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1. Introduction

Biological snakes are extremely well adapted for different envi-
ronments. This is mostly the result of the high redundancy of 
the snake mechanisms. In many instances of irregular environ-
ments the bio-inspired robots outperform conventional whe-
eled, legged or tracked robots. The snake-resembling robots are 
researched already for a few decades. This type of locomotion 
has been studied since the 1940s [1], and a half century later, 
its rigorous mathematical model has been developed. Shigeo 
Hirose at Tokyo Institute of Technology introduced so-called 
”active chord mechanism” (ACM), and the first successful 
snake locomotor ACM III was built in 1972–75. In the late 
90’s, a trunk-like locomotors and manipulators have been intro-
duced in [2]. Kinematic modeling and control of hyper-redun-
dant robots inspired by the octopus arm based on a discrete 
multi-segment model in which each segment is a 6-DoF Gough-
-Stewart parallel platform has been proposed in [3]. Various
snake-like robots have been built [4]; most of the designs were
intended for crawling on ground [5–9], some of them for swim-
ming [10, 11], and even fewer for both swimming and crawling
on the ground [12, 13]. Figure 1 shows an amphibious snake
robot designed to perform underwater inspections and search-
-and-rescue missions in hazardous environments.

Alike biological snakes or bionic trunks, in various envi-
ronments the characteristic type of motion gives this type
of manipulators certain advantage over conventional robotic
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manipulators. They can operate in geometrically complicated 
environments which are not accessible by other approaches.

Depending on the required task, various working heads can 
be installed on such manipulators, e.g. for: welding, cleaning, 
monitoring, etc. 

In principle, six degrees of freedom (DoFs) are enough to 
complete any motion in three-dimensional space: displacement 
along three Cartesian axes X, Y, Z; and three rotations: yaw, 
pitch and roll. A conventional industrial manipulator has low 
number of DoFs – usually just six. On the other hand, human 
arm is the biological archetype of a kinematically redundant 
manipulator with 7-DoFs: 3 at the shoulder, 1 at the elbow and 
3 at the wrist. Many robots use this kinematic arrangement. 
Such robots are called human-arm-like manipulators, e.g.: 
PA-10 robot by Mitsubishi, Lightweight Robot DLR (Deut-
sches Zentrum für Luft- und Raumfahrt), etc. DEXTER by 
Scienzia Machinale is an example of an 8-DoF manipulator. 
Systems with larger number of joints are called redundant 
robots, while term hyper-redundant refers to redundant mani-
pulators with a very large, possibly infinite, number of DoFs 
[14]. They can be further classified in two groups: vertebrate-

Fig. 1. A photograph of the modular amphibious (capable both of 
swimming and crawling) snake locomotor ACM-R5H, 2010. 
[Tokyo Institute of Technology]
Rys. 1. Zdjęcie modularnego ziemnowodnego robota wężowego ACM-R5H 
z 2010 r. wykonanego w Tokijskim Instytucie Technologicznym
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-like rigid link manipulators, e.g. such as snakes, and inverte-
brate-like continuum manipulators, such as octopus arms or 
elephant trunks. The inverse kinematics problem for a serial-
-chain manipulator is to determine the positions of joints given 
the position and orientation of the end-effector. So-called clo-
sed-form solutions are practical because they readily identify 
all possible solutions faster than numerical methods [15]. The 

inverse kinematic problem of a typical industrial manipulator 
can be solved easily [16].

As a result, its control is straightforward. However, HRMs 
are highly non-linear systems, therefore their control is by 
no means straightforward, and requires application of arti-
ficial intelligence methods [17–19]. In has been postulated 
in [20] that immersive realities and natural language should 

Fig. 2. A screenshot of a YouTube movie showing a 4-DOF oblique swivel joint robot made with LEGO in action. Four LEGO Mindstorms EV3 
medium servo motors controlling the relative twist of each module can be seen. [Akiyuki Brick Channel: https://akiyuki.jp/]
Rys. 2. Zrzut ekranu z filmu w serwisie YouTube przedstawiający ruchy robota o skośnych przegubach obrotowych 4-DOF wykonanego z LEGO. Widać 
cztery średnie serwomotory LEGO Mindstorms EV3 sterujące względnym skrętem każdego modułu. [Akiyuki Brick Channel: https://akiyuki.jp/]

Fig. 3. A three-bearing swivel module (3BSM) of the Rolls-Royce LiftSystem. [Photograph by Steve Jurvetson]
Rys. 3. Trójłożyskowy moduł obrotowy (3BSM) układu LiftSystem firmy Rolls-Royce. [Zdjęcie autorstwa Steve’a Jurvetsona]
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play a very important role in the near future of hyper-redun-
dant robots and their tele-operation. A method of solving 
the closed-form solution to the inverse kinematics of a pla-
nar redundant manipulator has been proposed in [21]. It was 
based on employing the Frechet differential of a certain crite-
rion function introduced to resolve the redundancy. However, 
that model did not include any constraints on the range of 
motion of the joints – which in fact makes the formulation 
much more complicated.

Moreover, already in the forward kinematics, the analyti-
cal description ”explodes” with the number of links (DoFs), 
not to mention the inverse kinematics which by nature is 
more difficult. Therefore the proposed approach is not prac-
tical for hyper-redundant manipulators. The pioneering work 
of mathematical modelling of a discrete redundant planary 
manipulator in the Cartesian space has been presented in 
1989 [22]. In Ref. [23] the same author presented a model 
of the kinematics of a rotary, redundant manipulator, in the 
form of a Finite State Machine. An improved inverse kinema-
tic and velocity solution for spatial hyper-redundant robots 
based on backbone curve concepts and a modal approach for 
resolving the manipulator’s redundancy in [24]. A technique 
to solve the inverse kinematics of redundant manipulators, 
using a multi-objective genetic algorithm based on combina-
tion of the closed-loop pseudo-inverse method with a multi-
-objective genetic algorithm to control the joint positions 
has been proposed in [25]. An implementation of a heuristic 
graph searching algorithm for finding collision-free trajectory 
for a (5-link) planar redundant manipulator has been presen-
ted in [26]. A method for studying the trajectory control of 
planar manipulators using the Moore-Penrose pseudoinverse 
based on fractional calculus and fractional matrix powers 
has been proposed in [27]. An optimization algorithm for 
the motion planning of a hyper-redundant robot where the 
motion of one end follows arbitrary path and all links of the 
locomotor avoid all obstacles present in the environment has 
been presented in [28]. For obstacle avoidance problem of 
planar hyper-redundant manipulators, so called ”tunneling” 
approach has been presented in [14]. In the next paper [29] 
the same authors presented hyper-redundant robot mechani-
sms and their applications, including a 30-DoFs hyper-redun-
dant robot. In Ref. [30] the dynamics of hyper-redundant 
manipulators has been formulated as a continuum mecha-
nics problem. The advantage of the presented method was 
that it can be easily parallelized. Regarding building physical 
prototypes, a comprehensive study of a cable-driven hyper-
-redundant robot in terms of mechanical design, kinematics 

analysis, and experimental verification has been documented 
in [31]. The property of shape memory polimer (SMP) has 
been explored for the design and fabrication of a 3D-printed 
modular omni-directional joint with variable stiffness in [32]. 
A lightweight hyper-redundant manipulator driven by embed-
ded dielectric polymer actuators with binary actuation has 
been documented in [33]. For more information on this type 
of manipulators see [30].

This paper was inspired by oblique swivel joint mechanism 
robot made with LEGO system [34], as shown below.

Three-bearing swivel module based on the concept of obli-
que swivel joint mechanism has been used in the Rolls-Royce 
LiftSystem designed for use in the short take-off and vertical 
landing (STOVL) military aircraft, shown in Fig. 3. In 2001, 
the LiftSystem propulsion system was awarded the Collier 
Trophy, in recognition of ”the greatest achievement in aero-
nautics or astronautics in America”, specifically for ”impro-
ving the performance, efficiency and safety of air or space 
vehicles, the value of which has been thoroughly demonstrated 
by actual use during the preceding year. This means that pro-
perly designed, oblique swivel joint mechanism is extremely 
reliable and robust.

2. The concept of Arm-Z

A conventional industrial manipulator has low number of 
degrees of freedom, whereas a trunk-like or snake-line mani-
pulator has redundant (considerably large) number of degrees 
of freedom. In Arm-Z manipulator, each link between modules 
has exactly one degree of freedom (1-DoF). A design for a two 
degrees of freedom joint mechanism optimized for compact-
ness, strength and range of motion for three-dimensional hyper 
redundant robots has been presented in [35]. A mechanical 
design for a compact three degrees-of-freedom joint mechanism 
for hyper-redundant or snake-like robots has been presented 
in [36]. Arm-Z manipulator has as many degrees of freedom 
as the number of units less of one. This redundancy allows 
the Arm-Z to perform complicated spatial movements, but 
also may improve the robustness and fault tolerance of the 
system. Therefore Arm-Z belongs to the family of so-called 
hyper-redundant-manipulators (HRM [37]).

The Arm-Z modules are geometrical objects which are ana-
logous to sectors of circular tori. Each module is defined by 
the following parameters: size r, offset d, and ζ, that is the 
angle between upper (T) and lower (B) faces of the module 
(see Fig. 4).

Fig. 4. On the left: visualization of the Arm-Z unit defined by three parameters: r, d and ζ. On the right: simple examples of assemblies of units 
for various values of ζ and s (slenderness), which is an additional parameter, a d to r ratio
Rys. 4. Po lewej: wizualizacja modułu Arm-Z określonego przez trzy parametry geometryczne: r, d i ζ. Po prawej: proste przykłady złożenia modułów dla 
różnych wartości ζ oraz s (smukłość), czyli dodatkowego parametru – stosunku d do r
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The overall shape of Arm-Z depends on: the number of modu-
les, the geometric parameters of each module, and the relative 
twists between the modules.

3. The virtual model of Arm-Z

The main limitation of the LEGO oblique swivel joint mecha-
nism robot presented in [34] was the structural limit of the 
LEGO elements. As a result the physical limit of the system 
is only four modules (4-DoFs). Virtual model is obviously free 
from such constraints. A simple virtual model of Arm-Z has 
been made with the most intuitive programming environment 
– Mathematica. It has been adjusted to match the manipu-
lator presented in Ref. [34], that is: there are four modules 

(4-DoF); the base and top are made of half-modules. In 
this way the manipulator can form a perfect pipe with base 
and top parallel to the working table and horizon, which is 
advantageous form the practical point of view. Moreover, the 
problem of intersections has not been implemented. Howe-
ver, due to the friendliness of the user interface, it can be 
easily visually inspected. The movements presented in Ref. 
[34] have been replicated and expanded. Table 5 shows 11 
time-steps of the first experiment.

In this case the base module turns by half-turn from –π/2 
to π/2. Simultaneously the rest of the modules turn twice as 
fast (performing a full turn) in alternating directions. The 
motion is perfectly smooth and there is no wobbling side-
ways.

Fig. 5. From top left to bottom right: at first Arm-Z straightens from partial torus to straight pipe in 5 time-steps, and bends symmetrically on the 
other side
Rys. 5. Od góry po lewej do dołu po prawej: początkowo Arm-Z prostuje się z częściowego torusa do prostej rury w 5 krokach, następnie zgina się 
symetrycznie po drugiej stronie

Fig. 6. The same setup as in Table 5 but with increased number of modules from 4 to 7
Rys. 6. Ta sama operacja jak na Rys. 5, ale ze zwiększoną liczbą modułów z 4 do 7
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Fig. 7. From slightly unwound spiral to straight, and back to slightly unwound spiral on the opposite side. As the narrowness of the bounding 
box indicates – the wobbling is unnoticeable
Rys. 7. Od lekko rozwiniętej spirali do prostej rury i z powrotem do lekko rozwiniętej spirali po przeciwnej stronie. Jak wskazuje szerokość pola 
ograniczającego – chybotanie jest niezauważalne

Fig. 8. From top left to bottom right: at first Arm-Z straightens holding the tip levelled in 5 time-steps, and bends symmetrically on the opposite 
side. The motion is perfectly smooth and there is no wobbling
Rys. 8. Od góry po lewej do dołu po prawej: początkowo Arm-Z prostuje się trzymając wypoziomowaną końcówkę w 5 krokach, następnie zgina się 
symetrycznie po przeciwnej stronie. Ruch jest idealnie płynny i nie ma chybotania
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Fig. 9. The same experiment as before but with increased number of modules from 4 to 10
Rys. 9. Ten sam eksperyment co poprzednio (Rys. 8), ale ze zwiększoną liczbą modułów z 4 do 10

Fig. 10. Similar experiment with fewer modules and different bending pattern
Rys. 10. Podobny eksperyment (patrz Rys. 8 i 9) z mniejszą ilością modułów i innym wzorem gięcia

The same experiment can be easily done for a larger mani-
pulator (with 7 modules, thus 7-DoFs), as shown in Table 6. 
The number of modules is small enough to naturally exclude 
self-intersections.

In the next experiment, the number of modules is 11. 
Thus the self-intersections are possible. In order to avoid 
them, the initial twists have been increased to slightly 
”unwind” the manipulator, as shown in Table 7.

In all previous experiments, there was practically no wob-
bling. This is, however, a major issue of discrete version of 
Arm-Z manipulator presented in [38]. Discrete means that 

the relative twists of the modules were not continuous, as 
in the case described in this paper, but discrete.

In the next experiment, manipulator also moves inside 
a narrow gap, but the tip of the manipulator remains paral-
lel to the working table and horizon throughout the entire 
action, as illustrated Table 8.

The same experiment can be easy expanded to any num-
ber of modules, as shown in Fig. 9 below.

Figure 9 shows a variation of the same experiment with 
reduced range of motion.
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Fig. 11. From top left to bottom right: 20 time-steps of drawing an ellipse by the tip of the manipulator. The first and second parts of the motion 
draws the bottom and top of the ellipse, respectively
Rys. 11. Od góry po lewej do dołu po prawej: 20 kroków kreślenia elipsy w przestrzeni przez końcówkę manipulatora. Pierwsza i druga część ruchu kreśli 
odpowiednio dolną i górną część elipsy

Table 11 shows the last experiment, where the tip of the 
manipulator should draw an ellipse in vertical plane and remain 
parallel to that plane. The motion is not perfect, as the tip is 
not always facing exactly the vertical plane.

4. Conclusions

Oblique swivel joint mechanism is very attractive due to 
its simplicity.

However, the difficulty of its meaningful control makes is still 
practically useless for robotic manipulators.

This paper contribution is to bring this idea to broader 
audience and encourage for further experimentation by intro-
duction of a simple but friendly user interface created in Mathe-
matica environment.

In all experiments, the relative twists throughout entire 
motion is continuous and constant. The relations of values 
between angular velocities are very simple. This means that 
each experiment could be realized in reality by very simple sys-
tems described in Refs. [39, 40]. In such a case, the modules 
would not have to be quipped with individual motors and con-
trol units, but the motion could be transferred from one unit to 
another via simple gear system.

Thus we plan to build a low-tech, inexpensive street furniture 
with given purpose, such as sprinkler, sculpture, conveyor, etc. 
based on the presented types of motions.
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Streszczenie: Arm-Z to koncepcja hiperredundantnego manipulatora opartego na liniowo połą-
czonej sekwencji przystających modułów za pomocą skośnych przegubów obrotowych. Każdy moduł 
posiada tylko jeden stopień swobody, mianowicie skręt względem poprzedniego modułu. Mimo że 
koncepcja tego typu manipulatora jest stosunkowo stara i prosta, jego sterowanie jest bardzo trudne 
i nieintuicyjne, co powoduje ograniczone zastosowanie w praktyce przemysłowej. W niniejszej pracy 
przedstawiono prostą symulację Arm-Z w środowisku programistycznym Mathematica, która demon-
struje kilka prostych, ale potencjalnie użytecznych ruchów.

Słowa kluczowe: System Ekstremalnie Modularny, Arm-Z Manipulator hiperredundantny, Mathematica, skośny przegub obrotowy

Symulacja prostych ruchów Arm-Z manipulatora łańcuchowego 
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