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A B S T R A C T

The crystal plasticity finite element method (CPFEM) is used to investigate the coupling between the cylindrical
void growth or collapse and grain refinement in face-centred cubic (FCC) single crystals. A 2D plane strain
model with one void is used. The effect of the initial lattice orientation, similarities, and differences between
stress- and strain-driven loading scenarios are explored. To this end, boundary conditions are enforced in
two different ways. The first one is based on maintaining constant in-plane stress biaxiality via a dedicated
truss element, while the second one is imposing a constant displacement biaxiality factor. Uniaxial and biaxial
loading cases are studied. For the uniaxial loading case a special configuration, which enforces an equivalent
pattern of plastic deformation in the pristine crystal, is selected in order to investigate the mutual interactions
between the evolving void and the developed lattice rotation heterogeneity. Next, biaxial loading cases are
considered for three crystal orientations, one of which is not symmetric with respect to loading directions. It
is analysed how stress or strain biaxility factors and initial lattice orientation influence the void evolution in
terms of its size and shape. Moreover, the consequences of variations in the resulting heterogeneity of lattice
rotation are studied in the context of the grain refinement phenomenon accompanying the void evolution.
Scenarios that may lead to more advanced grain fragmentation are identified.
1. Introduction

Nucleation, growth, and coalescence of intra- or intergranular
micro-voids is a usual scenario by which ductile metallic materials
fail (Benzerga and Leblond, 2010). Most often, micro-voids are nu-
cleated as a result of decohesion or fracture process of second phase
precipitates. Growth of those micro-defects takes place due to diffuse
plastic deformation up to the onset of coalescence when strain localizes
in the ligament connecting closely spaced voids. From the mechanics
point of view, for 3D stress controlled axially symmetric loading
(e.g. uniaxial tension process) the void coalescence is connected with
the transition from axisymmetric to uniaxial straining mode, which
leads to the plastic flow localization. After that moment the voids
continue expansion, mostly towards each other up to final ligament
failure or full impingement. On the other hand, the development of
strain heterogeneity around a deforming and growing void leads to
microstructure changes in the material around the void. It seems that
the last aspect of the mechanics of porous metallic materials has not
been fully explored, yet. On the other hand, this effect accompanying
void evolution can have important consequences as concerns the grain
refinement as observed by Beygelzimer (2005) who formulated a
phenomenological model of grain fragmentation.

∗ Corresponding author.
E-mail address: kkowalcz@ippt.pan.pl (K. Kowalczyk-Gajewska).

Beginning from the late 60 s of the previous century a lot of stud-
ies have been done experimentally, theoretically, and numerically to
understand the mechanics of void initiation, growth, and coalescence.
Initially, numerical analyses were performed using the macroscopic
isotropic nearly rate-independent elastic–plastic model of metallic ma-
terial. Tvergaard (1982) and Koplik and Needleman (1988) seem to be
the first who applied respectively the 2D and 3D unit cell approach
in this respect. Based on performed studies the Gurson yield criterion
for porous metals, originally developed based on the analytical solu-
tion and micromechanical approach, has been modified and equipped
with additional tunning parameters to become the widely used GTN
(Gurson–Tvergaard–Needleman) criterion (Gurson, 1977; Tvergaard,
1982; Tvergaard and Needleman, 1984). Those initial studies revealed
an important role of stress triaxiality in the void growth phenomenon.
In the next studies, the influence of the third invariant (Lode parameter)
and material anisotropy (Benzerga and Besson, 2001) was observed.
However, as recently concluded by Pineau et al. (2016) there is not
yet a universal theory of ductile failure. Moreover, as expressed by a
recent review by Das (2021) there is no full agreement yet if the process
is more strain or stress-driven, while these two mechanical fields are
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strictly related by a constitutive behaviour of the virgin medium and
problem geometry (i.e. void shape and space distribution).

The void growth and coalescence contributing to the ductile failure
is a process that usually takes place at the micro-level of polycrystalline
metal, therefore it was soon understood that replacing the macro-
scopic plasticity model for a matrix material in numerical calculations
with a more relevant continuum crystal plasticity framework may
lead to a better understanding of the phenomenon. Following this
observation, firstly, 2D analyses of unit cells with cylindrical voids
were initiated under plane strain and in-plane strain-driven boundary
conditions (O’Regan et al., 1997; Potirniche et al., 2006). Similar
3D analyses of spherical void growth and coalescence under strain-
controlled boundary conditions were performed by Liu et al. (2007).
Those boundary conditions (i.e. strain-based) were motivated by the
possibility of avoiding any instability in the calculations. The main
conclusion of those studies was that the influence of crystal orientation
is more significant for the loading cases with a small strain biaxility
or triaxiality and of secondary importance for higher strain biaxiality
or triaxiality factors. Among mentioned studies, only Liu et al. (2007)
provided some results related to microstructure evolution in the pres-
ence of voids. They are concerned with the texture evolution within
the unit cell and the heterogeneity of deformation assessed by the
misorientation angle with respect to the average orientation. It was
concluded that the heterogeneity of lattice rotation is concentrated in
the regions around the void.

The cylindrical void growth under plane strain while constant in-
plane stress biaxiality factor in hexagonal close packed (HCP) crystal
was studied by Prasad et al. (2015). Yerra et al. (2010) analysed
3D cell with a spherical void maintaining constant stress triaxiality,
however applied boundary conditions were not purely stress driven
since at the same time equal values of two lateral macroscopic strains
were imposed. The macroscopic stress direction was fully controlled
in the 3D calculations by Srivastava and Needleman (2013, 2015) for
Ni FCC single crystal, Ling et al. (2016) for FCC austenitic stainless
steel, and by Selvarajou et al. (2019) for HCP Mg crystal. Different
values of stress triaxiality and Lode parameter as well as selected
crystal orientations with respect to loading axes were analysed. It was
found that the value of the Lode parameter is more decisive concerning
the void coalescence or collapse at a lower value of stress triaxiality.
However, for certain anisotropic orientations, the Lode parameter can
also have a significant effect on creep strain and porous evolution
at higher stress triaxiality values (Srivastava and Needleman, 2015),
which led to forming a polygonal void shape with rounded corners.
Moreover, the initial crystal orientation dictates the location of maxi-
mum stress concentration. Based on such numerical studies analogues
of the GTN criterion for single crystal were formulated by Han et al.
(2013) and Paux et al. (2015), using the classical multi-surface Schmid
condition and the regularized Schmid law, respectively, as valid models
for the bulk medium.

Let us also remark that the void growth and coalescence in the
heterogeneous bulk medium described by the crystal plasticity con-
stitutive model were also studied numerically. For example, bi-crystal
unit cells were assumed in Liu et al. (2010), Jeong et al. (2018),
Dakshinamurthy et al. (2021) and polycrystal unit cells in Lebensohn
et al. (2013) and Liu et al. (2021). Among mentioned contributions,
selected results concerning heterogeneity of lattice rotation were pro-
vided in Dakshinamurthy et al. (2021). Unless stated otherwise, a large
strain rate-dependent CP formulation with the power law for slip was
used in all papers recalled above.

The goal of the present research is two-fold. First, we would like
to compare and analyse strain and stress-driven loading scenarios in
the context of cylindrical void evolution in FCC single crystal under
plane strain conditions. In particular, the effect of strain vs. stress
in-plane biaxiality factor is elucidated. To our best knowledge, such
direct comparison has not been performed in the literature yet. Second,
2

the mutual interactions between the void evolution and development
of lattice rotation heterogeneity, leading to grain refinement, as two
competitive mechanisms of microstructure changes are explored. Such
an interplay between two effects seems not to be sufficiently quantified
in other research.

The paper is organized as follows. After this introductory section,
we present the applied crystal plasticity model and its finite element
implementation in Section 2. Section 3 is devoted to the description
of the numerical model of a unit cell and the boundary conditions.
The main body of the paper is included in Section 4 where the re-
sults of performed numerical studies are outlined and discussed. Their
presentation is divided into two parts. The first concerns four uniaxial
loading cases under a special crystal configuration, which enable the
observation of a clear coupling of the void growth or collapse with
the grain fragmentation into subgrains. The second part of this section
continues the analysis of the impact of two biaxiality factors on the void
growth and overall stress–strain response for biaxial loading processes,
as well as their relation to microstructure evolution. The paper is closed
with conclusions.

2. Crystal plasticity model and its FE implementation

2.1. Crystal plasticity constitutive theory

In this section, the key details of crystal plasticity implementa-
tion in FEM applied in the analyses are described. Model formulation
and implementation follow Kucharski et al. (2014) and Frydrych and
Kowalczyk-Gajewska (2018).

First, let us present the rate-dependent elastic–plastic model of the
single crystal. In terms of kinematics description, the model follows
classical contributions by Hill and Rice (1972), Asaro and Rice (1977)
and Asaro and Needleman (1985). The deformation gradient 𝐅 is

ultiplicatively decomposed into two parts:

= 𝐅𝑒𝐅𝑝 (1)

where 𝐅𝑒 and 𝐅𝑝 denote the elastic and plastic components, respec-
tively. The evolution of the plastic part of the deformation gradient is
governed by the equation:

�̇�𝑝 = �̂�𝑝𝐅𝑝, (2)

where the dot over the quantity denotes its material time derivative.
The plastic velocity gradient �̂�𝑝 is the sum of shears on slip systems:

�̂�𝑝 =
𝑀
∑

𝑟=1
�̇�𝑟𝐦𝑟

0 ⊗ 𝐧𝑟0 (3)

with unit vectors 𝐦𝑟
0 and 𝐧𝑟0 denoting the 𝑟th slip system direction

and plane normal defined in the initial configuration. In FCC crystals,
plastic deformation occurs along the {111}⟨110⟩ family of slip systems,
which contains 12 potentially active slip systems that are taken into
account in the computations.

In the rate-dependent formulation, in order to calculate shear rates
the power law (Asaro and Needleman, 1985) is used:

�̇�𝑟 = 𝑣0sign(𝜏𝑟)
|

|

|

|

|

𝜏𝑟

𝜏𝑟𝑐

|

|

|

|

|

�̄�

(4)

where 𝑣0 is the material parameter, �̄� is a rate-sensitivity parameter.
The resolved shear stress 𝜏𝑟 is the projection of the Mandel stress tensor
𝐌𝑒 on the direction and plane of slip:

𝜏𝑟 = 𝐦𝑟
0 ⋅𝐌𝑒 ⋅ 𝐧𝑟0, 𝐌𝑒 = 𝐅𝑇

𝑒 𝐒𝐅
𝑇
𝑝 = 𝐅𝑇

𝑒 𝝉𝐅
−𝑇
𝑒 , (5)

where 𝐒 is the first Piola–Kirchhoff stress and 𝝉 is the Kirchhoff stress.
The Mandel stress tensor is obtained using a hyper-elastic law:

𝐌𝑒 = 2𝐂𝑒
𝜕𝛹 , (6)

𝜕𝐂𝑒
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Table 1
Elastic constants (𝐶11 , 𝐶12 , 𝐶44), initial critical shear stress (𝜏0), and hardening model parameters (𝜏1 , 𝜃0 , 𝜃1 , 𝑞, 𝑞0), exponent in the power law (n) and reference shear rate (𝑣0)
(Potirniche et al., 2006).
𝐶11 𝐶12 𝐶44 𝜏0 𝜏1 𝜃0 𝜃1 𝑞 𝑞0 𝑛 𝑣0
GPa GPa GPa GPa GPa GPa GPa

150 75 37.5 0.02 0.097 0.18 0.0 × 10−3 1.4 1.4 10 0.001
v
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where 𝐂𝑒 = 𝐅𝑇
𝑒 𝐅𝑒 is the right elastic Cauchy–Green tensor and

𝛹 = 1
2
𝐄𝑒 ⋅ L𝑒 ⋅ 𝐄𝑒 (7)

is the Kirchhoff-type function of free energy density per unit volume
in the reference configuration, L𝑒 is the anisotropic stiffness tensor of
ingle crystal and 𝐄𝑒 =

1
2 (𝐂𝑒 − 𝟏) is the elastic Lagrangian strain tensor.

The evolution of the critical value of the resolved shear stress is
overned by the exponential Voce law:

̇𝜏𝑐
𝑟 = 𝐻(𝛤 )

𝑀
∑

𝑠=1
ℎ𝑟𝑠 |�̇�

𝑠
| , (8)

where ℎ𝑟𝑠 is the latent hardening parameter, equal 1 for self-hardening
(𝑟 = 𝑠), 𝑞0 for latent hardening (𝑟 ≠ 𝑠) on coplanar systems (𝐧𝑟0 ⋅𝐧

𝑞
0 = 1),

and 𝑞 for latent hardening on non-coplanar systems (𝐧𝑟0 ⋅ 𝐧
𝑞
0 ≠ 1) and

𝐻(𝛤 ) =
d𝜏𝑐 (𝛤 )
d𝛤

, 𝜏𝑐 (𝛤 ) = 𝜏0 +
(

𝜏1 + 𝜃1𝛤
)

(

1 − exp
(

−𝛤
𝜃0
𝜏1

))

(9)

𝛤 = ∫ �̇�d𝑡, �̇� =
∑

𝑟
|�̇�𝑟| (10)

The parameters of the hardening model, elastic constants of the
aterial, and the value of 𝑛 used are shown in the Table 1. The latent
ardening parameter on both coplanar and non-coplanar systems is the
ame, but in general, it could have been taken as different.

.2. FE implementation

The standard procedures developed for the FE implementation of
inite strain elasto-plasticity in the fully Lagrangian displacement-based
etting are followed (Simo and Hughes, 1998). In particular, incre-
ental constitutive equations have been obtained by applying the

mplicit backward-Euler time integration scheme and the relation (2)
s integrated using the exponential map,

𝑝(𝑡 + 𝛥𝑡) = exp(𝛥𝑡�̂�𝑝)𝐅𝑝(𝑡). (11)

he implementation has been performed using AceGen code genera-
or (Korelc, 2002). It combines the symbolic algebra capabilities of

olfram Mathematica with automatic differentiation and advanced
echniques of expression optimization. The package enables straight-
orward derivation of an algorithmic consistent tangent that leads
o a quadratic convergence rate. Computations were performed us-
ng the AceFEM package. In calculations, 4-noded linear quadrilateral
lements with 4 integration points are used. Additionally, the F-bar
ethod (de Souza Neto et al., 1996) is applied in order to have a robust

mplementation, enabling the enforcement of nearly incompressible
aterial behaviour in the geometrically non-linear regime. In spite of

onsidering the 2D plane strain problem, the three-dimensional nature
f the crystal plasticity model, and specifically the geometry of slip
ystems, are fully taken into account. At each Gauss point the material
isplacement gradient 𝐇 = 𝐅 − 𝐈 is assumed for which components
𝑖3 = 𝐻3𝑖 = 0 (𝑖 = 1, 2, 3) and ‘3’ denotes the direction perpendicular

o the plane.

. Unit cell model and boundary conditions

.1. Cell model

A 2D plane strain unit cell with one cylindrical void is employed.
artesian coordinate system {𝑥, 𝑦} is used and the origin of the co-
rdinate frame is placed at the node OP. The initial diameter of the
3

oid is 𝐷 and the square plate has a side length of 𝐿. The ratio of
∕𝐿 is used to define the void volume fraction: 𝑓 = 𝜋∕4(𝐷∕𝐿)2.
odes OP, XP, and YP are used to prescribe the boundary conditions.

nstead of confining the sides of the unit cell to stay planar, which can
ver-constrain the model leading to the development of high stresses
or some orientations, the periodic boundary conditions are applied.
ccordingly, the displacement of corresponding nodes on opposite sides
f the unit cell in the 𝑥–𝑦 plane are connected by periodic boundary
onditions, namely

𝟐 − 𝐮𝟏 = �̄�(𝐱𝟐 − 𝐱𝟏), (12)

here �̄� is the overall (averaged) material displacement gradient tensor
f the unit cell, 𝐮𝟏,𝐮𝟐 represent the displacement of corresponding
odes on opposite sides and 𝐱𝟏, 𝐱𝟐 represent the corresponding nodal
ectors at the reference configuration.

Several studies were carried out by Han et al. (2013), Srivastava
nd Needleman (2013, 2015) and Koplik and Needleman (1988) on
nit cells containing voids imposed with constant stress triaxiality ratio
ratio of the mean stress to the von Mises stress) boundary conditions.
n the other hand, strain-controlled boundary conditions were con-

idered by Schacht et al. (2003) and Potirniche et al. (2006). In the
resent study for overall loading, both kinds of boundary conditions
re employed in order to compare and quantify the influence of strain
nd stress biaxiality ratio on the void growth and coalescence. The way
n which they are imposed is described in the next subsections.

.2. Displacement controlled boundary conditions

For the displacement controlled boundary conditions, a displace-
ent biaxiality factor 𝛽 is set, which is defined as the ratio of the
isplacement in the 𝑥 direction to the displacement in the 𝑦 direction,
amely 𝛽 = 𝑢𝑥(XP)∕𝑢𝑦(YP) = const. Therefore, the following displace-
ent boundary conditions are imposed at the reference configuration

s shown in Fig. 1(a):

• at node OP, 𝑢𝑥 = 𝑢𝑦 = 0,
• at node XP, 𝑢𝑥 = 𝛽𝑢(𝑡), 𝑢𝑦 = 0,
• at node YP, 𝑢𝑥 = 0, 𝑢𝑦 = 𝑢(𝑡),

hich result in the following components of the displacement gradient
̄ in Eq. (12)

̄ 𝑘𝑙 =
𝑢(𝑡)
𝐿

⎡

⎢

⎢

⎣

𝛽 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

Note that all components of �̄� are known for this loading scenario.
For the uniaxial tension/compression case in the 𝑦-direction of the

sample, considered at the beginning of the next section, the following
displacement boundary conditions are imposed:

• at node OP, 𝑢𝑥 = 𝑢𝑦 = 0
• at node XP, 𝑢𝑦 = 0
• at node YP, 𝑢𝑦 = 𝑢(𝑡),

which result in the following components of the displacement gradient
�̄� in Eq. (12)

�̄�𝑘𝑙 =
𝑢(𝑡)
𝐿

⎡

⎢

⎢

⋆ ⋆ 0
0 1 0

⎤

⎥

⎥

, (13)

⎣ 0 0 0 ⎦
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Fig. 1. Schematic representation of model (a) Displacement controlled (b) Stress controlled. 𝐷∕𝐿 = 0.2 is imposed in all analyses corresponding to 0.0314 void volume fraction.
where by ⋆ we denoted unknown components of �̄�. By energy min-
imization, this leads to the averaged Cauchy stress for which 𝛴𝑥𝑦 =
𝛴𝑥𝑥 = 0, so the stress biaxiality factor 𝜂 = 𝛴𝑥𝑥∕𝛴𝑦𝑦 = 0. Note that this
case is not equivalent to the 3D uniaxial tension case since, in general
all 𝛴𝑘𝑧, 𝑘 = 𝑥, 𝑦, 𝑧 are not necessarily zero for anisotropic material under
plane strain conditions.

3.3. In-plane stress controlled boundary conditions

For controlling the in-plane stress biaxiality factor 𝜂, the formula-
tion based on the proposal by Ling et al. (2016) is employed in the
present study. A special spring element oriented in the direction of
principal loading is employed to regulate displacement at the nodes
XP and YP in order to maintain the constant stress ratio. Node OP is
fixed and the displacement of node XP in the 𝑦 direction is disabled to
remove rigid motion as shown in Fig. 1(b). In-plane stress biaxiality 𝜂,
which is defined as the ratio of the Cauchy’s stress normal components
along 𝑥 direction to 𝑦 direction, namely 𝜂 = 𝛴𝑥𝑥∕𝛴𝑦𝑦 = const is kept
constant to study the void growth. Application of the element results
in the averaged Cauchy stress for the unit cell of the form,

𝛴𝑘𝑙 = 𝛴𝑦𝑦(𝑡)
⎡

⎢

⎢

⎣

𝜂 0 ⋆
1 ⋆

sym. ⋆

⎤

⎥

⎥

⎦

,

where by ⋆ we denote unknown components of 𝜮. Note that 𝛴𝑦𝑦(𝑡)
is also unknown, while via the truss element, displacement 𝑢𝑦(YP) is
imposed.

Different displacement and in-plane stress biaxiality ratios: 𝛽 and 𝜂
are considered in the present study, which are compared and discussed
in the next section.

3.4. Finite element geometry and mesh

Two commercial software packages are used in this study. 2D planar
model and mesh are generated using the commercial CAE software
(ABAQUS version 6.13) as shown in Fig. 2. Then the mesh data is
imported to a symbolic and algebraic system, Wolfram Mathematica as
specified in Section 2.2 to perform finite element calculations and post-
processing using the AceFEM package. The ratio of the void diameter
4

Fig. 2. Finite element mesh with a cylindrical void.

to the side length in the x-y plane is taken as D/L = 0.2, leading to an
initial void volume fraction of 𝑓 = 0.0314. 2D mesh is employed with
1168 elements of type CPE4R. Mesh convergence tests were carried
out on a number of unit cells with different mesh sizes. Convergence
was evaluated by determining the evolution of the relative void volume
fraction with the overall effective strain.

Similarly to other studies (see e.g. Ling et al., 2016), the overall
Cauchy stress 𝜮 = 1

𝐽 �̄��̄� (𝐽 = det �̄�) is calculated based on the volume
averaged first Piola–Kirchhoff stress �̄� found as:

�̄� = 1
𝑉 ∫𝑉

𝐒(𝐗)𝑑𝑉 =
1 − 𝑓
𝑉𝑚 ∫𝑉

𝐒(𝐗)𝑑𝑉𝑚 , (14)

where 𝑉𝑚 is the bulk crystal volume and the integration is performed
numerically in the reference configuration. Unknown components of
the deformation gradient �̄� = 𝐈+ �̄� are calculated based on the relation
(12) using the current displacement vectors at nodes XP and YP, namely

𝐹11 = 1+
𝑢𝑥(XP)

𝐿
, 𝐹21 =

𝑢𝑦(XP)
𝐿

, 𝐹12 =
𝑢𝑥(YP)

𝐿
, 𝐹22 = 1+

𝑢𝑦(YP)
𝐿

.

(15)
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Table 2
Crystal orientations considered with respective global coordinate axes.

Crystal orientation Lateral Primary Lateral
direction (𝑥) loading direction (𝑦) direction (𝑧)

Orientation O [1̄10] [001] [110]
Orientation A [111] [2̄11] [01̄1]
Orientation B [100] [010] [001]
Orientation C [110] [1̄10] [001]

Table 3
Set of active slip systems for the specified in-plane uniaxial loading of Orientation O
(no void) according to the rigid-plastic crystal plasticity model. ±𝛾 denotes the

agnitude of the slip on the specified system and its sign at the same level of the
rue strain in the given loading direction.
Loading Slip system

(11̄1)[101̄] (11̄1)[011] (1̄11)[101] (1̄11)[011̄]

Tension [001] −𝛾 𝛾 𝛾 −𝛾
Compression [001] 𝛾 −𝛾 −𝛾 𝛾
Tension [1̄10] 𝛾 −𝛾 −𝛾 𝛾
Compression [1̄10] −𝛾 𝛾 𝛾 −𝛾

4. Results and discussion

In this section, on the basis of the results of finite element simula-
tions, the impacts of crystallographic orientation and various boundary
conditions on the void growth or coalescence as well as grain refine-
ment due to heterogeneous lattice rotation, in a 2D plane strain unit
cell are examined. First, in-plane uni-axial compression and tension,
simulated using the displacement controlled scenario (Eq. (13)), are
performed to demonstrate the void-induced heterogeneous slip activity,
which then leads to spatial variation in lattice rotation. The example
serves also to explore the effect of loading direction with respect to
crystal axes and loading ‘sign’ (tension vs. compression). Moreover,
the analysis preliminary verifies the model predictions with available
experimental findings provided in Gan et al. (2006). Next, various in-
plane biaxial processes are considered. The displacement-controlled
boundary condition will be referred to as the 𝛽 loading case and
he stress-controlled boundary condition will be referred to as the 𝜂
oading case throughout the discussion. To see how plastic anisotropy
mpacts void growth in an FCC single crystal, four initial orientations
f the crystalline lattice with respect to the sample axes are taken into
onsideration. They are collected in Table 2. In the current study, seven
oading scenarios with 𝛽 equal to −0.5, 0, and 1 as well as 𝜂 equal to
0.5, 0, 0.8, and 1 are analysed. The scenario 𝜂 = 0.8 is selected due

o its approximate equivalence to the 𝛽 = 0 case. Note that the state of
n-plane uni-axial tension or compression is represented by 𝜂 = 0.

.1. Microstructure evolution and void growth in in-plane uni-axial tension
nd compression

Gan et al. (2006) examined in-plane uni-axial compression of a
ingle crystal along the [001] direction with a cylindrical void axis
long the [110] (orientation O in Table 2). As discussed in detail by Gan
t al. (2006), by applying the anisotropic rigid-plastic slip line theory,
his configuration ensures a plane strain condition in the [001] - [1̄10]
rystal plane under the action of the compressive or tensile loading
ith three effective in-plane slip systems. For the pristine crystal they
re results of equal activity of four systems (see Table 3), which act in
pposite directions (i.e. 𝐦 and −𝐦) for tensile and compressive loading
n the plane. It could be also verified that when the direction of loading
s changed to [001], under a plane strain condition, the same set of
lip systems will be active, again in the opposite sense. Thus, as far
s plastic deformation by dislocation motion is considered, in-plane
ompression (cor. tension) in [001] is equivalent to in-plane tension
cor. compression) in [1̄10].
5

For the sample with a cylindrical void, under the same loading con-
itions, the formation of regions of unequal slip activity of potentially
ctive systems around the void is observed, which leads to the lattice
otation heterogeneity and crystal fragmentation into subgrains. These
heoretical predictions were verified by Gan et al. (2006) experimen-
ally, for the [001] compression case, by EBSD measurements. Note that
or the crystal without the void, no lattice rotation is predicted by the
odel, and slip activity is homogeneous, so the grain is not fragmented.

The purpose of the study is to investigate the differences between
oid evolution and grain fragmentation using four loading scenarios,
amely tension/compression in the [1̄10] and [001] directions, even
hough the same active slip systems are expected for all cases in a
ristine rigid-plastic crystal (as indicated in Table 3). It is obvious that
he overall stress biaxiality factor 𝜂 is equal to 0 in each case.

First, we have used this example to verify the predictive capabilities
f the present numerical model. As shown in Gan et al. (2006) and
onfirmed in our study, one of three effective in-plane slip systems
ominates in three different angular slip sectors which are centred at
he middle of the void, as marked by dashed lines in Fig. 3b. This
esults in different lattice rotations in respective domains. In Fig. 3b,
e present misorientation angle distribution1 for the compression strain

of 5%. Qualitatively similar subdivision is seen in experimental data
quoted in Fig. 3 after Gan et al. (2006). There are some differences
concerning the direction of rotation in the lateral domains, however,
a full quantitative comparison is not possible due to the lack of the
detailed experiment geometry and boundary condition data in Gan
et al. (2006).

Next, the same sample configuration is used to explore the effect of
loading direction and its sign (i.e. in plane tension vs. compression) on
the void evolution and grain refinement. To this end, four processes
enlisted in Table 3 are studied numerically. In Fig. 4a, we compare
the overall in-plane mean stress variation vs. magnitude of the true
strain in the loading direction. It is seen that initially, the response in
terms of the magnitude of the in-plane mean stress (𝜎mean = 1∕2(𝛴𝑥𝑥 +
𝛴𝑦𝑦)) is the same for all processes and does not show visible tension–
compression asymmetry. However, as the deformation proceeds, the
difference starts to increase due to differences in the lattice rotation
and void evolution. In each case, the stress level is smaller for the
porous crystal than for the pristine one. The evolution of the normalized
void volume fraction (𝑓∕𝑓0) is presented in Fig. 4b. It is observed
that, as expected, the void volume fraction increases for tension and
decreases for compression, however, there are important differences
between the two loading directions. While for tension in [001] void
grows monotonically, for tension in [1̄10] after initial increase void
volume stabilizes at some, relatively small, constant value (𝑓∕𝑓0 ∼
1.13), at least for the demonstrated strain regime.2 On the other hand,
for compression in [1̄10] void volume decreases monotonically and
void starts to close at a relatively small true strain level (∼ 0.25)3

and for compression in [001] after initial important decrease the void
collapse is postponed to higher strain values. It should be stressed that
the overall stress triaxiality value, calculated accounting for the 3D
character of the stress field (note that 𝛴𝑧𝑧 is not zero for all analysed
cases), is approximately equal to 0.5 for both tension loadings and −0.5
for compression. Only small variations in the Lode parameter calculated

1 See definition (16), which is in the present case equipped with the sign
o indicate the in-plane rotation direction. Sign + denotes clockwise and

anticlockwise rotation of [001] axis.
2 It has been verified that for both these loading cases, the void volume

starts to increase with accelerating rate and softening is observed for in-plane
mean stress at larger strain, which events eventually lead to void coalescence,
see Fig. S.1 in the supplementary material.

3 Calculations were stopped at the moment when the void opposite bound-
aries were first in contact since the material overlapping was not prevented in

calculations.
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Fig. 3. (a) In-plane lattice rotation angle obtained using EBSD measurement (reprinted from Gan et al., 2006 with permission from Elsevier) and (b) misorientation angle map
plotted found by the CPFEM method for a 5% compression strain. The dashed line represents the slip sectors at an angle of 35.3, 54.7, and 90 degrees respectively.
Fig. 4. Comparison of (a) absolute value of in-plane mean stress (𝜎mean) (b) normalized void volume fraction (c) displacement biaxiality factor (𝛽), (d) true strain biaxiality factor
(𝛽log) for four loading cases between pristine and voided single crystal. Evolution of quantities is presented as a function of the absolute value of, 𝐸load = ln(1+ 𝑢∕𝐿) where 𝑢 is the
displacement in the loading direction.
for the overall stress are detected for four loading cases (its value is
around 0.32–0.33).

Displacement biaxiality ratio 𝛽, calculated here as the inverse ratio
of in-plane displacements in loading direction with respect to the lateral
one, is seen in Fig. 4c, while the in-plane true strain biaxiality 𝛽log, cal-
culated as the corresponding ratio of in-plane components of true strain
measure (e.g. for tension/compression in [001] it is 𝛽log = 𝐸𝑥𝑥∕𝐸𝑦𝑦 =
ln(𝐹𝑥𝑥)∕ ln(𝐹𝑦𝑦)) is shown in Fig. 4d. Their variation with strain is
compared for all four processes and pristine and voided crystals. As
expected, it is observed that for a crystal without a void for all processes
the evolution of 𝛽log is the same: it starts with the value of −0.5 in the
elastic regime and reaches −1.0 for well-developed plastic flow, which
marks incompressible deformation in that regime. On the other hand,
for voided crystals, the value of −1 is approached only for tension in
[1̄10], which is related to the stabilization of the void growth. For the
remaining processes, the value does not drop below −0.95 indicating
the compressibility of voided crystal.

Differences in the void growth or closing for two loading directions
concern also the developed void shape as seen in Figs. 5 and 6. While
the ellipsoidal shape of the void is observed for tension in [1̄10] and
compression in [001] (equivalent in terms of slip activity pattern in
6

pristine crystal), the polygonal shapes are the results of compression
in [1̄10] and tension in [001] directions. Accumulated shear maps also
show the failure mode for each case. In compression cases the failure
proceeds by accumulated shear localization in two intersecting bands.
For tension, although at the initial stage two bands are also visible, the
void coalescence takes place, much later for [1̄10] than for [100] case
(see footnote 2 and Fig. S.1 in Supplementary Material).

Fig. 6 shows an interesting interplay between the void evolution and
the grain fragmentation phenomenon. It is seen that for the two cases
for which the void growth/collapse is halted or retarded (tension in
[1̄10] and compression in [001], respectively) the clear checker-board-
type subdivision of initial grain into subgrains, misoriented with respect
to each other by the angle as large as ∼ 20◦ at the true strain level 0.25,
is found. On the other hand, for two other processes, the significant
lattice rotation is seen only in the domains of intensive strain. These
latter results confirm microstructure evolution as an important effect
accompanying the deformation of voided crystalline materials.

The analysis showcased in this section illustrates that both in-plane
stress biaxiality and stress triaxiality, as well as displacement or strain
biaxiality, alone are inadequate in determining the growth of voids.
This is particularly true when anisotropic materials are analysed. It
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Fig. 5. Space distribution of accumulated shear at true strain |𝐸load| level 0.25. (a) Tension [001] (b) Tension [1̄10] (c) Compression [1̄10], (d) Compression [001]. Initial orientation
of crystallographic directions [001] and [1̄10] was marked on the plots.

Fig. 6. Local lattice rotation angle at true strain |𝐸𝑙𝑜𝑎𝑑 | level of 0.25 in the loading direction. (a) Tension [001] (b) Tension [1̄10] (c) Compression [1̄10], (d) Compression [100].
Initial orientation of crystallographic directions [001] and [1̄10] was marked on the plots.
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is important to note that microstructure evolution plays a substantial
role in this process. Fragmentation of bulk crystal surrounding the void
into subgrains may lead to significant impediment of the void volume
changes.

4.2. Void growth and microstructure evolution in in-plane biaxial loading
processes

In this subsection, to further explore factors differentiating the void
growth and accompanying grain fragmentation in FCC crystals, in-plane
biaxial processes are considered, for three orientations A, B, and C
defined in Table 2. Orientations were selected following Potirniche
et al. (2006). In order to investigate and differentiate the effect of stress
and strain biaxiality seven loading scenarios with 𝛽 equal to −0.5, 0,
and 1 as well as 𝜂 equal to −0.5, 0, 0.8, and 1 are analysed. Let us
remark that orientation A, contrary to B and C, is non-symmetric with
respect to the loading axes, thus shear strain component 𝐸𝑥𝑦 (cor. shear
stress component 𝛴𝑥𝑦) may be observed for 𝜂 (cor. 𝛽) loading cases even
for a pristine crystal sample.

4.2.1. Overall response of voided crystal
Stress biaxiality ratio. The stress biaxiality ratio for seven loading sce-
narios is shown in Fig. 7a. To start with, as it is evident, the stress
biaxiality ratio for the 𝜂 loading case is maintained constant for all
crystal orientations during the deformation process, which verifies the
validity of the finite element procedure used for imposing a constant
stress biaxiality ratio. On the other hand, in general, for displacement
controlled processes (with constant 𝛽) stress biaxiality ratio 𝜂 changes
during the deformation process. For crystal orientations A and C,
under the 𝛽 = −0.5 loading case, the stress biaxiality is larger than
zero; the slope initially rises, then progressively drops, and ultimately
approaches the uniaxial loading case at the end of loading. Although
the biaxiality ratio is marginally more than 𝜂 = 0 for orientation B at
he end of loading, apparently, it would reach the uniaxial loading state
f the deformation would have proceeded. For 𝛽 = 0, the slope steadily
ises until it approaches 𝜂 = 1 at the end of loading. For this case,
n average the value of stress biaxiality for three orientations is close
o 𝜂 = 0.8 that is why for comparison purposes such stress controlled
cenario is also selected for analysis. Finally, for the 𝛽 = 1 case, the
tress biaxiality ratio is kept constant just as it does for the 𝜂 = 1
ase. Those graphs in conjunction with displacement biaxiality plots in
ig. 7b are important for analysing the growth of the void and the stress
esponse. The softening stress response is evident in Fig. 7c when the
tress biaxiality ratio increases and void growth is significant, resulting
n coalescence.

Additionally, yellow lines are denoted as ‘uniaxial’ in Fig. 7, show
he results obtained for the in-plane uniaxial tension process without
he employment of a special spring element but using the displacement-
ontrolled conditions with 𝐇 described by Eq. (13). Calculations are

performed for verification purposes and are in good agreement with
the predictions obtained with the use of the spring element (marked as
𝜂 = 0 in figures).

Displacement biaxiality ratio. The displacement biaxiality under various
loading instances is depicted in Fig. 7b. Similar to the situation of
stress biaxiality, the displacement biaxiality ratio 𝛽 is kept constant
uring the 𝛽-type process, which verifies the finite element procedure.
n the contrary, in general, for stress ratio controlled processes (with
onstant 𝜂), the displacement biaxiality ratio varies in the course of
eformation. The displacement biaxiality is kept below −0.5 for 𝜂 = 0
in-plane uniaxial tension) and 𝜂 = −0.5 loading cases. For asymmetric
rientation A, under the 𝜂 = 1 loading scenario, the ratio initially
ollows the 𝛽 = 1 case, but as deformation proceeds the slope steadily
alls and approaches the 𝛽 = 0 case. For orientations B and C, the ratio
emains constant until halfway through the deformation, after which it
8

teadily drops. For 𝜂 = 0.8 as expected, the strain biaxiality oscillates
round 𝛽 = 0, although differently for each of the three orientations.
or orientation A it is almost constant and close to zero, for orientation
it is negative, initially being close to −0.5 and increasing towards the

niaxial straining mode, while for orientation C it starts with a positive
alue and next decreases to zero. These plots are again valuable for
tudying in conjunction with the contour plots of accumulated shear in
ection 4.2.2, void evolution (Fig. 7d) and stress response (Fig. 7c).

verall mean stress response. Fig. 7c illustrate the in-plane overall
ean stress response for the various loading scenarios and the given

rystallographic orientation. When all loading scenarios are compared,
= 1 exhibits the stiffest response in the initial deformation phase,

hereas 𝜂 = −0.5 demonstrates the softest stress response for all
rystal orientations. For the 𝜂 = 0 loading scenario, the stress response
ncreases monotonically in all orientations. Fig. 7a shows that the stress
iaxiality ratio is greater than 0 (positive) for 𝛽 = −0.5, 0 and 1, and

𝜂 = 0.8 and 1 loading cases. As a result, in the initial deformation stage,
a stiffer stress response is observed, followed by a softening response
due to significant void expansion in the crystal, which cannot be further
compensated by an increase of average stress in the bulk crystal. When
the magnitude of peak stress for the different orientations is compared,
orientation C has the largest peak stress, and orientation A has the
lowest peak stress for 𝛽 =1 loading case. Furthermore, the evolution of
the overall mean stress in Fig. 7c correlates well with the displacement
biaxiality ratio 𝛽 shown in Fig. 7b. In particular, the higher 𝛽 value the
more stiff the initial response is and the sooner (in terms of the value
of 𝐹22 − 1) the peak stress is achieved for the given process.

Fig. 8 depicts the overall mean stress response in both pristine and
porous unit cells for various crystal orientations and the specified load-
ing scenario. Five loading scenarios where 𝛽 and 𝜂 are both equal to 0
and 1 are analysed, together with scenario 𝜂 = 0.8 which approximately
corresponds to 𝛽 = 0 case as discussed before. It is evident that all
loading cases exhibit the anisotropic response. Also, it is apparent that
the response of the porous crystal differs substantially from that of
the pristine crystal. With the exception of 𝜂 = 0 (uni-axial loading
condition), the pristine crystal response is purely elastic. In the case
of 𝜂 = 0 loading, the pristine crystal displays a stiffer response than the
porous crystal for orientations A and C; however, for orientation B, the
response is almost the same for both the pristine and porous crystal.
The response of orientation C is the stiffest in each of the loading
conditions. For loading scenarios, 𝛽 = 0, 1, and 𝜂 = 0.8, 1, orientation
A initially displays the softest response, whereas orientation B exhibits
the softest response by the end of the deformation process. When the
loading scenarios 𝛽 = 0 and 𝜂 = 0 are compared, the substantially
higher stress biaxiality in the 𝛽 = 0 loading case (refer to Fig. 7a) causes
a more stiff response during an early deformation stage, followed by
a softening due to significant void expansion in the crystal. On the
contrary, a monotonic stress increase is observed for the 𝜂 = 0 loading
scenario. Instead, as expected, the stress response for 𝛽 = 0 case is close
to 𝜂 = 0.8 loading conditions. Due to the highest stress biaxiality, a
similar response was observed for 𝛽 = 𝜂 = 1.

Normalized void volume fraction evolution. Fig. 7d compares the evo-
lution of the normalized void volume fraction for various loading
conditions and the specified orientation. These evolution plots are in
good agreement with displacement biaxiality ratio plots in Fig. 7a. For
all orientations, the void growth rate increases as the displacement
biaxiality ratio increases. The void is collapsing for the 𝜂 = −0.5
loading case, and this behaviour is the most pronounced in orienta-
tion C. Confirmation of the phenomenon can be seen in contour plots
of accumulated shear for orientation C which are shown in Fig. 13.
Under 𝜂 = 0 loading case, the void grows very slowly as compared to
higher stress biaxiality cases. If the displacement biaxiality ratio is less
than −0.5, softening behaviour is not observed, since not much void
growth is seen. The void growth increases at first with 𝛽 = −0.5 but
subsequently stabilizes for all orientations. The evolution of the void

volume fraction under the 𝛽 and 𝜂 = 1 loading scenarios correlates with
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Fig. 7. Variation of (a) stress biaxiality ratio, (b) displacement biaxiality ratio, (c) overall mean stress (1∕2 (𝛴𝑥𝑥 + 𝛴𝑦𝑦)) (The peak stress is indicated by ∙), and (d) normalized
void volume fraction under various loading cases.
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Fig. 8. Overall mean stress response (𝜎mean = 1∕2 (𝛴𝑥𝑥 + 𝛴𝑦𝑦)) for different crystal orientations and for the loading case: (a) 𝛽 = 0, (b) 𝜂 = 0, (c) 𝜂 = 0.8 (d) 𝛽 = 1 (e) 𝜂 = 1.
the evolution of the displacement biaxiality ratio (Fig. 7b). The curves
of void evolution start to deviate from each other at the same moment
when the value of 𝛽 for 𝜂 = 1 case drops below one.

Qualitative differences are observed in the curves shown in Fig. 7d
for 𝜂-cases, which can be explained by the accompanied variation of
displacement biaxility ratio. As it is seen, for the high stress biaxiality
ratio: 𝜂 = 1, initially for all three orientations the displacement biaxi-
ality 𝛽 is equal to 1, so the cell is under the conditions beneficial for
the void expansion. Accordingly, at this stage, the void is growing in
all directions (compare Fig. S.2f, S.3f, and S.4f in the supplementary
material). However, as deformation proceeds the displacement biaxiality
ratio is decreasing towards zero, which effectively slows down the void
growth since its growth starts to be limited to one direction in the plane.
Nevertheless, the void volume fraction is still growing on the cost of
bulk crystal, and the achieved values are high. This causes a decrease
of the overall in-plane mean stress as an increase of average stress in the
bulk crystal is not able to compensate for the void expansion, Fig. 7c.
On the contrary, for smaller stress biaxiality ratio: 𝜂 = 0, the initial
displacement biaxiality is negative, so even though the net change of
void volume fraction is positive, in this scenario the void diameter is
growing only in one direction while decreasing in the perpendicular
one (compare Fig. S.2e, S.3e and S.4e in the supplementary material).
For this case, as the deformation proceeds the displacement biaxiality
ratio increases towards zero, which in this case leads to accelerated
void growth because the reduction of void size in one of the direc-
tions is halted, while it is still growing in another one. For all three
orientations for the considered deformation range, the increase in the
void volume fraction is not yet sufficient to overcome the overall mean
stress increase due to the strain hardening in bulk crystal. However,
with increasing deformation one may expect softening which will be
10

accompanied by an accelerated void growth rate. Interestingly, for the
𝜂 = 0.8 case the former and latter scenarios of void growth are observed
for orientations C and B, respectively (see also Fig. 9c). Orientation
A exhibits here some limit case with the almost constant rate of void
volume fraction.

Fig. 9 compares the evolution of the void volume fraction for
different crystal orientations and the selected loading conditions. Five
loading cases, the same as in mean stress response plots shown in
Fig. 8, are illustrated. For 𝜂 = 0 (in-plane uniaxial loading case),
the anisotropic response is observed. Void growth in orientation C
is the highest, followed by orientations A and B. But for 𝛽 = 0
and 1 loading cases, due to relatively large strain biaxiality, the void
growth is significant and the effect of crystal orientation diminishes.
It has been verified that the latter observation is true also for other
processes in which 𝛽 value is kept constant. The same observation
is reported in Potirniche et al. (2006) under displacement controlled
boundary conditions. The void growth for orientations C and B are
nearly identical for 𝜂 = 1 loading. However, the void growth rate is
slower in asymmetric orientation A than in orientations B and C. For
the same 𝜂 and 𝛽 values, the void expansion under 𝛽 = 0 is substantially
faster than the 𝜂 = 0 loading situation, since, as already mentioned, this
case corresponds approximately to 𝜂 = 0.8 case, so a much higher stress
biaxiality ratio. Similarity between 𝜂 = 0.8 and 𝛽 = 0 case is also seen
when comparing the contour plots in (b) parts of figures in Section 4.2.2
with respective maps in Fig. S.5 in supplementary material.

Unlike in Prasad et al. (2015) the void coalescence criterion is
not formulated in the present study. Nevertheless, in order to closely
observe this phenomenon, in Fig. 10 it is demonstrated how the void
size is changing in three different directions: AB, EF, E’F’ marked
in Fig. 1 for two selected loading cases: 𝛽 = 1 and 𝜂 = 1. The
figure presents the evolution of the value of log(𝐿∕|𝐱right − 𝐱lef t |) where

𝐱right and 𝐱lef t denote current locations of nodes at the right and left
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Fig. 9. Normalized void volume fraction evolution for different crystal orientations and for the loading case: (a) 𝛽 = 0 (b) 𝜂 = 0 (c) 𝜂 = 0.8 (d) 𝛽 = 1 (e) 𝜂 = 1.
end of the respective diameter and 𝐿 is the current cell size in a
relevant direction. When this value is tending to zero the coalescence is
approached. It is seen that for the case 𝛽 = 1 and symmetric orientations
B and C the coalescence state is attained in two perpendicular bands
along X and Y directions. Additionally, the void is loosing its spherical
shape, more importantly for orientation B than C. For other cases
the coalescence is approached mainly in X direction and this state is
attained visibly sooner for orientations A and B than for orientation C.
Fig. 10a shows that, although the orientation effect is not seen in the
normalized void evolution plots shown in Fig. 9 under the same value
of displacement biaxiality, it manifests in the developed void shape and
thus may influence the coalescence strain and, in general, the failure
mode.

4.2.2. Local sample response
Local distribution of accumulated shear. First, in order to show the pos-
sible failure mode, contour plots of accumulated shear are presented at
the end of the deformation process at strain level 0.3 for six considered
loading scenarios in Figs. 11–13, for three crystallographic orientations
A, B, and C listed in Table 2, respectively. Since the strain level along
the principal loading direction is the same for all the cases, one is able
to observe relative variation in a shape change of the cell as a whole
and the void for all six loading scenarios. Additionally, to illustrate the
strain localization process, the contour plots are presented for 𝐹22−1 =
0.15, so at the intermediate stage of the deformation, and placed in the
supplementary material.

Part (a) of Figs. 11–13 shows the contour plots of accumulated
shear under 𝛽 = −0.5 loading. For all orientations, shear begins to
accumulate on the transverse sides of the voids at the intermediate
strain level of 0.15. Due to the symmetry of crystal orientations B and
C with respect to the loading direction, the symmetrical distribution
11
of accumulated slip is observed, whereas for asymmetrical orienta-
tion A alternate bands of severe deformation and no deformation are
developing. Because of the relatively high stress biaxiality ratio in the
𝛽 = −0.5 scenario, void growth is rapid as deformation progresses (refer
to Figs. 7a and 7d). The unit cell is deformed substantially at strain level
0.3, with the maximum shear accumulating on the transverse sides of
the void. For orientations A and B, the transverse ligament is the origin
of void coalescence. In orientation A, the void rotates, and the strain
concentration is observed on the transverse sides along the inclined
direction. Moreover, at the strain level 0.3 a slight trace of the shear
band is seen. Because of the asymmetric orientation, the unit cell edges
do not remain straight and are deformed. For orientation B, a polygonal
void shape is noticed. For orientation C, inclined shear bands clearly
form, and the shear accumulates along the transverse sides of the void.
The mode of failure in this case is through these inclined shear bands.
In addition, the void elongates in the loading direction, resulting in an
ellipsoidal void shape.

Part (b) of Figs. 11–13 displays the contour plots of accumulated
shear under 𝛽 = 0 loading. The void growth is substantially faster
due to the high stress biaxiality (0.5 < 𝜂 < 1, refer to Fig. 7a) and
is evident even at the intermediate strain level of 0.15. At this strain
level, shear begins to accumulate around the void and the void starts
to grow significantly in the transverse direction for all three orien-
tations. Additionally, the void rotates for orientation A. More shear
is accumulated in the transverse ligament for orientation C than for
orientations A and B. The symmetric distribution of contours is found
again for symmetric orientations B and C. As the deformation process
proceeds, rapid void growth is observed in all crystal orientations, and
coalescence occurs along the transverse sides of the void. The void is
substantially rotated for orientation A, and a zigzag pattern of strain
localization bands is seen along the transverse direction of the void.
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Fig. 10. The change of the void diameters along X (AB), Y (EF) and diagonal (E’F’) directions (see Fig. 1) for three orientations and two loading cases: 𝛽 = 1 (top) and 𝜂 = 1
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imilarly, in orientation B, void expansion in the transverse direction
s quick, and a polygonal form of the void is clearly developed. On
he other hand, the void shape in orientation C is nearly circular, and
ccumulated shear is seen in the transverse ligament.

Part (c) of Figs. 11–13 present the accumulated shear distribution
nder 𝛽 = 1 loading. The contour plots resemble those from the
receding loading scenario, i.e. 𝛽 = 0, however, the void growth is
uick in both longitudinal and transverse directions due to the strong
tress biaxiality. When compared to the previous loading instance 𝛽 =
, the void expansion and accumulation of shear is significantly more
evere at the intermediate strain level of 0.15. The void is rotated for
symmetric orientation A, as in prior loading scenarios. Due to the high
tress biaxiality, the void form is much more circular for orientations B
nd C at the strain of 0.15. In contrast to prior loading examples, coa-
escence is observed in both directions at the final strain level of 0.3 for
rientations B and C. In addition, for orientations B and C, a polygonal
oid shape with rounded corners is observed. Similar behaviour was
eported in Srivastava and Needleman (2015) at high stress triaxialities.
urthermore, for both orientations, substantial shear accumulation is
een around the void. The void rotates even further in asymmetric
rientation A, but its shape is not perfectly circular or polygonal. The
ame rapid void growth is clearly observed in normalized void volume
ractions plots for this 𝛽 loading case and three orientations (refer
ig. 7d).

Now, let us move to the 𝜂 = const loading scenarios.
Subfigures (d) of Figs. 11–13 show the contour plots of accumulated

hear under the 𝜂 = −0.5 loading scenario. In comparison to the
= −0.5 loading condition, void growth is not significant under this

oading configuration. This is because the stress biaxiality ratio is low.
lso, as previously discussed on the basis of the void evolution plots,
12

𝛽

oid expansion is not detected when the displacement biaxiality ratio
is lower than −0.5. At the intermediate strain level of 0.15, inclined

hear bands begin to form for orientation A, whereas shear bands
or orientation C are at 45 degrees with the main loading direction.
owever, in orientation B, the deformation is almost homogeneous and

here is no void growth. For orientations A and C, the void collapses
t a strain level of 0.3. Normalized void volume fraction plots confirm
he observation. The void in orientation C is collapsing like a penny
haped crack. Furthermore, shear accumulates the most at the tip of the
everely elongated void. For orientation B, still, almost homogeneous
eformation is seen, with no void expansion.

Part (e) of Fig. 11–13 displays the contour plots of accumulated
hear in accordance with the 𝜂 = 0 (uniaxial) loading scenario. The
esponse is quite similar to the loading case with 𝜂 = −0.5. At the
train level of 0.15, for asymmetric orientation A, the shear starts to
ccumulate on the transverse sides of the void and the formation of
ne family of inclined shear bands is observed whereas for orienta-
ion B almost homogeneous deformation is observed with no shear
ocalization. The formation of two families of the inclined deformation
ands and accumulation of slip on transverse sides of the void is seen
or orientation C. For orientation A, a noticeable formation of another
amily of inclined deformation bands is observed at a strain level of
.3, and the unit cell is distorted whereas for orientation B some
eterogeneity of deformation is observed, but not much void expansion.
or orientation C, slip shear accumulates on both sides of the void,
ausing the void to elongate along the loading direction, resulting in
n ellipsoidal shape. When compared to orientations A and B, void
xpansion is substantially more prominent for orientation C. Overall,
hen comparing responses of three orientations with the respective

= 0 loading case, the void growth is not significant due to low
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Fig. 11. Contour plots of accumulated shear 𝛤 for the asymmetric orientation A under various loading conditions at the strain level of 𝐹22 − 1 = 0.3.
stress and negative displacement biaxiality ratios. On the other hand,
as already discussed, the 𝛽 = 0 case is approximately equivalent to
the 𝜂 = 0.8 case for which the respective accumulated shear maps are
shown in Fig. S.5a of the supplementary material. Those contour plots
are very similar to the maps shown in (b) subfigures included in this
subsection.

Finally, part (f) of Figs. 11–13 depicts the accumulated shear con-
tour plots under the 𝜂 = 1 loading scenario. Similarly to the 𝛽 = 1
loading scenario, void growth is accelerated due to high stress and
displacement biaxiality. The displacement biaxiality ratio plot (Fig. 7b)
explains the slight deviations from the 𝛽 = 1 loading condition. For
orientations B and C, the void growth is rapid even at the strain level
of 0.15, which is identical to the 𝛽 = 1 loading situation. However,
there is some deviation in the strain accumulation as compared to
𝛽 = 1 case for asymmetric orientation A, which can be correlated with
differences seen in the displacement biaxiality ratio curves in Fig. 7b
for these cases. A polygonal void shape with rounded corners is seen
for orientations B and C at the strain level of 0.3, which is identical
to the 𝛽 = 1 loading situation. The void growth is slightly reduced
since the displacement biaxiality ratio is less than 1 (refer to Fig. 7d).
The primary difference is that in the 𝛽 = 1 loading situation, void
coalescence occurs in both loading directions, but in the 𝜂 = 1 loading
instance, void coalescence happens only in the transverse ligament.
Displacement biaxiality plots (Fig. 7b) clearly show the origin of this
disparity. In addition, the maximum shear accumulates around the void
for all orientations.

Local distribution of lattice rotation. The influence of void evolution
and loading conditions on new grain formation is now studied on the
basis of contour plots of the lattice rotation angle. We concentrate on,
somewhat opposite, cases of orientation A and B, and present only
selected results for orientation C.
13
The lattice rotation angle 𝛹 ∈ (0, 𝜋), presented in the plots, is
defined as:

𝛹 = arccos
(

tr(𝛥𝐑(𝑡)) − 1
2

)

(16)

where 𝛥𝐑(𝑡) is calculated based on the initial orientation tensor 𝐑(0)
and current orientation tensor 𝐑(𝑡), respectively, as

𝛥𝐑(𝑡) = 𝐑(𝑡)𝐑(0)⊺ . (17)

Orientation tensor 𝐑(𝑡) is constructed based on the current orientation
of lattice direction 𝐚 with the Miller indices [100] and lattice plane
normal 𝐛 with {001}, respectively. The change of their orientation
during the deformation process is governed by the elastic part of the
deformation gradient 𝐅𝑒, so that 𝐚(𝑡) = 𝐅𝑒(𝑡)𝐚(0) and 𝐛(𝑡) = 𝐅−𝑇

𝑒 (𝑡)𝐛(0).
In each loading case, we observe rotation angle heterogeneity,

which results in the development of a new microstructure. The presence
of a void causes heterogeneity of strain, which results in heterogeneity
of lattice rotation. However, we notice that the distribution of the
rotation angle does not follow perfectly the distribution of accumulated
shear 𝛤 , as was already seen in Section 4.1 for uniaxial loading cases.

The lattice rotation angle plots for asymmetric orientation A are
shown in Fig. 14. Because orientation A is not stable under prescribed
loading conditions, we observe uniform lattice rotation even in pristine
crystals. For example, the calculated lattice rotation angle for loading
case 𝜂 = 0 at 𝐹22 − 1 = 0.3 for a crystal without a void is 11◦. For
voided crystal and 𝜂 = 0 case, we observe bands with rotation angles
of 30◦, whereas the remaining portion of the cell rotates at a smaller
angle of about 10◦, which roughly corresponds to the lattice rotation
which would be seen in pristine crystals. In the unit cell, new grains are
formed as a result of the different rotation angles. Under the 𝜂 = −0.5
loading scenario, a similar response is observed. Two inclined bands
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Fig. 12. Contour plots of accumulated shear 𝛤 for the symmetric orientation B under various loading conditions at the strain level of 𝐹22 − 1 = 0.3.
are forming in this case. The evolution of the void volume fraction
has an effect on the evolution of the microstructure. For 𝜂 = −0.5, we
see that the new subgrains with larger rotation angle correlate with
the zones of increased accumulation of shear. For 𝛽 = 0, 𝛽 = 1, and
𝜂 = 1 loading cases, the formation of new grains takes place around
the void, as well as alternate domains of no rotation (blue domain) and
moderate rotation outside of the void is observed. All of these factors
contribute to the formation of multigrain microstructures, particularly
at high strain or stress biaxiality values. For the 𝛽 = −0.5 loading
case (and for the approximately equivalent 𝜂 = 0.8 case as seen in the
supplementary material), the combination of effects found for other
loading cases is seen. We observe the formation of a band with high
lattice rotation, which starts at the lateral sides of the void and then is
parallel to the main direction of loading, as well as alternating bands
of no and medium rotation angles in the middle vertical portion of the
unit cell.

Fig. 15 depicts the lattice rotation angle plots for orientation B. Due
to the symmetry of orientation with respect to the loading conditions,
the developed microstructure preserves this symmetry. Because orienta-
tion B is stable under prescribed loading conditions, we do not observe
lattice rotation for pristine crystal. For a voided crystal, for 𝜂 = 0 and
𝜂 = −0.5 loading cases, the heterogeneity of lattice rotation angle is
very small, which is less than 5◦, following homogeneity of deformation
seen in Fig. 12(d, e). Around the void, a few small domains with 5–10◦
of lattice rotation are present. The formation of new grains around the
void is observed for higher biaxiality loading cases where 𝛽 = 0, 1 and
𝜂 = 1, and the crystal domain in a larger distance from the void does not
rotate significantly. Under 𝛽 = −0.5 and 𝜂 = 0.8 loadings, the response
14

is somewhere in between the two scenarios discussed before.
In order to further illustrate the effects related to grain refinement,
Figs. 16 and 17 present histograms of the lattice rotation angle gener-
ated based on the data in Figs. 14 and 15, respectively. The histogram
plot on the left displays the entire unit cell, while the histogram plot
on the right shows the area surrounding the void. For the purpose
of the latter plot, we employed two layers of finite elements which
surround the void (refer to Fig. 2). Different colours of bars corre-
spond to different loading conditions. When we compare the results
for asymmetric orientation A and symmetric orientation B, we observe
that orientation A has a substantially larger orientation spread than
orientation B. This is because most of the elements rotate less than
10 degrees in orientation B. When we consider the area around the
void for both orientations, the orientation spread widens significantly,
especially for 𝜂 = 1 and 𝛽 = 1 loading cases.

In order to quantify more directly observed differences for each case
mean value and standard deviation of rotation angle were calculated
and collected in Table 4, which includes also the respective values
found for orientation C. As expected, for all loading conditions the
highest mean value is obtained for orientation A, which is connected
with lack of symmetry for this configuration. Considering the results
for the same orientation but different loading conditions, we see that
the highest mean misorientation angle is found for the case 𝜂 = −0.5
and 0 for orientation A, and for 𝛽 = 1 for orientation B and C (refer to
Table 4). The standard deviation is used to illustrate lattice rotation
heterogeneity. High biaxiality factors 𝜂 and 𝛽 = 1 correspondingly
showed the highest lattice rotation heterogeneity for orientation A.
However, for other stress and strain biaxiality factors, the variation in
lattice rotation is not significantly lower. The smallest heterogeneity
is observed for the 𝜂 = 0 case (around 4.5 degrees). As a result, in

the presence of a void, orientation A is prone to grain refinement. For
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Fig. 13. Contour plots of accumulated shear 𝛤 for the symmetric orientation C under various loading conditions at the strain level of 𝐹22 − 1 = 0.3.
Table 4
Mean (M) and standard deviation (SD) of misorientation angles (degrees) for two orientations under different loading scenarios.

Loading case 𝛽 = −0.5 𝛽 = 0 𝛽 = 1 𝜂 = −0.5 𝜂 = 0 𝜂 = 0.8 𝜂 = 1

Orientation A M 11.656 8.593 13.605 16.804 16.034 9.127 9.308
SD 7.302 7.997 9.114 6.390 4.569 6.913 8.223

Orientation B M 3.179 4.446 7.548 0.255 0.808 4.083 5.702
SD 2.938 7.605 9.837 0.321 0.956 6.879 8.125

Orientation C M 5.188 4.490 6.502 7.103 6.445 4.687 5.727
SD 5.278 6.808 7.576 8.595 6.451 7.065 6.737
orientations B and C, the disparities in lattice rotation heterogeneity
are larger. Again, 𝛽 and 𝜂 = 1 had the highest values. However, no
heterogeneity is evident for 𝜂 = −0.5 and 𝜂 = 0 for orientation B, as
shown by contour plots (Fig. 15). This observation is not true for ori-
entation C, which can be correlated with important strain heterogeneity
for those two cases seen in Fig. 13. On overall, the magnitude of grain
refinement appears to be more influenced by loading conditions in the
case of symmetric orientations.

5. Summary and conclusions

In this paper, using the crystal plasticity theory combined with
the finite element method, we have investigated the effects of initial
crystallographic orientation, stress, and displacement controlled load-
ing conditions on the void and microstructure evolution in a 2D plane
strain unit cell. Uniaxial and biaxial loading cases have been studied.

For uniaxial loading cases a special configuration, which enforces
an equivalent pattern of plastic deformation in the pristine crystal, has
been selected in order to investigate the mutual interactions between
15
the evolving void and the lattice rotation heterogeneity. It has been
found that neither macroscopic in-plane stress biaxiality nor displace-
ment/strain biaxiality, are sufficient to fully decide about the void
growth, especially when anisotropic materials are considered, and that
a significant role in this process is played by microstructure evolution.
Fragmentation of bulk crystal surrounding the void into subgrains
may lead to significant disturbance of the void volume changes. Note
that a similar observation, about the importance of the microstructure
changes, was made by Prasad et al. (2015) for HCP crystal in which
the appearance of domains with new twin related orientation strongly
affected void growth and coalescence.

Next, biaxial loading cases have been considered for three crystal
orientations, one of which is not symmetric with respect to loading
directions. It has been analysed how stress or strain biaxility factors
and initial lattice orientation influence the void evolution in terms of its
size and shape. Overall, seven cases with three displacement controlled
loading scenarios (𝛽 = {−0.5, 0, 1}) and four stress controlled loading
scenarios (𝜂 = {−0.5, 0, 0.8, 1}) have been considered. The following are
the key conclusions of the study:
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Fig. 14. Contour plots of lattice rotation angle (𝛹 ) in (degrees) for the asymmetric orientation A at the strain level of 𝐹22 − 1 = 0.3.
1. It seems that the primary driving factor for void growth and
coalescence is the displacement biaxiality factor 𝛽. A clearer cor-
relation is found between variations in displacement biaxiality
ratio and normalized void volume fraction evolution plots, as
well as the resulting void shape and coalescence pattern.

2. Softening stress response is evident for large displacement biaxi-
ality factors when the stress biaxiality ratio 𝜂 increases. The void
volume fraction increase in such cases is significant, resulting in
void coalescence. The effect of crystal orientation is then dimin-
ished. Similar findings were reported in other studies (Potirniche
et al., 2006). The coalescence is observed in both directions for
displacement biaxiality 𝛽 =1, but only in the transverse ligament
for stress biaxiality 𝜂 =1. For advanced plastic deformation,
particularly at high stress and displacement biaxiality 𝜂 = 𝛽 = 1,
voids evolve into polygonal forms. Similar findings have been
reported by Srivastava and Needleman (2015).

3. For stress controlled processes the starting point can be de-
scribed as a biaxial straining process, which under the void
growth is approaching an uniaxial straining mode. The way by
which the void growth proceeds is governed by the variation of
the displacement biaxiality factor 𝛽. When initially 𝛽 is positive
the obtained void volume fractions are larger (softening is ob-
served earlier), while the void growth rate will be decreasing
when the uniaxial straining mode is approached. On the other
hand, when initially 𝛽 is negative then the obtained void volume
16
fractions are smaller (softening is observed later), while the void
growth rate will be increasing when the uniaxial straining mode
is approached.

4. For lower stress 𝜂 and displacement 𝛽 biaxiality values, an
anisotropic response is observed, and the strain-stress response is
dependent on crystallographic orientation. For the lowest value
of stress biaxiality 𝜂 = −0.5, void closure has been observed, par-
ticularly in the non-symmetric orientation A and orientation C,
as well as the formation of strain localization bands.

5. In general, the heterogeneity of plastic deformation is the largest
for non-symmetric orientation A. This results in lattice rotation
heterogeneity and the formation of grain fragmentation in each
loading case. For other orientations heterogeneity of lattice rota-
tion is concentrated around the void, especially for higher stress
and displacement biaxiality ratios (𝛽 = {0, 1}&𝜂 = {0.8, 1}). On
the other hand, for small or negative values of both biaxiality
factors, void evolution, and lattice rotation heterogeneity is
greatly influenced by initial crystal orientation and substantially
differ for the same value of stress and strain biaxiality factor,
while the grain refinement encompasses a larger crystal volume.

It should be remarked that FCC crystals usually present smaller plastic
anisotropy than HCP crystals, for which different types of slip systems
can be activated with substantially different values of critical shear
stresses. Moreover, for many HCP metals, uniaxial twinning plays
an important role. In such a situation, we may expect even more
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Fig. 15. Contour plots of lattice rotation angle (𝛹 ) in (degrees) for the symmetric orientation B at the strain level of 𝐹22 − 1 = 0.3.

Fig. 16. Histogram plots of lattice rotation angle 𝛹 in degrees for the asymmetric orientation A at the strain level of 𝐹22 − 1 = 0.3. (Area fraction is calculated in reference
configuration).
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Fig. 17. Histogram plots of lattice rotation angle 𝛹 in degrees for the symmetric orientation B at the strain level of 𝐹22 − 1 = 0.3. (Area fraction is calculated in reference
configuration).
significant influence of microstructure changes on void evolution and
accompanying ductile failure mode. This, together with extending the
analysis to 3D spherical voids, is an interesting direction for further
research.
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