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Abstract
Purpose: BUS-Set is a reproducible benchmark for breast ultrasound (BUS)
lesion segmentation, comprising of publicly available images with the aim of
improving future comparisons between machine learning models within the field
of BUS.
Method: Four publicly available datasets were compiled creating an overall set
of 1154 BUS images, from five different scanner types.Full dataset details have
been provided, which include clinical labels and detailed annotations. Further-
more, nine state-of -the-art deep learning architectures were selected to form
the initial benchmark segmentation result, tested using five-fold cross-validation
and MANOVA/ANOVA with Tukey statistical significance test with a threshold
of 0.01. Additional evaluation of these architectures was conducted, exploring
possible training bias, and lesion size and type effects.
Results: Of the nine state-of -the-art benchmarked architectures, Mask R-CNN
obtained the highest overall results, with the following mean metric scores: Dice
score of 0.851, intersection over union of 0.786 and pixel accuracy of 0.975.
MANOVA/ANOVA and Tukey test results showed Mask R-CNN to be statistically
significant better compared to all other benchmarked models with a p-value >

0.01. Moreover, Mask R-CNN achieved the highest mean Dice score of 0.839
on an additional 16 image dataset, that contained multiple lesions per image.
Further analysis on regions of interest was conducted, assessing Hamming
distance, depth-to-width ratio (DWR), circularity, and elongation, which showed
that the Mask R-CNN’s segmentations maintained the most morphological fea-
tures with correlation coefficients of 0.888, 0.532, 0.876 for DWR, circularity,
and elongation,respectively.Based on the correlation coefficients,statistical test
indicated that Mask R-CNN was only significantly different to Sk-U-Net.
Conclusions: BUS-Set is a fully reproducible benchmark for BUS lesion seg-
mentation obtained through the use of public datasets and GitHub. Of the
state-of -the-art convolution neural network (CNN)-based architectures, Mask
R-CNN achieved the highest performance overall, further analysis indicated that
a training bias may have occurred due to the lesion size variation in the dataset.
All dataset and architecture details are available at GitHub: https://github.com/
corcor27/BUS-Set, which allows for a fully reproducible benchmark.
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2 BUS-SET

1 INTRODUCTION AND RELATED
WORK

Breast cancer is one of the most common and deadli-
est types of cancer, with an estimated 55 000 women
and 370 men being diagnosed in the United Kingdom
every year.1 To date, the disease’s 5-year average sur-
vival rate is around 85%, with the primary preventative
step for reducing mortality rates being early diagnosis.2

Ultrasound (US) imaging is regularly used in detec-
tion and staging of breast lesions, being cheaper and
more accessible than the alternate screening method
of mammography.3 However, the main drawback of US
imaging is its reliance on a radiologists experience,
with scans varying greatly in complexity, image qual-
ity, speckle noise, and lesion morphology.4 Furthermore,
lesions may be indistinguishable from surrounding tis-
sue, increasing the chances of missed detection, see
Figure 1 for an example. These challenges can be
mitigated using computer-aided diagnosis (CAD), that
can assist and improve the accuracy of a radiologist’s
evaluation.5 There are numerous examples of CAD
systems, which are based on a range of traditional
handcrafted and/or deep learned features.6 Although
traditional image processing methods have existed
longer, recent improvements of deep learning methods
have pushed convolution neural networks (CNN) and
transformer neural networks (TNN) to the forefront of
computer vision and image analysis.7

As the field of deep-learning-based segmentation
has been continuously expanding since its inception,
it has generated many publication within the field of
breast ultrasound (BUS) segmentation.One of the main
issues with these studies is that due to differences
in evaluation datasets and metrics, comparisons are
often difficult and open to interpretation. Therefore, it
has become of importance to create a reproducible
benchmark dataset for BUS segmentation. Until now, a
hurdle for this research area has been the lack of pub-
licly available data that can be used in a coordinated
fashion. Currently, there are five publicly available BUS
datasets; OASBUD,8 RODTOOK,9 UDIAT,10,11 BUSIS,12

and BUSI.13 The aim of this paper is to create a
reproducible benchmark from the currently available

F IGURE 1 An example US image and corresponding manual
mask taken from the UDIAT dataset,10 displaying the lesion’s
similarity to the surrounding tissue. US, ultrasound.

public BUS datasets and to create a baseline for
future comparisons in BUS lesion segmentation. Fur-
thermore, we evaluate the datasets based on several
characteristics and calculate lesion shape features for
subsequent comparisons. Several deep learning archi-
tectures are evaluated with the assembled benchmark
dataset with results reported. Additional comparison of
the predicted segmentation results is performed assess-
ing whether morphological shape features have been
retained, or what role training bias plays in the perfor-
mance of networks.Taking into account that our analysis
includes comparisons with respect to the lesion type,
the most recently released BUSIS dataset has been
excluded in this paper, as it does not provide lesion type
labels in the released version. Additionally, the bench-
mark is designed for datasets to be added when they
become available.

In the literature, there have been several advance-
ments in breast lesion segmentation through the means
of fully convolutional networks (FCNs), a type of CNN
and TNN. For instance, Yap et al. explored the use of
several deep learning methods, including U-Net and
transfer learning using FCN-AlexNet.10 Additionally, they
analyzed effects of key characteristics of their datasets,
including lesion size and ratio of the segmented lesion
region of interest (mask). In later work, Yap et al. used
transfer learning models pre-trained on ImageNet for
automatic segmentation of breast lesions.11 When con-
sidering a Dice score > 0.5, they achieved 89.6 and
60.6% segmentation accuracy for benign and malignant
masses, respectively. Hu et al. improved the effec-
tiveness of FCN by addressing the issues of blurry
boundaries and low contrast in images. They proposed
combining a dilated FCN with a phase-based active
contour model, and concluded that the dilated convolu-
tion layers improved the extraction of spatial details.14

Chiao et al. explored the use of Mask R-CNN for the
segmentation of BUS images. However, their results
were reported using a validation set (no test set was
defined) and no Dice evaluation was performed, making
it difficult to gauge the architecture’s full performance
with respect to other existing approaches.15 Byra et al.
experimented with a variant of the U-Net model called
the Selective kernel U-Net (Sk-U-Net), which utilizes an
attention mechanism that automatically adjusts kernel
sizes and the network’s receptive field. Furthermore,
they improved the network’s ability to recognize biologi-
cal objects at varying scales. They compared Sk-U-Net
with a vanilla version of U-Net and found that Sk-U-Net
outperformed U-net on every assessed performance
metric.16 Gomez-Flores et al. explored the application
of transfer learning architectures for BUS segmen-
tation, comparing five architectures with a variety of
backbones, but they used their own private dataset.17

They further evaluated their study by applying 10-fold
cross-validation to analyze the architectures perfor-
mance on smaller datasets,concluding that Deeplabv3+
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BUS-SET 3

performed best across the majority of their test sets. In
the same year, Shareef et al. proposed the enhanced
small tumor-aware network (ESTAN), a U-Net version
that utilized two extraction encoders with column-wise
kernels to adjust to breast anatomy, to overcome the
poor segmentation performance achieved by state-
of -the-art deep learning approaches on small breast
lesions.18 They compared the ESTAN model against
nine state-of -the-art architectures, using a combina-
tion of the public BUSIS, BUSI, and UDIAT datasets.
Zhuang et al. also proposed a U-Net variant RDAU-NET,
that used a Residual Dilated Attention Gate U-Net to
enhance edge information, encoder feature maps, and
background suppression.19 They evaluated their model
against 10 other FCN’s using BUSIS, BUSI, and UDIAT.
Qu et al.20 discussed the use of a full-resolution resid-
ual network, integrated with Global Attention Upsample
and deep supervision. The model was tested on two
datasets: one from Sun Yat-sen University Cancer Cen-
ter and the other being UDIAT.More recently,Zhu et al.21

published their RAT-Net model, a region aware trans-
former network with a U-Net backbone. This model was
compared with standard U-Net configuration and four
other transformer models.

A limitation of the these works is the difficulty of
comparing the results due to the vast differences in
datasets used. Furthermore, this is further emphasized
when considering the differences in image preparation
or the initial training hyper parameters. This shows the
need for a reproducible benchmark to improve the cur-
rent state of the art. We note that evaluation on how the
architectures perform at maintaining morphological and
lesion type aspects is under explored. Therefore, in this
paper,we assemble a reproducible benchmark from four
publicly available datasets and conduct further analysis,
exploring different features of the generated prediction
masks to enhance our evaluation of the architectures
segmentation performances on the benchmark dataset.

2 DATASETS

2.1 Overview

The creation of a reproducible dataset is based on four
publicly available US datasets, with each set containing
US images (containing at least one lesion) and mask
annotations provided by a radiologist. These datasets
are OASBUD, RODTOOK, UDIAT, and BUSI, which have
all been collected at various institutions. A summary
of all the datasets used in this study can be found in
Table 1, which includes image details and annotations,
detailing field-of -view and lesion type classifications.

The OASBUD dataset was collected from patients
at the Institute of Oncology, Warsaw, Poland, and con-
sists of 100 US images (radial scans around the nipple),
48 benign and 52 malignant cases. All images contain

only one lesion per image and were collected with a
Ultrasonix SonixTouch Research US scanner.8

The RODTOOK dataset is from the Sirindhorn Inter-
national Institute of Technology (SIIT), Thammasat
University, Pathum Thani, Thailand. At the time of
accessing the dataset, not all images were accompa-
nied with an annotated mask. Therefore, we will exclude
all the images without annotations, leaving a total of 149
US images; 59 benign and 90 malignant cases. Once
again, each image contained only a single lesion and
were collected using a Philips iU22 US scanner.9

The UDIAT dataset was collected at the UDIAT Diag-
nostic Centre of the Parc Tauli Corporation, Sabadell,
Spain, using a Siemens ACUSON scanner. The dataset
contains 163 US images: 109 benign and 54 malignant
cases, with only one lesion per image.10,11

The BUSI dataset from the Baheya Hospital, Cairo,
Egypt was collected using LOGIQ E9 and LOGIQ E9
Agile US scanners and consists of 780 US images.13

This can be broken down into 437 benign,210 malignant,
and 133 normal cases.Since all the other datasets used
in this study only contain a single lesion per image and
have no normal cases,we have removed the images that
contain more than one or no lesions.Therefore, reducing
our total to 630 US images containing 421 benign and
209 malignant cases.

2.2 Benchmark dataset

For our benchmark dataset, we first excluded all the
images from each of the public datasets that contained
more than one mass per image, which is consistent with
the study of Byra et al.16 The excluded BUS images
will be used for additional analysis in Section 6.4. All
the remaining US images were combined giving a total
of 1154 US images for the benchmark set. The models
were tested using five-fold cross-validation,with a 80/20
split for the training/testing data.

An initial preprocessing step was conducted on all
datasets to remove scanner annotations contained in
the US images, the details of cropped locations are
available on GitHub. Last, all images were resized to
224 × 224 pixels using bi-cubic interpolation,22 which
is currently the standard input dimension for the CNN
architectures considered.10,16

As one of the objectives of this paper is to make our
results as reproducible as possible,we have included all
the details about the images contained in each fold as
comma-separated value files available on GitHub.

2.3 Dataset comparison

Figure 2 shows examples of benign and malignant
abnormalities from each of the public datasets. Quali-
tative analysis allows to draw various conclusions about

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16287 by C

ochrane Japan, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 BUS-SET

TABLE 1 Summary of dataset details, including the number of images for each dataset in our benchmark, benign/malignant quantities, and
number of scanners used.

Dataset Images Benign Malignant Scanners Pixel resolution

OASBUD8 100 48 52 1 685 × 868

RODTOOK9 149 59 90 1 1002 × 1125

UDIAT10,11 163 110 53 1 455 × 538

BUSI13 647 437 210 2 495 × 608

F IGURE 2 Example BUS images from BUSI (a), OASBUD (b), RODTOOK (c), and UDIAT (d), respectively. Top row: examples of benign
cases; bottom row: examples of malignant cases.

differences in speckle noise and contrast in the differ-
ent datasets. With regard to image quality, BUSI, UDIAT,
and RODTOOK all exhibited good pixel resolution,allow-
ing the observation of fine structures like the pectoral
muscle or parenchymal tissue. However, the OASBUD
dataset is of a lower resolution due to the applied image
reconstruction algorithm,which was not as sophisticated
as for the other scanners.8 The appearances of lesions
vary greatly in size, shape, and contrast for all datasets,
with most containing clear well-defined lesions, espe-
cially compared to OASBUD. It is important to note
that although the majority of the BUSI lesions are well-
defined, there are several lesions that are of a low
contrast and difficult to distinguish from the background.
Last, speckle noise, described as granular interference
caused by the environmental conditions on the imaging
sensor during image acquisition23 is also considered,
with OASBUD showing this most, which is far less in all
the other public datasets.

We further analyze the benchmark dataset in terms
of mask area, Hausdorff distance for circularity, and

moments calculation for elongation. The lesion size was
estimated using pixel length from the original image
as the exact metric size was not available within the
meta data. All evaluations described can be seen as
box plots in Figure 3, which shows that on average, the
malignant lesions were larger than the benign lesions.
It is worth mentioning that for both the BUSI and ROD-
TOOK datasets, the malignant lesions are larger than
the benign lesions, signifying a potential size bias in
our benchmark dataset. We computed the Hausdorff
distance between a circle of equivalent pixel area and
annotation to analyze the irregularity of the lesions. The
bar chart indicates that malignant lesions are larger
than benign lesions. Furthermore, the greatest variance
in terms of lesion size is displayed within the BUSI
benign lesion. Last, we assessed lesions elongation
using moments.24 Once again, the BUSI dataset showed
the most elongated lesions, where OASBUD showed
the least elongated examples. We also found that the
majority of the outliers for the Hausdorff distance are
the same for the elongation estimation.
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BUS-SET 5

F IGURE 3 Features comparison for all four public datasets where: (a) the area of the manual mask in pixels; (b) the Hausdorff distance
value compared to a circle of equivalent pixel area; and (c) elongation estimation using the lesion boundaries.

2.4 Performance and evaluation
metrics

To assess the performance, we separate our evaluation
into two categories: Detection Rate (OR) (the number
of correctly detected lesions, i.e., the true positive [TP],
compared to the false positives [FP]) and segmentation
accuracy (the number of pixels correctly identified as
belonging to the lesion).

Within the related BUS and the wider literature, pixel-
wise detection rate can be obtained by varying the
discrimination threshold in the predicted masks, and
we can then create a receiver operating characteristic

curve (ROC curve) and area under curve (AUC), to get
a clearer understanding of our models diagnostic ability.

For segmentation accuracy, the most frequently used
evaluation metrics include pixel accuracy (Acc), Dice
similarity coefficient (DSC), and the Intersection over
Union metric (IoU).10,14–17 Furthermore, true negatives
(TN) and false negatives (FN) are defined here as
required for the above metrics. By assessing our pre-
dicted segmentation on a pixel by pixel basis, we can
calculate the overall accuracy of our models using

Acc =
TP + TN

TP + FP + TN + FN
. (1)
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6 BUS-SET

Although, due to such a large imbalance between mask
and background pixels in some datasets, as seen in
Figure 3, DSC would be considered more appropriate,
due to a weighting on the TP pixels. The DSC metric
is defined as two times the area of the intersection of
manual and predicted mask,which is then divided by the
sum of the areas of manual and predicted mask, which
is given by

DSC(X, Y ) =
2|X ∩ Y |

|X | + |Y |
, (2)

where X indicates the manual mask and Y is the
predicted mask.

A more general case is the similar IoU metric, which
calculates the intersection of the pixels found in both
the manual mask and the predicted mask, whereas the
union is simply comprised of all pixels found in either the
manual mask or predicted mask:

IoU =
|X ∩ Y |

|X ∪ Y |
, (3)

where X indicates the manual mask and Y is the pre-
dicted mask. Furthermore, the DSC and IoU metric
results are calculated assuming that our BUS images
are a single class problem (only mask), instead of a 2
class problem (background and mask). All evaluation
code used within this paper can be found on GitHub.

Last, Everingham et al. suggested that the overall
detection accuracy of a segmentation model can be
calculated by considering predictions that achieve a
DSC metric score of above 0.5.25 Therefore, a lesion
is correctly detected, or TP, if it achieves (DSC >= 0.5),
otherwise it is classed as a FP. This method was also
used by Yap et al. and then as a standalone metric by
Byra et al.11,16

3 METHODOLOGY

To select our benchmark architectures, we based our
work on Byra et al.,16 where they already conducted
an extensive study into the capabilities of Sk-U-Net
on three of the four publicly available datasets used
within this study. Furthermore, they discussed sev-
eral key issues within their study, including the lack
of comparison with the ever popular transfer learning
FCN, a subset of CNN without fully connected layers.
These state-of -the-art FCN architectures have been
extensively used in object detection and object-based
segmentation in the literature, including medical image
analysis.16,26–28 Therefore, we include two state-of -
the-art semantic segmentation FCN architectures:
Matterport’s implementation of Mask R-CNN29 and
TensorFlow’s configuration of Deeplabv3+.30 Further-
more, we include several state-of -the-art variations of

U-Net, that is, Attention-U-Net (Att-U-Net),31 Att-Dense-
U-Net (Att-D-U-Net),32 and U-Net++,33 which, to our
knowledge, have not been used for BUS segmentation.
We also wanted to explore the capabilities of the more
recent state-of -the-art vision TNNs. Dosovitskiy et al.’s
vision transformer (ViT) formed the foundation of a
pure transformer model for computer vision tasks.34

Therefore, Trans-U-Net and Swin-U-Net were selected
for the benchmark, being specifically built for medical
image segmentation.35,36

3.1 Segmentation architectures

FCN architectures differ from typical CNN as they often
do not contain fully connected layers. Instead, FCNs uti-
lize up and down sampling paths to interpret and extract
image features and provide a better localization.37

3.1.1 Semantic segmentation networks

Mask R-CNN29 uses the ResNet101 backbone, a CNN
that is 101 layers deep.38 Mask R-CNN is a simple
extension of the detection framework Faster-RCNN,39

by adding a fully connected layer, achieving instance
segmentation for multiple proposed masks and by pre-
dicting segmentation at a pixel level. Furthermore, Mask
R-CNN utilizes a region proposal network (RPN), which
generates proposed regions for the object’s location
within an image. The RPN can be broken down into two
components; the classifier which calculates the proba-
bility of the object residing in the proposed region and
the regressor, which regresses the coordinates of the
proposed regions. After the RPN has proposed regions,
features are then extracted from each proposed region
and then bounding-box regression is performed.

Deeplabv3+30 combines the use of Atrous Spatial
Pyramid Pooling (ASPP) and encode–decoder struc-
tures to not only refine the borders of segmentation
results, but also to improve the detection of small/thin
objects improving fine-grained segmentation. Addition-
ally, Deeplabv3+ typically uses the backbone model
Xception-65, a 65 layer atrous CNN used to extract fea-
ture maps from the input images. An advantage of the
Deeplabv3+ architecture is that it does not require large
datasets and pretrained weights are readily available. A
diagram of Deeplabv3+ can be found in Figure 4.

3.1.2 FCN-based U-Net architectures

The U-Net architecture is based on a FCN model pro-
posed by Ronneberger et al.40 for biomedical image
segmentation to overcome the need for large scale
datasets, which has since been integrated with more
state-of -the-art techniques. The U-Net architecture is
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BUS-SET 7

F IGURE 4 The architecture of Deeplabv3+. Reprinted with permission from [Springer Nature]: [Elsevier] [Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2015] [Encoder–Decoder with Atrous Separable Convolution for Semantic Image Segmentation,
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., [COPYRIGHT] (2018).30.

synonymous with that of an encoder–decoder architec-
ture, containing both a contraction path (encoder) and
a symmetric expansion path (decoder).40 Att-U-Net31 is
a modified version of U-Net for tissue/organ segmen-
tation. It employs the use of attention gates (AG) that
focus on target structures, while suppressing irrelevant
features. Usually, it provides a better mask localization
without loss to its receptive field.31

Att-D-U-Net is further integrated with densely con-
nected encoders. These dense blocks create a feed-
forward fashion between each layer strengthening fea-
ture propagation, substantially reducing the number of
parameters. This architecture has been applied in the
field of digital mammography, achieving better segmen-
tation results than U-Net, Att-U-Net, and Dense-U-Net
without AG.32

Sk-U-Net16 is another variant of the U-Net model
architecture, but with the conventional blocks replaced
by Sk blocks, which automatically adjusts its receptive
field, resulting in a better utilization of the spatial infor-
mation at varying scales, to obtain a high-level feature
representation.This model architecture has shown to be
more robust for classification, displaying considerable
improvements over the vanilla U-Net as seen in Byra
et al.16 A diagram of Sk-U-Net can be found in Figure 5.

U-Net++33 is a nested architecture where the
encoder and decoder subnetworks are connected
through a series of nested, dense skip pathways, reduc-
ing the semantic gap between the feature maps of the
encoder and decoder subnetworks. Therefore, improv-
ing learning with the decoder and encoder feature maps
being semantically similar. The configuration of this net-
work can be found in Figure 6. This model has been
widely evaluated for segmentation applications conclud-
ing an improved performances over U-Net in nuclei, liver,
and colon polyp segmentation.33

3.1.3 U-Net-based transformer networks

We have selected two transformer-based models based
on the U-Net described above, each with their own
unique transformer block or encoder that replaces
the conventional ones. Both models utilize a modified
version of the ViT architecture,34 which splits an image
up into patches with their respected linearly activated
pixel-wise feature maps generated from convolutions
layers. These feature maps are then transformed into
a sequence of tokens and fed into the transformer.
These tokens are then sequenced, outputted, and pro-
jected back to the feature maps. Allowing the analysis
of low-level pixel-wise structures through tokens-wise
embedding, lowering computational cost compared to
CNNs.34

Trans-U-Net is the first architecture to utilize a modi-
fied version of the ViT architecture designed for medical
image segmentation. The model uses a transformer
encoder as described above, and the same decoder
structure with upsampling and skip connections as in the
vanilla U-Net. Their transformer uses multilayer percep-
tron (MLP) blocks and multihead self -attention (MSA)
layers to create encoded tokenized image patches from
convolutions layer feature maps. These encoded fea-
tures maps are then upsampled with skip connections
for accurate localization.35

Swin-U-Net varies from Trans-U-Net by instead of
having a transformer encoder, it uses Swin-transformer
blocks that replace the conventional blocks in vanilla
U-Net. The encoder transformer symmetric blocks
use shifted windows MSA and patch merging lay-
ers at their base to contextualize features, whereas
the decoder uses patch expanding layers to upsam-
ple the extracted deep features from the bottle-
neck layer. Then, the symmetric blocks upsample the
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8 BUS-SET

F IGURE 5 The architecture of Sk-U-Net. Reprinted with permission from [Elsevier]: [Elsevier] [Biomedical Signal Processing and Control]
[Breastmass segmentation in ultrasound with selective kernel U-Net convolutional neural network, Byra, M., Jarosik, P., Szubert, A., Galperin, M.,
Ojeda-Fournier, H., Ol-son, L., O’Boyle, M., Comstock, C., Andre, M. [COPYRIGHT] (2020).16.

F IGURE 6 The architecture of U-Net++. Reprinted with
permission from [Springer Nature]: [Elsevier] [Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015]
[U-Net++:A Nested U-Net Architecture for Medical Image
Segmentation, Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.
[COPYRIGHT] (2018).33.

features maps along with concatenation from the skip
connections.36

3.2 Implementation

All architectures tested within the benchmark were run
on color images, the format the datasets were received
in. Mask R-CNN,29 Swin-U-Net, and Trans-U-Net used
pretrained weights acquired from their respected GitHub
repositories. Unfortunately, we had difficulty with the
original Deeplabv3+30 source and an alternate was
used without pretrained weights. The remaining models
were all trained from scratch.

For training Mask R-CNN, we experimented with two
backbones: ResNet50 and ResNet101, we found that

ResNet101 performed the best during our preliminary
experiments using only training and validation datasets.
We initialized Mask R-CNN with learning rate of 0.0005
and optimized using stochastic gradient descent (SGD)
with learning momentum equal to 0.9. We set the batch
size to 1 due to memory constraints and trained using
per-pixel softMax and a multinomial loss. Furthermore,
we set the weight decay to 0.0001. We initially trained
only the “head” layers of the network for 10 epochs
and then trained the whole model for an additional 30
epochs.After each epoch,the model weights were saved
and the model with the highest average DSC score on
the validation set was selected.

For benchmarking, all the FCN U-Net-based archi-
tectures and DeepLabv3+ were trained with a learning
rate of 0.001 and optimized using Adam with learning
momentum of 0.9. Furthermore, we set the batch size
to 16 and we decayed our learning rate exponentially
by a factor of 0.1. Both models were trained using the
DSC metric (see Equation 2) and early stopping was
implemented such that training was stopped if there
was no improvement within our validation set after 15
epochs. We used data augmentation to improve train-
ing by vertically flipping each of the training images. We
have also seeded our model to facilitate as much repro-
ducible as possible. Each different architecture was run
three times and the model with the highest DSC score on
our validation set was selected to remain consistent with
Byra et al.16 Additionally, we implemented Deeplabv3+
with the modified Xception71 backbone as described in
Chen et al.,30 along with atrous rates of 4, 8, 12.

Last,both TNNs were trained with a maximum epochs
of 150 using a batch size of 4 because of GPU con-
straints. Swin-U-Net was initialized with a base learning
rate 0.05, decay rate 0.0001, and SGD optimizer with
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BUS-SET 9

TABLE 2 Summary of the two systems used to implement the
benchmark algorithms.

Configurations Site (C.T.) (UK)
Site (M.B.)
(Poland)

CPU Intel(R) Xeon(R) Gold
6148 CPU

AMD Ryzen 7
3700X

RAM 384 GB 32 GB

GPU Nvidia V100 GPU Nvidia RTX 2080 Ti

Operating
system

Linux Windows 10

momentum 0.9, staying consistent with Cao et al.’s
implementation.36 Tran-U-Net had an initial learning rate
of 0.01 and SGD optimizer, decay rate and momentum
as Swin-U-Net, and the same as used in Chen et al.35

Furthermore, both architectures had their own default
augmentation that we utilized.

With regards to the Cudatoolkit, tensorflow, or
pytorch and if required Cudnn, the following ver-
sions were used; Mask R-CNN: Tensorflow = 1.14.0,
Cuda = 10.1.243, Cudnn = 7.6.5.32; FCN U-Net-based
architectures and DeepLabv3+: Tensorflow = 2.4.1,
Cuda = 10.1.243, Cudnn = 7.6.5; transformer networks:
Pytorch = 1.11.0, Cuda = 11.3.1.

To ensure that our results were as reproducible as
possible, each of the architectures was trained by one
author at one site (C.T.) (UK) and then by another author
at a different site (M.B.) (Poland), and vice versa. Sum-
mary of each site configuration can be found in Table 2.
Both authors used the same environments, which can
be obtained from GitHub.

After all our results had been collected separately, the
best results (highest DSC score on each fold) from the
two sites were compared and the best being selected as
the benchmark. With the maximum difference between
the two sites over all folds being 0.015 per DSC score.

3.3 Statistical significance test

To statistically validate the benchmarked nine methods,
we performed a MANOVA to determine if the multivari-
ate sample means are equal. When appropriate, this
was followed Anova and a Tukey’s Honest Significant
Difference (HSD) post hoc test to statistically compare
the different methods. Furthermore, DSC and ACC met-
ric scores are analyzed separately with IOU not being
used due to its correlation with DSC. The significance
threshold used within this study is 0.01.

3.4 Further analysis methods

Qualitative results
Qualitative analysis provides a complementary perspec-
tive on the segmentation results specially related to

lesion morphology and dataset characteristics. Lesions
were randomly selected from each dataset where the
average DSC value over all architectures was above
0.8, displaying the capabilities of the architectures. For
simplicity, this analysis will only include the three best
performing architectures: best semantic model, best
U-Net FCN variant, best U-Net transformer variant,
selected based on average DSC scores.

Lesion Accuracy/Morphology
To explore the models capabilities in terms of Lesion
Accuracy/Morphology, we first calculated the Hamming
distance41 between the ground truth (manual) and pre-
diction (automatic) masks, to obtain the percentage of
pixels that were segmented correctly.Although segmen-
tation metrics are commonly used for the evaluation
of different approaches, we also propose to investi-
gate the effects of different segmentation approaches
on the lesion shape and morphology when compared
to the ground truth. This was conducted to evaluate
morphological properties of the obtained segmentation,
assessing the level of robustness of these features.
The three best average performing architectures were
selected for this evaluation.

Comparing the manual and automatic masks
through shape analysis
To compare the manual and automatic masks, three
morphological features were analyzed: the depth-to-
width ratio (DWR), circularity, and elongation. DWR was
determined by calculating the major and minor axis
lengths for a segmentation mask, then dividing the major
by the minor we obtain a scalar estimate for the DWR.
Circularity and elongation were calculated as described
in Section 2.3. Both these features have been used for
breast mass classification, and segmentation methods
are expected to generate masks that provide accurate
estimates of these basic shape descriptors.42 Addition-
ally, we only compared lesions that were classified as
a TP. Segmentation masks were resized to the original
ground truth image size in order to extract the shape
descriptors to be compared. Furthermore, significance
analysis was conducted transforming the correlation
coefficients of DWR, circularity, and elongation to z-
values and subsequently, we estimated the observed
value of z (zobs).43 To estimate significance, we used
an alpha of 0.01 and assumed a two-tailed test, mean-
ing that the difference is significant if the calculated
observed z-value is outside −2.58 < zobs < 2.58.

Influence of lesion size
For this evaluation, we conduct two sets of analysis.
First, we assess the size of the lesions in the bench-
mark and filter our results by their respective public
datasets, followed by calculating their DSC and DR
scores. Allowing us to making a direct comparison
between predictions and ground truths.
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10 BUS-SET

Second, in the literature, there has been some evi-
dence of training biases directly affecting the DSC
metric scores, as described by Maier-Hein et al.44 They
mentioned the possible drawbacks of training architec-
tures using the DSC metric when a dataset is biased
towards small/large abnormalities.44 They concluded
that the DSC metric can be appropriately used for
large structures, for example, organs instead of smaller
pathological structures. This indicates that an architec-
ture trained using the DSC metric for an imbalanced
lesion size dataset could cause bias in the segmen-
tation performance, favouring the dominant lesion size
and exhibiting bias towards the majority class.45 The
DSC metric focuses on the segmented region during
training, inducing a bias towards a specific region size
(lesion size). Furthermore, we would also expect a simi-
lar bias to arise in a model trained using any of the other
region-based loss function, for example, the IoU metric.

To investigate whether lesion size influences the pre-
dicted lesion size, we evaluate the same three models
as in Lesion Accuracy/Morphology. above. The original
lesion size is then plotted against its respective predic-
tion lesion size. With the aim of finding any correlation
between lesions sizes on higher or lower DSC scores.

Multiple lesions
Last, during benchmarking, the dataset was refined to
include only single lesion BUS images, but this is not
always the case. We evaluated the benchmarked archi-
tectures on the excluded 16 images from the BUSI
dataset.Each BUS image contained two or three lesions,
with 15 images being benign and one malignant. This
analysis provides some insights on the robustness of
the three best performing models in segmenting multiple
lesions.Furthermore,the statistical evaluation described
in Section 3.3 will also be applied if appropriate.

4 RESULTS

This section presents the segmentation results with the
proposed database in terms of quantitative (using differ-
ent metrics) and qualitative evaluations. In addition, we
show results based on lesion size and lesion elongation.
Finally, we show how the various approaches deal with
the presence of multiple lesions per image.

4.1 Benchmark results

Table 3 displays benchmark segmentation results for all
nine architectures over the five BUS folds. Focusing on
the five U-Net-based FCN models, Sk-U-Net achieved
the highest mean score for all lesions across the
four performance metrics, obtaining DSC : 0.748, IoU :
0.652, and Acc : 0.965. Furthermore, it also achieved
the highest detection rate of 0.848, obtaining 979 true

detections. Looking at lesion type segmentation, Sk-U-
Net still remained the highest performing U-Net-based
CNN architecture, with DSC : 0.764, IoU : 0.675, Acc :
0.976 for benign and DSC : 0.723, IoU : 0.618, Acc :
0.949 for malignant BUS images. The lowest scoring
U-Net-based CNN model was Att-D-U-Net, obtaining
mean metric values of DSC : 0.640, IoU : 0.528, Acc :
0.954 for all lesion types. Comparing Att-D-U-Net to
Sk-U-Net in terms of metrics, Att-D-U-Net performed
14.4% lower on DSC, 19.0% lower on IoU, and 1.1%
lower on Acc. Att-D-U-Net performance can be bet-
ter understood when we consider that the model only
achieved a detection rate of 0.742. For semantic mod-
els, Mask R-CNN produced the highest metric scores of
DSC : 0.851, IoU : 0.786, and Acc : 0.975. Deeplabv3+
achieved lower metric scores with DSC : 0.722, IoU :
0.621, and Acc : 0.963. When considering the benign
and malignant breakdown,Mask R-CNN performed best
on the benign subset achieving a mean DSC score
of 0.863 compared to 0.831 for the malignant images.
Deeplabv3+ performed similar, achieving its highest
mean DSC score on benign lesions and remaining
consistent over the other metrics.

Both transformer systems achieved similar results,
with Trans-U-Net obtaining the highest metric scores
of DSC : 0.761, IoU : 0.672, and Acc : 0.968, compared
to Swin-U-Nets: DSC : 0.747, IoU : 0.642, and Acc :
0.964, a difference of 0.014, 0.030, and 0.004 for DSC,
IOU, ACC, respectively. On the benign and malignant
breakdown, Trans-U-Net obtained the highest results
on the benign lesions with DSC : 0.793, IoU : 0.713,
and Acc : 0.979. Swin-U-Net also achieved its high-
est mean Dice score on benign lesions, with DSC :
0.763, although for the malignant lesions, Swin-U-Net
achieved a higher mean DSC score than Trans-U-Net
with DSC : 0.721, DSC : 0.712. Although Trans-U-Net
obtained higher means score for the other two metrics
IoU and Acc.

To further validate our results, we conducted a
MANOVA test using the DSC, IoU, and Acc metric
scores, which indicated a statistically significant differ-
ence between all our models with a p-value <0.01.
Subsequently, we employed an Anova test on the three
individual metrics,which again showed a statistically sig-
nificant difference between all our models with a p-value
< 0.01. To distinguish which models were significantly
different, we used the HSD test on the DSC and Acc
metrics (we do not include IoU results at this stage as
they are strongly correlated with DSC and the equiva-
lent IoU results can be found on GitHub) separately with
an alpha of 0.01. The results can be found in Figure 7.

Figure 8 shows the ROC curves and AUC values
for all benchmarked architectures, displaying the mod-
els segmentation ability to distinguish between lesion
and surrounding tissue. Swin-U-Net achieved the high-
est AUC value across all possible thresholds, closely
followed by Trans-U-Net and MaskRCNN. There is no
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12 BUS-SET

F IGURE 7 HSD results of benchmark architectures, with top right showing p-value (and hence statistical significant differences) when
evaluating DSC and bottom left for Acc. Values displayed in blue, highlight where the comparison between models was statistically significant,
for example, p-value < 0.01. DSC, Dice similarity coefficient; HSD, Honest significant difference.

F IGURE 8 ROC curves for the benchmarked architectures, with
the AUCs for all models being displayed. AUC, area under curve;
ROC, receiver operating characteristic curve.

statically significant difference between the AUC val-
ues for Mask R-CNN, Swin-U-Net, Trans-U-Net, but it
should be noted that the ROC for Mask R-CNN provides
the closest point to (0,1) (i.e., which would be a perfect
detector).

Qualitative results
Qualitative segmentation results are shown in Figures 9
and 10, for benign and malignant lesions, respectively.
For benign images, most architectures provide rea-
sonable segmentation performances and capture well-
defined boundaries of the benign lesions. Furthermore,
there does not seem to be a drop in the segmentation
performance due to the image quality of different scan-
ners.With respect to the malignant masses,the methods
showed a good level of segmentation on lesions with
DSC > 0.5.

Figures 11 and 12 show benign and malignant lesions
that achieved the lowest average mean DSC scores.

For benign cases, we observe that the BUSI and OAS-
BUD lesions have not been detected by any of the
architectures. Instead, choosing to detect a nearby
shadow apart from Sk-U-Net, which failed to make
any detection. For RODTOOK, Sk-U-Net and Trans-U-
Net detected two visible lesions with one being within
the ground truth, whereas Mask R-CNN, which was
set to detect only one region, selected the nearby
shadow over instead of lesion. Last, for the UDIAT
image, Mask R-CNN managed to locate the lesion with
DSC : 0.913, whereas, again, Sk-U-Net and Trans-U-
Net obtained false detections, highlighting a nearby
shadow.

In Figure 12, the BUSI malignant lesion has been
undetected, with all of the architectures detecting
the large posterior acoustic shadowing (PAS) region
instead. Usually, a PAS overlaps with the lesion result-
ing in over segmentation, or the PAS is separate
from the lesion causing a false detection.46 A simi-
lar case is found for the UDIAT case, although this
time the PAS overlaps with the region, resulting in over
segmentation. For the RODTOOK case, only Mask R-
CNN managed to partially locate the lesion,but obtained
a poor mean DSC score due to over segmentation.Last,
looking at the OASBUD image, all architectures failed to
make an accurate prediction, only Sk-U-Net produced
a prediction.

Lesion Accuracy/Morphology
For this analysis, we selected only the three best per-
forming architectures as previously stated:Mask R-CNN
(best semantic model), Sk-U-Net (best U-Net FCN
variant), Trans-U-Net (best U-Net transformer variant)
based on average DSC scores.

Assessing the architectures’ capabilities to maintain
a lesion accuracy/morphology. We first calculated the
Hamming distance41 between the manual and predic-
tion masks, to obtain the percentage of pixels that were
segmented correctly. For the three models, we found
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BUS-SET 13

F IGURE 9 Segmentation results of the best-segmented benign lesion from the best performing model from each group are presented. The
lesions were randomly selected from the segmentations with a DSC above 0.8 for all networks. Manual segmentation mask shown in“Blue” and
prediction mask shown in “Red.” DSC, Dice similarity coefficient.

that on average, Mask R-CNN segments 84.3% of the
manual mask pixels correctly, whereas, Sk-U-Net
obtained 76.8% and Trans-U-Net achieves 74.77%,
showing that Sk-U-Net and Trans-U-Net achieved sim-
ilar accuracy, but due to false detection’s Sk-U-Net,
average DSC was lower than Trans-U-Net.

Comparing the manual and automatic masks
through shape analysis
Figure 13 shows the DWR, circularity, and elongation
analysis for our three deep learning architectures.
Regarding DWR, we found that Mask R-CNN captured
the most accurate estimates and the highest linear
correlation coefficient, 0.888, compared to Sk-U-Net’s
0.628 and Trans-U-Net’s 0.746. Mask R-CNN per-
formed the best, most likely because of its bounding
box improved lesion localization. A similar conclusion is
drawn regarding circularity, with Mask R-CNN maintain-
ing the most circularity characteristics of the lesions,
with higher correlation coefficient of 0.532 compared to
Sk-U-Net, 0.374, and Trans-U-Net, 0.409. Last, for elon-
gation,we found that once again,Mask R-CNN achieved
the highest correlation coefficient of 0.876. This was

closely followed by Trans-U-Net with score of 0.713,
whereas Sk-U-Net obtained a far lower score of 0.504,
as the Sk-U-Net predictions were found to be larger
due to over segmentation. For DWR, there is statistical
significant difference between Mask R-CNN and Sk-U-
Net with zobs = 19.650, Sk-U-Net and Trans-U-Net with
zobs = 18.353, and no significant difference between
Mask R-CNN and Trans-U-Net with zobs = 1.297. For
circularity, there is a statistical difference across all mod-
els, for Mask R-CNN and Sk-U-Net with zobs = 8.274,
Sk-U-Net and Trans-U-Net with zobs = 3.875, Mask R-
CNN and Trans-U-Net with zobs = 4.399. With regards
to Elongation, there is a statistical difference between
Mask R-CNN and Sk-U-Net withzobs = 12.696, Sk-U-
Net and Trans-U-Net with zobs = 11.003, but there is no
statistical significant difference between Mask R-CNN
and Trans-U-Net with zobs = 1.693.

Influence of lesion size
The size distibution of the lesions in the benchmark is
presented in Figure 3. We observed that the RODTOOK
and BUSI sets contain larger malignant lesions.Further-
more, BUSI and OASBUD contain larger benign lesions.
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14 BUS-SET

F IGURE 10 Segmentation results of the best-segmented malignant lesion from the best performing model from each group are presented.
The lesions were randomly selected from the segmentations with a DSC above 0.8 for all networks. Manual segmentation mask shown in “Blue”
and prediction mask shown in “Red.” DSC, Dice similarity coefficient.

TABLE 4 DSC scores for different architectures, public datasets, and types of lesions.

DATASET Type DeepLabv3+ Mask R-CNN U-Net Sk-U-Net Att-D-U-Net Att-U-Net U-Net++ Swin-U-Net Trans-U-Net

BUSI Malignant 0.701 0.817 0.691 0.714 0.640 0.694 0.689 0.717 0.709

Benign 0.738 0.854 0.728 0.753 0.654 0.715 0.715 0.769 0.801

OASBUD Malignant 0.544 0.799 0.550 0.645 0.504 0.579 0.591 0.650 0.605

Benign 0.698 0.872 0.709 0.751 0.595 0.698 0.710 0.733 0.717

RODTOOK Malignant 0.801 0.898 0.776 0.822 0.688 0.798 0.786 0.802 0.803

Benign 0.759 0.827 0.719 0.775 0.665 0.718 0.708 0.770 0.777

UDIAT Malignant 0.730 0.845 0.665 0.750 0.601 0.720 0.690 0.747 0.779

Benign 0.795 0.912 0.763 0.813 0.723 0.762 0.735 0.762 0.838

Bold values indicate the best performance.

Filtering our results by their respective public datasets
and calculating their DSC and DR scores are illustrated
in Tables 4 and 5.

Considering benign images, on average, the archi-
tectures did the best on the UDIAT images with an
average mean DSC score of 0.789, then followed by
BUSI: 0.747, RODTOOK: 0.746, and OASBUD: 0.720. It
is an interesting observation that UDIAT has the small-

est average benign lesion size.Excluding OASBUD from
our results, as its score is most likely affected by the
image quality, we observed that the models performed
better on smaller lesions. The models achieved near
identical scores, out by 0.001, for RODTOOK and BUSI,
which have a similar average lesion size. This sug-
gests a correlation between smaller lesions and higher
DSC scores.
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BUS-SET 15

F IGURE 11 Segmentation results of the worst-segmented benign lesion from the best performing model from each group are presented.
Manual segmentation mask shown in “Blue” and prediction mask shown in “Red.”

TABLE 5 DR for different architectures, public datasets, and types of lesions.

DATASET Type DeepLabv3+ Mask R-CNN U-Net Sk-U-Net Att-D-U-Net Att-U-Net U-Net++ Swin-U-Net Trans-U-Net

BUSI Malignant 0.819 0.900 0.833 0.843 0.776 0.819 0.838 0.862 0.824

Benign 0.826 0.906 0.805 0.824 0.735 0.796 0.785 0.865 0.863

OASBUD Malignant 0.644 0.875 0.635 0.760 0.596 0.702 0.683 0.760 0.712

Benign 0.802 0.927 0.823 0.854 0.719 0.802 0.812 0.854 0.802

RODTOOK Malignant 0.954 0.977 0.920 0.943 0.931 0.931 0.931 0.943 0.931

Benign 0.860 0.930 0.825 0.912 0.772 0.825 0.825 0.912 0.895

UDIAT Malignant 0.870 0.926 0.759 0.889 0.722 0.852 0.796 0.907 0.889

Benign 0.890 0.972 0.835 0.908 0.798 0.853 0.807 0.844 0.917

Bold values indicate the best performance.

For malignant images, the highest average mean DSC
score, 0.797, was obtained on the RODTOOK dataset,
which contains the second largest average malignant
lesion size. Moreover, the UDIAT dataset, which con-
tains a lower than average lesion size, obtained a score
of 0.725. The two other datasets obtained the follow-
ing scores BUSI: 0.708 and OASBUD: 0.605, indicating
a bias towards larger lesions size for the malignant
BUS images.

To investigate whether lesion size influences the pre-
dicted lesion size, we evaluated the best three models
as described, with the aim of analyzing if there is
any correlation between lesions sizes and higher or
lower DSC scores. Figure 3 details lesions size pro-
files in the datasets. Comparing this with the graph on
the left in Figure 14, we can see that smaller lesions
are being of higher concentration, with most of the
larger lesions being malignant. This is also supported
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16 BUS-SET

F IGURE 12 Segmentation results of the worst-segmented malignant lesion from the best performing model from each group are
presented. Manual segmentation mask shown in “Blue” and prediction mask shown in “Red.”

TABLE 6 Multiple lesions segmentation results, displaying mean metrics scores, median and standard deviation within brackets.

Method Metrics
model DSC IoU Acc

Mask R-CNN 0.839 (0.916 ± 0.118) 0.740 (0.845 ± 0.169) 0.977 (0.986 ± 0.023)

Sk-U-Net 0.707 (0.849 ± 0.268) 0.574 (0.713 ± 0.278) 0.956 (0.986 ± 0.061)

Trans-U-Net 0.592 (0.677 ± 0.305) 0.482 (0.511 ± 0.287) 0.953 (0.984 ± 0.058)

Results were obtained on 16 images (15 benign and one malignant) from the BUSI dataset, where there was more than one lesion per image; highest mean for every
column is displayed in bold.
Abbreviations: CNN, convolution neural network; DSC, Dice similarity coefficient; IoU, intersection over union.

when considering the group means for each model.
The means and standard deviation for ground truth
lesion sizes are: 617.12 ± 251.35, 1738.66 ± 399.39,
3860.99 ± 960.95, 10630.76 ± 4518.07. Then, if we
consider Mask R-CNN with prediction size means
and standard deviation for ground truth lesion sizes
are: 996.56 ± 1709.15, 2066.17 ± 2135.08, 4022.75 ±
1787.79, 9859.00 ± 4262.98. This trend stays the same
when looking at the mean for the other two models.

Multiple lesions
Multiple lesion detection results can be found in Table 6.
Mask R-CNN performed the best, achieving the highest

mean scores across all metrics, followed by Sk-U-Net
and then Trans-U-Net. Splitting the results on lesion
type,Mask R-CNN,Sk-U-Net,and Trans-U-Net obtained
the DSC scores 0.759, 0.844, and 0, respectively, for
the single malignant case. For the remaining 15 benign
cases, they produced mean dice scores of 0.844,
0.696, and 0.632. Surprisingly, Mask R-CNN received
a higher mean score on multiple lesions compared to
its benchmark performance, displaying the capabilities
of semantic segmentation on multiple lesions of BUS
images,although Sk-U-Net did achieve a higher average
performance than Mask R-CNN on the single malignant
lesion. Statistically using MANOVA based on DSC, IoU,
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BUS-SET 17

F IGURE 13 The top row displays the depth-to-width ratio of the segmentation, the middle row measures the circularity ratio of the
segmentation and the bottom shows elongation for Mask R-CNN, Sk-U-Net, and Trans-U-Net, shown as (a), (b), and (c), respectively.
Furthermore, the line represents the linear approximation. DWR, depth-to-width ratio.

and Acc,we find a p-value of 0.065,which is greater than
0.01, and as such not indicating a statistically significant
difference between the three models.

5 DISCUSSION

Benchmark discussion
Mask R-CNN achieved the highest segmentation results
compared to all the other architectures shown in Table 3.
Followed by Trans-U-Net and then Sk-U-Net,where both
achieved lower segmentation performance with respect
to all metrics. For the benign and malignant breakdown,
once again Mask R-CNN achieved the highest met-
rics scores and this was consistent for both benign and
malignant masses.

Looking at the statistical analysis displayed in
Figure 7.For DSC,the HSD indicated a significant statis-
tical difference for Mask R-CNN and Att-D-U-Net and all
other models, confirmed by p-value < 0.01 (to note that

Mask R-CNN is better than all other models, and that
Att-D-U-Net performs worse than the other models). For
Acc,HSD indicated that there was a significant statistical
difference between Mask R-CNN and all other mod-
els apart from Trans-U-Net.Furthermore, it also showed
that there was a significant statistical difference between
Att-D-U-Net and other models, apart from U-Net and
U-Net++. Highlighting that when TN are included in
the metric calculations, it becomes more ambiguous in
regards to clear distinction between models.

Benchmarks comparison
The capabilities of deep-learning-based methods for
segmenting breast masses can be seen clearly in the
results in Table 3, which showed that on average, 8/9 of
the explored architectures achieved a DSC score above
70%, with only Att-D-U-Net achieving an average score
below 65%.

Considering benign and malignant types sepa-
rately within the benchmark, on average, the models

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16287 by C

ochrane Japan, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 BUS-SET

F IGURE 14 Manual mask lesion pixel area against automatic mask pixel area. All lesions were split into groups based on the median and
25 and 75 interquartile range of the ground truth shown in the charts legends, and with Mask R-CNN, Sk-U-Net, and Trans-U-Net, shown as (a),
(b), and (c), respectively.

performed better on benign cases,with the two best per-
forming models being Mask R-CNN and Trans-U-Net.
In contrast, the worst performing method, the Att-D-
U-Net, obtained its best scores on the malignant set.
This could be explained by the fact that the ratio in
the benchmark set is biased towards benign images.
Additionally, benign lesions usually exhibit well-defined
boundaries, compared to malignant lesions. Overall, the
benchmark results highlight the importance of Trans-
U-Nets transformer block and Mask R-CNN bounding
box localization for improving detection rates. Interest-
ingly, when considering the U-Net-based architectures
that are integrated with AG and dense blocks, we find
that there does not seem to be any improvement with
regards to the metric scores.

Our obtained benchmarks express similar results to
other papers on BUS segmentation, although direct
comparison is difficult, due to a variety of datasets
and methodologies. However, there are two papers that
were based on a combination of some of the public
datasets used in this study. Byra et al. achieved similar
results with Sk-U-Net and U-Net obtaining 0.826 and
0.778 for DSC scores, respectively, a difference of
0.048. Whereas, in our benchmark, Sk-U-Net managed
a mean DSC of 0.748 and U-Net 0.707, a difference
of 0.041. With such a small variation in performance
between each architecture, we observed that similar
performances were achieved, although they used a
dataset of 882 lesions compared to 1154 in this work.16

Another comparable study was conducted by Gomez-
Flores et al., where DeepLabv3+ achieved a median
DSC score of 0.902, whereas in our benchmarks, we
obtained a median DSC 0.848.17 However, there were
some important differences as they used a private
dataset consisting of 3061 BUS images. Interestingly,
they also applied 10-fold cross-validation, to assess the
architectures based on different US machines, with the
lowest median DSC being 0.81.17 Many examples of the
predicted segmentations across several models were
also shown, which their qualitative results show similar
morphological aspects of our own results. A thorough

comparison is difficult as they only displayed examples
that obtained a good segmentation for all models tested.

Lesion Accuracy/Morphology
For the three models, Mask R-CNN obtained the high-
est accuracy of 84.3% when considering the Hamming
distance.41 Furthermore, Figure 13 showed that Mask
R-CNN was found to maintain the most morphological
features associated with lesions, followed by Trans-U-
Net and then Sk-U-Net. Overall, Sk-U-Net obtained far
lower scores for DWR, circularity, and elongation when
compared with the other networks. It is also interesting
to see that the Mask R-CNN and Trans-U-Net pre-
diction masks display a far-more circular appearance,
reinforced by the high elongation correlation coefficient
as both networks seem to miss the finer details of the
manual masks producing a more circular prediction.
Then from the statistical analysis, we could only draw
that over the three methods, Mask R-CNN is statistically
significantly different from Sk-U-Net.

Influence of lesion size
Results presented in Tables 4 and 5 show that our
models performed the best on the RODTOOK dataset,
achieving an average mean DSC of 0.777 over both
lesion types, followed by UDIAT: 0.767, BUSI: 0.735,
and OASBUD: 0.625. The poorer performance of the
architectures on the OASBUD set is likely because of
the image quality and smaller lesions, as indicated in
Figure 3. This is reinforced by Table 3, indicating that
the UDIAT images have the lowest average detection
rate, especially for the benign images. This could indi-
cate that the performance drop on the UDIAT images
is because of the lesions size, resulting in fewer fea-
tures for architectures to learn from, making detection
difficult. We expected the RODTOOK benign images
to also have low detection rates, which is different to
what can be found in Table 5, which shows UDIAT hav-
ing a lower detection rate. Each of the public datasets
was also obtained on a variety of different scan-
ners, leading to differences in BUS image resolution.
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BUS-SET 19

Furthermore, it is generally difficult to compare per-
formance score obtained based on different datasets.
Specific biases present in the training data may result
in better performance of specific networks. Therefore,
lesion size may have generated a training bias, as the
overall set contains a large number of bigger lesions, as
seen in Figure 3.This could directly affect the size of the
generated masks and in turn the DSC metric scores.

In Figure 14, where for three models, the original
lesion size is plotted against its respective prediction
lesion size, there seems to be a distinct level of bias with
large lesions being predicted smaller and small/medium
lesions being predicted larger. Considering that Mask
R-CNN was trained using IoU loss compared to Sk-
U-Net and Trans-U-Net, which were trained using DSC
loss, it performed poorer on smaller masses.Note: these
results align well with the work by Maier-Hein et al.44

Multiple lesions
It was hard to draw any conclusion from the multiple
lesion benchmark in Table 6. Although Mask R-CNN
did obtained the highest performance, the MANOVA
expressed that there was no statistical significance dif-
ference between models likely probably due to the
insufficient number of testing samples.

5.1 Limitations and future work

Based on our investigations,we identified several issues
related to this study. The four public datasets contained
within this study were annotated by different radiolo-
gists, which could create variations, especially along the
boundaries where it becomes more personal interpre-
tation. Furthermore, image acquisition protocols were
most likely different between centers leading to more
variations between datasets.An evaluation of the agree-
ment between radiologists could help to improve the
consistency of the masks. Second, we did not enhance
our segmentation with post processing methods, like
region growing or watershed,47,48 which might help to
reduce the amount of features lost along the boundaries
of the lesions. We also did not compare different loss
functions and optimization methods for training.

Our future work will focus on feature differences
between benign and malignant lesions and the semantic
segmentation in 2D and 3D US.Additionally,we also plan
to develop our own segmentation networks, building on
the research performed within this study and conduct
further investigation on different scanners, lesions types,
and how these affect network performance.

6 CONCLUSIONS

We have proposed a reproducible benchmark, tested
across two different system configurations using

publicly available data. Our benchmark results found
that Mask R-CNN achieved the best overall results on
the benchmark dataset (1154 BUS images) achiev-
ing metric scores of DSC : 0.851, IoU : 0.786, and
Acc : 0.975 using five-fold cross-validation. Further-
more, our results were further analyzed using MANOVA
that indicated a statistically significant difference
between models with a p-value < 0.01. Further evalua-
tion using one-way ANOVA and Tukey test across the
DSC metric scores highlighted a significant difference
between Mask R-CNN and Att-D-U-Net and all other
models. This became more ambiguous when consid-
ering the Acc metric score, which indicated significant
statistical difference between Mask R-CNN and all other
models apart from Trans-U-Net. Additionally, it showed
a significant statistical difference between Att-D-U-Net
and other models, apart from U-Net and U-Net++.

From evaluating the prediction masks, we found that
Mask R-CNN presented the highest linear correla-
tion with DWR, circularity, and elongation, therefore, it
maintained the morphological features of the lesions
most accurately. We further found that models missed
similar structures along the mask boundaries. Further
statistical analysis based on the linear correlation coef-
ficients for the three methods separately, indicated
that Mask R-CNN is statistically significantly different
from Sk-U-Net.

Possible challenges of the benchmark have been
highlighted, with reasonable evidence to conclude that
there is a training bias in the benchmark results. As
there are a smaller number of malignant images caus-
ing the architectures to over segment or incorrectly
detect lesions, affecting the DSC metric score. For this
work, we can see evidence of a DSC training bias but
more research would be required to evaluate the effects.
Finally, three architectures were assessed on 16 images
with multiple lesions,where Mask R-CNN performed the
best with a mean DSC score of 0.895. Although the
difference between models were not statistically signifi-
cant.All dataset details and evaluation code used within
this study are available on GitHub.
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