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Abstract

This work presents a novel scheme to couple the Boundary Element Method (BEM) and the Discrete Element Method (DEM)
n the time domain. The DEM captures discontinuous material behaviour, such as fractured and granular media. However,
pplying the method to real-life applications embedded into infinite domains is challenging. The authors propose a solution
o this challenge by coupling the DEM with the BEM. The capability of the BEM to model infinite domains accurately and
fficiently, without the need for numerical artifices, makes it the perfect complement to the DEM. This study proposes a direct
onolithic interface-based coupling method that resolves any incompatibilities between the two methods in two dimensions.
he benchmark results show that the proposed methodology consistently produces results that align with analytical solutions.
he final example in the paper showcases the full potential of this innovative methodology, where the DEM models a fracturing
rocess, and the BEM evaluates its far-field effect.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Discrete Element Method (DEM); Boundary Element Method (BEM); Discontinuous materials; Wave propagation; Infinite domain;
onolithic coupling

1. Introduction

Engineers often resort to numerical simulation to study dynamic problems such as blasting processes [1–3],
arthquakes [4,5], ballistic impacts [6] among others. Blasting has several applications, such as tunnelling [7] and
ining [8]. Dynamic simulations are also valuable for the simulation of excavations [9,10] and rock cutting [11].
umerical models used in such simulations need to be capable of capturing discontinuous material behaviours,

uch as fracturing and fragmentation in rocks and granular movement in the soil [12], and at the same time, have
o represent properly shock-induced wave propagation and, in some cases, soil–structure interaction [13].

Different numerical methods are used for dynamic simulations, the Finite Element Method (FEM) being the most
opular one [3,6,14]. The Finite Difference Method (FDM) is another numerical method which can be applied to
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simulate seismic waves [15,16]. Both the FEM and FDM can only handle finite domains, while real-life applications
are often within infinite domains. To circumvent this limitation, one can introduce artificial boundaries to the model;
this process is also known as spatial truncation. These boundaries, notwithstanding, cause unwanted reflections
which defile the response under study [17].

The most straightforward solution is to ensure that the model is large enough to separate unwanted reflections
rom the studied response in the time domain, which is computationally very expensive for most applications. An
lternative solution uses non-reflecting viscous boundary conditions on the finite domain [18] or so-called infinite
lements [19]. These formulations mitigate spurious wave reflections at the boundary. However, they cannot trace
ave propagation outside the finite computational domain.
The Boundary Element Method (BEM) can accurately model infinite domains without truncation [20]. Its

ormulation for elastodynamics [21–23] is, therefore, suitable to capture wave propagation towards infinity. The
apability of modelling infinite domains arises from its formulation, which uses fundamental solutions that satisfy the
adiation condition, allowing for the elimination of domain integrals [24]. By doing so, within the limits of elasticity,
he BEM also benefits from a reduced order of discretisation. For this reason, the BEM can efficiently capture wave
ropagation in tunnelling [25] and earthquake [5,26] simulations. Although the BEM excels in modelling wave
ropagation in dynamic problems, it is unsuitable for modelling other physical phenomena, such as discontinuities,
racturing and granularity. The previously discussed continuum-based numerical methods, i.e. the FEM and the

FDM, also have limitations in modelling fracturing and discontinuities.
On the contrary, the Discrete Element Method (DEM) is a numerical method that excels in simulating

discontinuities and material fracturing [11]. In the DEM introduced by Cundall and Strack [27], material is
represented by an assembly of particles interacting with one another by contact. Cohesive contact models [28] enable
the modelling of cohesive materials, such as rock or concrete and their failure under dynamic loading. Donzé et al.
[1] applied the DEM to modelling fractures in rock blasting. Regassa et al. [29] used the DEM for simulation of
mining-induced rock movements. Fakhimi and Lanari [30] used the bonded-particle DEM model to simulate rock
subject to blast loading. Similarly, Song et al. [31] used the DEM to investigate seismic wave propagation excited
by an explosion source in a high-steep rock slope site. The deficiency of the DEM due to spurious reflections on
the artificial boundary in the simulation of the blast loading can be observed in the latter.

The above review shows that each method excels in capturing a different phenomenon, while real-life appli-
cations require simultaneous modelling of various phenomena. Coupling different methods may allow for a more
comprehensive numerical model [32,33]. The coupling of numerical methods can be performed in different ways
depending on the coupled problem and solution strategy. Different numerical methods are used for various physical
fields in multi-field problems and interact in the same domain [34]. In other problems, including the application
investigated in this work, different methods are used in different domains. The coupling conditions can be specified
at the contact, on the interfacing boundary or an overlapping domain between these domains. Then, the formulation
to derive the governing coupled equations can be weak, derived from the minimisation of a specific functional, or
strong, where the coupling conditions are explicitly satisfied [35]. In the case of mechanical problems, the coupling
conditions are defined by the compatibility and equilibrium conditions.

Numerous publications present the coupling of the DEM with other methods in different domains. The DEM
usually models the domain where discontinuous material behaviour is expected, and continuum-based methods
represent the remaining domain where the continuous material response can be assumed. Most of these works deal
with coupling the DEM and FEM. The work of Oñate and Rojek [36] was among the first to couple the DEM with
the FEM by the contact interaction between Discrete Element (DE) particles and Finite Element (FE) elements.
Azevedo and Lemos [37] pioneered the interface coupling approach. This formulation, however, produces spurious
wave reflection at the interface. Rojek and Oñate [38] identified this reflection and proposed a novel coupling
method, extending the work of Xiao and Belytschko [39], with an overlapping region also called the bridging
domain. Simultaneously a similar approach, called the Arlequin coupling, was developed by Bauman et al. [40].
Particle rotations were included in the coupling through the bridging domain in [41,42]. Efficient DEM-FEM coupled
frameworks with the DEM domain adaptively extended according to material damage and fracture were developed
in [32,43–45].

Since the pioneering work of Zienkiewicz et al. [46], several authors developed coupled BEM-FEM schemes.
Most of early BEM-FEM models considered static problems [46–48]. Beer [48] proposed the treatment of the BEM

region as a large finite element. The pioneering work of Mansur and Brebbia [21] introduced a BEM formulation
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for elastodynamics in the time domain. The work of von Estorff and Prabucki [49] used this idea to couple BEM
and FEM for transient problems in the time domain. Since the BEM relates displacements to tractions, they used
the Newmark method in the FEM to eliminate velocities and accelerations. Later, Yu et al. [50] performed the
BEM-FEM coupling using a more numerically stable version of the time domain formulation of the BEM. The
work of Soares et al. [51] improved the efficiency of the coupled solution by truncating the BEM convolution.
Several works followed in the subsequent years, especially in improving numerical stability [52] and computational
efficiency Soares and Mansur [53].

Then, Schanz [23] introduced a formulation for the BEM in dynamics using the Convolution Quadrature Method
CQM) [54]. The main advantage of CQM-BEM is that fundamental solutions are only required in the Laplace
omain. Hence, problems involving, for instance, viscoelasticity and poroelasticity can be treated. One limitation is
hat in the Laplace domain, one cannot filter unwanted frequencies and thus cannot identify natural frequencies, for
nstance. Moser et al. [55] used Duhamel integrals to derive a dynamic stiffness matrix for the BEM and coupled it
ith the FEM to model soil–structure interaction. Rüberg and Schanz [56] used the CQM-BEM coupled with the
EM to solve non-conforming interfaces via a Lagrangian formulation. François et al. [57] introduce an iterative
oupling scheme to allow different time discretisation in each subdomain.

Only a few attempts have been made to couple the BEM with discontinuous methods. Burczynski et al. [58]
oupled the BEM with Molecular Dynamics for static analyses. Mirzayee et al. [59] presented a coupling between
he Distinct Element Method and the BEM in the frequency domain. The existing works in the coupled BEM-
EM in the time domain are limited to quasi-static simulations because they apply the static formulation of the
EM [60,61]. To the authors’ knowledge, the work of Malinowski et al. [62] is the first attempt to analyse dynamic
roblems in the time domain using the BEM and the DEM. However, their results rely on a FEM layer between
he BEM and the DEM. So, they do not present a direct BEM-DEM coupling. More recently, Barros et al. [63]
nvestigated the BEM-DEM coupling in the time domain for one-dimensional wave propagation in elastic media.
heir paper shows that the time step requires careful adjustment as each method has a different stability range.

The current work extends the ideas of Barros et al. [63] to two dimensions and constitutes the first successful
ttempt to couple BEM and DEM in the time domain for fully dynamic problems. Compared to one dimension, the
EM model becomes more complex in two dimensions as more sophisticated contact laws arise. The BEM also
ecomes more complicated as the fundamental solutions become more challenging to integrate due to singularities.
owever, the challenges in coupling lie in more than just the increased complexity of each method. There are

lso incompatibilities between the methods that do not arise in one-dimensional coupling. One is the equilibrium
etween the DEM concentrated loads and the BEM tractions. This paper proposes a solution to this incompatibility
y transforming BEM tractions into equivalent nodal forces using the principle of virtual displacements. Another
ncompatibility solved herein regards time integration. Whereas the DEM uses an explicit time integration scheme,
he BEM uses the implicit CQM. The solution for this problem is to rewrite DEM equations to make a joint
isplacement–force equilibrium equation possible. The proposed coupling is defined on the interface level, using a
orce-based and monolithic formulation, where the arising equations are solved directly, assembling a joint dynamic
tiffness matrix.

This paper is structured as follows. Section 2 introduces the reference formulation of the DEM and the BEM.
fterwards, Section 3 discusses the adaptations performed in each method to allow for the coupling. Section 3

ntroduces the equations that govern the coupled solution. In Section 4, two benchmark problems validate the
roposed methodology. Then, a more comprehensive example shows the full capabilities of the proposed model. The
EM captures the fracturing processes due to a sudden load, and the BEM allows the wave to propagate towards

nfinity. Lastly, Section 5 shows the findings of this work.

. Numerical framework

.1. Discrete Element formulation

The DEM is commonly applied to model the dynamics of rigid particle systems. The current work uses the
EM to represent solids as collections of rigid particles. The bonds between particles follow a cohesive contact

aw to model solid behaviour. Based on Cundall and Strack [27], the formulation used herein uses a set of cylindrical
articles to represent the solid. Further, an explicit time integration scheme is adopted that allows for slight overlaps
etween particles where the contact forces between them are functions of these overlaps.
3
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Newton’s second law governs the translational and rotational motions of particle p. It is defined as

m p üp = f p (t) , (1)

Jpω̇p = Mp (t) . (2)

In Eq. (1) m p is the mass, üp is the acceleration of particle p, and f p is the resultant force vector acting upon it.
In the rotational equation of motion, Eq. (2), Jp is the moment of inertia, ωp is the angular velocity of particle p,
and Mp is the resultant moment acting upon it.

Since the problem is in 2D, there are two translational Degrees of Freedom (DOFs) and only a single rotational
DOF. Hence, all terms in the rotational equation are scalars with respect to the axis perpendicular to the plane. The
displacement up of particle p is defined as the difference between its current position and the initial position, i.e.,
up (t) = x p (t) − x p (0). Since the initial position is a constant, the velocity and acceleration of particle p are the
first and second derivatives of its displacement with respect to time.

Letting Ip be the set of particles in contact with particle p, the resultant force vector and moment are expressed
as

f p (t) = f ext,p (t) +

∑
i∈Ip

f cont,pi (t) , (3)

Mp (t) = Mext,p (t) +

∑
i∈Ip

Mcont,pi (t) , (4)

where f ext,p and Mext,p are the external force vector and moment applied to particle p, respectively. In addition,
f cont,pi and Mcont,pi are the force vector and moment acting on particle p due to its contact with particle i . Damping
terms can be added to Eqs. (3) and (4), but they are not considered in this paper.

The approximate solution of the differential equations, Eqs. (1) and (2), requires a numerical time integration,
which in turn requires the discretisation of time in constant time steps of length ∆t . Hence, for n ∈ N, the time
is given by t = n∆t . Consequently, every quantity that depends on time becomes discrete. In the following, the
superscript (n) denotes a quantity at time t = n∆t , e.g. up (t = n∆t) = u(n)

p . The time discretisation procedure in
the DEM uses the Central Difference (CD) approximation of time derivatives. Hence, the velocity at an intermediate
step is given by

u̇
(

n+
1
2

)
p =

u(n+1)
p − u(n)

p

∆t
, (5)

nd the acceleration is approximated by

ü(n)
p =

u̇
(

n+
1
2

)
p − u̇

(
n−

1
2

)
p

∆t
. (6)

sing the approximations in Eqs. (5) and (6) the numerical time integration used in the DEM is given as follows.
or each particle p, compute the acceleration via

ü(n)
p =

f (n)
p

m p
, (7)

then, calculate the velocity at an intermediate time step through

u̇
(

n+
1
2

)
p = u̇

(
n−

1
2

)
p + ü(n)

p ∆t , (8)

nd finally compute the displacement using

u(n+1)
p = u(n)

p + u̇
(

n+
1
2

)
p ∆t . (9)

This procedure is also known as “leapfrog” integration because displacements and velocities are calculated at
different intercalated time steps, half time-step apart, so that they “leapfrog” over each other. Similarly, the rotational
motion is described as,

ω̇(n)
p =

M(n)
p

, (10)

Jp

4
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(
n+

1
2

)
p = ω

(
n−

1
2

)
p + ω̇(n)

p ∆t . (11)

ote that the actual angle is irrelevant for spherical particles because the inertia tensor is constant in time. Hence,
he angular velocity and acceleration are sufficient to represent the rotational motion of the particle.

The explicit time integration is conditionally stable, i.e. the time step length ∆t is bounded by the critical time
tep

∆t ≤ ∆tcr . (12)

he critical time step ∆tcr in the explicit DEM depends on the stiffnesses of all contacts incident to each particle [64].
et k̄p be the equivalent stiffness for particle p, composed of the stiffnesses of all its contacts, and then the global
ritical time step is defined as the minimum critical time step among all particles

∆t D
cr = min

p

√
m p

k̄p
. (13)

Hosn et al. [65] generalised this notion to include rotational DOFs.
The current work uses the cohesive frictional contact model to determine the contact force f (n)

cont,pi between two
particles p and i . Mohr–Coulomb laws govern the frictional behaviour of the contact model. First, the contact force
is decomposed in normal and tangential directions by

f (n)
cont,pi = f (n)

n,pi n
(n)
pi + f (n)

s,pi s pi
(n) , (14)

where, f (n)
n,pi and f (n)

s,pi are the normal and shear contact forces respectively; and n(n)
pi and s pi

(n) are the normal and
tangent vectors to the direction of the contact respectively, as illustrated in Fig. 1(a). The cohesive behaviour in the
model limits the tensile forces by

f (n)
n,pi ≤ φn , (15)

where φn is the cohesion in the normal direction, as depicted by the solid red line in Fig. 2(a). The shear force, in
turn, is limited by

f (n)
s,pi ≤ φs − f (n)

n,pi tan θs , (16)

where φs is the shear cohesion and θs is the friction angle, as depicted as a solid red line in Fig. 2(b). The cohesive
bond between particles breaks once the normal or shear force reaches its limit. If future contact forms between
those particles, the contact law will follow a purely frictional behaviour represented by the dashed blue line in
Figs. 2(a) and 2(b). The Mohr–Coulomb failure criterion emerges from the combination of the normal and the
shear behaviours. Fig. 2(c) shows the criterion for cohesive behaviour in a solid red line and the non-cohesive
behaviour (i.e. after the failure of a cohesive bond) in a dashed blue line.

In Eq. (14), the normal and shear contact forces, f (n)
n,pi and f (n)

s,pi are calculated incrementally as

f (n)
n,pi = f (n−1)

n,pi + ∆ f (n)
n,pi , (17)

nd

f (n)
s,pi = f (n−1)

s,pi + ∆ f (n)
s,pi . (18)

n Eq. (17), the increment on the normal contact force ∆ f (n)
n,pi is given by

∆ f (n)
n,pi = kn,pi∆δ

(n)
n,pi , (19)

here kn,pi is the normal stiffness of the contact (cf. Fig. 1(b)), and ∆δ
(n)
n,pi is the increment in the normal relative

isplacement. Additionally, in Eq. (18), the increment on the shear contact force ∆ f (n)
s,pi is given by

∆ f (n)
s,pi = ks,pi∆δ

(n)
s,pi , (20)

here ks,pi is the shear stiffness of the contact (cf. Fig. 1(b)), and ∆δ
(n)
s,pi is the increment in the tangential relative

isplacement.
5
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According to Cundall and Strack [27], the increments on normal and tangential relative displacements, ∆δ
(n)
n,pi

and ∆δ
(n)
s,pi , are defined as

∆δ
(n)
n,pi =

[(
u̇
(

n−
1
2

)
p − u̇

(
n−

1
2

)
i

)
· n(n)

pi

]
∆t , (21)

nd

∆δ
(n)
s,pi =

[(
u̇
(

n−
1
2

)
p − u̇

(
n−

1
2

)
i

)
· s pi

(n)
−

(
ω

(
n−

1
2

)
p rp + ω

(
n−

1
2

)
i ri

)]
∆t , (22)

where rp and ri are the associated particle radii (cf. Fig. 1).
The stiffnesses are defined via constitutive models and are generally functions of shape and micro-mechanical

material parameters of the particles in contact. This work uses a cohesive frictional contact law, and the stiffnesses
are defined with respect to the micro-mechanical Young’s moduli E p, Ei , micro-mechanical Poisson’s ratios ηp, ηi

and radii rp, ri [66]. The normal stiffness is defined as

kn,pi = 4
E prp Eiri

E prp + Eiri
, (23)

while the shear stiffness is given by

ks,pi = 4
E prpηp Eiriηi

E prpηp + Eiriηi
. (24)

2.2. Boundary Element formulation

The BEM captures the dynamics of continuous media in terms of displacements based on the solution of initial
boundary value problems for the underlying partial differential equation. In contrast to other continuum methods,
such as the FEM, the BEM requires a discretisation of the associated boundary only. This is achieved by applying
the governing differential equation’s fundamental solution as the residuals’ weighting function.

The BEM formulation presented herein derives from the reciprocal theorem for elastodynamics [22]. The CQM
approximates the convolution integrals that arise via weighted sums. The main advantage of the CQM is that it yields
a more numerically stable time-stepping algorithm than other BEM formulations [23]. An additional advantage of
the CQM is that it only requires the fundamental solution to be explicitly known in the Laplace domain. Thus, a
broader range of problems can be solved with the CQM-BEM.

The reciprocal theorem considers two different states: the first state is the domain Ω discretised with the BEM in
the coupled analysis, depicted in Fig. 3; the second state consists of an infinite domain with a unit impulse applied
at a point ξ at instant t = 0. The displacement solution of this second state u∗ is known as the fundamental solution.

Applying the reciprocal theorem between those two states and taking into account the properties of the Dirac
delta function when integrated, one may write

Cu =

∫
Γ

U∗ ⊛ t dx −

∫
Γ

T ∗ ⊛ u dx , (25)

in which C (ξ) is a matrix containing the jump terms that derive from the Dirac delta function, u (ξ , t) and t (ξ , t)
are the displacement and traction vectors at a position ξ and time t , respectively, and U∗ (ξ , x, t) and T ∗ (ξ , x, t)
re matrices containing the fundamental solutions of displacements and tractions, respectively, for a unit impulse
oad applied at a point x at instant t = 0 and measured at a point ξ at instant t . Furthermore, U∗ and T ∗ are
ollections of fundamental solutions u∗ and t∗, for unit impulses applied to each axis. In addition, the operator ⊛
ndicates a convolution integral given by(

U∗ ⊛ t
)
(ξ , x, t) =

∫ t

0
U∗ (ξ , x, t − τ) t (x, τ ) dτ . (26)

he extended version of Eq. (25) reads

C (ξ) u (ξ , t) =

∫ t ∫
U∗ (ξ , x, t − τ) t (x, τ ) dx dτ − =

∫ t ∫
T ∗ (ξ , x, t − τ) u (x, τ ) dx dτ , (27)
0 Γ 0 Γ

6
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Fig. 1. Contact between two spheres: (a) overlap and contact force and (b) rheological model and its parameters.

Fig. 2. Cohesive contact law shown in solid red and non-cohesive (after breakage of the cohesive bond) law in dashed blue: (a) normal
nd (b) shear contact models and (c) Mohr–Coulomb failure criterion. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

here the symbol =

∫
stands for the finite part of the integral under consideration [67].

It is worth pointing out that Eq. (27) allows one to calculate the displacement of any point in the BEM
omain, utilising information on displacements and tractions over the boundary solely. Therefore, when introducing
eometric approximations, one only needs to discretise the boundary Γ ; no domain discretisation is required. The

approximation of the unknowns u and t over the boundary, as illustrated in Fig. 3, are mathematically defined as

u (x, t) = Φ (x) uB (t) , (28)

t (x, t) = Ψ (x) t B (t) , (29)

where uB is the vector of nodal displacements (the index B indicates that it concerns the BEM region), t B is the
vector of nodal parameters of interpolating tractions within elements, and Φ (x) and Ψ (x) are the interpolating
shape-functions for displacements and tractions, respectively.

Substituting the discretisation back at Eq. (25), it becomes

Cu = G ⊛ t − H ⊛ u , (30)
B B

7
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Fig. 3. The domain Ω is discretisation into boundary elements. ΓD and ΓN represent the boundary with Dirichlet and Neumann boundary
conditions, respectively. Φ (x) indicates the shape function of a boundary element.

where

G (ξ , t) =

∫
Γ

U∗ (ξ , x, t)Ψ (x) dx , (31)

and,

H (ξ , t) =

∫
Γ

T ∗ (ξ , x, t)Φ (x) dx . (32)

Note that, in Eq. (30), while uB represents the nodal displacements of the DOFs of the entire boundary, u is the
displacement of any point in the domain. Thus, if there are m B nodes in the boundary, uB ∈ R2m B and u ∈ R2 for
each point ξ and time t .

Eq. (30) allows for evaluating the displacement at any point of the domain Ω , with geometric approximations
only, whereas the solution is still analytical in time. Consequently, a numerical solution for Eq. (30) requires an
approximation in time, i.e. a time-stepping scheme. That is precisely the role of the CQM. This method approximates
the convolution integrals in Eq. (30) by means of weighted sums. The main advantage of this technique is that the
weights depend only on the time step ∆t and the fundamental solution in the Laplace domain. Since the fundamental
solution in the time domain is not required, the CQM can solve a broader variety of problems [23]. Applying the
CQM to Eq. (30) it becomes

Cu(n+1)
=

n+1∑
k=0

G(n+1−k) t(k)
B −

n+1∑
k=0

H (n+1−k)u(k)
B . (33)

The BEM formulation’s final step consists of taking the limit of Eq. (33) as the point ξ tends to each point x on
the boundary. This process is known as collocation and allows one to write the final equation of the CQM-BEM

n+1∑
k=0

H (n+1−k)
B u(k)

B =

n+1∑
k=0

G(n+1−k)
B t(k)

B , (34)

where H (n+1−k)
B and G(n+1−k)

B are matrices that come from the collocation process. Note that, GB has only terms
from G as ξ → x, ∀x ∈ Γ , and, H B has terms from H and C .

After determining all the quantities in the boundary, the BEM allows for evaluating results at any point inside
the domain Ω . The evaluation of displacements at internal points also relies on Eq. (33). In the case of internal
points, the matrix C becomes the identity matrix. Hence, the evaluation of displacements at internal points follows

u(n+1)

int =

n+1∑
k=0

G(n+1−k)

int t(k)
B −

n+1∑
k=0

H (n+1−k)

int u(k)
B . (35)

3. Coupling

A monolithic and direct formulation is applied to couple the BEM and the DEM. Two incompatibilities between
the distinct methods must be solved to perform this coupling. The first incompatibility is that the BEM deals with

tractions on the boundary (see Eq. (34)) rather than with concentrated loads as the DEM. The second incompatibility

8
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is that velocities and accelerations do not appear in Eq. (34). Instead, the inertial terms are considered implicitly in
the H and G matrices.

Given these two incompatibilities, the successful coupling between those methods requires few adaptations in
heir classical formulation. The goal is to write equilibrium equations correlating nodal forces and displacements
hrough dynamic stiffness matrices for both methods. In the BEM, equivalent nodal forces are encountered by
pplying the principle of virtual displacements. In the DEM, the central difference approximation is rewritten to
nd the sought equation.

.1. Adapting the Boundary Element Method

The adaption in the BEM starts by isolating the tractions at the time step n + 1, i.e.

t(n+1)
B =

(
G(0)

B

)−1
H (0)

B u(n+1)
B +

(
G(0)

B

)−1
(

n∑
k=0

H (n+1−k)
B u(k)

B − G(n+1−k)
B t(k)

B

)
. (36)

Then the principle of virtual displacements is applied to write an equilibrium relationship between tractions and
equivalent nodal forces as f (n+1)

B = N t(n+1)
B . Hence, these loads can be written in terms of displacements as

f (n+1)
B = K B u(n+1)

B − h(n+1)
B (37)

where K B is the dynamic stiffness matrix of the BEM region given by

K B = N
(

G(0)
B

)−1
H (0)

B (38)

and h(n+1)
B is the vector of loads acting at time step n + 1 due to the history of analysis. h(n+1)

B is defined by

h(n+1)
B = N

(
G(0)

B

)−1
(

n∑
k=0

G(n+1−k)
B t(k)

B − H (n+1−k)
B u(k)

B

)
(39)

only including terms computed before time step n + 1. Eq. (37) can then be condensed to relate only DOFs at the
interface. In the BEM formulation, note that displacements refer to the initial configuration.

3.2. Adapting the Discrete Element Method

The procedure described in Section 2 solves the motion of the particles. As aforementioned, the equations
that govern the motion of the particles at the interface need to be rewritten to allow for coupling. In the current
formulation, the rotations of the particles at the interface are not coupled with the displacement field of the BEM
and the stiffnesses between them need to be changed to compensate for overlapping with the BEM domain. To
adapt the DEM formulation for coupling, a direct approximation of the acceleration in terms of displacements is
sought instead of the approach using the velocity. One can achieve this by substituting Eq. (5) for n +

1
2 and n −

1
2

in Eq. (6), which gives

f (n)
p

m p
= ü(n)

p =
u(n+1)

p − 2u(n)
p + u(n−1)

p

∆t2 , (40)

hich can be rearranged as

f (n)
p = u(n+1)

p
m p

∆t2 −
(
2u(n)

p − u(n−1)
p

) m p

∆t2 . (41)

Grouping Eq. (41) for all particles p at the interface, the system of equilibrium equations is defined similarly
to Eq. (37) by

f (n+1)
D = K Du(n+1)

D − h(n+1)
D . (42)

The index D indicates the DEM region, and f (n+1)
D is a null vector, which means that only the history load vector

causes motion in the particles. That is due to the applied explicit time integration. Moreover, the dynamic stiffness
matrix is defined by

K D = diag
{ m1

,
m1

,
m2

,
m2

, . . . ,
m P

,
m P

}
, (43)
∆t2 ∆t2 ∆t2 ∆t2 ∆t2 ∆t2

9



G. Barros, V. Sapucaia, P. Hartmann et al. Computer Methods in Applied Mechanics and Engineering 410 (2023) 116040

3

S

i

s

a

4

4

Y

where P is the number of particles at the interface. The history load vector reads

h(n+1)
D = f (n)

D + K D

(
2u(n)

D − u(n−1)
D

)
. (44)

.3. Assembling coupled equations

Lastly, the total load acting upon the DOFs on the interface are computed via

f (n+1)
= f (n+1)

B + f (n+1)
D = K B u(n+1)

B − h(n+1)
B + K Du(n+1)

D − h(n+1)
D . (45)

ince compatibility requires the equality u(n+1)
B = u(n+1)

D = u(n+1) at the interface, it yields

f (n+1)
= K u(n+1)

− h(n+1) . (46)

n which

f (n+1)
= f (n+1)

B , (47)

ince f (n+1)
D = 0,

h(n+1)
= h(n+1)

B + h(n+1)
D , (48)

nd

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(kB)1,1 +
m1
∆t2 (kB)1,2 (kB)1,3 (kB)1,4 . . . (kB)1,2P−1 (kB)1,2P

(kB)2,1 (kB)2,2 +
m1
∆t2 (kB)2,3 (kB)2,4 . . . (kB)2,2P−1 (kB)2,2P

(kB)3,1 (kB)3,2 (kB)3,3 +
m2
∆t2 (kB)3,4 . . . (kB)3,2P−1 (kB)3,2P

(kB)4,1 (kB)4,2 (kB)4,3 (kB)4,4 +
m2
∆t2 . . . (kB)4,2P−1 (kB)4,2P

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

(kB)2P−1,1 (kB)2P−1,2 (kB)2P−1,3 (kB)2P−1,4 . . . (kB)2P−1,2P−1 +
m P
∆t2 (kB)2P−1,2P

(kB)2P,1 (kB)2P,2 (kB)2P,3 (kB)2P,4 . . . (kB)2P,2P−1 (kB)2P,2P +
m P
∆t2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(49)

. Results

.1. Finite rod under Heaviside load

Fig. 4(a) shows a finite cantilever rod with a total length of L = 2 m, a cross-section area of A = 0.25 m2, a
oung’s modulus of E = 210 MPa and a mass density of ρ = 7.85 t/m3. The rod is subjected to a Heaviside load

P (t) = P0 H (t) on the free end, where P0 = 21 kN is the maximum value of the load, as shown in Fig. 4(b).
This example is a classical benchmark test, often used to validate numerical frameworks in elastodynamics. The
Poisson’s ratio of the material does not influence the one-dimensional analytical solution; thus, it will be assumed
ν = 0. Moreover, the thickness th is assumed to be unitary; therefore, the height of the rod becomes h = 25 cm.
The observation extends to 5 ms.

The rod is modelled using both regular orthogonal and irregular particle assemblies, as shown in Figs. 4(c)
and 4(d), respectively. The generation of irregular assemblies assumes a reference particle size Dref and attributes
a uniform probability distribution between the minimum and the maximum particle sizes, Dmin and Dmax. The
minimum and maximum particle sizes are 25 % apart from the reference values, hence, Dmin = 0.75Dref and
Dmax = 1.25Dref. Since the generation of the irregular assemblies follows a stochastic process, five different
assemblies were generated for each reference particle size considered, Dref ∈ {12.5 cm, 5 cm, 2.5 cm, 1.25 cm}. In
generating the particle assemblies, the particles on the interface were kept fixed so that their centres would coincide
with the BEM nodes. As mentioned in Section 3.2, the rotations of particles at the interface are not coupled with the
BEM displacement field. Initial numerical simulations, in which the rotational DOF of these particles was tested as
both fixed and free, exhibit no significant discrepancy. Therefore, all subsequent results were obtained by assuming
fixed rotations.

Since the goal is to model the continuum behaviour within the DEM region as well as possible, the associated

material properties must be carefully calibrated. Firstly, one calculates αp, the percentage of the mass of particle p
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i

Fig. 4. Homogeneous rod under Heaviside compression load: (a) conceptual model, (b) distribution of load over time, (c) regular orthogonal
DEM pack using particle size D = 5 cm, and (d) irregular DEM pack using particle size D = 5 cm ± 25 %.

Fig. 5. Percentage of mass inside the original rod domain.

inside the original rod domain. Fig. 5 shows the same assembly as Fig. 4(d) overlaid by the original rod domain.
The darker areas are to be discarded from the mass of the particles since they are outside the rod domain. For
instance, for particles at the corners, it yields αp = 0.25. Moreover, the effective mass density for the DEM region
s given by

ρ = ρ
Lhth∑m

p=0 αpVp
, (50)

where m is the number of particles and Vp is the volume of particle p. Eq. (50) is based on the equality of the
articulate and the mass of the rod.

Secondly, the elastic micro-mechanical parameters must be calibrated. The Young’s modulus of each particle p
s given by
E p = E fEαp , (51)

11
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Table 1
Calibrated elastic parameters fE for rod model.

Dref Packing

I II III IV V

12.5 15.304 15.401 15.582 13.776 16.942
5 33.206 30.543 32.394 33.465 31.502
2.5 56.434 56.635 54.223 54.996 55.523
1.25 108.201 108.201 109.050 107.614 107.948

where fE is a global parameter that has to be calibrated. The parameter αp accounts for the part of the particles
lying outside the DEM domain. The contact stiffnesses are adjusted accordingly (see Eqs. (23) and (24)). The
microscopic Poisson’s ratio η = 1.0 is assumed to represent the macroscopic Poisson’s ratio of ν = 0. Additionally,
o capture purely elastic behaviour, the normal and shear cohesions are considered infinite, i.e. φn = φs = ∞. The
alibrations were performed using GrainLearning [68,69], aiming to fit the numerical result as closely as possible
o the analytical one. The observation data consists only of the analytical displacement at the end node in the time
omain. A single calibration was performed for each assembly. Table 1 shows the calibrated parameters for each
article size and packing adopted.

Figs. 6 and 7 show the analytic solution and numerical prediction calculated using the numerical coupled
EM-DEM solution. In the latter, the plotted displacement is the average of the displacements of particles in

he cross-section corresponding to that node. In these graphs, the solid lines represent the analytical solution, the
isplacement of the free-end is shown in blue, and the interface displacement is depicted in yellow. The dash-
otted lines show the numerical predictions using a regular orthogonal DEM assembly. The associated green line
orresponds to the predicted displacement of the free end, and the red one corresponds to the expected interface
isplacement. The dashed lines represent the averaged numerical predictions of irregular assemblies with the same
eference particle size, i.e. the mean of different particle configurations are considered. The dashed pink and brown
ines show the average displacement of the free end and at the interface. In addition, the shaded area around the
ashed lines represents the maximum and minimum displacements observed at a given time among all assemblies.

Visual analysis of Figs. 6 and 7 indicates that as the particle size decreases, not only the numerical prediction
pproximates the analytical solution better, but also that the dispersion of results for irregular assemblies reduces.
uch effect is further exploited in Fig. 8, where the normalised absolute difference between the analytical response
and the numerical prediction d is plotted as colour bars. Once again, the numerical response is taken as the

verage across the cross-section. The absolute difference is normalised by the analytical solution for statics. This
lot sheds light on how the error can be decreased by refining the discretisation in both domains.

.2. Cylindrical cavity in infinite space under uniform pressure

Another commonly used benchmark test in elastodynamics is the cavity example. It consists of a cylindrical
avity of radius R1 = 1.0 m embedded in an infinite space, as shown in Fig. 9(a). The cavity is composed of a
aterial whose macroscopic parameters are: Young’s modulus E = 100 kPa, Poisson’s ratio ν = 0, and mass density

ρ = 1.0 t/m3. The problem is assumed to have a unitary thickness, i.e., th = 1.0 m. Fig. 9(a) shows the internal
pressure p (t) applied to the cavity. The magnitude of the pressure over time is given by a Heaviside function, i.e.,
p (t) = p0 H (t), where p0 = 1.0 kN/m2, as shown in Fig. 9(b). Because of the infinite nature of the problem, the
se of the BEM becomes even more advantageous than in the rod example. Therefore, the DEM domain is set to
e a finite cylinder with internal radius R1 = 1.0 m and external radius R2 = 2.0 m. The remaining infinite domain
f the problem is modelled with the BEM.

This problem is analysed using irregular particle assemblies. The reference diameters considered are Dref ∈

10, 15, 20, 25, 30, 35} cm. The particle sizes are uniformly distributed for each reference diameter between 0.75Dref
and 1.25Dref. For each reference diameter, three irregular assemblies were generated to allow for an analysis of
the dispersion of the results. Figs. 9(c) and 9(d) show the irregular assemblies obtained for Dref = 35 cm and

Dref = 10 cm respectively.

12
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a

Fig. 6. Analytical and numerical displacement at free-end of rod using: (a) particle size Dref = 12.5 cm and (b) particle size Dref = 5 cm.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A mass correction similar to Section 4.1 needs to be applied. It can be noticed in Fig. 9(c), for instance, that
approximately half of the particles in the cavity are inside the domain of the problem. Similarly, the particles at the
interface have one-half in the DEM domain and the other half in the BEM domain. Hence, a factor αp = 0.5 is
ssigned to those particles, while for the other particles, this factor is αp = 1.0. The mass density of the particles

is defined by equating the total mass of the assembly to the macroscopic mass of the cylinder, hence,

ρ = ρ
thπ

(
R2

2 − R2
1

)∑m , (52)

p=0 αpVp
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Fig. 7. Analytical and numerical displacement at free-end of rod using: (a) particle size Dref = 2.5 cm and (b) particle size Dref = 1.25 cm.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

here Vp is the volume of the pth particle. Again, calibrations are required to determine the microscopic parameters
o yield the desired macroscopic behaviour for each generated particle assembly. The microscopic Poisson’s ratio
s set to η = 1.0 to represent the macroscopic ν = 0, and the normal and shear cohesions are set to φn = φs = ∞

o capture purely elastic behaviour. The only parameter left is the microscopic Young’s modulus, which is the
ultiplication of the macroscopic Young’s modulus by a factor fE . This factor is calibrated, as previously, using
rainLearning [68,69]. The calibrated factors for each assembly are displayed in Table 2.
To assess the accuracy of the proposed coupling approach, the displacements of three points, A (1, 0), B (2, 0)

nd C (4, 0), are investigated. Point A is at the cavity, point B at the interface, and point C is inside the BEM
14
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Fig. 8. Error in free-end displacement normalised by static displacement.

Table 2
Calibrated elastic parameters fE for cavity model.

Dref Packing

I II III

35 4.719 3.990 4.694
30 4.493 4.171 5.931
25 6.816 5.815 5.747
20 9.050 10.150 7.941
15 10.141 10.448 10.704
10 15.866 14.702 14.188

domain (i.e. far field). Reference solutions for the displacements of points A and C are available in [55]. They
are semi-analytical responses obtained via the CQM using the analytical solution in the Laplace domain and a fine
discretisation in time. Figs. 10 to 12 show the numerical predictions for the displacements of points A, B and C over
time. The solid lines represent the average among all generated irregular assemblies in those figures. The blue line
represents the displacement of point A, the yellow line represents the displacement of point B, and the green line
represents the displacement of point C. The shaded area around them covers the maximum and minimum values
observed among all assemblies. The dashed lines represent the reference solutions. The red and purple lines refer
to points A and C, respectively.

By analysing Figs. 10 to 12, one can notice that as the particle size decreases, the numerical predictions approach
the reference semi-analytical solution. In addition, the dispersion of prediction over different assemblies becomes
slimmer, and the shaded area is practically unnoticeable behind its corresponding solid line. This pattern is also
observed in the rod example in Section 4.1. Hence, the coupled behaviour is the same for both benchmarks, which
validates the effectiveness of the newly proposed method.

Fig. 13 depicts the errors observed in the displacement of point A for different particle sizes. One can infer that
the overall error tends to decay as the particle size decreases. Even though there are some localised parts where
the error is higher, the overall error decays. One might expect localised high errors to appear when comparing a
discontinuous numerical response to a semi-analytical solution obtained with the continuum hypotheses.
15
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Fig. 9. Cylindrical cavity in infinite space under uniform pressure: (a) conceptual model, (b) distribution of pressure over time, (c) irregular
EM pack using particle size D = 35 cm ± 25 %, and (d) irregular DEM pack using particle size D = 10 cm ± 25 %.

Lastly, Fig. 14 shows the velocities of each particle in the numerical solution obtained using a particle assembly
ith reference particle size Dref = 10 cm. The figures capture the velocities at different instants so that the wave
ropagation is seen. The data in Fig. 14 is consistent with the data in Fig. 12(b). After 300 ms, the displacements
end to a plateau, so the velocities tend to zero. Moreover, Fig. 14 evidences that no significant spurious wave
eflection occurs at the interface, i.e. the wave is travelling from the DEM domain into the BEM domain.

.3. Cavity fracturing under impulse load

The last example is a cavity with the same geometry as in Fig. 9(a) fracturing under a rectangular impulse

oad which vanishes after 10 ms, as shown in Fig. 15. This example has the same elastic parameters as the one in

16
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Fig. 10. Analytical and numerical displacement at cavity using: (a) particle size Dref = 35 cm and (b) particle size Dref = 30 cm. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ection 4.2. In order to allow for fracture behaviour, the normal cohesion is set to φn = 110 kN and φn/φs = 1/3
s used by Donzé et al. [1]. Fig. 16 shows how the wave propagates within the domain. Similarly, as in the previous
xample, it can be seen that the wave is travelling from the DEM domain into the BEM domain with no reflection
t the interface.

Fig. 17 shows the damage each particle has sustained. The damage is calculated as the ratio between the number
f broken bonds and the number of initial bonds. The yellow particles in Fig. 17 have zero damage, i.e. zero broken
onds. In contrast, blue particles have a damage value of 1, i.e. all bonds to adjacent particles are broken. Therefore,
17
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Fig. 11. Analytical and numerical displacement at cavity using: (a) particle size Dref = 25 cm and (b) particle size Dref = 20 cm. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ig. 17 allows for the analysis of crack propagation within the DEM region. It is noted that some cracks approach
he interface but they do not interact with the BEM region.

. Conclusions

This paper presents a novel interface DEM-BEM coupling approach in the time domain. The DEM is used to
apture physical and geometrical non-linearities in the near field, whereas the BEM is used in the far field where
inear elastic behaviour can be assumed. The proposed methodology circumvents incompatibilities between the
ethods to enable coupling. Virtual displacements transform the BEM tractions into equivalent nodal loads, which

18
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Fig. 12. Analytical and numerical displacement at cavity using: (a) particle size Dref = 15 cm and (b) particle size Dref = 10 cm. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

an be balanced with the point load of the particle. The DEM time integration scheme is reorganised to write an
quation with the same terms as the BEM. Benchmark problems validate the methodology, and one application
xample evidences the great potential of the BEM-DEM coupling for computational geomechanics.

The first example shows excellent agreement between the results obtained with regular and irregular configu-
ations of particle assemblies. This evidences that the coupling methodology can capture both normal and shear
ffects. In the second example, the semi-analytical and numerical results for internal displacements are in excellent
greement. This shows that the coupled method can accurately model wave propagation in the far field. Additionally,
he results show that the effect of spurious waves is negligible. The last example introduces fracturing in the analysis.
19
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Fig. 13. Error in the displacement of point A normalised by static displacement.

The results show that the proposed BEM-DEM can represent combined fracturing and wave propagation phenomena
in an infinite medium.

This paper is the first to successfully couple the BEM and DEM in the time domain for dynamic problems.
The findings encourage using BEM-DEM to simulate real-life problems, which may require further study in future
research. The simulations involved careful adjustment of the time step, with a smaller time step being beneficial
for the DEM but leading to numerical instability for the BEM. To address this issue, a staggered scheme could
provide greater flexibility in selecting different time steps for each method. The BEM also required a fine boundary
discretisation due to the small particle size in the DEM, resulting in computational expenses for the BEM. However,
compression schemes available in the literature and non-conforming discretisation may offer possible solutions to
this challenge. The methodology presented here is general and can be extended to three-dimensional problems.
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p

Fig. 14. Velocities at (a) 30 ms, (b) 60 ms, (c) 90 ms, (d) 120 ms, (e) 180 ms, and (f) 300 ms, using a particle assembly with reference

article size Dref = 10 cm. See Appendix online version for the video.
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Fig. 15. Distribution of pressure over time.

Fig. 16. Velocity at (a) 20 ms, (b) 60 ms, (c) 96 ms, and (d) 128 ms. See Appendix online version for the video.
22
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Fig. 17. Damage at (a) 20 ms, (b) 60 ms, (c) 160 ms, (d) 320 ms, (e) 600 ms, (f) 1.2 s. See Appendix online version for the video. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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