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Abstract: Nowadays, consumer electronics offer computer-vision-based (CV) measurements of dy-
namic displacements with some trade-offs between sampling frequency, resolution and low cost of
the device. This study considers a consumer-grade smartphone camera based on complementary
metal-oxide semiconductor (CMOS) technology and investigates the influence of its hardware limi-
tations on the estimation of dynamic displacements, modal parameters and stiffness parameters of
bolted connections in a laboratory structure. An algorithm that maximizes the zero-normalized cross-
correlation function is employed to extract the dynamic displacements. The modal parameters are
identified with the stochastic subspace identification method. The stiffness parameters are identified
using a model-updating technique based on modal sensitivities. The results are compared with the
corresponding data obtained with accelerometers and a laser distance sensor. The CV measurement
allows lower-order vibration modes to be identified with a systematic (bias) error that is nearly
proportional to the vibration frequency: from 2% for the first mode (9.4 Hz) to 10% for the third
mode (71.4 Hz). However, the measurement errors introduced by the smartphone camera have a
significantly lower influence on the values of the identified stiffness parameters than the numbers
of modes and parameters taken into account. This is due to the bias–variance trade-off. The results
show that consumer-grade electronics can be used as a low-cost and easy-to-use measurement tool if
lower-order modes are required.

Keywords: computer vision; smartphone camera; system identification; model updating; uncertain
bolted connections

1. Introduction

Information about structural stiffness, which is crucial in structural health monitoring
(SHM), is better reflected by dynamic displacements than by accelerations, as the latter are
strongly affected by other parameters, e.g., mass [1]. Nowadays, simple cameras mounted
on stands or on unmanned aerial vehicles (UAVs) have potential in both monitoring and
inspection of structural conditions [2,3]. The application range of computer vision in
infrastructure assessment is very wide, and this paper focuses on estimation of dynamic
displacements for parametric identification of structures.

Feng and Feng indicated several advantages of CV displacement measurement over
techniques employing traditional sensors [4]:

• To be installed, a camera does not require physical access to the structure. Hardly
accessible structures can be observed remotely using zoom lenses [5,6]. In comparison
to contact sensors, this significantly reduces the monitoring costs of many critical parts
of structures such as cables, as indicated in [7].

• Compared to GPS technology, which also does not require a physical reference point
near the monitored structure, CV measurements are much more accurate [8].

• As opposed to traditional point-wise sensors, a camera is able to simultaneously
capture the motion of multiple points [9]. Moreover, it is possible to select these points
in the recorded video after the measurement session.
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Apart from the advantages of CV measurements, some weaknesses of this technique
should also be noted. Measured higher-frequency components of motion often become
highly contaminated by noise due to equipment limitations such as insufficient camera
resolution or a relatively low sampling frequency [10]. Thus, sensing dynamic displacement
using a camera requires an appropriate video-processing algorithm to reduce the influence
of these limitations.

Template matching methods are the most popular displacement estimation techniques
due to the possibility of achieving subpixel-level accuracy. Generally, in template matching,
the tracked object is represented by a preselected image region, namely, a template, of a
selected frame of the video (usually the first one). The displacement of this template is
determined in the subsequent video frames by searching for and matching this template
with the most similar region within a search area in the current video frame, called the
region of interest (ROI). The template matching process is illustrated in Figure 1.

Figure 1. Scheme of a template tracked within the selected ROI in subsequent video frames.

Based on the matching technique, template matching methods can be classified into
area-based and feature-based template matching [11]. In area-based template matching,
both the template and the ROI are represented by their pixel intensities. Matching of the
template within the ROI is performed by maximization of the cross-correlation function
or by minimization of the error function, e.g., sum of squared differences [12]. In feature-
based template matching, both the template and the ROI are usually represented by a set of
characteristic points, called the keypoints. They are matched according to the information
about their vicinity encoded in descriptors, such as the fast retina keypoint (FREAK) [13].
Area-based template matching usually provides more accurate displacement estimation if
good illumination is provided, whereas feature-based template matching is more robust
with respect to changes in illumination, scale, rotation, etc. [14]. It can thus be more suitable
for outdoor field measurements.

Errors caused by the limited resolution of the camera can be reduced by using subpixel
techniques [15]. Feng et al. showed that the displacement estimation error is unacceptable
when a template is matched with the accuracy of the pixel size in a video [16]. They
demonstrated that with their proposed upsampling technique, the quantization error can
be reduced with a simultaneous decrease in the subpixel size. In practice, it is possible to
achieve a precision of displacement estimation even near to 0.01 pixels [17] with methods
involving a subpixel precision search. In [18], the fundamental natural frequency of the
monitored structure was identified even from vibrations of 0.21 mm amplitude from a
distance of over 175 m, which amounts to a precision of 1/175 pixel. Interpolation of the
cross-correlation function in the vicinity of its maximum provides accurate results, but it
must be guaranteed that the interpolation function has the maximum [19].

Camera calibration is required to transform the displacements in the video (expressed
in pixels) into physically meaningful information. In the simplest case, if the direction of the
camera view is perpendicular to the filmed surface, then only a scaling factor is required.
This can be determined from the known physical dimensions of the filmed structure
and its pixel size in the video frames [20]. When the camera axis cannot be positioned
perpendicularly to the filmed object, then the tilt angle needs to be included in calculations,
e.g., as proposed by Pen et al., where a laser rangefinder is additionally used in the camera
calibration procedure [21]. If three dimensional (3D) displacement is to be measured, then
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a more sophisticated camera calibration procedure can be required. Park et al. proposed a
methodology for the calculation of 3D displacements from two dimensional displacements
obtained with multiple cameras [22]. The methodology requires a “T”- or “L”-shaped
wand with attached markers to be placed in the field of view near the monitored structure
in order to calibrate the cameras. Narazaki et al. proposed a model-informed approach
for 3D displacement estimation with the use of a single camera. Instead of the wand or
a calibration panel, it employs the known dimension of the structure associated with the
selected points in the video frame [9].

Another important issue in CV measurement is the camera motion caused by ground
vibration. This problem is not always significant, as shown by Feng and Feng, where the
error resulting from camera motion was negligible [23]. However, camera motion can, in
general, significantly decrease the measurement accuracy. Usually, reference targets that
do not belong to the measured object are employed to estimate the camera motion, e.g., as
shown by Yoneyama and Ueda [24]. More than one reference target allows estimation of
both translation and rotation of the camera, and thus more effectively reduces the related
errors [25]. Another kind of camera motion is present when the camera is mounted on
a UAV, as shown in [26]. In this work, a methodology based on the Fourier spectrum of
the relative displacement of two adjacent points on the cable is proposed. This allows the
influence of the UAV motion to be effectively reduced.

There are also other sources of errors. In remote measurements from a significant
distance, heat haze can distort the refractive index of the air and affect the measurement
accuracy [27]. The widely used complementary metal-oxide semiconductor (CMOS) sensors
do not register the whole image at once, as opposed to charge-coupled device (CCD) sensors,
but they usually scan the image row-by-row or column-by-column. This can result in the
rolling shutter effect if relatively high-speed motion is recorded. Lee proposed a real-time
algorithm for video stabilization and compensation of the rolling shutter effect to be used
with low-cost consumer cameras [28]. If the monitored structure vibrates with a frequency
higher than half of the camera sampling frequency, temporal aliasing occurs. This can often
be noticed with consumer cameras, which usually have a lower sampling frequency than
professional high-speed cameras. Moreover, consumer cameras can have an inaccurate
sampling frequency, i.e., different from the one declared in the camera specifications. These
two issues appeared in a low-cost CV identification system proposed by Yoon et al., as
discussed in [29]. The small focal length common in consumer-grade smartphone cameras
causes bigger displacement estimation errors for a fixed distance [16]. However, a smaller
focal length also extends the field of view of the camera; thus, the camera can be moved
closer to the recorded object while still registering all the measurement points [30]. This
allows a more profitable trade-off between the resolution and the field of view. The lower
pixel size of low-cost cameras makes them more sensitive to changes to illumination in
field measurements.

Due to the mentioned advantages of low-cost cameras, especially smartphone cameras,
they are frequently used for estimation of displacements and identification of structural
dynamic properties [31–34]. Min et al. showed that CV measurements with a smartphone
camera can have accuracy comparable to that of a laser displacement sensor (LDS) [31].
Li et al. indicated that a smartphone camera allows interstory drift of buildings to be
accurately measured during an earthquake [33]. The results obtained with the tested
smartphones were comparable with those of an LDS, too. Zhu et al. compared the natural
frequencies identified with the aid of a smartphone to those obtained using an accelerometer
and simulations [34].

The dynamic displacement estimation techniques discussed above are often used
for identification of modal parameters of structures, which can subsequently be used
for model updating. Among the variety of methods for experimental modal analysis,
stochastic subspace identification using time-domain data (SSI-DATA) is widely recognised
as accurate and robust [35]. It is devoted to system identification when excitations are
unknown; hence, it is suitable for CV measurements.
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Experimentally identified modal parameters are often used in the model updating pro-
cedure. Model updating generally has one of two aims: (1) calibration of the model, which
aims to provide accurate reproduction of the output of the real system, or (2) identification
of unknown structural parameters [36].

It is known that the results of a model updating procedure are affected not only by
the measurement noise and modelling errors but also by ill-conditioning of the problem,
and thus numerical regularisation of the solution (or imposing additional constraints)
enhances the quality of the solution. In the widely used method based on modal sensitivity,
which is also called mode-matching, regularisation is ensured by an additional term in the
objective function that involves prior knowledge about the structural parameters being
identified [37,38]. Conditioning of the problem can be enhanced by proper selection of
the measurement locations as well as of the number of sensors and measured vibration
modes [39,40]. In the case of CV measurement, selection of the measured locations can
be done even after the measurement session. Blachowski noticed also that the accuracy
of the results and the sparsity of the solution were improved by using an additional
constraint, which ensured that the parameters representing stiffness (and thus representing
the unknown structural damage) could only decrease during the optimization process
based on modal sensitivities [39]. Additionally, the unknown parameters are not identifiable
if the corresponding parameterized structural members are not involved in the structural
response. This happens, for example, if the vibration modes that participate in structural
vibration do not involve strains of the elements that are to be identified [41].

The literature review shows that significant effort has been devoted to enhancing the
performance of CV measurements. A similar trend can be observed in SHM and CV-SHM.
Similarly, an increase in the number of studies that employ low-cost cameras in smartphones
can be observed due to the growing potential of cost-effective measurements. However, to
the knowledge of the authors, there are still only a limited number of works that discuss
the influence of limitations and measurement errors of computer vision equipment on
the accuracy of structural identification procedures. In particular, low-cost consumer
cameras and their use in ill-conditioned identification problems with a limited number of
measurement data are not fully investigated.

The present study investigates the influence of CV measurement uncertainties and
equipment (a CMOS smartphone camera) limitations on the accuracy of: dynamic displace-
ment estimation, identification of modal parameters and the model updating procedure.
The paper is structured as follows. In Section 2, the investigated frame structure and the
corresponding parameterized finite element (FE) model are described. Section 3 describes
the methodology: the employed CV displacement estimation with the aid of a smartphone
camera, identification of modal parameters, and modal-sensitivity-based identification of
the unknown parameters that describe the stiffness of structural bolted connections. In
Section 4, benchmark accelerometer-based modal parameters are described and compared
with the CV measured data and the identified parameters, including the identification un-
certainties. Section 5 discusses the results and applicability of the investigated methodology.
The conclusions are summarised in Section 6.

2. Structure under Investigation
2.1. Laboratory-Scale Frame Structure with Bolted Connections

This subsection describes the investigated laboratory-scale frame structure shown in
Figure 2a. It is equipped with six lockable joints, which are in the locked state during all
experimental sessions. Thus, they are treated as rigid bodies. More details about these
joints can be found in [42–44]. Steel rectangular beam profiles are connected with the
joints via uncertain bolted connections whose stiffness is to be identified. These joints and
bolted connections are shown in Figure 2b. Each beam profile has a rectangular hollow
cross-section (RHS) of dimensions 15× 30× 2 mm. The frame structure is fixed in a steel
support as shown in the bottom part of Figure 2a.
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Figure 2. Photo of (a) investigated frame structure and (b) details of the bolted connections.

When all joints are in the locked state, the investigated structure does not exhibit any
considerable nonlinear behaviour if the amplitude of motion is relatively low. Thus, a linear
FE model and a linear system identification method are applied in this study. More details
are shown in the next section.

2.2. Formulation of the Finite Element Model

A linear FE model (M, K(θ)) is proposed to reproduce the dynamic behaviour of the
frame structure, where M is the constant mass matrix and K(θ) is the stiffness matrix, which
depends on an unknown parameter vector θ =

[
θ1 θ2 · · · θNθ

]T ∈ RNθ
+ as follows:

K(θ) = K0 +
Nθ

∑
t=1

θtKt. (1)

In Equation (1), the matrix K0 represents the stiffness of the part of the structure whose
properties are known, whereas the matrices Kt represent the stiffness of the bolted connec-
tions. The FE mesh and the two considered parameterizations are shown in Figure 3. As
shown in Figure 3, the behaviour of the bolted connection is represented by a semi-rigid
node according to the formula:

Kt = krltlT
t , (2)

where kr is the nominal rotational stiffness, and

lt =
[
0 · · · 0 1 0 · · · 0 −1 0 · · · 0

]T
is the column transformation matrix that selects the rotational degrees of freedom (DOFs)
involved in the semi-rigid node. The independent parameterization for the vertical and
horizontal bolted connections follows from the fact that the conical surfaces of the joint
to which the bolts are tightened have different curvatures (see Figure 2b), and thus their
stiffness properties are also different, as shown in a previous work of the authors [45].
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Figure 3. Mesh and parameterization of FE models: (a) independent parameterization for vertical
(θ1) and horizontal (θ2) bolted connections and (b) common parameter θ̃ for all bolted connections.

Figure 3a shows a parameterization that allows identification of two different stiffness
parameters: θ1 for the bolted connections of the longitudinal beams (vertical bolted con-
nections in Figures 2a and 3a) and θ2 for the bolted connections of the transversal beams
(horizontal bolted connections). Figure 3b shows a simplified parameterization where all
bolted connections are assumed to share the same stiffness parameter θ̃.

Both FE models have 139 DOFs. In-plane beam elements with 6 DOFs based on
Euler–Bernoulli beam theory are employed. Cubic shape functions are used. The joints are
represented as rigid bodies by using appropriate offsets between the semi-rigid nodes. The
mass matrix M is consistent according to the FE shape functions. The Young modulus of the
beam material is E = 2.1× 1011 Pa (steel), the nominal rotational stiffness of the semi-rigid
node that represents the bolted connection is kr = 104 Nm/rad, the beam material density
is ρ = 7840 kg/m3, the mass of the joint is mJ = 1.86 kg, and the mass moment of inertia of
the joint is IJ = 0.0015 kg m2.

3. Identification of Unknown Parameters Based on Measurements from Computer
Vision Systems

In this section, all steps of the investigated CV methodology for identification of
structural parameters are discussed. The order of the steps is presented in Figure 4 together
with the references to the respective subsections.

Figure 4. Flowchart of the investigated methodology.

3.1. Smartphone Camera with CMOS Sensor and Recorded Videos

In the present study, a Samsung Galaxy S20 FE smartphone equipped with a high-
speed camera based on CMOS technology is used to register structural behaviour. The
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technical data of the camera are listed in Table 1. Among the three available recording
modes, “Slow motion” (240 Hz) is selected because “Super slow motion” (960 Hz) provides
lower resolution and allows recording of only 1 s long movies. Hence, the extracted
lower-order modes would be of a lower accuracy.

Table 1. Technical data of Samsung Galaxy S20 FE speed camera.

System Component Parameter Value

Sensor Technology CMOS
Model Sony IMX555

Dimensions 7.26 × 5.44 mm
Resolution 4032 × 3024 px (12.2 Mpx)
Pixel size 1.8 µm
Chroma RGB

Recording mode Normal 60 Hz,
(sampling frequency, 3840 × 2160 px (4K),
resolution, duration) Unlimited

Slow motion 240 Hz,
1920 × 1080 px (Full HD),

Unlimited
Super slow motion 960 Hz,

1280 × 720 px (HD),
1 s

Optics Focal length 5.4 mm
Reference focal length 1 26.8 mm

Maximum aperture f/1.8
Horizontal FoV 2 67.8°

Vertical FoV 53.5°
1 Reference focal length recalculated for reference sensor size 35 mm used for comparison with other cameras;
2 Field of view.

Aiming at achieving a trade-off between the largest field of view possible as required
for multi-point measurements and satisfactory resolution, the smartphone is set to capture
artificial targets located between the middle and the tip end of the structure. The distance
from the smartphone to the structure is not measured. The recorded part of the structure
with the manually selected templates around each measurement location (“node”) and the
automatically generated ROIs is shown in Figure 5. The ROIs are generated by adding
margins to the templates that are greater in the direction of the predominant vibration.
There are 29 nodes located every 75 mm along the beams. A zoomed view of the artificial
targets is shown in Figure 2b. A halogen lamp is used during the measurements to provide
good illumination conditions.

Two depths of the image plane can be distinguished: one for the artificial targets
located on the beams and another one for the targets on the joints (compare Figures 2 and 5).
Thus, two scaling factors are determined from the known physical and pixel dimensions
of the structure: κ1 = 0.3916 mm/px and κ2 = 0.3693 mm/px for the nodes located on
the beams and the joints, respectively. Four videos are recorded without changing the
smartphone location; hence, the scaling factors remain the same for all the videos.
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Figure 5. Example of the video frame registered by the smartphone camera accompanied by the
numeration of the nodes to be tracked, manually selected templates (red rectangles), ROIs (green
rectangles) and the location of the unmeasured impact excitation by a rubber hammer.

3.2. Algorithm Applied for Computer-Vision-Based Measurement

In the present study, CV measurements are performed in laboratory conditions with
good illumination during the experiments. Changes in the illumination and the scale can
be considered negligible in the provided measurement conditions; hence, the robustness of
the feature-based template matching with respect to these sources of error is not necessary.
Thus, due to its high accuracy, the area-based template matching method is employed. The
template is matched with the ROI by maximization of the ZNCC [12]:

ZNCC(x, y) =
∑(ζ,η)∈UT

{[
T(ζ, η)− T

][
R(ζ + x, η + y)− RT(x, y)

]}√
∑(ζ,η)∈UT

[
T(ζ, η)− T

]2√
∑(ζ,η)∈UT

[
R(ζ + x, η + y)− RT(x, y)

]2 , (3)

where (x, y) is the position of the template within the ROI, UT denotes the set of the points
that represent the pixel locations in the local coordinates of the template, T(ζ, η) is the
pixel intensity of the template at the point (ζ, η), T is the mean template pixel intensity,
R(ζ + x, η + y) is the pixel intensity of the ROI at the point (ζ + x, η + y) in the current
video frame, and RT(x, y) is the mean of the pixel intensities of the ROI within the area
currently overlapping with the template. An example of the ZNCC function is shown in
Figure 6. The distinguishable peak corresponds to the found position of the artificial target.

To achieve subpixel precision, the ZNCC function is interpolated with cubic spline
functions at a mesh 16 times denser than the query points. The displacements are extracted
not in real time, but by postprocessing the recorded videos, and hence the estimation
accuracy is of a higher priority than the computational time. Due to many local maxima of
the ZNCC function, the global maximum is found by an exhaustive search (Figure 6).
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Figure 6. Example of the plot of the ZNCC function for Node 1.

3.3. Identification of Modal Parameters

The SSI-DATA method is used to identify the state space model of the structure.
Subsequently, stabilization diagrams are used to identify the natural frequencies and the
mode shapes for each recorded video. Finally, the identified modal parameters from all the
recorded videos are averaged.

For a particular recorded video, the stable poles of the identified modes are found
with the following criteria: 

∣∣∣ f̂ (m)
n − f̂ (m)

n−1

∣∣∣
f̂ (m)
n−1

≤ ε f

1−MAC
(

φ̂
(m)
n , φ̂

(m)
n−1

)
≤ εφ∣∣∣ζ̂(m)

n − ζ̂
(m)
n−1

∣∣∣
ζ̂
(m)
n−1

≤ εζ

(4)

In the above system of inequalities, f̂ (m)
n , φ̂

(m)
n ∈ RNo and ζ̂

(m)
n are the identified mth

natural frequency, mode shape and the modal damping coefficient for the model order n,
respectively; No is the number of the measured outputs (DOFs); MAC(·, ·) is the modal
assurance criterion; and ε f , εφ and εζ are certain preselected thresholds for the natural
frequencies, mode shapes and modal damping coefficients, respectively, which typically
have values of ε f = 0.01, εφ = 0.02 and εζ = 0.05.

The modal parameters are calculated as the mean values:

f̂ (m) =
1
|Sm| ∑

n∈Sm

f̂ (m)
n , φ̂

(m)
=

1
|Sm| ∑

n∈Sm

φ̂
(m)
n , ζ̂(m) =

1
|Sm| ∑

n∈Sm

ζ̂
(m)
n , (5)

where Sm denotes the set of the stable poles for the mth mode. They are found among all
stable poles as clustered, according to the following joint criteria:
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∣∣∣ f̂ (m)
n − f̂ (m)

nmin

∣∣∣
f̂ (m)
nmin

≤ ε f κε

1−MAC
(

φ̂
(m)
n , φ̂

(m)
nmin

)
≤ εφκε∣∣∣ζ̂(m)

n − ζ̂
(m)
nmin

∣∣∣
ζ̂
(m)
nmin

≤ εζκε

|Sm| ≥ NS

, (6)

where nmin denotes the lowest stable pole for the mth mode, κε is an additional preselected
coefficient, and NS is the preselected minimal number of stable poles that satisfy the
remaining conditions in the system of inequalities (6). The values of κε and NS are selected
by the trial-and-error method. Typically, κε is close to one, whereas NS is between 5 and 20.

The stabilization diagrams obtained with a smartphone camera can be highly contami-
nated, and thus, clustering of the stable poles according to system of inequalities (6) may
result in a repeated occurrence of the same mode. In other words, the poles that should
belong to a single cluster might be separated into several closely located clusters. This is
resolved by matching multiple modes according to the criterion

MAC
(

φ̂
(mi), φ̂

(mj)
)
− 1

2

(
λ̂(mi) − λ̂(mj)

)2

λ̂(mi)
≥ αMAC, (7)

where λ̂(m) =
(

2π f̂ (m)
)2

is the mth identified system eigenvalue, and αMAC is a preselected
threshold of a typical value greater than or equal to 0.9. Mode matching can also be
performed without the additional term that quantifies the eigenvalues. Subsequently, the
modal parameters are calculated once again according to Equation (5), but the set Sm is
enlarged to include all the stable poles of the modes matched with the criterion described
in Inequality (7).

3.4. Identification of Stiffness Parameters

Stiffness parameters are found with the modal-sensitivity-based method by solving
the optimization problem (P1):

(P1)
find θ

to minimize F(θ)

The objective function for the above optimization problem is defined as follows:

F(θ) = eT
M(θ)Σ−1

M eM(θ) + eT
θ (θ)Σ

−1
θ eθ(θ), (8)

where the the first term represents the error between the identified and the numerical modal
parameters of the updated FE model, whereas the second term quantifies the discrepancy
between both models based on prior knowledge about the values of the parameters. The
second term is also responsible for numerical regularisation. The quantities in Equation (8)
are defined as follows:

eM =

[
λ̂

φ̂

]
−
[

λnum(θ)
φnum(θ)

]
(9)

is the error between the identified and the numerical modal parameters collected into
the vectors:
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λ̂ =
[
λ̂(1) λ̂(2) · · · λ̂(Nm)

]T
∈ RNm

+ ,

φ̂ =
[
φ̂
(1)T

φ̂
(2)T · · · φ̂

(Nm)T
]T
∈ RNm No ,

λnum(θ) =
[
λ
(k1)
num(θ) λ

(k2)
num(θ) · · · λ

(kNm )
num (θ)

]T
∈ RNm

+ ,

φnum(θ) =
[
c1Lφ

(k1)T
num (θ) c2Lφ

(k2)T
num (θ) · · · cNm Lφ

(kNm )T
num (θ)

]T
∈ RNm No ,

where λ̂(m) = (2π f̂ (m))2 is the mth identified eigenvalue, λ
(km)
num(θ) and φ

(kNm )
num (θ) denote

the kmth numerical eigenvalue and eigenvector, respectively, obtained from the FE model,
and the index km is found according to the mode-matching criterion:

km = arg max
k

MAC
(

φ
(k)
num(θ), φ̂

(m)
)

. (10)

The vector θ ∈ RNθ collects the unknown parameters, where in this study Nθ = 2 (Figure 3a)
or Nθ = 1 (Figure 3b), L is a Boolean matrix that selects the measured DOFs, and cm is the
modal scale factor:

cm =
φ̂
(m)TLφ

(m)
num∥∥∥Lφ

(m)
num

∥∥∥2 , (11)

where ‖ · ‖ is the square norm, ΣM is the prior or the estimated covariance matrix of the
measurement error,

eθ(θ) = θ− θ0,

and θ0 is the assumed initial vector of the unknown parameters, while Σθ is the assumed
prior covariance matrix of the unknown parameters. The matrices ΣM and Σθ are usually
diagonal. If the matrix ΣM is not known, it can be assumed that

ΣM = diag

([
v2

λλ̂(1)2 · · · v2
λλ̂(Nm)2 v2

φ

∥∥∥φ̂
(1)
∥∥∥2

No
1T

φ · · ·
v2

φ

∥∥∥φ̂
(Nm)

∥∥∥2

No
1T

φ

]T
)

, (12)

where vλ and vφ denote the expected coefficients of variation of the eigenvalue (or natural
frequency) and the mode shape, respectively, and 1φ is the vector of ones of the same length
as the mode shape. Typical values are vλ = 0.01 and vφ = 0.1.

The optimization problem (P1) cannot be solved directly due to the nonlinear depen-

dence of the modal parameters λ
(km)
num(θ) and φ

(kNm )
num (θ) on the unknown parameters θ. Thus,

the method proposed by Friswell and Mottershead that employs the first-order expansion
of the Taylor series is used to find the solution of (P1) in an iterative manner [37,38]. In each
iteration step, the objective function F̃ defined in Equation (13) is to be minimized:

F̃(∆θ) = (S(θ)∆θ− eM(θ))T
Σ−1

M (S(θ)∆θ− eM(θ))

+(θ+ ∆θ− θ0)
TΣ−1

θ (θ+ ∆θ− θ0),
(13)

where ∆θ is the increment of the unknown parameter vector θ at the current iteration
step, and
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S(θ) =



∂λ
(k1)
num

∂θ1
· · · ∂λ

(k1)
num

∂θNθ
...

...
∂λ

(kNm )
num
∂θ1

· · · ∂λ
(kNm )
num

∂θNθ

c1L ∂φ
(k1)
num

∂θ1
· · · c1L ∂φ

(k1)
num

∂θNθ
...

...

cNm L ∂φ
(kNm )
num
∂θ1

· · · cNm L ∂φ
(kNm )
num

∂θNθ


(14)

is the modal sensitivity matrix. In this study, S(θ) has two columns or only one column
based on the number of parameters considered (Figure 3). The eigenvalue sensitivities
∂λ

(km)
num/∂θt can be calculated as shown in [46], and mode shape sensitivities φ

(km)
num/∂θ1 can

be calculated as shown in [47].
From Equation (13), it follows that the unknown parameters can be updated at the ith

iteration step as follows:

θi+1 = θi + sθ∆θ =

= θi + sθ

(
ST(θi)Σ

−1
M S(θi) + Σ−1

θ

)−1[
ST(θi)Σ

−1
M e(θi)− Σ−1

θ (θi − θ0)
]
,

(15)

where sθ is a scale factor that is preselected with the trial-and-error method to provide
convergence of the optimization procedure.

It can be shown that the covariance matrix that describes the uncertainties of the
unknown parameters θ can be expressed as shown in Equation (16):

Vθ =
(

STΣ−1
M S + Σ−1

θ

)−1
. (16)

It is worth noticing that the variances vii on the diagonal of Vθ do not describe the
bias error resulting from systematic measurement errors or an incorrect selection of the
parameters (or a class) of the model. Thus, a comparison of only the variances of the
unknown parameters estimated using different classes of FE models can be misleading due
to the bias–variance trade-off problem. More complex models usually have a lower bias,
but they are also characterised by higher variances.

4. Comparison of Dynamic Displacements and Identified Parameters

In this section, the results of the methodology described in previous sections based on
CV measurement with the aid of a smartphone camera are elaborated. First, the benchmark
data based on accelerometers are described. Next, the accuracy of CV measurement with
the aid of a smartphone camera is demonstrated. Subsequently, the identified modal data
obtained with the smartphone camera and accelerometers are compared. Finally, model
updating based on these two data sets is performed, and the results are compared.

During the tests, Nodes 13, 16 and 19 were rejected due to the fact that the retraction of
the rubber hammer after the hit causes contamination of the measurement by the hammer’s
shadow. This phenomenon is demonstrated in Figure 7. The other tested feature-based
template matching methods, e.g., orientation code matching (OCM) and KLT, exhibit a
similar lack of robustness with respect to this perturbation, as in the ZNCC-based method.
Thus, 26 nodes are finally available for CV measurement, and the identified state space has
52 DOFs.

In this section, accelerometer-based identified modal parameters are marked with

the subscript “acc”, e.g., λ̂
(m)
acc and φ̂

(m)
acc , whereas the CV parameters are marked with the

subscript “cv”, e.g., λ̂
(m)
cv and φ̂

(m)
cv .
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Figure 7. Example of the template mismatch caused by the shadow of the rubber hammer.

4.1. Reference Data Obtained with Accelerometers

Accelerometer-based modal parameters were identified using the SSI method with
the aid of an LMS-SCADAS system and the LMS Test.Lab software. All 26 locations of
bidirectional accelerometers were selected to provide the results for comparison with the CV
measurements. Accelerometers B&K 4507 B 004 were used in this study. Five experimental
sessions were conducted, resulting in five data sets. The natural frequencies of these data
sets are shown in Table 2. Data Set #1 was obtained using the impact testing technique,
and only the natural frequencies were obtained. Data Sets #2 and #3 were obtained using
the impact testing–roving hammer technique. Data Set #4 was obtained using the impact
testing–roving accelerometer technique. Data Set #5 was obtained using modal shakers
with the roving accelerometer technique. The modal shakers cannot work at frequencies
below 60 Hz, and hence, the first two modes in the last data set were not identified.

The modal parameters used later for model updating are calculated by averaging over
all data sets; see Table 2 and Figure 8.

(a) (b) (c)

Figure 8. First three vibration modes identified with the aid of the bidirectional accelerometers (dots
indicate accelerometer locations).

The normalised standard deviation Sφ
m presented in Table 2 is a metric of uncertainty

of the mth mode shape, and it is calculated as follows:

Sφ
m =

σ(m)√
1

No
∑No

i=1 φ̂
(m)2
i

, (17)

where φ̂
(m)
i is the ith element of the mth mode shape, and σ(m) is the the mean standard deviation:
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σ(m) =
1

No

No

∑
i=1

σ
(m)
i , (18)

while the standard deviation of the ith measured DOF of the mth mode shape σ
(m)
i is

estimated as follows:

σ
(m)
i =

√√√√ 1
Nd − 1

Nd

∑
d=1

(
φ̂
(m)
id − φ̂

(m)
i

)2
. (19)

The physical sense of Sφ
m is that a substitution of vφ in Equation (12) with Sφ

m results in
the diagonal elements associated with the DOFs of the mth mode being equal to (σ(m))2.

Table 2. Identified modal parameters based on accelerometers.

IP
Mode Identified Freq. f̂ (m)

acc d (Hz) for Each Dataset d Mean COV 1 NSD 2

m [−] #1 #2 #3 #4 #5 f̂ (m)
acc

(Hz)
V f

m (%) Sφ
m (%)

1 9.39 9.49 9.46 9.23 — 9.39 1.24 5.34
2 30.41 30.6 30.5 30.54 — 30.51 0.26 5.11
3 70.4 71.55 71.55 70.98 72.52 71.4 1.1 5.13

1 Coefficient of variation; 2 Normalized standard deviation for corresponding mode shapes.

4.2. CV Measurement of Dynamic Displacements

In this subsection, the accuracy of CV measurement of dynamic displacement is
demonstrated. The CV measurement of transversal displacement of Node 2 (Figure 5) is
compared with the data obtained with the LDS, the accelerometer and their fusion. Hence,
LDS Baumer 2016160/S14F and the digital oscilloscope Tektronix TDS 2004C are also used
to register the time-domain data.

The vector containing the displacement time series u resulting from the data fusion is
found by solving the optimization problem (P2) [48]:

(P2)
find u

to minimize J(u),

where the objective function is defined as follows:

J(θ) =
1
2

∥∥∥W
(

Du− ∆t2aacc

)∥∥∥2
+

γ2

2
‖u− qLDS‖2 (20)

In Equation (20), W is a diagonal weighting matrix whose diagonal contains only ones and
1/
√

2 in the first and last element; D is the second order differential operator matrix; ∆t
is the time step, equal here to 2 ms; aacc is the time series of acceleration measured by the
accelerometer; γ is a weighting coefficient, selected here to be equal to 0.4; and qLDS is the
displacement time series measured by the LDS. The problem (P2) is solved directly:

u =
(

DTW2D + γ2I
)−1(

DTW2aacc∆t2 + γ2qLDS

)
. (21)

The result is visualised in Figure 9 along with the results obtained from the accelerom-
eter, the LDS and the smartphone camera. It is evident that the differentiated LDS-based
data are much noisier than the accelerations measured directly by the accelerometer. On the
other hand, the displacement obtained from the data fusion stays in good agreement with
both the LDS-based data and the accelerometer-based data; see Figure 9a. All the measured
displacements compared in Figure 9b are in good agreement. The displacement estimated
using the smartphone camera seems to be slightly more distorted than the other results,
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which are almost the same; however, the error level is still at a very satisfactory level. The
error of the CV measurement with respect to the fused results can be expressed as:

ecv =
std(qcv − u)

std(u)
= 10.82%, (22)

where std(·) means the standard deviation, and qcv is the time series of the CV displace-
ment. The analogously calculated error for the LDS-based data is

eLDS =
std(qLDS − u)

std(u)
= 5.14%. (23)

The errors ecv and eLDS are calculated for a time period of 1 s duration. The time series u
and qLDS are interpolated onto the time steps of qcv with the use of spline functions to
allow appropriate calculations in Equation (22). The error of the CV measurement is two
times greater than that of LDS.

Figure 9. Comparison of (a) accelerations and (b) corresponding displacements of Node 2 obtained
by various types of sensing of the structural dynamics.

Amplitude spectra for accelerations and displacements of Node 2, as obtained with
various sensing techniques, are shown in Figure 10a and b, respectively. For calculation of
amplitude spectra, signals of a duration of 4.5 s are taken into account with their original
sampling frequencies, i.e., 500 Hz for the accelerometer, LDS and their fusion, and 240 Hz
for the smartphone camera. It is evident that both the acceleration and the displacement
amplitude spectra are in a good agreement in the vicinity of the first two natural frequencies.
The LDS and CV accelerations become noisier above the frequency of 40 Hz due to the
fact that they are calculated from displacements that are very small in this frequency range
(higher-order modes need more energy to be excited, and they are usually characterised
by significantly higher damping factors than lower-order modes). The fused acceleration
data exhibit a trade-off expressed by the weighting coefficient γ; see Equation (20). In the
frequency range 40–65 Hz, the fused data have values between those of the accelerometer
and the LDS-based (and CV) data, whereas above this range they are in good agreement
with the accelerometer-based data, which are less noisy.
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Figure 10. Comparison of amplitude spectra of (a) accelerations and (b) corresponding displacements
of Node 2 obtained for various types of sensing of the structural dynamics.

The data shown in Figure 10 confirm that only three in-plane vibration modes can
be identified below the Nyquist frequency of the CV measurement (120 Hz) because no
other mode more is demonstrated in the acceleration spectra. The next in-plane mode of
the investigated structure is present at 226 Hz [45].

The data fusion results are close to both input accelerations as measured by the
accelerometer and as obtained from the LDS-based displacements. This suggests that the
accelerometer-based measurement provides reliable benchmark data for identification of
modal parameters (Section 4.3) and, thereupon, for model updating (Section 4.4).

4.3. Identified Natural Frequencies and Mode Shapes

In this subsection, modal parameters are described and discussed, as identified from
the CV measurement data using the SSI-DATA method and the stabilization diagrams.
Four videos have been recorded. A recording duration of 8.5 s is selected for each video,
and it includes nearly 80 periods of vibration of the first mode.

The stabilization diagram is constructed as described in Section 3.3 with the model
orders ranging from 1 to 104, which is twice the number of the measured outputs. The
coefficient values ε f = 0.01, εφ = 0.02, ε f = 0.05, κε = 1.5, NS = 5 and αMAC = 0.9 are used.
Among the four recorded videos, only one allows three vibration modes to be identified.
The other three videos allow only the first two vibration modes to be identified.

An example of the stabilization diagram for the fourth video is shown in Figure 11. The
stabilization diagrams also include out-of-plane modes, which are rejected because only the
in-plane modes are considered in this study, as shown in Figure 11. Since the displacements
in the third dimension are not measured by the smartphone camera, these modes are
selected according to the MAC criterion between the CV modes and the accelerometer-
based modes, which was expected to be higher than 0.7. Generally, the calculated numerical
modes can be also used if accelerometer-based modal parameters are not available.

It is evident that the use of methods intended to cluster stable poles and to reject
spurious modes, as described in Section 3.3, allows for obtaining clearly demonstrated
modal data, as shown in Figure 11.
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Figure 11. Stabilization diagram with the identified modes, including one rejected out-of-plane mode,
as obtained in the fourth video.

The CV natural frequencies and the calculated uncertainties are listed in Table 3. The fi-

nal values of the identified modal parameters f̂ (m)
cv and φ̂

(m)
cv , m = 1, 2, 3 are calculated as the

mean of the data available in all four videos. The uncertainties are calculated analogously
to the accelerometer-based modal parameters; see Table 2 and Equations (17)–(19).

Table 3. Identified modal parameters based on computer vision (smartphone camera).

IP Mode Identified Freq. f̂ (m)
cv v (Hz) for Each Video v Mean COV 1 NSD 2

m [−] #1 #2 #3 #4 f̂ (m)
cv

(Hz)
V f

m (%) Sφ
m (%)

1 9.16 9.27 9.23 9.15 9.20 0.58 1.99
2 28.54 28.79 28.62 28.50 28.61 0.45 4.09
3 — — — 63.96 63.96 — —

1 Coefficient of variation; 2 Normalized standard deviation for corresponding mode shapes.

The uncertainties in the first two CV modal parameters are smaller than those of the
accelerometer-based modal parameters. Due to a possible systematic error, this does not
necessarily mean that the CV measurement is more accurate, but it demonstrates that the
CV data are more consistent. In fact, this error can be characterised as the bias error: the
natural frequencies of the CV-identified modes seem to be underestimated, especially the
third one. This is clearly demonstrated in Table 4. The underestimation error increases
nearly proportionally to the identified natural frequency. Despite the fact that for the third
mode, the MAC has the lowest value of 0.93, it still remains at a satisfactory level above 0.9
for all the vibration modes.

Table 4. Comparison of CV- and accelerometer-based identified modal parameters.

m [–] f̂ (m)
acc (Hz) f̂ (m)

cv (Hz) f̂ (m)
cv − f̂ (m)

acc

f̂ (m)
acc

(%) MAC
(

φ̂
(m)
acc , φ̂

(m)
cv

)
[–]

1 9.39 9.20 −2.03 0.99
2 30.51 28.61 −6.24 0.98
3 71.40 63.96 −10.43 0.93
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A comparison of the mode shapes obtained with the accelerometers and the smart-
phone camera is shown in Figure 12. The high MAC values are reflected in the high
similarity between the mode shapes identified using both methods. The third CV mode
shape seems the noisiest; however, the mode shape is still properly reflected and well-
correlated with the accelerometer-based result.

(a) (b) (c)

Figure 12. Comparison of the identified mode shapes obtained with accelerometers (blue dots) and
smartphone camera (claret dots)

4.4. Identified Stiffness Parameters

This subsection presents and compares the results of model updating for accelerome-
ters and CV data. The weighting matrix Σ−1

M is selected in accordance with Equation (12)
with the parameters vλ = 0.01 and vφ = 0.05 both for CV- and accelerometer-based iden-
tified modal parameters. These values correspond with the COVs and NSDs shown in
Tables 2 and 3, and they are not far from typical values. Pursuing the COVs and NSDs
estimated from the available data sets makes comparison of the results difficult, since the
COV and NSD for the third mode obtained with the smartphone camera are not available.

The initial values of the unknown parameters in θ0 are assumed to be equal to one.
The prior covariance matrix Σθ is assumed to be diagonal, with all elements on the diagonal
equal to the prior variance s2

θ = 0.25. Consequently, assuming Gaussian distribution, each
unknown parameter is within the interval [0, 2] with a probability of 95%.

The scaling factor κθ = 0.4 is selected with the trial-and-error method. The model
updating procedure is stopped when all unknown parameters differ from the corresponding
values in the previous iteration by less than one percent. The model updating procedure is
performed for three cases: when only the first mode (natural frequency and mode shape) is
identified and available, when the first two identified modes are available, and when all
three modes are available.

Comparison of the convergences for the CV- and accelerometer-based data when all
three identified modes are available and two stiffness parameters are used (see Figure 3a)
is shown in Figure 13. For a single stiffness parameter (see Figure 3b), the corresponding
convergences are shown in Figure 14.

For both CV- and accelerometer-based data, the values of the unknown parameters
converge without any numerical difficulties. The errors between the identified and numeri-
cal modal parameters decrease for the CV- and accelerometer-based data as well as for the
parameterizations with two and the single unknown parameter.

The errors in the numerical modal parameters obtained for the CV measurement data
are greater than the errors obtained with the accelerometer-based data, both for the single
unknown parameter and for the two unknown parameters used in model updating. This is
due to two reasons: The first is that the initial FE model overestimated natural frequencies,
and thus, the lower natural frequencies identified with the smartphone camera increase this
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error. Hence, the discrepancy between the numerical and the CV-identified frequencies is
greater than the corresponding discrepancy between the numerical and the accelerometer-
based identified frequencies, as demonstrated in Figures 13b and 14b. The second reason
is that the CV measurement data are generally expected to have greater errors, as visible
especially in Figure 12c. Thus, even for the updated FE model, the MAC values between
the numerical and CV-identified mode shapes are lower than the corresponding values for
the accelerometer-based mode shapes (Figures 13c and 14c). Nevertheless, all MAC values
remain at a satisfactory level above 0.9. Additionally, in the case of the CV data, the lower
identified natural frequencies result in a slightly lower level of the unknown parameters
(Figures 13a and 14a).

Figure 13. Comparison of convergences of model updating employing accelerometer and CV modal
data for two unknown parameters: (a) unknown parameters, (b) relative natural frequency error and
(c) modal assurance criterion.

A comparison of the unknown parameters θ1 and θ2 for all three cases of the available
measurement data, estimated based on the CV and accelerometer measurement data,
together with the corresponding standard deviations, is shown in Figure 15. The analogous
comparison for the reduced parameterization with a single parameter θ̃1 is shown in
Figure 16. The estimated standard deviation σθ

t of the unknown parameter is calculated as
the square root of the corresponding diagonal element of the matrix Vθ ; see Equation (16).
To this end, the matrix ΣM is employed, which is calculated as shown in Equation (12) with
vλ = 0.01 and vφ = 0.05, since Equation (16) is true only if the weighting matrices in the
model updating procedure are equal to the reciprocals of the corresponding covariance
matrices (see Equation (8)). Such a covariance matrix gives information about parameter
uncertainty for typical measurement variances.
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Figure 14. Comparison of convergences of model updating employing accelerometer and CV modal
data for single unknown parameter: (a) unknown parameter, (b) relative natural frequency error and
(c) modal assurance criterion.

It is evident that the results are dependent on the number of the available measured
modes. Both for the CV- and accelerometer-based data, the unknown parameters have
different values in each measurement data case. Simultaneously, the standard deviations of
the unknown parameters are smaller with the increase of the available measurement data.
These observations are visible for both considered parameterizations (two and a single
unknown parameter). However, the single unknown parameter seems to be less sensitive
to the amount of the measurement data, and it has a lower standard deviation than the
corresponding results obtained for the two parameters θ1 and θ2. Especially, as shown
in Figure 15a, the unknown parameter θ1, estimated when only the first identified mode
is available, has a value significantly different than in the other data cases. This is due
to the fact that a single mode provides an insufficient amount of information to precisely
estimate two unknown parameters. In other words, the greater complexity of the model
and a smaller amount of the available measurement data tilt the bias–variance trade-off
towards increased variance. This is also visible in the corresponding significantly higher
variance of this parameter (Figure 15b).

The parameter θ2 tends to be lower than θ1 (Figure 15a,e) due to the different curvature
of the adjacent conical surfaces involved in the vertical and horizontal bolted connections
(Figure 2b). However, for both parameters, the estimation accuracy strongly depends on
the available measurement data. The differences between particular results of the model-
updating procedure are higher than is suggested by the calculated standard deviations of
these parameters.
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Figure 15. Comparison of the unknown parameters θ1 and θ2 of the updated FE model obtained from
the CV- and accelerometer-based data and the corresponding expected standard deviations σθ

1 and σθ
2

for: (a,b) only the first identified mode available; (c,d) the two first identified modes available and
(e,f) all three modes available for model updating.

Figure 16. Comparison of the unknown parameter θ̃ of the updated FE model obtained from the
CV- and accelerometer-based data and the corresponding standard deviation σ̃θ for: (a,b) only the
first identified mode available; (c,d) the two first identified modes available and (e,f) all three modes
available for model updating.
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The considerations above refer both to the CV- and accelerometer-based measurement
data. Moreover, the number of available identified modes has a greater influence on
the values of the unknown parameters than the errors in the CV identification of the
modal parameters described in Section 4.3, including the significant bias error of the
natural frequencies.

A comparison of the error metrics between the numerical and accelerometer-based
identified modal parameters with the corresponding error metrics obtained for the CV-
identified parameters for various available identified modes when the FE model is updated
with the two unknown parameters θ1 and θ2 is shown in Figure 17. An analogous compari-
son for the FE model parameterized with one parameter θ̃ is shown in Figure 18.

Figure 17. Comparison of the relative natural frequency error and MAC between the numerical and
identified modal parameters (for parametrization with two unknown parameters θ1 and θ2) with the
corresponding results for CV-identified modal parameters: (a,b) when only the first identified mode
is available for model updating; (c,d) when two first modes are available; and (e,f) when all three
identified modes are available.

It is evident that the errors between the numerical and identified modal parameters for
the simplified parameterization of the FE model (Figure 18) are only slightly higher than for
the parameterization with two parameters (Figure 17), whereas they provide significantly
lower variances of unknown parameters and lower sensitivity to the availability of the
modal parameters. For both parameterizations, all obtained relative errors of natural
frequencies, except one (Mode 1 shown in Figure 17e) are below the level of 10%. Similarly,
all MAC values are well above 0.9, which is a satisfactory result. For both parameterizations,
the MAC calculated for the third CV-identified mode shape has the worst value due to the
significant noise affecting this mode shape (Figure 12c).
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Figure 18. Comparison of the relative natural frequency error and MAC between the numerical
and identified modal parameters (for parametrization with a single unknown parameter θ̃) with the
corresponding results for CV-identified modal parameters: (a,b) when only the first identified mode
is available for model updating; (c,d) when two first modes are available; and (e,f) when all three
identified modes are available.

5. Discussion of the Results

In this subsection, the obtained results are discussed in the context of their applicability
both for real-world structures and laboratory experiments.

The third CV-identified mode has a natural frequency above 1/2 of the Nyquist
frequency due to the limited sampling frequency of the smartphone camera. This results
in considerable systematic error. The third mode shape also becomes noisy. However,
real-world structures are often characterised by natural frequencies of much lower values;
hence, they are less subject to estimation error when a camera with a limited sampling
frequency is used. In [26], a camera mounted on a UAV and on a tripod recorded cable
vibration with a sampling frequency of 60 Hz and a resolution of 3096 × 2160 px, and a
sampling frequency 25 Hz and a resolution of 2048 × 2048 px, respectively. The natural
frequencies equal to 1.03, 3.05 and 3.17 Hz obtained with the camera mounted on the tripod
were in satisfactory agreement with accelerometer-based data obtained with a sampling
frequency of 50 Hz. The camera mounted on the UAV measured the natural frequencies of
higher-order modes to be 9.41, 10.43 and 11.43 Hz. Additionally, in this case, satisfactory
agreement with accelerometer-based data was obtained despite the lower-order modes
being omitted since they were affected by a low-frequency UAV motion during its hovering.
These two tested cameras and accelerometers provided consistent estimated cable forces.
The smartphone used in the present research can be set into the normal recording mode,
which allows recording in 4 K resolution and with a sampling frequency of 60 Hz, i.e., the
same as the UAV in [26]. The capability of the smartphone camera to measure low-frequency
oscillations up to 2 Hz with a sampling frequency 30 Hz was also confirmed in [33], where a
smartphone was proposed as a low-cost device to measure the interstory drift of buildings
subjected to earthquakes. In the present study, the first two CV-identified vibration modes
of the investigated structure (that are far from the Nyquist frequency of 120 Hz) are also
in good agreement with the accelerometer-based identified modal parameters. It follows
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that consumer-grade electronics are suitable for measurement of flexible structures whose
modes of interest are much lower than the Nyquist frequency. If this requirement is
satisfied, the smartphone camera can be also used for 3D displacement measurement with
the method proposed by Narazaki, since the projection of 2D displacements to 3D is a
postprocessing procedure [9].

Regarding the parametric identification of the structural properties, in the investigated
case, the number of the available modal parameters used in the optimization procedure
affects the results more than the uncertainties resulting from CV measurement. A sim-
ilar observation is given by Blachowski, who indicated that an increase in the number
of measured modes is more profitable than an increase in the number of measurement
locations [39]. This is one more argument in support of consumer-grade cameras being
suitable for large-scale or flexible structures, which usually have small, lower-order natural
frequencies, as more modes can be identified within the limited sampling frequency. The
model updating method adopted in this study is widely accepted, and it can be used for
various types of structures if the FE model of the structure is available. For example, again
taking into account the work [26], the methodology proposed in the present paper could be
implemented to monitor the cable condition. If only natural frequencies are to be identified,
then the modal sensitivity matrix contains only the related rows, without the entries related
to the mode shapes; see Equation (14). Only one unknown parameter scaling the stiffness is
required for a particular cable for it to be sufficient to determine the cable condition. Hence,
the problem would be well overdetermined. The methodology of monitoring the cable con-
dition proposed in [26] does not require an FE model, but a methodology based on model
updating would enable monitoring of not only several cables at once but also of all parts of
the structure visible by the camera. As shown by Blachowski et al., modal-sensitivity-based
model updating can be used with a relatively large number of unknown parameters. If still
required, the number of the updated FEs (corresponding with the monitored structural
members) can be reduced by an investigation of their influence on the modal parameters
after calculation of the modal sensitivity matrix. Columns of this matrix that reveal a low
influence on the natural frequencies (small eigenvalue derivatives) can be rejected, since
this means that the corresponding elements do not transfer significant structural loads,
and their monitoring is of lower importance. Including these aspects in the researched
methodology may facilitate CV-SHM based on consumer-grade low-cost devices of large
scale structures.

In recent times, machine and deep learning approaches in SHM have become more and
more popular. Artificial neural networks can enhance the performance of SHM techniques,
especially when the monitored structure is large-scale and exhibits a nonlinear relation
between the damage and measured output [49]. The methods employed in the present
study are suitable and efficient for linear problems. Large-scale FE models can be reduced
with, e.g., the dynamic reduction method or the system equivalent reduction expansion
process (SEREP) [37].

6. Conclusions

This study investigated the influence of the equipment limitations and errors of CV
measurement on the identification of both modal parameters and unknown structural
parameters that represented stiffness of structural bolted connections. The conclusions can
be drawn as follows:

1. The employed consumer-grade smartphone camera with the “slow-motion” mode
selected, full HD resolution and a sampling frequency of 240 Hz allowed us to estimate
structural displacement with an error two times higher than that when using LDS
(10.82% vs. 5.14%), where a fusion of LDS- and accelerometer-based data were taken
as the benchmark.

2. The selected mode of recording allowed the first three vibration modes to be identified.
The MAC between the CV- and the corresponding accelerometer-based identified
mode shapes had satisfactory values: 0.99, 0.98 and 0.92. However, the identified
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natural frequency was underestimated: the first natural frequency (9.39 Hz) was
underestimated with an error of 2.03%, whereas the third one (71.40 Hz) had an
error of 10.43%. This error was recognised as systematic, since the variances of the
CV-identified modal parameters were not higher than the accelerometer-based ones.

3. The unknown parameters representing the stiffness of the bolted connections were
identified with the modal-sensitivity-based model updating technique. The param-
eters identified using CV measurements had slightly lower values than the ones
based on accelerometers, which was due to the underestimated natural frequencies.
However, it was shown that the number of identified modes taken into account had
a significantly greater influence on the unknown parameters than the systematic
error of the CV-identified natural frequency. Reduction of the number of unknown
parameters reduced their sensitivity to the number of available measurement data
due to a more profitable bias–covariance trade-off.

4. Despite the noticeable errors obtained with the use of the smartphone camera, it
should be noted that the cost of consumer-grade equipment is significantly lower than
that of accelerometers and a data-acquisition system with integrated software. More-
over, a camera allows performance of “by hand” and multiple-point measurements
at once.

The results provide insight into the expected error types and levels, not only for the
directly measured quantities but also for the parameters identified in structural dynamics,
when using low-cost consumer-grade electronics.
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