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a b s t r a c t

The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical model

intended to capture kinetic proofreading (sensitivity to ligand–receptor binding kinetics) and negative

and positive feedback regulation mediated, respectively, by the phosphatase SHP1 and the MAP kinase

ERK. The model incorporates protein–protein interactions involved in initiating TCR-mediated cellular

responses and reproduces several experimental observations about the behavior of TCR signaling,

including robust responses to as few as a handful of ligands (agonist peptide–MHC complexes on an

antigen-presenting cell), distinct responses to ligands that bind TCR with different lifetimes, and

antagonism. Analysis of the model indicates that TCR signaling dynamics are marked by significant

stochastic fluctuations and bistability, which is caused by the competition between the positive and

negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ qualitatively from

the trajectory predicted in the deterministic approximation of the dynamics. Because of bistability, the

average of single-cell trajectories differs markedly from the deterministic trajectory. Bistability

combined with stochastic fluctuations allows for switch-like responses to signals, which may aid T

cells in making committed cell-fate decisions.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Activation of T lymphocytes, or T cells, is not only sensitive to
small amounts of peptide antigen but also selective, with
exquisite discrimination between foreign peptides, which must
be recognized for immune defense, and self peptides, which must
be ignored to avoid autoimmunity. Antigen recognition begins
with interaction of the T cell receptor (TCR), its co-receptor (CD4
or CD8), and major histocompatibility complex (pMHC) molecules
presenting peptide antigen on the surface of an antigen-present-
ing cell (APC). Helper T cells, which express CD4, can be activated
by as few as 10 agonist (stimulatory) pMHC present on an APC,
and even the presence of a single agonist pMHC produces a
measurable transient response (Irvine et al., 2002). Killer T cells,
which express CD8, are more sensitive; only three pMHCs are
required to induce T cell-mediated killing (Purbhoo et al., 2004).
At the same time T cells ignore pMHCs with short binding
lifetimes, which are typically much less than a second for self
peptides. Only peptides having binding lifetimes greater than 5 s
are activating and small differences in binding have disproportio-
nately large effects on T cell responses (Kersh et al., 1998).
ll rights reserved.
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To explain how T cells are able to discriminate between self
and foreign peptide ligands of the TCR, McKeithan (1995)
introduced the concept of kinetic proofreading, demonstrating
using a simple model that a signal or cellular response can be
highly sensitive to the lifetime of a ligand–receptor bond.
According to the model, sensitivity to ligand–receptor binding
kinetics arises if a response depends on a cascade of receptor
modifications, the completion of which requires continued
ligand–receptor engagement. The fraction of receptors able to
complete such a cascade, which is assumed to comprise a series of
tyrosine phosphorylation events, depends nonlinearly on the
duration of ligand–receptor binding, which is consistent with
observations that the potency of a ligand tends to correlate with
its strength of binding and that stimulatory and non-stimulatory
ligands may have only small differences in binding strength (Davis
et al., 1998; Germain and Štefanová, 1999). Since the seminal work
of McKeithan (1995), the kinetic proofreading concept has been
explored and extended in many ways (for reviews, see Goldstein
et al., 2004, 2008; George et al., 2005; Burroughs and van der
Merwe, 2007). For example, Burroughs et al. (2006) have recently
studied a model in which spatial segregation of kinase and
phosphatase activities contributes to TCR signaling. It is now clear
that the original kinetic proofreading model is unable to explain
all aspects of ligand discrimination by the TCR, including the
phenomenon of antagonism (Evavold et al., 1994). Antagonism
occurs when a non-stimulatory ligand inhibits T cell activation
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Fig. 1. Overview of model. Discrimination between endogenous, antagonist and

agonist peptides results from kinetic proofreading and competition between

negative (blue) and positive (red) feedbacks. The majority of endogenous peptides

dissociate before LCK phosphorylation occurs. Thus, these peptides do not induce

any negative or positive signals and are ignored by a T cell. Antagonist peptides, on

average, bind long enough such that LCK becomes phosphorylated, inducing

negative feedback mediated by pSHP. Only agonist peptides bind long enough to

fully activate TCR, resulting in production of doubly phosphorylated ERK (ppERK),

which attenuates the negative feedback mediated by pSHP.
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signals that are generated by an agonist ligand. Several attempts
have been made to develop a mathematical model of TCR
signaling that accounts for antagonism.

To explain antagonism, Rabinowitz et al. (1996) extended the
kinetic proofreading model to include negative feedback at an
intermediate stage of the receptor modification cascade and
positive feedback at the end of the cascade. The model predicts
that rapidly dissociating ligands will produce no signals, slowly
dissociating ligands will produce amplified positive signals for T
cell activation, and ligands with intermediate binding kinetics will
produce negative signals, which can inhibit positive signals. Chan
et al. (2001) also considered a model with negative and positive
feedbacks. Subsequent experimental studies have elucidated
molecular mechanisms that generate competing negative and
positive feedbacks (Štefanová et al., 2003). These studies suggest
that the protein tyrosine kinase Lck, which associates constitu-
tively with the TCR co-receptors CD4 and CD8 and phosphorylates
TCR, plays a central role in feedback regulation. By activating the
protein tyrosine phosphatase SHP1, its own inhibitor, Lck triggers
negative feedback. Positive feedback occurs when, as a result of
Lck-mediated membrane-proximal signaling events, the MAP
kinase ERK becomes activated and phosphorylates S59 in Lck,
which prevents SHP1-mediated inhibition of Lck activity.

Altan-Bonnet and Germain (2005) formulated a mathematical
model for TCR signaling that explicitly incorporates SHP1-
mediated negative feedback and ERK-mediated positive feedback.
Wylie et al. (2007) considered the same feedback mechanisms in
another model, which also considers the role of co-receptor (CD4)
and self peptide ligands in T cell activation. Neither of these
models, each of which includes large numbers of chemical species
and reactions, was rigorously analyzed to determine how
stochastic fluctuations in population sizes might be influencing
T cell signaling. We can expect these fluctuations to be significant
in physiological situations as T cells respond to small numbers of
agonist ligands.

Here, to investigate the role of stochastic fluctuations in TCR
signaling, we develop and analyze a model that extends the
models of McKeithan (1995) and Rabinowitz et al. (1996) to
incorporate feedback mechanisms considered by Altan-Bonnet
and Germain (2005) and Wylie et al. (2007). In the model, we
associate particular molecular events with proofreading and
feedback steps. However, to keep the model relatively simple
and to ease its analysis, we make various assumptions about
molecular events that limit the numbers of chemical species and
reactions considered in the model, which can be a cause for
concern. However, the model incorporates more molecular details
than the model of Artyomov et al. (2007), who also studied the
role of stochastic fluctuations in TCR signaling, and we find that
our model is able to reproduce many of the behaviors that are
characteristic of TCR signaling. We also find that the model
exhibits bistability, which allows for committed switch-like
cellular responses to noisy signals.
2. Model formulation

The model is illustrated in Figs. 1 and 2. Fig. 1 provides a sketch
of the model, indicating that it includes a number of kinetic
proofreading steps that are associated with particular binding and
phosphorylation events at or on a receptor. It also shows the steps
at which negative and positive feedbacks originate and act. Fig. 2
provides a more complete picture of the 37 chemical species and
97 reactions included in the model.

In the model, mainly as a simplification, we take TCR signaling
in the context of a cell–cell interface between a T cell and an APC
to be triggered by monovalent receptor binding to peptide–MHC
ligand, which is consistent with some results that have been
reported in the literature (for example, see Ma et al., 2008).
However, we note that the mechanism of TCR triggering is
controversial and other mechanisms, such as the pseudodimer
model in which co-receptors play an important role, have been
proposed (Krogsgaard et al., 2007; Choudhuri and van der Merwe,
2007). We will use ‘‘MHC1’’ to refer to an agonist ligand, ‘‘MHC2’’
to refer to either an antogonist ligand or endogenous peptide, and
‘‘MHC’’ to refer to MHC1 and/or MHC2. Next, Lck binds to the
cytoplasmic side of the receptor, which is enabled by ligand
binding. We will use ‘‘LCK’’ to refer to unphosphorylated Lck. After
association with TCR, LCK is autophosphorylated at Y394 in the
activation loop, which increases its catalytic activity (Veillette
et al., 1989; Veillette and Fournel, 1990; Yamaguchi and
Hendrickson, 1996). Autophosphorylation allows Lck to activate
negative and positive feedbacks as described below. Presumably,
Lck autophosphorylation is mediated in trans by the pool of Lck
constitutively associated with CD4 or CD8 co-receptors. However,
the model does not explicitly incorporate co-receptors. We
essentially assume that autophosphorylation occurs sponta-
neously in a first order process. We will use ‘‘LCKy’’ to denote
the tyrosine phosphorylated form of Lck. At this step, negative
feedback is initiated; LCKy activates SHP1, which involves
phosphorylation at residue Y564 (Lorenz et al., 1994; Štefanová
et al., 2003). We will use ‘‘SHP’’ and ‘‘pSHP’’ to refer to the
unphosphorylated and phosphorylated forms of SHP1. pSHP binds
to TCR, where it dephosphorylates LCKy and prevents regeneration
of LCKy (Chiang and Sefton, 2001; Štefanová et al., 2003).

LCKy is responsible for phosphorylation of immmunoreceptor
tyrosine-based activation motifs (ITAMs) in TCR-associated cell-
surface CD3 molecules. The TCR is associated with a heterodimer
of CD3d and CD3e chains, a heterodimer of CD3g and CD3e chains,
and a homodimer of CD3z chains (for a review of the structure of
the TCR/CD3 complex, see Kuhns et al., 2006). The g, d, and e
chains each contain a single cytoplasmic ITAM, whereas the z
chain contains three cytoplasmic ITAMs. The z chain ITAM
contains two tyrosines that are substrates of Lck (Iwashima
et al., 1994). As a simplification, we lump the six ITAMs of the two
CD3z chains associated with a TCR into a single effective ITAM,
which can be singly or doubly tyrosine phosphorylated. We will
use ‘‘pTCR’’ and ‘‘ppTCR’’ to denote TCRs containing singly and
doubly phosphorylated z ITAMs, respectively. We take ppTCR, but
not pTCR, to be capable of recruiting and activating ZAP-70, which
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Fig. 2. Full diagram of model. TCR signaling proceeds through a series of steps, including TCR binding to peptide–MHC ligand, ligand-induced TCR binding to LCK,

autophosphorylation of LCK, and LCK-mediated phosphorylation of TCR. Phosphorylation of LCK results in SHP phosphorylation/activation, binding of pSHP to the receptor

complex, and dephosphorylation of all complex components (negative feedback). Fully activated TCR, phosphorylates ZAP-70, which subsequently mediates the

phosphorylation of MEK, which in turn mediates the phosphorylation of ERK. Activated ERK phosphorylates LCK(y) at S59, preventing interaction of (p)SHP and LCKs(y),

and thus blocking the negative feedback mediated by pSHP.
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is a member of the Syk-family of protein tyrosine kinases. ZAP-70
is capable of binding doubly phosphorylated ITAMs through its
two tandem Src homology 2 (SH2) domains, and much like Lck,
ZAP-70 is activated through autophosphorylation (Chan et al.,
1994; Chu et al., 1998). We assume that when ZAP-70 is associated
with ppTCR, autophosphorylation occurs through a process that is
effectively spontaneous and first order. This assumption is valid if
cytosolic ZAP-70 is much more abundant than TCRs containing
two adjacent z chains with doubly phosphorylated ITAMs. We will
use ‘‘ZAP’’ to refer to the unphosphorylated from of ZAP-70 and
‘‘pZAP’’ to refer to the activated/phosphorylated form of ZAP-70.
Finally, pZAP acts to initiate the MEK/ERK kinase cascade,
resulting in production of doubly phosphorylated ERK, which we
will denote using ‘‘ppERK.’’ ppERK mediates positive feedback by
phosphorylating LCK(y) at residue S59. The serine phosphorylated
form of Lck will be denoted ‘‘LCKs.’’ LCKs is unable to phosphor-
ylate SHP and competes with pSHP for binding to the TCR
(Štefanová et al., 2003). Additional details about the model are
provided in Appendix A.

The model structure (Figs. 1 and 2) ensures that the extent to
which T cell activation proceeds depends on the mean lifetime of
the interaction between TCR and MHC, te ¼ 1=d, where d is the
dissociation rate constant. As we assume that LCK association
with TCR follows binding of TCR to MHC (Fig. 2), formation of
LCKy requires that a TCR–MHC bond last long enough for LCK to
be recruited to TCR and then phosphorylated. Thus, formation of
LCKy, which is required for signaling, is not induced when te is
small compared to the expected time required for LCK recruitment
and phosphorylation (e.g., te51 s). This dependence of LCKy
production on a serial cascade of events, which is interrupted
and reversed immediately when TCR and MHC dissociate (Fig. 2),
provides a simple mechanism by which a T cell can ignore
endogenous peptides.
The competition of negative and positive feedbacks in the
model ensures sharp discrimination (in te) between agonist and
antagonist peptides. Antagonist peptides—those that bind long
enough to produce negative feedback through pSHP but not long
enough to activate ERK (positive feedback) and TCR—are
inhibitory in the sense that stimulation by agonist ligands induces
a weaker signal when antagonist ligands are present than when
they are not. Sensitivity to a small number of agonist peptides
results from strong amplification through the kinase cascade that
activates ERK. This situation is in contrast to the models of Li et al.
(2004) and Wylie et al. (2007). In these models, most signal
amplification arises from a serial triggering mechanism that
depends on low phosphatase activity. The assumption of low
phosphatase activity is possibly satisfied in stages of TCR signaling
after immunological synapse formation, but T cell killing does not
require formation of a stable immunological synapse (Purbhoo
et al., 2004).

The model is taken to represent the signaling dynamics
in a single T cell and the reactions in the model are simulated as
discrete events using the stochastic simulation method of
Gillespie (1977), which applies when species are populated by
either small or large numbers of molecules and provides
information about stochastic fluctuations in population
numbers. The parameter values used in simulations are summar-
ized in Table A1 of Appendix A. To assess the importance of
stochastic fluctuations and to investigate bistability, we also
considered the dynamics in the deterministic limit. To do so,
we formulated a system of ordinary differential equations
(ODEs) corresponding to the reaction scheme illustrated in
Fig. 2, and we solved these equations using standard numerical
methods. A listing of the ODEs used in deterministic simulations
and more details about simulation protocols are provided in
Appendix A.
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3. Results

3.1. Discrimination between agonist and antagonist peptides

Cytotoxic T cells respond to as few as three agonist peptides,
but ignore thousands of endogenous peptides. Thus, the first
expectation for a correct model is the ability to discriminate
agonist from endogenous or antagonist peptides. For the measure
of cell activity we select the level of ppERK. We consider a cell to
be transiently activated when ppERKmax=ERKtotal41

2. If in a given
cell ppERKðtÞ=ERKtotal41

2 for at least 2 h we consider such a cell to
be persistently activated. Cells for which ppERKmax=ERKtotalo 1

10 are
considered inactive. In Fig. 3 we show domains of high, low and
intermediate peak ERK activity in the ð1=d; logðNÞÞ parameter
space, where d is the dissociation rate constant and N is the
number of peptides per cell.

As the presented discrimination curves are based on determi-
nistic simulations of the model, they must be interpreted with
caution. In Fig. 4 we compare ppERKðtÞ=ERKtotal profiles obtained
in deterministic versus stochastic simulations for the first 400 s
after stimulation. As one would expect, there is high hetero-
geneity in single cell ERK responses. However, typically in the low
ERK activity domain ppERKmax=ERKtotalo1

5, whereas in the high
ERK activity domain ppERKmax=ERKtotal41

2. In addition in both low
and intermediate ERK activity domains the ERK activity is
transient.

3.2. Cell activity due to small number of agonist peptides

As follows from the analysis presented in Fig. 4 to analyze the
behavior of heterogenous population responses one may not
restrict oneself to the deterministic approximation, but has to run
many single cell stochastic simulations to obtain reliable
statistics. To determine the fraction of cells transiently activated
in response to simulation by a small number of agonist peptides,
we performed simulation runs consisting of 500 single-cell
stochastic simulations. Six populations of cells were stimulated
for 6 min by, N1 ¼ 1;2;3;5;10, or 30 agonist peptides with
dissociation rate constant d1 ¼ 0:05=s, i.e., expected binding time
of 20 s. In Fig. 5 we show histograms of peak ERK activity
ðppERKmax=ERKtotalÞ during stimulation for 6 min. As shown, most
cells when stimulated by single agonist peptide remain inactive
(Fig. 5A), whereas three peptides are, for most cells, sufficient for
Fig. 3. Panel A: Domains of high ðppERKmax=ERKtotal41
2Þ, low ðppERKmax=

ERKtotalo 1
10Þ and intermediate ð 1

10oppERKmax=ERKtotalo1
2Þ peak ERK activity in the

ð1=d; logðNÞÞ parameter space, calculated based on deterministic simulations, d is

the peptide–MHC dissociation rate constant, and N is the number of peptide–MHC

per cell. The colored dots indicate points at which deterministic and stochastic

simulations are compared in Fig. 4.
nearly full activation (Fig. 5C). A larger number of stimulating
agonists makes the peak ERK activity distribution more compact,
with a slightly higher average. As we will see later, the main
difference between stimulations with 10, 30, 100, or 1000
peptides is in duration of ERK activity.

3.3. Antagonism

It is known that antagonist peptides (peptides with a binding
time of a few seconds) not only are unable to activate T cells, but
also inhibit agonist peptide activation (Racioppi et al., 1996;
Jameson et al., 1993). According to our model this inhibition
results from activation of negative feedback mediated by pSHP
rather than competition for receptors or other signaling mole-
cules. As a result 3000 antagonist peptides (i.e., 10 times less than
the total number of receptors) with a binding time of 3 s could
almost completely inhibit T cell activation. As shown in Fig. 6A the
optimal antagonist dissociation rate constant ðd2 ¼ doptÞ, i.e., the
one giving the strongest inhibition, is of order of 0.33/s. Peptides
with dissociation rate constants larger than this seldom remain
bound long enough to induce negative feedback. In contrast those
with dissociation rate constant smaller than dopt remain bound
sufficiently long to induce also the positive feedback, and are thus
stimulatory. Panels B–E in Fig. 6 show time-dependent ERK
activity in individual cells costimulated by 100 agonist peptides
and 0, 300, 1000, or 3000 antagonist peptides having a binding
time of 3 s. This study shows that in the presence of 1000
antagonists T cell activity is highly stochastic and transient.

3.4. Bistability, deterministic versus stochastic trajectories

The presence of negative and positive feedbacks produces
bistability in the deterministic equations over a wide range of
parameters. As shown in a bifurcation diagram (Fig. 7A) for each
of three dissociation rate constants considered, there are two
saddle-node bifurcation points in NminðdÞ and NmaxðdÞ. Between
these points the system possesses two stable solutions, one
corresponding to inactive cells ðppERK=ERKo 1

10Þ, the other
corresponding to active cells ðppERK=ERK41

2Þ. If the number of
activating peptides N is smaller than Nmin then only the lower
stable state exists, whereas for N4Nmax only the higher stable
state exists. The bistability lessens the ambiguity of cellular
responses because the system may more rapidly proceed from an
inactive to active state as the number of activating peptides grows.

The asymptotic behavior of trajectories calculated in the
deterministic approximation is determined by the initial condi-
tion. For example, let us consider the case of stimulation with
N1 ¼ 30 agonist peptides per cell characterized by dissociation
rate constant d1 ¼ 0:05=s. If initially a T cell is in a primed state—a
state without a history of prior peptide stimulation and
characterized by a low level of ppERK (mediating positive
feedback) and low level of pSHP (mediating negative feedback)—
it will converge to the active state of high ppERK (Fig. 7B, black
line). However, if initially a T cell is in an inhibited state
characterized by a high level of inhibitory pSHP (50,000
molecules) it will remain inactive with a low asymptotic level of
ppERK (Fig. 7C, black line).

The picture changes dramatically when we consider single-cell
stochastic trajectories. Due to the small number of reacting
molecules (peptides) we should expect that these trajectories are
substantially different from the trajectories calculated in the
deterministic approximation. The quite common expectation is,
however, that the deterministic trajectory is a good approximation
of the average over many stochastic trajectories. In the case of
bistable systems this expectation is not met. As shown in Figs. 7B
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Fig. 4. ppERKðtÞ=ERKtotal calculated in deterministic (black-line) and stochastic (red, pink and orange) simulations, for eight points in (1=d; logðNÞ) parameter space shown

in Fig. 3. Panels in upper, middle, and lower rows correspond, respectively, to points from low, intermediate, and high ERK activity domains indicated in Fig. 3. Notice the

different vertical scale for each row. Peptide stimulation started at ti ¼ 100 s (from the beginning of the numerical simulation) and lasted for ts ¼ 400 s .
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and C the long time average over stochastic trajectories is not
determined by the initial condition, as in the case of deterministic
trajectories. This result is due to the fact that stochastic
trajectories can jump between regions of attraction of the two
stable steady states. In the case shown in Figs. 7B and C the lower
steady state is more attractive than the higher one, and the
trajectories remain for large t mostly in its basin of attraction. As a
result the average over stochastic trajectories in Fig. 7B is much
different from the deterministic trajectory converging to the
higher steady state.

The approximation of the average stochastic trajectory by the
deterministic one is inadequate mostly due to bistability of the
system not the large magnitude of noise. As shown in Figs. 8A and
C when the deterministic system is monostable the asymptotic
behavior of the deterministic trajectory approximates the sto-
chastic average. This result contrasts with the bistable cases
shown in Figs. 7B and 8B, in which the number of activating
peptides is, respectively, 30 and 100.

It should be noted that our analysis of system dynamics in
terms of steady states is strictly valid only under the assumption
that our model accounts comprehensively for signaling events
that occur over the time course required to reach a steady state.
The model has been formulated to capture early membrane-
proximal events in TCR signaling. As the model omits later events,
such as immunological synapse formation (Bromley et al., 2001;
Lee et al., 2002) and TCR mediated internalization of pepti-
de–MHC (Huang et al., 1999), the physiological relevance of model
predictions becomes more uncertain as the time required to reach
a steady state increases. However, steady-state results do reveal
the long-time behavior of the system in isolation from down-
stream events, and they provide a starting point for future studies
of the effects of these downstream events.
3.5. Sensitivity to total LCK, SHP and ERK levels

Since Lck is a necessary constituent of an active receptor
complex, it is a natural expectation that a lowered total amount of
Lck will result in attenuation of T cell activity. This conjecture is
true when the number of activating peptides is low (Fig. 9A).
However, for a high number of agonist peptides, total Lck level
may decrease even 1000 fold without a substantial decrease
in ERK activity (Fig. 9B). Moreover, ERK phosphorylation
can proceed faster when the total number of Lck molecules
is small (cf. the cases involving 103 and 105 copies of Lck in
Fig. 9B). This particular behavior results from the fact that Lck
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Fig. 5. Histograms showing distribution of normalized peak ERK activity ðppERKmax=ERKtotalÞ in a population of M ¼ 500 cells stimulated by different numbers of agonist

peptides with dissociation rate constant d1 ¼ 0:05=s. Panels A–F correspond to N1 ¼ 1;2;3;5;10, or 30 peptides, respectively. In all simulations peptide stimulation started

ti ¼ 100 s and lasted for ts ¼ 400 s .
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mediates both positive and negative feedback. In the case where
the number of stimulatory peptides is high, the higher total
amount of Lck implies substantially stronger negative feedback,
but not a much stronger positive one, which quickly reaches
saturation.

The phosphatase SHP1 mediates negative feedback and its
total amount controls the strength of T cell responses (Fig. 10).
A lowered total level of SHP1 results in substantially elevated ERK
activity when a T cell is stimulated by peptides with a relatively
short binding time (Fig. 10A). This effect can potentially be used by
a T cell during maturation to calibrate discrimination potency. The
analysis shown in Fig. 10A shows also that a lowered SHP1
concentration following formation of a mature synapse may allow
for persistent T cell activity. As one would expect T cell sensitivity
to total SHP1 level is less pronounced when the number of
stimulatory peptides is low (Fig. 10B).

A lowered level of total ERK results in attenuated T cell activity
(Fig. 11). The effect is more pronounced for a high, rather than for
a low number of activating peptides (compare Fig. 11B versus
11A). This result is due to the fact that the positive action of ERK
kinase proceeds through inhibition of the negative feedback
mediated by pSHP. When the number of activating peptides is low,
the negative feedback is weaker and may be overcome even by a
small number of ppERK molecules.
4. Discussion

The current model extends the kinetic proofreading model
introduced by McKeithan (1995), with incorporation of positive
and negative feedbacks as proposed by Rabinowitz et al. (1996)
and then investigated recently by Altan-Bonnet and Germain
(2005) and Wylie et al. (2007). The model here is substantially
simpler than the last two models (as measured by numbers of
species and reactions included), but it is nevertheless useful in
that it demonstrates how bistability allows for committed
decisions in the face of noisy signals. Its simplicity aids in
analysis, facilitating stochastic simulations that demonstrate
qualitatively different kinetics than the kinetics predicted in the
deterministic approximation. Bistability in TCR signaling was also
studied by Zheng et al. (2005) using a different model in which
the number of activated TCRs is taken as the input, and the
positive feedback is mediated not by ERK but by ZAP-70. We
caution that some behavioral properties of our model are built
into its structure. Ideally, a model would be built only on our
mechanistic knowledge of signal transduction and then its
behavioral properties, such as ligand discrimination, would
emerge. However, developing such a model is a challenging task
and none of the current models reach this ideal.

The model exhibits three important properties for T cell
activation: high sensitivity, ability to discriminate between
agonist and self peptides, and antagonism—inhibition of cell
activity in the presence of antagonist peptides. As shown in Fig. 5,
three agonist peptides (with an expected binding time of 20 s) are
in most cases sufficient to trigger massive ERK activation. The
ability to discriminate between peptides based on their expected
binding time is documented in Figs. 3 and 4 where we showed
that 106 peptides with an expected binding time of 3 s may not
trigger cell activity, whereas the presence of 10 peptides with an
expected binding time of 14 s results in high ERK activity. In Fig. 6
we showed that the presence of antagonist peptides (with a
binding time of a few seconds) inhibits T cell activation. This
inhibition is due to activation of negative feedback by the
antagonist ligands, and not competition between agonists and
antagonists for free receptors.

T cell sensitivity to MHC stimulation is controlled by the
phosphatase SHP1 and kinase ERK, which govern negative and
positive feedbacks. A low total level of SHP1 results in higher
T cell sensitivity, whereas a lowered level of ERK causes lower T
cell sensitivity. Both effects can potentially be used during T cell
maturation to calibrate discrimination potency. Since Lck med-
iates both positive and negative feedback, the system response to
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Fig. 6. Antagonism. Panel A: normalized peak ERK activity ðppERKmax=ERKtotalÞ for N1 ¼ 100 (number of agonist peptides) and d1 ¼ 0:05=s (agonist peptide dissociation rate

constant) as a function of 1=d2 (inverse antagonist peptide dissociation rate constant). The red, blue, and green lines correspond to N2 ¼ 300;1000, and 3000 (number of

antagonist peptides). Panels B through E: normalized ppERK(t) calculated for N1 ¼ 100, d1 ¼ 0:05=s, d2 ¼ 0:333=s, and N2 ¼ 0; 300, 1000, and 3000, respectively. The black

line is obtained from a deterministic simulation, whereas the red, pink, and yellow lines are obtained from stochastic simulations. In all cases, peptide stimulation started at

ti ¼ 0 s and lasted for ts ¼ 2100 s.
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a lowered total level of Lck is more complex; when the number of
activating peptides is small, low total Lck level implies low signal.
However, at a high number of activating peptides, lower total Lck
level causes a faster T cell response, of unchanged strength. This
somewhat paradoxical effect was observed by Methi et al. (2005),
who partially knocked down Lck using short interfering RNA and
observed augmented T cell responses.

Since T cell activation is due to a small number of foreign
peptides, T cell responses are highly stochastic. This situation is
similar to the case of NF-kB responses stimulated by low doses of
TNFa, where we showed that noise at the level of receptor
activation causes single cell responses to be much different from
the average trajectory (Lipniacki et al., 2007). The stochasticity
means that cells do not follow their deterministic trajectories
converging to a steady state, but may occasionally jump between
the basins of attraction of two possible states. For example, in the
case of Fig. 7B, stochastic noise causes a transition from a higher
stable state to a lower one (corresponding to cell inactivation),
and then most cells are transiently trapped in the basin of
attraction of the lower steady state. As a result the average over a
large number of stochastic trajectories is qualitatively different
from the deterministic trajectory, and the difference is caused by
bistability rather than the large magnitude of noise.

The interplay between negative and positive feedback causes
bistability. As shown in Fig. 7, for an intermediate number of
activating peptides, the system has two stable steady states, one
with a low and the other with a high level of active ERK. The
second state may be interpreted as a cytotoxic state that allows
killer T cells to initiate death of an APC. Since killer T cells decide
the fate of scanned cells, their bistability provides a way to
minimize ambiguity in cell fate. Poorly defined T cell responses to
signal could result in damage of the scanned cell, which could
possibly be worse than killing an innocent bystander cell. One can
potentially observe the interplay between bistability and stochas-
ticity in experiments. Bistability of the system manifests as
sensitivity of a cell’s response to its initial state, whereas
stochastic noise allows a cell to forget its initial state. In Fig. 12
we showed that cells that are inhibited by antagonist pre-
stimulation are not responsive to subsequent agonist stimulation,
whereas cells that are stimulated by a mixture of agonist and
antagonist peptides show strong ERK activation. This model
prediction can perhaps be used to test for the existence of
bistability in TCR signaling experimentally.
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Fig. 7. Panel A: steady states for three different values of peptide dissociation rate constant d ¼ 0:1=s;0:05=s, and 0.0333/s. Stable steady states for ppERK are plotted as a

function of logðNÞ, where N is the number of peptide–MHC per cell. The unstable states connecting saddle-node bifurcation points are not shown. Panels B and C: ppERK(t)

calculated in deterministic (black line) and stochastic (red and pink lines) simulations, respectively, for N1 ¼ 30 and d1 ¼ 0:05=s. In Panel B, cells are initially in a primed

state (low levels of ppERK and pSHP), whereas in Panel C they are initially in an inhibited state characterized by a high level of pSHP (50 000 molecules). The green line is

the average over 100 stochastic simulations. In all cases the peptide stimulation started at ti ¼ 10 min and lasted for ts ¼ 3 h.
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The MATLAB programs written to perform simulations are
available at our website http://www.ippt.gov.pl/�tlipnia/.

The model presented in this paper is also available as a
BioNetGenTM input file, which can be downloaded from the
website http://bionetgen.org.

We thank Michael J. Saelim for helpful discussions.
Appendix A. Details of the model

A.1. Proteins and complexes

Each yi stands for the number of molecules (complexes) of a
given species per T cell.

Membrane complexes

y1—free MHC1 (agonist peptide—major histocompatibility
complex)
y2—TCRjMHC1
y3—LCKjTCRjMHC1
y4—LCKsjTCRjMHC1
y5—LCKyjTCRjMHC1
y6—LCKsyjTCRjMHC1
y7—LCKyjpTCRjMHC1
y8—LCKsyjpTCRjMHC1
y9—LCKyjppTCRjMHC1
y10—LCKsyjppTCRjMHC1
y11—free MHC2 (antagonist or endogenous peptide—major
histocompatibility complex)
y12—TCRjMHC2
y13—LCKjTCRjMHC2
y14—LCKsjTCRjMHC2
y15—LCKyjTCRjMHC2
y16—LCKsyjTCRjMHC2
y17—LCKyjpTCRjMHC2
y18—LCKsyjpTCRjMHC2
y19—LCKyjppTCRjMHC2
y20—LCKsyjppTCRjMHC2

y21—free TCR
y22—pSHPjTCR
y23—pSHPjTCRjMHC1
y24—pSHPjLCKjTCRjMHC1
y25—pSHPjTCRjMHC2
y26—pSHPjLCKjTCRjMHC2
Cytosolic proteins
y27—LCK
y28—SHP
y29—pSHP
y30—ZAP
y31—pZAP
y32—MEK
y33—pMEK
y34—ppMEK
y35—ERK
y36—pERK
y37—ppERK

http://www.ippt.gov.pl/~tlipnia/
http://www.ippt.gov.pl/~tlipnia/
http://bionetgen.org
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Fig. 8. ppERK(t) calculated in deterministic (black line) and stochastic (red and pink lines) simulations, for d1 ¼ 0:05=s and, respectively, for N1 ¼ 5 (Panel A), N1 ¼ 100

(Panel B), and N1 ¼ 1000 (Panel C). The green line is the average over 100 stochastic simulations. In all cases cells are initially in a primed state (low levels of ppERK and

pSHP). Peptide stimulation started at ti ¼ 10 min and lasted for ts ¼ 3 h.

Fig. 9. Dependence of normalized ERK activity ðppERKmax=ERKtotalÞ on the level of total Lck. Panel A: stochastic simulations for N1 ¼ 10 (number of agonist peptides),

d1 ¼ 0:05=s (agonist peptide dissociation rate constant) and three total Lck levels 105 (red), 104 (pink), and 103 (blue). Panel B: stochastic simulations for N1 ¼ 10 000,

d1 ¼ 0:05=s, and four total Lck levels 105 (red), 104 (pink), 103 (blue), and 102 (green). In all cases peptide stimulation started at ti ¼ 100 s and lasted for ts ¼ 400 s.

T. Lipniacki et al. / Journal of Theoretical Biology 254 (2008) 110–122118
To keep our model as simple as possible we assumed that some
processes, expected to be fast, are immediate. This substantially
reduces the numbers of chemical species and equations. For
example, we assume that MHC dissociation causes immediate
dissociation and dephosphorylation of LCK(s)(y) and dephosphor-
ylation of p(p)TCR. This assumption means that a number
of unstable intermediate complexes (i.e., LCKjTCR, LCKsjTCR,
LCKyjTCR, LCKsyjTCR, LCKyjpTCR, LCKsyjpTCR, LCKyjppTCR,
LCKsyjppTCR, and pSHPjLCKjTCR) are removed from the mathe-
matical representation of the model. Similarly, we assume, that
binding of pSHP to the TCR complex results in immediate
dephosphorylation of LCK(s)(y) and p(p)TCR, which further
reduces the number of considered complexes such that there
are no complexes containing pSHP and phosphorylated forms of
Lck or TCR in the model.
A.2. Parameters

The parameter values used in simulations are summarized in
Table A1.

Values of coefficients b1, b2, lb, ly1, ls2, s1, z1, m1, and e1

are given based on numbers of corresponding molecules. For
example, e1 ¼ ð5=ERKÞ=s implies that each ppMEK molecule may
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Fig. 10. Dependence of normalized ERK activity ðppERKmax=ERKtotalÞ on the level of total SHP1. Panel A: stochastic simulations for N1 ¼ 100 (number of agonist peptides),

d1 ¼ 0:2=s (agonist peptide dissociation rate constant), and three total SHP1 levels 3� 105 (red), 1:5� 105 (pink), and 0:5� 105 (blue). Panel B: stochastic simulations for

N1 ¼ 3, d1 ¼ 0:05=s, and three total SHP1 levels 3� 105 (red), 1:5� 105 (pink), and 0:5� 105 (blue). In all cases peptide stimulation starts at ti ¼ 100 s and lasted for

ts ¼ 400 s.

Fig. 11. Dependence of normalized ERK activity ðppERKðtÞ=ERKtotalÞ on the level of total ERK. Panel A: stochastic simulations for N1 ¼ 10 (number of agonist peptides),

d1 ¼ 0:05=s (agonist peptide dissociation rate constant), and three total ERK levels 3� 105 (red), 2� 105 (pink), and 1� 105 (blue). Panel B: stochastic simulations for

N1 ¼ 10 000, d1 ¼ 0:1=s, and three total ERK levels 3� 105(red), 2� 105 (pink) and 1� 105 (blue). In all cases the peptide stimulation started at ti ¼ 100 s and lasted for

ts ¼ 400 s.

Fig. 12. Consequences of bistability. Left column: cells are stimulated by a mixture of agonist (N1 ¼ 100, d1 ¼ 0:05=s) and antagonist (N2 ¼ 300, d2 ¼ 0:333=s) peptides at

time ts ¼ 1000 s. Right column: cells are inhibited by antagonist (N2 ¼ 300, d2 ¼ 0:333=s) stimulation starting at time ti ¼ 0, and then at time ts ¼ 1000 s agonist (N1 ¼ 100,

d1 ¼ 0:05=s) peptides are added. One deterministic (first row) and two stochastic simulations (second and third row) are shown. Notice the different vertical scales for the

left and right columns.

T. Lipniacki et al. / Journal of Theoretical Biology 254 (2008) 110–122 119
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Table A1
Parameters and definitions

Symbol Values Units Description/Reaction Comments

N1 Total number of MHC1 (bound + free) Various N1 are considered

N2 Total number of MHC2 (bound + free) Various N2 are considered

TCR 3� 104 Total number of TCR molecules In all simulations

LCK 105 Total number of Lck molecules Except for Fig. 9

ZAP 105 Total number of ZAP molecules In all simulations

MEK 105 Total number of MEK molecules In all simulations

ERK 3� 105 Total number of ERK molecules Except forFig. 11

SHP 3� 105 Total number of SHP1 molecules Except for Fig. 10

b1 0:3=TCR s�1 TCR þMHC1! TCRjMHC1

b2 0:3=TCR s�1 TCR þMHC2! TCRjMHC2

d1 s�1 MHC1 dissociation from any TCR complex Various d1 are considereda

d2 s�1 MHC2 dissociation from any TCR complex Various d2 are considereda

lb 0:3=LCK s�1 LCKþ TCRjMHC! LCKjTCRjMHC

ly1 5=SHP s�1 pSHP binding to TCR complex b

ly2 0:3 s�1 LCKðsÞjTCRjMHC! LCKyðsÞjTCRjMHC

ls1 0:1 s�1 LCKðyÞs! LCKðyÞ

ls2 0:5=ERK s�1 ppERKþ LCKðyÞ ! ppERKþ LCKðyÞs c

s0 10�5 s�1 SHP! pSHP

s1 30=SHP s�1 LCKyþ SHP! pSHPþ LCKy,

s2 0:0006 s�1 pSHP! SHP d

s3 0:05 s�1 pSHP dissociation from TCR complex

tp 0:05 s�1 LCKyðsÞjTCRjMHC! LCKyðsÞjpTCRjMHC

tp 0:05 s�1 LCKyðsÞjpTCRjMHC! LCKyðsÞjppTCRjMHC

z0 2� 10�6 s�1 ZAP! pZAP

z1 5=ZAP s�1 ppTCR þ ZAP! ppTCR þ pZAP

z2 0:02 s�1 pZAP! ZAP

m1 5=MEK s�1 pZAPþMEK! pZAPþ pMEK

m1 5=MEK s�1 pZAPþ pMEK! pZAPþ ppMEK

m2 0:02 s�1 pMEK!MEK and ppMEK! pMEK

e1 5=ERK s�1 ppMEKþ ERK! ppMEKþ pERK

e1 5=ERK s�1 ppMEKþ pERK! ppMEKþ ppERK

e2 0:02 s�1 pERK! ERK and ppERK! pERK

a peptide–MHC dissociation from TCR complex results in immediate dephosphorylation and dissociation of LCK(s)(y) and p(p)TCR dephosphorylation.
b pSHP may not bind to TCR complexes containing LCKs(y) because phosphorylation of S59 in LCK prevents pSHP binding. Binding of pSHP to the TCR complex results in

immediate dephosphorylation of LCKy and p(p)TCR.
c ppERK only interacts with LCK(y) associated with TCR complex in the absence of pSHP.
d pSHP dephosphorylation results in its immediate dissociation from TCR complex.
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phosphorylate at most five ERK molecules per second. These
coefficients are kept constant in all simulations including those
presented in Figs. 9–11, in which the dependence of cell activity on
the total amounts of Lck, SHP1 and ERK is studied.

A.3. Equations

dy1

dt
¼ d1 � ðy2 þ y3 þ y4 þ y5 þ y6 þ y7

þ y8 þ y9 þ y10 þ y23 þ y24Þ � b1 � y21 � y1 (1)

dy2

dt
¼ b1 � y1 � y21 þ ðs2 þ s3Þ � y23

� ðd1 þ lb� y27 þ ly1 � y29Þ � y2 (2)

dy3

dt
¼ lb� y27 � y2 � ls1 � y4 þ ðs2 þ s3Þ � y24

� ðd1 þ ly2 þ ls2 � y37 þ ly1 � y29Þ � y3 (3)

dy4

dt
¼ ls2 � y37 � y3 � ðd1 þ ly2 þ ls1Þ � y4 (4)

dy5

dt
¼ ly2 � y3 þ ls1 � y6

� ðd1 þ tp þ ls2 � y37 þ ly1 � y29Þ � y5 (5)
dy6

dt
¼ ly2 � y4 þ ls2 � y37 � y5 � ðd1 þ tp þ ls1Þ � y6 (6)

dy7

dt
¼ tp � y5 þ ls1 � y8 � ðd1 þ tp þ ls2 � y37

þ ly1 � y29Þ � y7 (7)

dy8

dt
¼ tp � y6 þ ls2 � y37 � y7 � ðd1 þ tp þ ls1Þ � y8 (8)

dy9

dt
¼ tp � y7 þ ls1 � y10 � ðd1 þ ls2 � y37 þ ly1 � y29Þ � y9 (9)

dy10

dt
¼ tp � y8 þ ls2 � y37 � y9 � ðd1 þ ls1Þ � y10 (10)

dy11

dt
¼ d2 � ðy12 þ y13 þ y14 þ y15 þ y16 þ y17

þ y18 þ y19 þ y20 þ y25 þ y26Þ � b2 � y21 � y11 (11)

dy12

dt
¼ b2 � y11 � y21 þ ðs2 þ s3Þ � y25

� ðd2 þ lb� y27 þ ly1 � y29Þ � y12 (12)

dy13

dt
¼ lb� y27 � y12 þ ls1 � y14 þ ðs2 þ s3Þ � y26

� ðd2 þ ly2 þ ls2 � y37 þ ly1 � y29Þ � y13 (13)
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dy14

dt
¼ ls2 � y37 � y13 � ðd2 þ ly2 þ ls1Þ � y14 (14)

dy15

dt
¼ ly2 � y13 þ ls1 � y16

� ðd2 þ tp þ ls2 � y37 þ ly1 � y29Þ � y15 (15)

dy16

dt
¼ ly2 � y14 þ ls2 � y37 � y15 � ðd2 þ tp þ ls1Þ � y16 (16)

dy17

dt
¼ tp � y15 þ ls1 � y18

� ðd2 þ tp þ ls2 � y37 þ ly1 � y29Þ � y17 (17)

dy18

dt
¼ tp � y16 þ ls2 � y37 � y17 � ðd2 þ tp þ ls1Þ � y18 (18)

dy19

dt
¼ tp � y17 þ ls1 � y20

� ðd2 þ ls2 � y37 þ ly1 � y29Þ � y19 (19)

dy20

dt
¼ tp � y18 þ ls2 � y37 � y19 � ðd2 þ ls1Þ � y20 (20)

dy21

dt
¼ d1 � ðy2 þ y3 þ y4 þ y5 þ y6 þ y7 þ y8 þ y9 þ y10Þ

þ d2 � ðy12 þ y13 þ y14 þ y15 þ y16 þ y17 þ y18

þ y19 þ y20Þ þ ðs2 þ s3Þ � y22 � b1 � y1 � y21

� b2 � y11 � y21 � ly1 � y29 � y21 (21)

dy22

dt
¼ ly1 � y29 � y21 þ d1 � ðy23 þ y24Þ

þ d2 � ðy25 þ y26Þ � ðs2 þ s3Þ � y22 (22)

dy23

dt
¼ ly1 � y29 � y2 � ðs2 þ s3 þ d1Þ � y23 (23)

dy24

dt
¼ ly1 � y29 � ðy3 þ y5 þ y7 þ y9Þ � ðs2 þ s3 þ d1Þ � y24 (24)

dy25

dt
¼ ly1 � y29 � y12 � ðs2 þ s3 þ d2Þ � y25 (25)

dy26

dt
¼ ly1 � y29 � ðy13 þ y15 þ y17 þ y19Þ

� ðs2 þ s3 þ d2Þ � y26 (26)

dy27

dt
¼ d1 � ðy3 þ y4 þ y5 þ y6 þ y7 þ y8 þ y9 þ y10 þ y24Þ

þ d2 � ðy13 þ y14 þ y15 þ y16 þ y17 þ y18 þ y19

þ y20 þ y26Þ � lb� ðy2 þ y12Þ � y27 (27)

dy28

dt
¼ s2 � ðy29 þ y22 þ y23 þ y24 þ y25 þ y26Þ

� s1 � ðy5 þ y7 þ y9Þ � y28

� s1 � ðy15 þ y17 þ y19Þ � y28 � s0 � y28 (28)

dy29

dt
¼ s1 � ðy5 þ y7 þ y9Þ � y28 þ s1

� ðy15 þ y17 þ y19Þ � y28 þ s3 � ðy22 þ y23

þ y24 þ y25 þ y26Þ þ s0 � y28 � s2 � y29

� ly1 � ðy2 þ y3 þ y5 þ y7 þ y9 þ y12 þ y13 þ y15

þ y17 þ y19 þ y21Þ � y29 (29)

dy30

dt
¼ z2 � y31 � z1 � ðy9 þ y10 þ y19 þ y20Þ

� y30 � z0 � y30 (30)
dy31

dt
¼ z1 � ðy9 þ y10 þ y19 þ y20Þ

� y30 þ z0 � y30 � z2 � y31 (31)

dy32

dt
¼ m2 � y33 � 2�m1 � y31 � y32 (32)

dy33

dt
¼ 2�m1 � y31 � y32 þ 2�m2 � y34

�m2 � y33 �m1 � y31 � y33 (33)

dy34

dt
¼ m1 � y31 � y33 � 2�m2 � y34 (34)

dy35

dt
¼ e2 � y36 � 2� e1 � y34 � y35 (35)

dy36

dt
¼ 2� e1 � y34 � y35 þ 2� e2 � y37 � e2 � y36

� e1 � y34 � y36 (36)

dy37

dt
¼ e1 � y34 � y36 � 2� e2 � y37 (37)

A.4. Numerical implementation and simulation protocols

Two kinds of numerical simulations were performed. In the
deterministic approximation Eqs. (1)–(37) were solved using the
fourth order MATLAB solver. The stochastic simulations were
performed using the Gillespie (1977) algorithm. We also encoded
the model in the BioNetGenTM language (Faeder et al., 2005a;
Blinov et al., 2006), which enables automatic building (and
solution) of ODEs based on specified reaction rules that serve as
generators of chemical reactions. This formal model specification
can be used for future work as the BioNetGenTM software allows
for simulations of systems of thousands of reactions (Blinov et al.,
2004; Faeder et al., 2005b). We found that the stochastic
simulations performed using BioNetGenTM are more than 10
times faster than in MATLAB.

The initial condition at t ¼ 0 for both stochastic and determi-
nistic simulations was obtained by running a deterministic
simulation (for 10 h) in the absence of any MHC (the only
exception was in simulations shown in Fig. 7C, where the initial
condition was modified by setting pSHP ¼ 50;000). Then, still
without any MHC present the deterministic or stochastic simula-
tions were run from time t ¼ 0 to time ti. Subsequently, at time ti

the levels of free MHC1 and MHC2 were set to the level specified
in each figure, and then the simulation was run for the specified
time ts.

Stable steady states, shown in Fig. 7A, were determined as
asymptotic states of the deterministic simulations. In the case of
bistability, to obtain both steady states, different initial conditions
were used; a high initial level of pSHP causes the system to
converge to the steady state with low ppERK, whereas high initial
levels pZAP, ppMEK and ppERK cause the system to converge to
the steady state with high ppERK.
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