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Abstract: Starting with identifications of the very fundamental geometric characteristics of a Mylar

balloon such as the profile curve, height, volume, arclength, surface area, crimping factor, etc.,

using the geometrical moments In(x) and In, we present explicit formulas for them and those of

the mechanical moments of both solid and hollow balloons of arbitrary order. This is achieved by

relying on the recursive relationships among elliptic integrals and the final results are expressed via

the fundamental mathematical constants such as π, lemniscate constant ω̃, and Gauss’s constant

G. An interesting periodicity modulo 4 was detected and accounted for in the final formulas for

the moments. The principal results are illustrated by two tables, a few graphics, and some direct

relationships with other fundamental areas in mathematics, physics and geometry are pointed out.

Keywords: solid and hollow Mylar balloons; crimping factor; geometro-mechanical moments; recursive

relations; elliptic integrals and functions; gamma functions; Gauss’s and lemniscate constants
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1. Introduction

Before focusing on the actual contents of the paper the reader might be interested to
learn something about the Mylar balloon itself. According to Webster’s New World Dictio-
nary, Mylar is an Americanism meaning a trademark for a polyester made in extremely
thin sheets of great tensile strength. This term has been introduced by Paulsen [1] in the
form of a variational problem under a constraint and with an idea to replace the so-called
e-balloon explored intensively in the 70s by NASA (cf., e.g., [2]). More detail about the
present day situation with the zero-pressure balloons can be found in [3].

According to Paulsen the Mylar balloon is constructed by taking two identical circular
disks of Mylar, sewing them together along their boundaries, and then inflating the resulting
object with either air or helium. Surprisingly enough, these balloons turn out not to be
spherical as one might expect based on the well-known fact that the sphere possesses
the maximal volume for a given surface area. Respectively, this purely experimental fact
suggests the following mathematical problem: given a circular Mylar balloon of deflated
radius a, what will be the shape of the balloon when it is fully inflated (i.e., inflated to
maximize the volume subject to the constraint that the Mylar does not stretch)?

It should be also noted that the Japanese engineer Kawaguchi [4] had arrived at the
same figure when looking for a shallowest surface of revolution which has no circumfer-
ential stress. This is achieved exactly when the meridional kµ and parallel kπ principal
curvatures obey everywhere the condition

kµ = 2kπ . (1)
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Some years later Mladenov and Oprea [5] proved that this linear-type relationship
between curvatures specifies the rotational surfaces uniquely.

The rest of the paper is organized as follows. In Section 2 the geometrical moments
In(x) and In are defined and it is shown how the main characteristics of the Mylar balloon
can be expressed via them. In Section 3 the mechanical moments Jn and J̊n of the solid
and hollow Mylar balloons are studied and it is shown that in both considered cases they
can be connected to the geometrical moments In. Section 4 is devoted to investigation
of the recurrent relations (modulo 4) for the sequence of the geometrical moments In(x)
and In, while in Section 5 the corresponding residue classes of the mechanical moments
Jn and J̊n for the solid and hollow Mylar balloons are shown and the first twenty values
of the numerical coefficients µn and µ̊n are calculated explicitly via Gauss’s constant G
with the aid of the Wolfram computer language using the symbolic computation program
Mathematicar [6]. Finally, Section 6 concludes the paper and points out a possible direction
for the related future work. The main new results of the presented research can be found
in Sections 2–5. The paper deals with the fundamental problem which appears at least in
Celestial Mechanics, Probability Theory and Statistics and could help significantly in other
areas where one needs to account for corrections keeping some control over them.

2. Balloon’s Characteristics Expressed via Geometrical Moments

The Mylar balloon (see Figure 1) can be defined as a surface of revolution that is
obtained when we maximize the volume V (no stretching of the Mylar foil is allowed) for a
given (fixed) arclength L ≡ a (where a is the radius of the deflated Mylar balloon, i.e., of
the Mylar discs) of its profile curve (i.e., the directrix that generates the surface) z = z(x)
for x changing from x = 0 to x = r, where r is the radius of the inflated Mylar balloon, and
obviously we have r < a (see, e.g., [1,7,8]).

Figure 1. 3D view of the inflated Mylar balloon (left) and its cross-section through the symmetry

axis OZ in the plane XOZ (right). N and S are the North and South Poles, E denotes the Equator

of this surface of revolution, and O is the center of the Mylar balloon. The profile curve is defined

through the relation z = z(x), whereas τ = 2z(0) is the thickness of the Mylar balloon and a, r are its

deflated and inflated radii, respectively. Alternatively, the variable u describes the parametrization of

the Mylar balloon, i.e., x = x(u) and z = z(u) with u ∈ [−1, 1].

It can be shown that the constraint equation for the profile curve can be written as

z′(x) = − x2

√
r4 − x4

, i.e., z(x) =

r∫

x

t2dt√
r4 − t4

x ∈ [0, r]. (2)
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Therefore, the height, volume, and arclength of the Mylar balloon can be found,
respectively, as

τ = 2z(0) = 2

r∫

0

t2dt√
r4 − t4

, V = 2π

r∫

0

t4dt√
r4 − t4

, L = r2

r∫

0

dt√
r4 − t4

≡ a. (3)

Similarly, we can calculate the surface area of the inflated Mylar balloon by integrating
over all the circular strips of the surface of revolution with the length 2πx, where x is the
distance to the axis of rotation, and the infinitesimal width ds, where ds2 = dx2 + dz2, i.e.,

Sinflated = 2π

∫
x ds = 2π

∫
x
√

dx2 + dz2 = 4π

r∫

x=0

x
√

1 + (z′(x))2 dx (4)

where we can substitute the expression for the derivative z′(x) given in (2) and obtain

Sinflated = 2πr2

r∫

0

d
(
x2
)

√
r4 − x4

= 2πr2 arcsin
x2

r2

∣∣∣∣
r

0

= π2r2. (5)

We can see that the above surface area clearly differs from the surface area of the two
sewn-together circular Mylar discs of radius a, i.e., Sdeflated = 2πa2, describing effective
shrinking of the inflated Mylar balloon’s surface compared to the deflated one

Sdeflated

Sinflated
=

2

π

( a

r

)2
≈ 1.09422. (6)

We can also introduce the local measure of the above-described shrinking that is
defined as the ratio of the surface area of a small patch on the deflated Mylar balloon to the
surface area of the corresponding patch on the inflated Mylar balloon. This local measure
is called the crimping factor and is defined through the relation (see, e.g., [1])

C(x) =
r2

x

x∫

0

dt√
r4 − t4

· (7)

It can be shown that the crimping factor is minimal for x = 0 (see Figure 2–right), i.e.,

Cmin = C(0) = lim
x→0

r2

x

x∫

0

dt√
r4 − t4

=

[
0

0

]

L′Hôspital′s rule

= lim
x→0

r2

√
r4 − x4

= 1 (8)

and maximal for x = r (again see Figure 2–right), i.e.,

Cmax = C(r) = r

r∫

0

dt√
r4 − t4

=
L

r
≡ a

r
≈ 1.31103. (9)

Therefore, we can see that all the above relations clearly indicate that the Mylar balloon
can be actually characterized by the set of geometrical moments that are defined as

In(x) :=

x∫

0

tndt√
r4 − t4

, In := In(r), In(0) = 0, n = 0, 1, 2, . . . (10)

Then we can write down the above formulas in the alternative forms, i.e., z(x) = I2 −
I2(x), τ = 2I2, V = 2π I4, L = r2 I0 ≡ a, Sinflated = π2r2 = 4πr2 I1, and C(x) = (r2/x)I0(x).
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Finally, the explicit parametrization (u ∈ [−1, 1]) of the inflated Mylar balloon’s profile
curve (directrix) can be obtained from (2) as (see, e.g., [9])

x(u) = r

√
1 − u2

1 + u2
(11)

z(u) =
r√
2

(
2E

(
arcsin

√
2u√

1 + u2
,

1√
2

)
− F

(
arcsin

√
2u√

1 + u2
,

1√
2

))
(12)

where F(ϕ, k) and E(ϕ, k) denote the incomplete elliptic integrals of the first and second
kind with the Jacobian amplitude ϕ and elliptic modulus k (see, e.g., [10]). From (11) and (12)
we can also obtain the explicit dependency z(x) that is given as (see Figure 1)

z(x) =
r√
2

(
2E

(
arccos

x

r
,

1√
2

)
− F

(
arccos

x

r
,

1√
2

))
. (13)

3. Mechanical Moments of Solid and Hollow Mylar Balloons

It is well known that in order to determine the attraction between gravitating bodies
one needs to know the inertia moments of arbitrary order. In most of the astronomical
applications only a few of them are used. However, if the difference in masses is significant
and the space in which the bodies are considered is confined, the higher moments are essen-
tial as well. This holds definitely in the case of the motion around the oblate primary [11].
Strangely enough, the higher moments appear in probability and statistics (cf. [12]) where
at least the first six of them have specific names.

In our setting specifically, we suppose that either the volume or the surface area of
the Mylar balloon is filled with the physical material of the total mass m that has the
homogeneous distribution of the mass (i.e., the constant density). Thus, in the first case we
will obtain the solid Mylar balloon (with the constant volumetric mass density ρ = m/V),
whereas in the second case it will be the hollow Mylar balloon (with the constant surface
mass density ρ̊ = m/Sinflated).

For such two (solid and hollow) physical realizations of the Mylar balloon we can
define the corresponding mechanical moments of mass calculated with respect to the
vertical axis of symmetry of the described surface of revolution as

Jn =
∫∫∫

V

xndµV = ρ

∫∫∫

V

xndV, J̊n =
∫∫

Sinflated

xndµS = ρ̊

∫∫

Sinflated

xndS, n = 0, 1, 2, . . . (14)

where x is the distance from the vertical axis of symmetry to the infinitesimal mass dµ that
is positioned either in the volume or on the surface of the Mylar balloon, µV and µS are the
corresponding measures of the volumetric and surface mass distributions, and the circle
indicates that the respective quantities are associated with the hollow Mylar balloon.

Hence, the zeroth (monopole) and second (quadrupole) mechanical moments of mass
will correspond to the total mass (the same by construction in both cases) and two polar
moments of inertia for the solid and hollow Mylar balloons respectively, i.e.,

J0 = J̊0 = m, J2 = M = ρ

∫∫∫

V

x2dV, J̊2 = M̊ = ρ̊

∫∫

Sinflated

x2dS. (15)
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3.1. Mechanical Moments of Solid Mylar Balloon

Using cylindrical coordinates (x, z, θ), where θ ∈ [0, 2π], and taking into account the
symmetry of the Mylar balloon with respect to the equatorial (XOY) plane (see Figure 1)
the mechanical moments Jn given by the first expression in (14) can be rewritten as

Jn = 2ρ

r∫

x=0

z(x)∫

z=0

2π∫

θ=0

xn+1 dθ dz dx = 4πρ

r∫

x=0

xn+1z(x)dx = 4πρ

r∫

x=0

r∫

t=x

xn+1t2

√
r4 − t4

dt dx (16)

where we have used the integral representation (2) of the expression z(x). After changing
the order of integration (from (x, t) ∈ [0, r]× [x, r] to (t, x) ∈ [0, r]× [0, t]) we obtain

Jn = 4πρ

r∫

t=0

t∫

x=0

t2xn+1

√
r4 − t4

dx dt =
4πρ

n + 2

r∫

t=0

tn+4dt√
r4 − t4

=
4πρ

n + 2
In+4 (17)

i.e., the mechanical moments Jn can be expressed through the geometrical moments In+4

given by (10). It also turns out to be convenient to represent Jn in the form

Jn = µnmrn, m = ρV = 2πρI4 = J0, µn =
2

n + 2
· In+4

I4
· 1

rn
(18)

where µn are the numerical coefficients that will be explicitly evaluated in Section 5.

3.2. Mechanical Moments of Hollow Mylar Balloon

Similarly to the solid case from the previous section, for the hollow Mylar balloon we
can rewrite the mechanical moments J̊n given by the second expression in (14) as

J̊n = 2ρ̊

r∫

x=0

2π∫

θ=0

xn+1
√

1 + (z′(x))2 dx dθ = 4πr2ρ̊

r∫

x=0

xn+1dx√
r4 − x4

= 4πr2ρ̊ In+1 (19)

where we have used the expression for the derivative z′(x) given in (2).
As we can see, for the hollow Mylar balloon the mechanical moments J̊n can be

expressed through the geometrical moments In+1 and it is convenient to represent them as

J̊n = µ̊nmrn, m = ρ̊ Sinflated = π2r2ρ̊ = 4πr2ρ̊ I1 = J̊0, µ̊n =
4

π

In+1

rn
=

In+1

I1
· 1

rn
(20)

where the numerical coefficients µ̊n will be again explicitly evaluated in Section 5.

4. Recursive Evaluation of Geometrical Moments In(x) and In

In order to obtain the recursive formula for the geometrical moments In(x) given
by (10) we can use the expression (cf., e.g., [13] Formula (250.01)).

In+4(x) =
n + 1

n + 3
In(x) r4 − xn+1

n + 3

√
r4 − x4, n = 0, 1, 2, . . . (21)

or we can reobtain it directly using integration by parts and the differential relation

t3dt√
r4 − t4

= −1

2
d
(√

r4 − t4
)
. (22)

Then the first integral expression in (10) taken for n + 4 can be rewritten in the form

In+4(x) = −1

2

x∫

0

tn+1d
(√

r4 − t4
)
= − tn+1

2

√
r4 − t4

∣∣∣∣
x

0

+
n + 1

2

x∫

0

tn
√

r4 − t4 dt (23)
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where after interpreting the last integral as r4 In(x)− In+4(x) we reobtain (21) for n ≥ 0.
Hence, using the explicit representations of the first four geometrical moments In(x)

(for the dependencies, In − In(x), see Figure 2–left; for the values of In, see (30)–(38)), i.e.,

I0(x) =
1√
2

(
K
( 1√

2

)
− F

(
arccos

x

r
,

1√
2

))
· 1

r
(24)

I1(x) =
1

2
arcsin

x2

r2
(25)

I2(x) =
1√
2

(
2E

( 1√
2

)
− K

( 1√
2

)
− 2E

(
arccos

x

r
,

1√
2

)
+ F

(
arccos

x

r
,

1√
2

))
· r (26)

I3(x) =
1

2

(
1 −

√

1 − x4

r4

)
· r2 (27)

and the expression (21) we can obtain all the geometrical moments In(x) for n ≥ 0, e.g., the
next two are given as

I4(x) =
1

3

( 1√
2

(
K
( 1√

2

)
− F

(
arccos

x

r
,

1√
2

))
− x

r

√

1 − x4

r4

)
· r3 (28)

I5(x) =
1

4

(
arcsin

x2

r2
− x2

r2

√

1 − x4

r4

)
· r4 (29)

where F(ϕ, k) and E(ϕ, k) denote the incomplete elliptic integrals of the first and second
kind with the Jacobian amplitude ϕ and elliptic modulus k, whereas K(k) = F(π/2, k) and
E(k) = E(π/2, k) are the complete elliptic integrals of the first and second kind (see [10]).

The corresponding values of the first four geometrical moments In are given as

I0 =
1√
2

K
( 1√

2

)
· 1

r
≈ 1.31101 · 1

r
(30)

I1 =
π

4
≈ 0.785398 (31)

I2 =
1√
2

(
2E

( 1√
2

)
− K

( 1√
2

))
· r ≈ 0.59907 · r (32)

I3 =
1

2
· r2 = 0.5 · r2 (33)

whereas the rest of them for all values n ≥ 0 can be calculated using the recursive relation

In+4 =
n + 1

n + 3
In r4 (34)
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e.g., the next four geometrical moments are given as

I4 =
1

3
I0 r4 =

1

3
√

2
K
( 1√

2

)
· r3 ≈ 0.43701 · r3 (35)

I5 =
1

2
I1 r4 =

π

8
· r4 ≈ 0.392699 · r4 (36)

I6 =
3

5
I2 r4 =

3

5
√

2

(
2E

( 1√
2

)
− K

( 1√
2

))
· r5 ≈ 0.359442 · r5 (37)

I7 =
2

3
I3 r4 =

1

3
· r6 ≈ 0.333333 · r6. (38)

By applying (34) iteratively for n ≡ p (mod 4), p = {0, 1, 2, 3}, i.e., for each of the four
residue classes n|p, it can be readily obtained that

In+4|p =
(n + 1)!!!!

(n + 3)!!!!
Ip rn+4−p (39)

where the shortcut notation n!!!! stands for the quadruple factorial, i.e., a product of positive
integers defined by the formula n!!!! = n(n − 4)(n − 8)(n − 12) . . . It can be easily seen
that, when n is an even number, i.e., when n = 2k with k ≥ 0, then n!!!! = 2kk!!, where k!!
stands for the double factorial, i.e., a product of positive integers defined by the formula
k!! = k(k − 2)(k − 4)(k − 6) . . .

Finally, let us present some exemplary calculations of the characteristics of the Mylar
balloon expressed through the geometrical moments In(x) presented in Section 2, i.e.,
the profile curve z(x) and the crimping factor C(x) are given as (see Figure 2–left for
z(x) = I2 − I2(x), right for C(x))

z(x) = I2 − I2(x) =
r√
2

(
2E

(
arccos

x

r
,

1√
2

)
− F

(
arccos

x

r
,

1√
2

))
(40)

C(x) =
I0(x)

x
· r2 =

r

x
√

2

(
K
( 1√

2

)
− F

(
arccos

x

r
,

1√
2

))
(41)

(the first expression is identical to the parametrization (13) of the Mylar balloon), whereas
the arclength L, equivalently, deflated radius a, height τ, and volume V are calculated as

L ≡ a = I0 r2 =
1√
2

K
( 1√

2

)
· r ≈ 1.31101 · r (42)

τ = 2I2 =
√

2
(

2E
( 1√

2

)
− K

( 1√
2

))
· r ≈ 1.19814 · r (43)

V = 2π I4 =
2π

3
I0 r4 =

√
2π

3
K
( 1√

2

)
· r3 ≈ 2.74581 · r3. (44)
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Figure 2. Dependencies of In − In(x), n = 1, . . . , 10 (left, top to bottom), including the profile curve

z(x) = I2 − I2(x), and the crimping factor C(x) (right), for the Mylar balloon with radius r = 1.

5. Residue Classes Modulo 4 of Mechanical Moments

By making use of the recursive formula (39) for the geometrical moments In for n ≥ 0,
we can arrive at an explicit representation of the mechanical moments Jn given by (18) and
J̊n given by (20) classifying them into four non-intersecting residue classes Jn|p as

Jn|p = µn|p mrn, J̊n|p = µ̊n|p mrn, n ≡ p (mod 4), p = {0, 1, 2, 3}. (45)

In the next two sections we will discuss in detail the recursive calculation of the
numerical coefficients µn|p and µ̊n|p for the cases of the solid and hollow Mylar balloons.
Most of the calculations were made by the aid of the Wolfram computer language using
the Computer Algebra System Mathematicar [6].

5.1. Calculation of Numerical Coefficients µn for Solid Mylar Balloon

For the solid Mylar balloon the numerical coefficients µn|p given by (18) using the
recursive formula (39) can be calculated as

µn|p =
2

n + 2
·

In+4|p
I4

· 1

rn
=

6

n + 2
·

In+4|p
I0

· 1

rn+4
=

6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
· Ip

I0
· 1

rp (46)

or substituting directly the values of Ip, p = {0, 1, 2, 3}, given by (30)–(33) we obtain

µ4k+0 =
3

2k + 1
· (4k + 1)!!!!

(4k + 3)!!!!
· I0

I0
=

3

2k + 1
· 1

3
· 5

7
· 9

11
· · · 4k + 1

4k + 3
· 1 (47)

µ4k+1 =
6

4k + 3
· (2k + 1)!!

(2k + 2)!!
· I1

I0
· 1

r
=

6

4k + 3
· 1

2
· 3

4
· 5

6
· · · 2k + 1

2k + 2
· π

2
√

2K
(
1/

√
2
) (48)

µ4k+2 =
3

2k + 2
· (4k + 3)!!!!

(4k + 5)!!!!
· I2

I0
· 1

r2
=

3

2k + 2
· 3

5
· 7

9
· 11

13
· · · 4k + 3

4k + 5
· π

2K
(
1/

√
2
)2

(49)

µ4k+3 =
6

4k + 5
· (2k + 2)!!

(2k + 3)!!
· I3

I0
· 1

r3
=

6

4k + 5
· 2

3
· 4

5
· 6

7
· · · 2k + 2

2k + 3
· 1√

2K
(
1/

√
2
) (50)

where n = 4k + p with k ≥ 0 and we have used in (49) the relation for the complete elliptic
integrals of the first and second kind, i.e.,

(
2E

( 1√
2

)
− K

( 1√
2

))
K
( 1√

2

)
=

π

2
· (51)
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Equivalently, by rewriting (47)–(50) in a more concise form, we obtain

µn|p =
6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
·
{

1,
π

2
√

2K
(
1/

√
2
) ,

π

2K
(
1/

√
2
)2

,
1√

2K
(
1/

√
2
)
}

(52)

where the numerical multipliers in the curly brackets are applied in the order of their
occurrence (i.e., the number 1 is for µn|0, and so on), in correspondence with the complete
set of residues p = {0, 1, 2, 3} modulo 4. The elements µn|p in each of the classes with
p = {0, 1, 2, 3} are obtained for n running through the values of n ≡ p (mod 4).

As becomes clear from the above formulas, the only rational numerical coefficients are
those of the zeroth class, i.e.,

µn|0 =
6

n + 2
· 1

3
· 5

7
· 9

11
· 13

15
· · · n + 1

n + 3
, n ≡ 0 (mod 4). (53)

The numerical coefficients in the other classes, i.e., µn|1, µn|2, and µn|3, are irrational
transcendental numbers.

The complete elliptic integral of the first kind K(1/
√

2) ≈ 1.85407 appearing in the
formula (52) for the numerical coefficients µn|p, or respectively in (45) for the mechanical
moments Jn|p, can be related to a variety of other special functions and transcendental
constants, e.g., the gamma function Γ(1/4) ≈ 3.62561, Gauss’s constant

G :=
2

π

1∫

0

dt√
1 − t4

≈ 0.834627 (54)

or the lemniscate constant ω̃ = πG ≈ 2.62206. The corresponding relations, i.e.,

K
( 1√

2

)
=

πG√
2
=

Γ(1/4)2

4
√

π
=

ω̃√
2

(55)

allow us to immediately obtain, in addition to (52), the other three equivalent representa-
tions for the numerical coefficients µn|p, n ≡ p (mod 4), p = {0, 1, 2, 3}, i.e.,

µn|p =
6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
·
{

1,

√
2π3/2

Γ(1/4)2
,

8π2

Γ(1/4)4
,

2
√

2π

Γ(1/4)2

}
(56)

µn|p =
6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
·
{

1,
1

2G
,

1

πG2
,

1

πG

}
(57)

µn|p =
6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
·
{

1,
π

2ω̃
,

π

ω̃2
,

1

ω̃

}
. (58)

Therefore, substituting the numerical values of the corresponding special functions
and transcendental constants into the expressions (52), (56)–(58) we obtain

µn|p ≈ 6

n + 2
· (n + 1)!!!!

(n + 3)!!!!
· {1, 0.59907, 0.456947, 0.38138}. (59)

The values of the first twenty numerical coefficients µn|p divided into four residue
classes modulo 4 expressed via Gauss’s constant G are presented in Table 1.
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Table 1. First twenty mechanical moments Jn|p (solid case) divided into four residue classes modulo 4

expressed via Gauss’s constant G: Jn|p = µn|pmrn, m = 1
3 π2r3ρ G, n ≡ p (mod 4), p = {0, 1, 2, 3} (cf.

(57)).

p = 0 p = 1 p = 2 p = 3

n µn|0 n µn|1 n µn|2 n µn|3

0 1 1 1
2G

2 9
10πG2 3 4

5πG

4
5
21 5 9

56G
6 7

20πG2 7 16
45πG

8
9
77 9 15

176G
10 77

390πG2 11 96
455πG

12
39

539 13 7
128G

14 231
1768πG2 15 256

1785πG

16
221
4389

17 189
4864G

18 209
2210πG2 19 512

4851πG

5.2. Calculation of Numerical Coefficients µ̊n for Hollow Mylar Balloon

For the hollow Mylar balloon the numerical coefficients µ̊n|p given by (20) can be
calculated for n = 0, 1, 2 as

µ̊0 =
I1

I1
= 1, µ̊1 =

I2

I1
· 1

r
=

2

πG
, µ̊2 =

I3

I1
· 1

r2
=

2

π
(60)

whereas for n > 2 we have

µ̊n|p =
In+1|p

I1
· 1

rn
=

(n − 2)!!!!

n!!!!
·
{

1,
2

πG
,

2

π
, 2G

}
, n ≡ p (mod 4), p = {0, 1, 2, 3}. (61)

More specifically, substituting directly the values of Ip, p = {1, 2, 3, 4}, given by
(31)–(35), similarly to (47)–(50), we obtain

µ̊4k+0 =
(2k − 1)!!

(2k)!!
· I1

I1
=

1

2
· 3

4
· 5

6
· · · 2k − 1

2k
· 1, k ≥ 1 (62)

µ̊4k+1 =
(4k − 1)!!!!

(4k + 1)!!!!
· I2

I1
· 1

r
=

3

5
· 7

9
· 11

13
· · · 4k − 1

4k + 1
· 2

πG
, k ≥ 1 (63)

µ̊4k+2 =
(2k)!!

(2k + 1)!!
· I3

I1
· 1

r2
=

2

3
· 4

5
· 6

7
· · · 2k

2k + 1
· 2

π
, k ≥ 1 (64)

µ̊4k+3 =
(4k + 1)!!!!

(4k + 3)!!!!
· I4

I1
· 1

r3
=

1

3
· 5

7
· 9

11
· · · 4k + 1

4k + 3
· 2G, k ≥ 0 (65)

where n = 4k + p. The values of the first twenty numerical coefficients µ̊n|p divided into
four residue classes modulo 4 expressed via Gauss’s constant G are presented in Table 2.
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Table 2. First twenty mechanical moments J̊n|p (hollow case) divided into four residue classes

modulo 4 expressed via Gauss’s constant G: J̊n|p = µ̊n|pmrn, m = π2r2ρ̊, n ≡ p (mod 4), p =

{0, 1, 2, 3} (cf. (62)–(65)).

p = 0 p = 1 p = 2 p = 3

n µ̊n|0 n µ̊n|1 n µ̊n|2 n µ̊n|3

0 1 1 2
πG

2 2
π 3 2G

3

4
1
2 5 6

5πG
6 4

3π
7 10G

21

8
3
8 9 14

15πG
10 16

15π
11 30G

77

12
5
16 13 154

195πG
14 32

35π 15 26G
77

16
35

128 17 154
221πG

18 256
315π

19 442G
1463

6. Concluding Remarks

As can be easily seen, by comparing the corresponding expressions, the numerical
coefficients µn and µ̊n for the solid and hollow Mylar balloons are related to each other
through the formula

µn|p =
6

n + 2
·

In+4|p
I0

· 1

rn+4
=

6

n + 2
· I1

I0
· 1

r
·

In+4|p
I1

· 1

rn+3
=

3

n + 2
· 1

G
· µ̊n+3| p̊ (66)

where we have

n ≡ p (mod 4), p + 3 ≡ p̊ (mod 4), p = {0, 1, 2, 3}, p̊ = {3, 0, 1, 2}. (67)

From the above expressions it follows that the pair of sequences of numerical coef-
ficients {µ0, µ1, . . . , µn, . . .} and {µ̊3, µ̊4, . . . µ̊n+3, . . .} as well as the respective pair of se-
quences of mechanical moments {J0, J1 . . . , Jn, . . .} and { J̊3, J̊4 . . . J̊n+3, . . .} can be regarded
as pairs of sequences related by cyclically shifted set of residue classes, as is illustrated by
the diagrams (n takes the values from the respective class n|p, n ≡ p (mod 4))

p = {0, 1, 2, 3} −→ p̊ = {3, 0, 1, 2} (68)

{µn|0, µn|1, µn|2, µn|3} −→ 3

n + 2
· 1

G
·
{

µ̊n+3|3, µ̊n+3|0, µ̊n+3|1, µ̊n+3|2
}

(69)

or, equivalently, by the infinite sequence of diagrams

{µ0|0, µ1|1, µ2|2, µ3|3} −→
{ 3

2G
µ̊3|3,

1

G
µ̊4|0,

3

4G
µ̊5|1,

3

5G
µ̊6|2

}
(70)

{µ4|0, µ5|1, µ6|2, µ7|3} −→
{ 3

6G
µ̊7|3,

3

7G
µ̊8|0,

3

8G
µ̊9|1,

3

9G
µ̊10|2

}
(71)

{µ8|0, µ9|1, µ10|2, µ11|3} −→
{ 3

10G
µ̊11|3,

3

11G
µ̊12|0,

3

12G
µ̊13|1,

3

13G
µ̊14|2

}
(72)
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and so on. As can be seen from above diagrams, the corresponding elements µn|p and
µ̊n+3| p̊ in each pair of the shifted classes (for n ≥ 0) differ by specific numerical factors
(transcendental numbers) arranged in a sequence as

3

G

{
1

2
,

1

3
,

1

4
, . . . ,

1

n + 2
, . . .

}
≈

{
1.79721, 1.19814, 0.898605, . . . ,

3.59442

n + 2
, . . .

}
(73)

where G ≈ 0.834627. The presence of the three fundamental mathematical constants
π, ω̃, and G, as well as the combinatorial character of the above expressions suggests
unambiguously that we are dealing here with deep nontrivial relationships in nature.

Let us also state that this work was inspired by the observation based on the longstand-
ing experience which the authors have with Mylar balloons that leads them to recognition
of the fundamental fact that all its geometrical characteristics are related to the moments
specified in (10). This observation has been immediately expanded to cover mechanical
moments in both solid and hollow cases. While the first few moments (in both geometrical
and mechanical settings) have direct interpretations as mass, surface area, volume, profile
curve, and so on, this is not so obvious in the case of the higher moments. They appear,
e.g., in the description of the Newtonian attraction of solid bodies in the non-relativistic
theory of gravitation and in the classical potential theory (cf., e.g., [14,15]).

One should also notice the resemblance of the recurrence relationships (21) and the
Legendre polynomials which definitely deserves a further study as well.
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