tissue of the breast 
(Fig. 2a), a hyperechoic halo is noticeable around cancer. 
A similar phenomenon can also be observed in images 
acquired with ultrasound equipment (Fig. 2d). In simulated 
images, in a heterogeneous (Fig. 2b) and dense breast 
(Fig. 2c), it is difficult to detect cancer with properties similar 
to glandular tissue. This corresponds to the situation in real 
B-mode images (Fig. 2e and Fig. 2f). 

 

 

 

 

 

TABLE I.  ACOUSTIC PROPERTIES OF NORMAL BREAST 

TISSUE AND DUCTAL CARCINOMA USED IN NUMERICAL 

SIMULATIONS 

Tissue 

Properties 

Speed of sound 

[m/s] 

Density 

[kg/m3] 

Attenuation 

coefficient 

[dB/cm/Mhzy] 

Skin 1537 [16] 1100 [16] 0.37 [17] 

Fat 1440 [16] 940 [18] 0.6 [19] 

Grandular 1560 [20] 1050 [21] 0.9 [20] 

Duct 1545 [16],[22] 1030 [22] 0.5 [22] 

Blood 

vessels 
1570 [23] 1050 [24] 0.14 [19] 

Cooper’s 
ligaments 

1750 [25] 1170 [24] 3.7 [26] 

Muscle 1585 [23] 1050 [18] 0.57 [19] 

Tumor 1580 [16] 1070 [27] 1.0 [19] 

 

IV. CONCLUSIONS 

Initial simulations of the ultrasound images of the breast 
together with the added tumor reflect the acoustic effects 
observed in the images obtained with the ultrasound scanner. 
Therefore, the modified VICTRE phantom can be used e.g. 
to deepen the knowledge about the properties of breast tissues 
and how they interact with the ultrasound wave. The presented 
work requires further research in order to verify the model and 
quantify the quality of the simulation, e.g. using real phantoms 
and parameters describing the statistics of the scattered signal. 
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