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Abstract: The equivalent characteristics of the materials’ interfaces are known to impact the overall
mechanical properties of ceramic–metal composites significantly. One technological method that
has been suggested is raising the temperature of the liquid metal to improve the weak wettability
of ceramic particles with liquid metals. Therefore, as the first step, it is necessary to produce the
diffusion zone at the interface by heating the system and maintaining it at a preset temperature to
develop the cohesive zone model of the interface using mode I and mode II fracture tests. This study
uses the molecular dynamics method to study the interdiffusion at the interface of α-Al2O3/AlSi12.
The hexagonal crystal structure of aluminum oxide with the Al- and O-terminated interfaces with
AlSi12 are considered. A single diffusion couple is used for each system to determine the average
main and cross ternary interdiffusion coefficients. In addition, the effect of temperature and the
termination type on the interdiffusion coefficients is examined. The results demonstrate that the
thickness of the interdiffusion zone is proportional to the annealing temperature and time, and Al-
and O-terminated interfaces exhibit similar interdiffusion properties.

Keywords: self-diffusion; interdiffusion; diffusion coefficient; Al2O3/AlSi12 interface; molecular
dynamics

1. Introduction

Metal matrix composites (MMCs) are increasingly employed in the automotive,
aerospace, and biomedical industries owing to their exceptional specific strength, high
stiffness, and remarkable wear resistance [1]. These composites commonly employ alu-
minum, titanium, or magnesium as matrix materials, while alumina, silicon carbide, or
boron carbide are often utilized as reinforcing elements [2,3].

Aluminum oxide (Al2O3) is a versatile and widely used ceramic material with various
applications due to its excellent properties and attractive price [4]. Some common uses
of aluminum oxide include abrasive material used in grinding and polishing tools, high-
temperature environment applications such as furnace linings and refractory materials,
electrical insulators, dental and medical applications, and as a filter medium [3,5].

The eutectic aluminum–silicon (AlSi12) alloys, widely used in the transportation in-
dustry [6] and have high specific properties and good castability, can replace the pure Al
metal matrix. AlSi12 alloy is an aluminum alloy that contains 12 wt.% silicon. It is com-
monly used in casting applications due to its good fluidity and ability to produce castings
with fine details [6]. The high silicon content in the alloy also provides it with excellent
thermal properties, making it suitable for use in engine parts and other high-temperature
applications [2]. This alloy also has a low density and good corrosion resistance, which
makes it useful in the aerospace and automotive industries.

Metal–ceramic composites may exhibit improved wear resistance and strength prop-
erties compared to the individual materials and can be used in various high-temperature
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applications. For example, a composite of Al2O3 and AlSi12 alloy can be made by various
techniques such as powder metallurgy [6,7], hot pressing, squeeze casting [7], or infiltra-
tion [1,7–10]. Interpenetrating phase composites (IPCs) are novel materials with possibly
enhanced characteristics compared with traditional composites with discontinuous parti-
cles, whiskers, or short fibers [11–15]. The properties and performance of the composite
can be tailored by the processing conditions, relative proportions of the two materials,
microstructure, proportion of the components, and the interface’s properties.

This study investigates the use of α-Al2O3 reinforcement in the AlSi12 metal alloy
matrix. The Al2O3/AlSi12 composite has demonstrated very good wear and abrasion resis-
tance [16,17]. Therefore, this composite material has the potential to be used in brake disks
in the automotive industry [7]. The mechanical characteristics of the interface constituents
and the nature of the interface determine the general mechanical and failure behavior of
MMCs [18–20]. To this end, the interface attributes in MMCs must be thoroughly investi-
gated. Diffusion causes the interface between phases to exhibit a fuzzy region. Hence, the
primary step toward deriving the cohesive zone model of the interface is to investigate the
diffusion between the two phases.

Oishi and Kingery [21] first measured oxygen self-diffusion in single and polycrys-
talline Al2O3 in 1960. They studied diffusion in temperatures above 1650 ◦C and observed
enhanced diffusion for the polycrystalline specimens. Lagerlof et al. [22] also deduced
oxygen self-diffusion coefficients using observations of the shrinking of tiny prismatic dis-
location loops in sapphire crystals subjected to prior distortion at a temperature of 1400 ◦C.
The diffusion coefficient was determined, and it was assumed that oxygen lattice diffusion
was smaller than aluminum lattice diffusion. Paladino and Kingery [23] determined the
self-diffusion coefficient of aluminum in coarse-grain polycrystalline aluminum oxide using
aluminium-26 as a tracer in the temperature range of 1670–1905 ◦C. They found that the
diffusivity of aluminum ions is greater than oxygen ions.

Furthermore, Gall et al. [24] measured aluminum self-diffusion in single-crystal α-
Al2O3 using aluminum-26 as a radioactive tracer in the temperature range of 1540–1697 ◦C.
They obtained very different conclusions regarding the diffusion coefficients compared to
Paladino and Kingery [23]. A review of the major diffusion processes in α-Al2O3, includ-
ing aluminum and oxygen lattice diffusion, oxygen grain boundary diffusion, and pipe
diffusion, was presented by Heuer [25]. Knowledge regarding the diffusion of aluminum
and oxygen in aluminum oxide was found to be insufficient. Using the density functional
theory, Milas et al. [26] investigated the diffusion of Al, O, Pt, Hf, and Y atoms on the
α-Al2O3(0001) surface to study the diffusion mechanisms at the alumina grain boundaries
in thermal barrier coatings. They discovered that the Al diffusion is significantly lower
than the O diffusion barrier. The literature on the self-diffusion of single crystals and the
impurity diffusion of some significant elements in alumina was reviewed by Pelleg [27].
Moreover, they discussed grain boundary diffusion and poly-crystalline alumina diffusion.

Unfortunately, the wettability of ceramic particles with liquid aluminum alloys is
often weak. Many technological procedures have been suggested to improve the wetting
of ceramic by liquid metal. These include raising the temperature of the metal liquid,
pretreatment of ceramic particles or fibers, coating the ceramics, and incorporating some
surface-active elements into the matrix. To the authors’ knowledge, no previous investi-
gations have been conducted on the diffusion behavior of the α-Al2O3/AlSi12 diffusion
couple. Therefore, this study aims to explore the self-diffusion and interdiffusion phenom-
ena at the interface by employing the molecular dynamics (MD) method by increasing
the system’s temperature to the specified level. The Al- and O-terminated interfaces of
α-Al2O3 with AlSi12 are considered. The influence of annealing temperature, annealing
duration, and type of termination at the interface on the diffusion zone and interdiffusion
coefficients are studied.
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2. Modeling Method and Simulation Technique

Diffusion involves the migration of atoms or molecules from a region of higher concen-
tration to a region of lower concentration. Atoms can diffuse across the interface, resulting
in the movement of atoms between the two phases. The diffusion rate depends on several
factors, including the temperature, chemical composition of the two materials, and the
interface between the two phases. At high temperatures, the diffusion rate will be faster,
and the atoms will have more energy to move through the material. It is intended to
investigate the effect of raising the temperature on the diffusion region and interdiffusion
coefficients at the α-Al2O3/AlSi12 interface.

The molecular dynamics method can study basic processes such as diffusion by using
Newton’s second law to calculate the acceleration of atoms by describing atomic interactions
through interatomic potentials. In this study, MD simulations are performed utilizing the
open-source MD program LAMMPS version 23Jun2022 (large-scale atomic/molecular
massively parallel simulator) [28], and the OVITO version 3.8.4 (open visualization tool)
software [29] is utilized to visualize the atomic structure’s evolution. The interatomic
potential must be precisely quantified because an interatomic potential energy model
typically represents atomic interactions. Experimental data or ab initio calculations, such
as cohesive energy and elastic modulus, can be used to determine the model parameters.
The following section explores the interatomic potentials attributed to aluminum oxide,
aluminum, silicon, and the interface.

2.1. Potential Functions

In the Al2O3/AlSi12 system, several atomic interactions are possible and should be
taken into account during simulations. The atomic interactions between Al particles in
an fcc crystal structure differ significantly from those between aluminum oxide ceramic
particles. Metal atoms have electron clouds that determine the strength of their bonds,
whereas ionic bonding is the primary factor in ceramics. The interface between metal
and ceramic, where the atoms tend to create bonds between two dissimilar structures,
introduces additional complexity.

The third-generation charge-optimized many-body potential (COMB3) [30] is a type of
interatomic potential that can be used to describe interactions between atoms in aluminum–
oxygen systems. The COMB3 potential uses a combination of pair potentials and electron
density functions to describe the atomic interactions. The potential is fitted to experimental
data and ab initio calculations. It has been shown to reproduce a wide range of properties
of aluminum–oxygen systems, including the lattice constant, elastic constants, and the
deformation of Al and Al2O3 under tensile loading. The total energy per atom for the Al-O
system, with a charge of q at position r, in the COMB3 potential can be expressed as [30]:

Utot(r, q) = Ues(q, r) + Ushort(q, r) + UvdW (r) + Ucorr (r) (1)

where Ues denotes the energy required to create an atom’s charge, as well as the energies
involved in charge–charge interactions, charge–nuclear interactions, and polarizability.
Furthermore, Ushort is the energy of pairwise attractive and repulsive functions, UvdW is
long-range van der Waals interactions, and Ucorr is the correction terms employed to adjust
energies associated with specific angles outside the bond order terms.

The Tersoff potential [31], an empirical function composed of two-body terms, is
employed for silicon–oxygen interactions. The bonding between atoms i and j in the
many-body Tersoff potential can be expressed as:

Vij = fC(rij)
[

fR(rij) + bij fA(rij)
]

(2)

where fR(rij), fA(rij), and fC(rij) are repulsive, attractive, and cut-off potential functions,
rij is the atomic bond length between atom i and j, and bij is a function that adjusts the
attractive interaction, respectively.
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The ab initio data gathered by Zhao et al. [32] are consistent with the Morse potential,
which best represents aluminum–silicon interactions. The Morse potential function is
defined as:

V = D0

[
e−2α(r−r0) − 2e−α(r−r0)

]
(3)

where D0, α, r, and r0 represent the well depth of the potential, the width of the potential,
the distance between atoms, and the equilibrium bond length, respectively. The Morse
potential with parameters D0 = 0.4824 eV, α = 1.322 1/Å, and r0 = 2.92 Å [26] is employed
in this study for aluminum–silicon interactions.

The elastic constants of α-Al2O3 are determined with previously mentioned potential
functions and then compared with the experimental [33], MD simulations [34], and innova-
tive integration of metadynamics and kinetic Monte Carlo simulation techniques ref. [35] in
Table 1. The same results for AlSi12 are also presented in this table. The lattice parameters
of hexagonal α-Al2O3 are a = b = 4.759 Å, c = 12.991 Å, α = β = 90o, and γ = 120o, and the
lattice constant of fcc Al is 4.0495. AlSi12 single-crystal is formed by substituting 12 wt.% of
Al atoms with Si atoms. The linear elastic constants Cij are obtained at zero temperature by
analyzing the stress–strain relation Cij = ∂σij/∂εij, where σij and εij are, respectively, the
stress and strain components. General decent agreements between the present results and
those of other investigators are observed in Table 1. Consequently, the potential functions
utilized here demonstrate an accurate simulation of the interactions between atoms.

Table 1. The elastic constants determined through the current MD simulations and their comparison
with values reported by other researchers.

Material Method C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

α-Al2O3

Present 510 130 138 518 138 165
Experiment [33] 497 164 111 498 147 167
MD [34] 537 180 106 509 130 179
Monte Carlo simulation [35] 666 269 192 520 158 -

AlSi12 Present 268 134 154 214 108 105

2.2. Molecular Dynamics Model

According to high-resolution transmission electron microscopy, it has been observed
that the predominant orientation relationship at the Al2O3/Al interface is characterized by
the parallel alignment of the Al(111) plane and the Al2O3(0001) basal plane [36]. Pilania
et al. [37] also studied coherent and semi-coherent α-Al2O3(0001)/Al(111) interfaces with a
mixed metallic–ionic atomistic model using MD simulations. Therefore, in this study, the
lattice orientation alignment (0001)[2 1 1 0]α−Al2O3

∥∥ (111)[1 1 2]AlSi12 is taken into account
according to the research of other investigators.

The current model comprises a bilayer nanocomposite composed of α-Al2O3 and
AlSi12. The initial α-Al2O3/AlSi12 interface shown in Figure 1 is considered a single crystal
of AlSi12 at the bottom and a single crystal of α-Al2O3 at the top with an initial gap of
2.0 Å which closely approximates the equilibrium atomic distance at the interface. To
examine the impact of alumina terminations on diffusion, two configurations are modeled
at the interface: one with Al-termination and another with O-termination. These cases
allow a comprehensive exploration to occur of how different terminations affect diffusion
behavior. The MD model has a typical size of about 119 × 58 × 184 Å, containing a total of
109,986 atoms.
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Figure 1. Model of the Al-terminated α-Al2O3/AlSi12 interface designed for the MD analyses.

The geometric arrangement of atoms is optimized through the utilization of the
conjugate gradient (CG) energy minimization method. First, the NVT canonical ensemble
(constant number of particles N, volume V, and temperature T) at a constant temperature
of 1200 K is imposed on the sample for 10 ps. Second, the NPT ensemble (constant number
of particles N, pressure P, and temperature T) at zero pressure and a constant temperature
of 1200 K is used for 15 ps to regulate the volume and achieve relaxation in the assembled
interface system. Subsequently, the sample is subjected to heating at a heating rate of
10 K/ps until it reaches a preset temperature. Finally, the temperature is held constant
at the specified value for a duration of 2.0 ns to analyze interdiffusion while monitoring
and recording the atomic movements throughout this period. All processes are conducted
using the NPT ensemble at zero pressure, employing a time-step of 0.2 fs. The simulations
are performed at 1500, 1600, 1800, and 2000 K temperatures. Periodic boundary conditions
are implemented for the sample in all three directions.

3. Results and Discussion

To study the diffusion properties of the α-Al2O3/Al interface, the system is heated
to a predetermined temperature and maintained there for 2.0 ns. The development of the
interface diffusion for the Al-terminated Al2O3/AlSi12 interface after heating it to 2000 K
is illustrated in Figure 2. The initial configuration illustrates the sharp interface between
Al2O3 and AlSi12, considering an initial gap of 2 Å. Furthermore, after maintaining it for
2.0 ns at 2000 K, the system configuration represents the local movement of atoms and the
creation of a diffusion zone. The diffusion front is shown in this figure with a dashed line.

3.1. Self-Diffusion

The mean square displacements (MSDs) of Al, O, and Si atoms after maintaining the
system for a duration of 2.0 ns at different temperatures of 1500, 1600, 1800, and 2000 K
for the Al- and O-terminated α-Al2O3/AlSi12 diffusion couples are depicted in Table 2.
This table presents the MSD values for Al atoms in α-Al2O3, Al atoms in AlSi12, and all
Al atoms in the system. As expected, due to the difference in ceramic and metal atomic
bonding, the Al atoms in α-Al2O3 have a significantly lower MSD than the Al atoms in
AlSi12. It is also observed that the MSD of O atoms is smaller than the MSD of Al atoms in
α-Al2O3. It is observed that the MSD of Al atoms is larger than the MSD of Si atoms, and
the MSD of Si atoms is also larger than the MSD of O atoms.
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Table 2. Mean square displacement (nm2) of Al, O, and Si atoms at different temperatures for the Al-
and O-terminated α-Al2O3/AlSi12 diffusion couples.

Diffusion
Couple Temperature (K)

Atom

Al (Al2O3) Al
(AlSi12) Al O Si

Al-terminated
α-Al2O3/AlSi12

1500 0.65 24.95 13.46 0.35 2.22
1600 0.84 32.26 17.45 0.37 2.25
1800 1.26 47.45 25.51 0.41 2.31
2000 1.70 63.29 34.01 0.47 2.36

O-terminated
α-Al2O3/AlSi12

1500 0.50 25.11 13.57 0.34 2.34
1600 0.64 32.26 17.58 0.38 2.36
1800 1.04 46.98 25.42 0.45 2.40
2000 1.67 62.34 33.63 0.50 2.46

The coefficients of self-diffusion for each atom type are obtained by analyzing the
slope of the MSDs employing Einstein’s relation [38]:

DA = lim
t→∞

1
NA

NA

∑
i=1

〈∣∣rA
i (t)− rA

i (0)
∣∣2〉

6t
(4)

where NA represents the total number of atoms of type A, rA
i denotes the position vector

of the ith atom belonging to type A, and 〈· · · 〉 signifies the average calculated across
all atoms of the same type. The activation energy Q and pre-exponential factor D0 of
atoms can be obtained by fitting the self-diffusion coefficients to the Arrhenius equation
D = D0 exp(−Q/RT). The Arrhenius plots of Al, O, and Si atoms for the Al- and O-
terminated interfaces are illustrated in Figure 3. Similar to the MSD, Al atoms in Al2O3
have a significantly smaller self-diffusion coefficient than the Al atoms in AlSi12 because
of the differences in atomic bonding between ceramic and metal. Additionally, the self-
diffusion coefficient of O atoms is less pronounced than Al atoms in Al2O3. As can be seen,
Al atoms have a higher self-diffusion coefficient than Si atoms, and Si atoms also have a
higher self-diffusion coefficient than O atoms. Table 3 also displays the outcomes of the
atoms’ activation energies and pre-exponential factors.
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Table 3. Arrhenius parameters, D0 and Q, for self-diffusion of Al, O, and Si atoms for Al- and
C-terminated α-Al2O3/AlSi12 diffusion couples.

Atom
Al-Terminated O-Terminated

Q (kJ/mol) D0 × 10−9 (m2/s) Q (kJ/mol) D0 × 10−9 (m2/s)

Al (Al2O3) 66.39 6.32 88.15 21.37
Al (AlSi12) 46.56 89.13 45.22 80.82

Al 46.84 48.15 45.54 44.03
O 16.64 0.0078 12.30 0.0058
Si 6.89 0.200 5.14 0.183

3.2. Interdiffusion

The interdiffusion flux of an n-component system is described by the following On-
sager’s formulation [39,40] of Fick’s law:

J̃i = −
n−1

∑
j=1

D̃n
ij

∂Cj

∂z
(5)

where J̃i, Ci, and ∂Ci/∂z are the interdiffusion flux, mole fraction, and concentration
gradient of component i, respectively. Furthermore, D̃n

ij is the interdiffusion coefficient.
According to Equation (5), the interdiffusion behavior in a ternary system can be described
by four independent interdiffusion coefficients: D̃3

11, D̃3
12, D̃3

21, and D̃3
22. The Boltzmann–

Matano [41,42] method can determine the interdiffusion coefficients.
In the present research, the average interdiffusion coefficients are determined using

the approach proposed by Dayananda and Sohn [41]. The average main interdiffusion

coefficients (i.e., D̃
3
11 and D̃

3
22) and cross interdiffusion coefficients (i.e., D̃

3
12 and D̃

3
21) are

evaluated by computing the atomic interdiffusion flux using only the single diffusion
couple under study. The concentration curve is fitted using the Gaussian error function for
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each component. The interested reader will find detailed explanations about the method in
Refs. [42,43].

The variations in Al, Si, and O atom concentrations with respect to the z-coordinate,
which is normal to the interface plane, are shown in Figure 4 for a quantitative analysis of the
diffusion process in the Al-terminated α-Al2O3/Al interface. To obtain the concentration
profiles, the diffusion couple is divided into thin slices with a thickness of 2.0 Å along
the interface plane. The count of atoms for each type is determined within each slice.
Figure 4 shows the initial concentration profiles before diffusion, and the profiles observed
after keeping the system at 2000 K for a duration of 2.0 ns. A grey region also depicts
the diffusion zone. The variations in atom concentrations for the O-terminated interface,
which are not shown here for conciseness, indicate that the diffusion zones in the Al- and
O-terminated systems are not significantly different.
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Figure 4. The variations in Al, Si, and O atom concentrations along the z-axis during interdiffusion of
the Al-terminated α-Al2O3/AlSi12 interface. The initial system before relaxation and after a 2.0 ns
maintenance at 2000 K are illustrated. The diffusion zone is depicted by the gray region.

Figure 5 illustrates the variations in the interdiffusion flux J̃ and J̃(z− z0) for the Al-
and O-terminated α-Al2O3/AlSi12 diffusion couples after keeping the systems at 2000 K
for a duration of 2.0 ns. The position of the Matano plane, denoted by z0, is also shown in
Figure 5 by a vertical dashed line. It is observed that the Matano plane corresponds to the
point of highest interdiffusion flux. The independent variables are arbitrarily chosen as
the Al and O atoms, while the Si atom is assigned as the dependent variable. The profile
variations in the two diffusion couples appear to be very similar. However, it is worth
noting that the maximum interdiffusion flux of the Al-terminated interface is slightly higher
than that of the O-terminated interface.
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Table 4 presents the calculated average values of the main and cross ternary interdif-
fusion coefficients for the Al- and O-terminated α-Al2O3/AlSi12 diffusion couples. The
diffusion couples are kept at annealing temperatures of 1500, 1600, 1800, and 2000 K for a
duration of 2.0 ns. The coefficients are determined using the composition ranges on the
lower and upper sides of the Matano plane. It is observed from Table 4 that the main
interdiffusion coefficients increase as the annealing temperature increases, as expected.
Furthermore, all cross ternary interdiffusion coefficients are significantly smaller, with at
least four orders of magnitude lower than the main interdiffusion coefficients. Hence, the
cross ternary interdiffusion coefficients do not significantly influence the current ternary
systems. Moreover, based on the findings in this table, it is observed that the diffusivity
of Si and O atoms shows a slight increase in the Al-terminated system compared to the
O-terminated counterpart. However, generally speaking, there is no appreciable distinction
between the average interdiffusion coefficients of the Al- and O-terminated systems.

Table 4. The average interdiffusion coefficients for the ternary systems on either side of the Matano
plane. These values are determined after the system is maintained at the preset temperature for a
duration of 2 ns.

Diffusion
Couple

Temperature
(K)

For Composition Range of the Lower Side
of Matano Plane
¯
D̃

3

ij ×10−11(m2/s)

For Composition Range of the Upper Side
of Matano Plane
¯
D̃

3

ij ×10−11(m2/s)

¯
D̃

Si

AlAl

¯
D̃

Si

AlO

¯
D̃

Si

OAl

¯
D̃

Si

OO

¯
D̃

Si

AlAl

¯
D̃

Si

AlO

¯
D̃

Si

OAl

¯
D̃

Si

OO

Al-
terminated

α-
Al2O3/AlSi12

1500 0.489 −4.2 × 10−7 1.8 × 10−5 0.584 0.489 2.2 × 10−7 −2.0 × 10−5 0.584
1600 0.518 −6.3 × 10−7 8.4 × 10−6 0.623 0.518 5.7 × 10−7 −9.3 × 10−6 0.623
1800 0.608 −7.9 × 10−7 6.1 × 10−7 0.845 0.608 −1.2 × 10−6 −1.9 × 10−6 0.845
2000 0.753 1.3 × 10−7 −6.4 × 10−6 1.307 0.753 −2.5 × 10−7 2.8 × 10−6 1.307

O-terminated
α-

Al2O3/AlSi12

1500 0.429 2.1 × 10−7 6.3 × 10−6 0.489 0.429 2.8 × 10−7 4.1 × 10−6 0.489
1600 0.452 −5.4 × 10−7 −1.3 × 10−6 0.531 0.452 7.6 × 10−7 3.8 × 10−6 0.531
1800 0.527 −4.9 × 10−7 −6.9 × 10−6 0.562 0.527 1.4 × 10−6 1.7 × 10−6 0.685
2000 0.696 4.9 × 10−5 2.9 × 10−4 1.012 0.696 −1.3 × 10−4 9.9 × 10−5 1.012

4. Conclusions

A molecular dynamics method was employed to investigate atomistic evolutions
during the interdiffusion at the α-Al2O3/AlSi12 interface. The self-diffusion and interdiffu-
sion coefficients were assessed at 1500, 1600, 1800, and 2000 K annealing temperatures for
different diffusion couples. Based on the findings of this study, the following conclusions
can be made:

• The self-diffusion coefficient for Al atoms in Al2O3 is higher compared to O atoms.
• The average main and cross ternary interdiffusion coefficients were determined for

the first time for the Al- and O-terminated Al2O3/AlSi12 systems utilizing the concen-
tration profiles of atoms during diffusion.

• The diffusion zone and interdiffusion coefficients increased with the progressive
elevation of the annealing temperature and duration.

• No notable distinction of ternary interdiffusion coefficients was observed between the
Al- and O-terminated interfaces.

Future studies may utilize the samples after diffusion and cooling to determine the
effective mechanical properties of the Al2O3/AlSi12 interface through the cohesive zone
model and, therefore, the mechanical properties of the MMC.
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