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Abstract

An overwhelming majority of mathematical models of regulatory pathways, including the

intensively studied NF-κB pathway, remains non-identifiable, meaning that their parameters

may not be determined by existing data. The existing NF-κB models that are capable of

reproducing experimental data contain non-identifiable parameters, whereas simplified

models with a smaller number of parameters exhibit dynamics that differs from that

observed in experiments. Here, we reduced an existing model of the canonical NF-κB path-

way by decreasing the number of equations from 15 to 6. The reduced model retains two

negative feedback loops mediated by IκBα and A20, and in response to both tonic and pul-

satile TNF stimulation exhibits dynamics that closely follow that of the original model. We

carried out the sensitivity-based linear analysis and Monte Carlo-based analysis to demon-

strate that the resulting model is both structurally and practically identifiable given measure-

ments of 5 model variables from a simple TNF stimulation protocol. The reduced model is

capable of reproducing different types of responses that are characteristic to regulatory

motifs controlled by negative feedback loops: nearly-perfect adaptation as well as damped

and sustained oscillations. It can serve as a building block of more comprehensive models

of the immune response and cancer, where NF-κB plays a decisive role. Our approach,

although may not be automatically generalized, suggests that models of other regulatory

pathways can be transformed to identifiable, while retaining their dynamical features.

Introduction

The key and frequent drawback of mechanistic models of regulatory pathways is a lack of iden-

tifiability, meaning that model parameters may not be determined. One can distinguish

between structural non-identifiability, when parameters are inherently indeterminable, and

practical non-identifiability, arising when based on available data parameters may not be

determined with adequate precision. The structural non-identifiability can be resolved by

reparametrization and non-dimensionalization; however, the practical non-identifiability is

harder to resolve even if general methods have been proposed [1]. Here, we chose the NF-κB

regulatory pathway, as recent works point out that the known detailed models of this very

important pathway are not identifiable [2–4]. We reduce the original 15-variable NF-κB

model developed by Lipniacki et al. [5] in a way that it preserves two negative feedback loops
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controlling NF-κB activity and mediated by IκBα and A20 (in contrast to ealier even simpler

models [6–8]), but makes the model structurally and practically identifiable. Our approach is

not automatic, but rather modeler driven and thus differs from the algorithmic methods tested

previously on the same model [2, 9, 10] or its later variant [11].

NF-κB is an important transcription factor controlling expression of numerous genes regu-

lating the innate immune response. It is activated in response to TNF or IL1 cytokine stimula-

tion, as well as viral RNA or bacterial LPS [12]. In resting cells, NF-κB forms inactive

cytoplasmic complexes mainly with its primary inhibitor IκBα. The signals activating NF-κB

converge on the cytoplasmic IκB kinase, IKK. Activated IKK phosphorylates IκBα, inducing

its ubiquitination and rapid proteasomal degradation. IκBα degradation enables NF-κB trans-

location to the nucleus, where NF-κB upregulates transcription of numerous genes including

genes of its two inhibitors, IκBα and A20 [5, 13]. The newly synthesized IκBα translocates to

the nucleus, binds NF-κB and their complex is transported to the cytoplasm, which completes

the IκBα feedback loop. A second level of negative regulation of NF-κB involves A20 that

attenuates IKK activity by promoting its transformation into the inactive overphosphorylated

form. In this way A20 allows for accumulation of the primary NF-κB inhibitor IκBα [5, 14].

A20 is also an inhibitor of kinase TBK1, which activates IRF3, the other critical transcription

factor regulating the innate immune response [15]. As a consequence, A20 regulates the cross-

talk between NF-κB and IRF3, which are both activated upon recognition of pathogens and

are both necessary for the synthesis of interferons, produced to warn surrounding cells about

infection [12].

Modeling efforts that started two decades ago resulted in the formulation of detailed bio-

chemical models of the NF-κB signaling pathway [5, 16], reviewed in [17, 18]. Models, sup-

ported by live single-cell experiments [19, 20], elucidated the role of IκBα- and A20-mediated

negative feedbacks loops in promoting oscillations observed in several cell lines, including

SK-N-AS and MEF 3T3. These two feedback loops play also an important role in shaping the

pulsatile NF-κB response to the pulsatile TNF stimulation [21, 22]; as demonstrated, A20-defi-

cient cells show no NF-κB oscillations to tonic TNF stimulation [14] and exhibit prolonged

NF-κB activation in response to a pulse of TNF [23]. Individual cells have the ability to

respond to the pulsatile TNF stimulation with synchronous NF-κB pulses, which result in a

high expression of NF-κB-regulated genes [20, 24]; interestingly, for certain TNF stimulation

periods, due to noise the cells may switch between two entrainment modes of different fre-

quencies [25]. Pulsatile stimulation was also shown to transmit more information than the

continuous one, with the rate of order 1 bit/hour [26].

The main goal of this study is to obtain an accurate, practically identifiable model, and sug-

gest a reasonable experiment allowing for a determination of all parameters with a satisfactory

accuracy. We found that a simple protocol with a continuous 2 hour long TNF stimulation fol-

lowed by a 10 hour long TNF washout phase assures not only practical identifiability of the

reduced model, but also allows to determine parameters with accuracy comparable to the

more complex pulsatile protocols. We evaluated parameter identifiability using sensitivity

analysis techniques [27–30] finding the parameters that may be determined with the lowest

accuracy. We verified practical identifiability performing Monte Carlo simulations [31]. Fol-

lowing the standard Monte Carlo procedure, for each of three different measurement noise

levels, we generated 50 different trajectories. Next the model was fitted to such simulated

experimental trajectories and 50 parameter estimates were obtained. The results indicate that

all parameters can be estimated based on noisy data.

Finally, we showed that the reduced model has ability to produce qualitatively distinct

dynamical responses to continuous TNF signal. Depending on the assumed parameters it can

exhibit a pulse like response, damped oscillations, or sustained oscillations, i.e., the essential
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characteristics of the negative feedback system. Importantly, our results suggest that other reg-

ulatory pathways models can be transformed to identifiable, while retaining their key dynam-

ical features.

Results

Original two-feedbacks model and its reduction

The model of Lipniacki et al. [5] incorporates two negative feedback loops, one mediated by

IκBα directly binding NF-κB and sequestering it in the cytoplasm, and the other involving the

inhibition of IKK (kinase responsible for phosphorylation of IκBα targeting it for proteasomal

degradation) by the protein A20 (see Fig 1A). The dynamics of 15-model variables has been

described with mass action kinetics. For wild type (WT) cells, the dynamics of main variables

in the Lipniacki et al. 2004 model [5] qualitatively follows the dynamics of the earlier Hoff-

mann et al. 2002 model [16], see S1 Fig and S1 Text for details of the Hoffmann et al. 2002

model simulations. The model comparison involves tonic TNF stimulation, as well as pulsatile

TNF stimulations following experimental protocols published in [21, 22] after the both models

were developed. We may notice that the Lipniacki et al. 2004 model [5] satisfactorily repro-

duces free nuclear NF-κB trajectory for the protocols with three 5-min TNF pulses separated

by 60 min, 100 min or 200 min intervals studied by Ashall et al. ([21], see Fig 2A) as well as for

pulsatile protocols studied by Zambrano et al. ([22], see Fig 1C—a series of 45min TNF pulses

separated by 45 min intervals and Fig 3, S1D Fig—a series of 22.5 min TNF pulses separated

by 22.5 min intervals). As observed earlier in [24, 25] the NF-κB system can be entrained to

the pulsatile stimulation. The important differences between these two models are as follows:

The Hoffmann et al. 2002 model accounts for 3 IκB isoforms, whereas the Lipniacki et al. 2004

model replaces them by a single dominant IκB isoform, IκBα. In contrast to the Hoffmann

et al. 2002 model [16], the Lipniacki et al. 2004 model [5] accounts for A20, an NF-κB-induc-

ible inhibitor of NF-κB. A20 attenuates activity of IKK, mediating another crucial negative

feedback loop. As a consequence, the latter model can reproduce trajectories of both WT and

A20-deficient cells, as demonstrated in the original publication [5].

Different, to the Lipniacki et al. 2004 model [5], A20 feedback structures were proposed by

Ashall et al. 2009 [21], and Murakawa et al. 2015 [32], and the dynamical consequences of

these three A20 feedback structures were discussed in-depth by Mothes et al. [33], see also S1

Text for mathematical details of the Ashall et al. and Murakawa et al. models. In brief, the Lip-

niacki et al. 2004 model assumes that upon TNF stimulation IKK transits from its resting

form, IKKn, to active form IKKa. The A20 protein, in turn, promotes transition of IKKa to

inactive form, IKKi. Consequently, in WT cells in response to the tonic stimulation, IKKa

exhibits a short pulse with a low tail (S2 Fig), while in A20-deficient cells, the tail is higher,

because the transition from IKKa to IKKi proceeds at a lower rate (S3 Fig). Ashall et al.

assumed also existence of these three forms of IKK, but proposed that A20 instead of promot-

ing IKKa to IKKi transition, slows down the transition from IKKi to IKKn. The consequence

of this assumption is similar: in WT cells, IKKn is more depleted than in A20-deficient cells,

and consequently the tail of IKKa is lower (compare S2 and S3 Figs). These two models pro-

duce IKKa profiles in agreement with the experiment conducted by Lee et al., 2000 [14], that

motivated incorporation of A20 feedback to NF-κB modeling. These experimental data ([14],

see Fig 3E therein) indicate a pronounced peak of IKKa 10 minutes after the beginning of TNF

stimulation followed by a tail of IKK activity—low for WT cells and higher for A20-deficient

cells. A substantially different IKK-A20 module structure was proposed in the Murakawa et al.

2015 model [32], which accounts only for one (active) form of IKK. Accumulation of active

IKK is slowed down by A20, while the depletion term of active IKK is constant. Consequently,
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in WT cells, due to accumulation of A20, active IKK also exhibit a peak (S2 Fig). However, in

A20-deficient cells, the level of active IKK grows monotonically to some asymptotic value (S3

Fig), which is in stark contrast to Lee et al., 2000 data [14]. For WT cells, the Murakawa et al.

2015 model [32] (as well as the Hoffmann et al. 2002 model [16]) fails to respond to 3 TNF

pulses separated by 200 min intervals (S1 and S2 Figs) that as demonstrated by Ashall et al.

2009 [21] induce 3 peaks of NF-κB activity; this discrepancy is possibly a consequence of mod-

els parametrization not A20-IKK module structure, or lack of this module.

Starting from the Lipniacki et al. 2004 model [5], hereafter referred to as the original model,

we retained the core of the two-feedback network and constructed a reduced model still

Fig 1. NF-κB pathway diagrams. (A) Diagram of the 15-variable original model. The short lasting cytoplasmic

complexes (IKK|IκBα) and (IKK|NF-κB|IκBα) are not depicted for the sake of simplicity. The bold arrows represent the

fast dynamics. (B) Diagram of the reduced 6-variable model. NF-κB* denoting cytoplasmic (NF-κB|IκBα) complexes is

not associated with the separate equation, since the amount of total NF-κB remains constant: NFκBn + NFκB* = 1.

https://doi.org/10.1371/journal.pone.0286416.g001
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exhibiting qualitatively similar kinetics. The detailed description of all reduction steps is given

in S2 Text.

The key reduction steps can be summarized as follows:

1) We have eliminated the short-lived complexes (IKKa|IκBα) and (IKKa|IκBα|NF-κB).

Instead we equate inflows and outflows rates from these two complexes.

2) We have eliminated cytoplasmic NF-κB (because it either rapidly binds to cytoplasmic IκBα
or translocates to the nucleus), nuclear IκBα (because it rapidly binds to nuclear NF-κB),

and the nuclear complexes of (IκBα|NF-κB), because they rapidly translocate to the

cytoplasm.

3) We have eliminated A20 mRNA, whose formation is a step in A20 protein synthesis. How-

ever, we retained IκBα mRNA, because we found that the time delay associated with that

intermediate step (in contrast to the delay introduced by A20 mRNA) is important for the

observed oscillatory behavior.

4) The model was transformed to the non-dimensional form. As a consequence of non-dimen-

sionalization degradation coefficients for IKKn, A20, and IκBα are equal to the correspond-

ing synthesis coefficients (see Table 1).

The remaining variables are two forms of cytoplasmic IKK (IKKn and IKKa), free nuclear

NF-κB, proteins A20 and IκBα, and IκBα transcript. The resulting model is depicted in Fig 1B

and described by the following system of kinetic equations based on mass action or Michaelis–

Menten kinetics.

IKK in its neutral state IKKn. The three terms stand consecutively for IKKn protein synthe-

sis, degradation (with the same coefficient), transition to active IKKa form in response to TNF

stimulation (TR = 1 for TNF ON and TR = 0 for TNF OFF)

IKKn0 ¼ kdeg � kdegIKKn � TRk1IKKn: ð1Þ

IKK in the active state IKKa. The terms stand consecutively for transition from IKKn form

and removal of IKKa (associated with spontaneous transition to inactive form, degradation,

Table 1. Parameter values for the reduced and reduced fitted model.

Description Parameter Pre-fitted value Fitted value Unit

Synthesis and degradation of IKKn kdeg 0.000125 0.000107 s−1

Degradation of IKKa

Activation of IKKn caused by TNF k1 0.0025 0.00195 s−1

Spontaneous inactivation of IKKa k3 0.0015 0.00145 s−1

Inactivation of IKKa induced by A20 k2 0.0625 0.0357 s−1

IKK (IκBα|NF-κB) association a3 0.2 0.0946 s−1

leading to IκBα degradation

Michaelis-type constant δ 0.0833 0.108

Michaelis-type constant ε 0.0167 0.0428

Synthesis and degradation of A20 cdeg 0.000171 0.000106 s−1

IκBα translation c4a 0.0031 0.00313 s−1

IκBα degradation induced by IKKa a2 0.04 0.0763 s−1

IκBα degradation c5a 0.0001 0.0000578 s−1

IκBα nuclear import leading to i1a 0.001 0.000595 s−1

NF-κB removal from the nucleus

IκBα synthesis and degradation of IκBα mRNA c3a 0.0004 0.000372 s−1

https://doi.org/10.1371/journal.pone.0286416.t001
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and transition to inactive form promoted by A20 and TNF)

IKKa0 ¼ TRk1IKKn � ðk3 þ kdeg þ TRk2A20ÞIKKa: ð2Þ

Free nuclear NF-κB. The first term stands for appearance of nuclear NF-κB due to degrada-

tion of IκBα in (NF-κB|IκBα) complexes (whose level is equal to 1 − NFκBn). The IκBα degra-

dation is proportional to IKKa (which phosphorylates IκBα and targets it for rapid

degradation). The appearance of active NF-κB is blocked by free IκBα (that may bind it before

its nuclear translocation). The second term describes removal of nuclear NF-κB due to rapid

binding with IκBα. This process is regulated by IκBα nuclear translocation with rate i1a

NFkB0n ¼ a3IKKa � ð1 � NFkBnÞ
d

IkBaþ d
� i1aIkBa

NFkBn

NFkBn þ ε
: ð3Þ

A20 protein. The two terms in the fourth equation describe A20 protein synthesis regulated

by NF-κB and its degradation, respectively

A200 ¼ cdegNFkBn � cdegA20: ð4Þ

Free cytoplasmic IκBα protein. The terms stand consecutively for IκBα protein translation,

spontaneous degradation, IKKa regulated degradation. The fourth term arises due to reduc-

tion of several process: it describes depletion of free IκBα due to its binding with free NF-κB

that in turn arises due to IKK induced degradation of IκBα bounded to NF-κB. The fifth term

is equal to the second term in the Eq (3) and describes depletion of free IκBα due to binding to

nuclear NF-κB

IkBa0 ¼ c4aIkBat � c5aIkBa � a2IKKa � IkBa

� a3IKKað1 � NFkBnÞ
IkBa

IkBaþ d
� i1aIkBa

NFkBn

NFkBn þ ε
:

ð5Þ

IκBα transcript. The terms in the sixth equation describe IκBα mRNA synthesis regulated

by NF-κB and its degradation, respectively

IkBa0t ¼ c3aNFkBn � c3aIkBat: ð6Þ

Possibly, the reduced model, consisting of 6 variables is the smallest one that can account

for two regulatory feedback loops mediated by IκBα, a direct NF-κB inhibitor, and A20 inhibi-

tor of IKK (which in its active form directs IκBα for degradation). The model accounts for

IκBα mRNA, which is needed to assure a time delay between NF-κB activation and IκBα pro-

tein synthesis. This delay enables oscillatory responses. We were able to skip A20 mRNA, as

A20 regulates NF-κB in an indirect way, via IKK and IκBα, which assures a sufficient time

delay. Nevertheless, a model accounting also for A20 mRNA seems to be a reasonable alterna-

tive, although it would require A20 mRNA measurements to constrain respective parameters.

Refitting the reduced model to the original one

To verify that the reduced model may accurately replace the original one, we analyze responses

of both models to an in silico experiment involving six TNF stimulation protocols (the tonic

stimulation and 5 pulsatile protocols defined in S1 Table), which were used in published exper-

iments [21, 22], see Fig 2. In this numerical experiment (hereafter referred to as the combina-

tion experiment) we compared numerical trajectories of WT and A20-knocked out (A20 KO)

cells of the 5 main variables (IKKa, NF-κB, A20, total IκBα, and IκBα mRNA), generated by

the original model, the reduced model and the reduced model fitted to the original one. The
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combination experiment contains 914 independent data points (defined in S1 Table, see also

S2 Table). The reduced model has been fitted to the original one using PYBIONETFIT [34] mini-

mizing squared distances of log-transformed solutions in time points given in S1 Table (see

Methods for details). The applied log-transformation follows from the assumption that only

the relative (not the absolute) values of all variables are measured. The accuracy of the reduced

Fig 2. Dynamics of the original, reduced and reduced fitted models in the combination experiment defined in S1

Table. Red dots indicate time points from which the nuclear NF-κB and total IκBα protein in silico measurements are

used for fitting the reduced model to the original one. The time points for the remaining variables are given in S1

Table.

https://doi.org/10.1371/journal.pone.0286416.g002
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model and the fitted reduced model with respect to the original one is assessed by the Average

Multiplicative Distance (AMD)—see Methods for details. For WT cells the average distance of

the reduced model and the original one is AMDWT = 1.55, whereas the distance of the reduced

fitted model and the original one is AMD∗
WT ¼ 1:29 (implying about 30% differences between

the two models trajectories). For A20 KO cells these distances are smaller, equal respectively,

AMDA20KO = 1.28 and AMD∗
A20KO ¼ 1:16. In Fig 2 we show the NF-κB trajectories for the six

simulated protocols for the three models; the corresponding trajectories for A20 KO cells are

shown in S4 Fig. Both figures and the low AMD values between the fitted reduced model and

the original one indicate that the reduced model after refitting may accurately replace the orig-

inal model reproducing trajectories of the 5 main model variables in response to various TNF

stimulations, and as such may reproduce all experimental data reproduces by the original

model.

In Table 1 we provide numerical values of the 13 parameters of the reduced model, before

and after refitting them to the original one. The differences between these two sets of parame-

ters are significant, confirming that refitting is an important step after model reduction. With

respect to the original model there are two novel parameters: δ and ε. Parameter δ is propor-

tional to NF-κB nuclear import and inversely proportional to IκBα—NF-κB binding. Parame-

ter ε is proportional to IκBα nuclear export and also inversely proportional to IκBα and NF-

κB binding. Both δ and ε are smaller than 1, which reflects the original model assumption that

the IκBα—NF-κB binding is a faster process than nuclear-cytoplasmic trafficking.

The original model has been constrained based on experiments on mouse embryonic fibro-

blasts and further verified also on experiments on SK-N-AS cells [21]. Since the other cell lines

may be characterized by different parameters, it is important to verify whether the reduced

model can be fitted to the original one also for different sets of parameters. Because the

reduced model relies on approximations that are based on the existence of fast processes, one

can expect that the ability to closely reproduce the original model might be limited to ranges of

the original parameter set for which these processes can still be considered fast. In Fig 3 we

have randomly selected five parameter sets of the original model varying the original parame-

ters at most three-fold from their original values (see S3 Table) such that the resulting model

trajectories vary significantly. Next, the reduced model has been fitted to these five new vari-

ants of the original model (see S4 Table). The comparison of the nuclear NF-κB dynamics of

the original and reduced models is shown in Fig 3. For each parameter set the corresponding

AMD∗
WT and AMD∗

A20KO are computed as previously based on the combination experiment.

The obtained fits have AMD∗
WT values in range 1.22—1.41, and AMD∗

A20KO in range 1.13—1.33

(The NF-κB trajectories for A20 KO cells for the combination experiment are provided in S5

Fig). The small AMD values confirm the ability of the reduced model to reproduce (after the

parameter refitting) the original one also for different sets of parameters (varied in relatively

broad range).

In summary, the reduced model may reproduce the NF-κB system dynamics (for WT and

A20 KO cells) of the original model both for the original as well as perturbed parameters.

Therefore, it represents a good approximation for studying the behavior of the NF-κB signal-

ing pathway. Importantly, we will show that thanks to a smaller number of parameters, the

reduced model is, in the contrary to the original one, identifiable.

Structural identifiability analysis of the original and reduced model

In this section we perform the linear identifiability analysis based on the sensitivity matrix for

the original as well as of the reduced model fitted to the original one, hereafter referred as

reduced model. In order to demonstrate non-identifiability of the original model based on
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Fig 3. Simulations of the original model for five different sets of parameters and the corresponding reduced

model with refitted parameter values (see S3 and S4 Tables). Simulations are performed for the combination

experiment defined in S1 Table. For each parameter set the corresponding AMD∗
WT is computed based on trajectories

of the 5 main model variables. Each color corresponds to a different parameter set; for each parameter set, a

continuous line shows the original model trajectory, while a thinner dashed line shows the corresponding trajectory of

the reduced model with refitted parameters.

https://doi.org/10.1371/journal.pone.0286416.g003
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experiments that have been performed so far [21, 22], we consider the combination experi-

ment (consisting of tonic and 5 pulsatile protocols defined in S1 Table). Based on this huge

hypothetical experiment (with 914 independent data points), we calculate the sensitivity

matrix S numerically differentiating log-transformed normalized observables with respect to

the log-transformed parameters (as detailed in Methods) for the original model as well as for

the reduced model. Based on singular value decomposition of sensitivity matrices we calculate

singular values for the original and reduced models. The calculated singular values are scaled

by dividing by the squared root of sensitivity vectors dimension (dim), which assures that they

are unchanged by simple repetition of the experiment doubling dim. It should be noticed that,

because of data normalization, the dimension of sensitivity vectors is smaller than the total

number of data points—for example a series of three data points gives only two independent

numbers. As shown in Fig 4 for the original model the scaled singular values (hereafter

referred as singular values), arranged in descending order, reveal a clear gap indicating the cor-

responding sensitivity matrix is rank deficient and hence the original model is structurally

non-identifiable. In contrast, for the reduced model all singular values are greater than 0.01

indicating structural identifiability.

Detailed linear identifiability analysis of the reduced model

In Fig 5 we evaluate which experimental protocols, defined in Table 2 and S1 Table, allow for

the most accurate parameter identifiability. In Fig 5A we show that three smallest singular val-

ues for all considered protocols are greater than 10−3, indicating that each of protocols renders

Fig 4. Structural identifiability analysis of the reduced and original models. Singular values of the sensitivity

matrices S for the original and reduced models. Graphs show all 23 scaled singular values obtained (for the

combination experiment) for the original model vs. 13 singular values obtained for the reduced model. Singular values,

arranged in descending order, in the original model reveal a clear gap, indicating that the corresponding sensitivity

matrix is rank deficient and hence the original model is structurally non-identifiable.

https://doi.org/10.1371/journal.pone.0286416.g004
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the reduced model structurally identifiable. We should, however, notice that for the continu-

ous protocol the identifiability is poorest with the smallest singular value equal to 0.0014. For

all pulsatile protocols the smallest singular value exceeds 0.007, and when these protocols are

combined with the continuous protocol, the smallest singular value rises above 0.014.

Fig 5. Linear identifiability analysis of the reduced model. (A) Comparison of the three smallest scaled singular values computed for different

protocols. (B) Smallest scaled norms of sensitivity vectors ||Sj||. (C) Three smallest scaled norms of perpendicular components jjS?jj jj. (D) Three largest

scaled ratios of the parameter estimation error to experimental error Rj = ln(σlinear,j)/ln(σdata). The combination experiment includes the continuous

and 5 pulsatile protocols. Scaling with
ffiffiffiffiffiffiffiffi
dim
p

allows to compare the protocols having a different dimension of sensitivity vectors.

https://doi.org/10.1371/journal.pone.0286416.g005

Table 2. Summary of the on-off protocol of the NF-κB system in WT and A20 KO cells used for in silico experi-

ments. A simple protocol with a continuous TNF stimulation (0–120min) followed by a TNF washout (120–720min)

for which measured variables are: IKKa, nuclear NF-κB, A20, total IκBα protein denoted by IκBα* (IκBα* = IκBα + 1

− NFκB), and IκBα mRNA. For each variable the measurement times used for the sensitivity-based identifiability anal-

ysis and reduced model fitting are given.

on-off TNF ON 0–120 min, TNF OFF 120–720 min

IKKa 0, 5, 30 min

NF-κB 0, 5, 30, 60, 90, 120, 150, 180 min

IκBα* 0, 5, 30, 60, 120, 180, 300, 720 min

A20, IκBαt 0, 30, 60, 300 min

https://doi.org/10.1371/journal.pone.0286416.t002
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Interestingly, the simple on–off protocol (proposed in this study, see Table 2) with the smallest

number of data points outperforms all remaining protocols having the smallest singular value

equal to 0.022. It is important to notice that the comparison of protocols in Fig 5A is based on

scaled singular values, i.e., divided by the squared root of sensitivity vectors dimension. Obvi-

ously, the combination experiment having 914 independent data points has greater singular

values, than the on–off protocol having only 41 independent data points. The greater scaled

singular values of the on–off experiment imply, however, that in order to better identify

parameters it pays to repeat the on–off protocol 914/41� 22 times than to do the combination

experiment. For the same reason analyzing the identifiability of the model parameters in Figs

5C, 5D and 6 we used the
ffiffiffiffiffiffiffiffi
dim
p

scaled values.

After verifying that the reduced model is structurally identifiable, we further investigate the

sensitivity matrix S to see which model parameters are the least sensitive and least identifiable

for a given protocol. Fig 5B illustrates the three smallest (scaled) norms corresponding to the

least sensitive parameters. It is worth to notice that the parameters ε and δ appear as two out of

three least sensitive parameters for all protocol sets. For the continuous protocol the scaled

norm of the sensitivity vector for the parameter c5a (governing IκBα degradation) is the small-

est (equal to 0.0078) and significantly higher in the on–off protocol (equal to 0.28), which

allows to trace IκBα degradation.

In Fig 5C we show the scaled norms of perpendicular parts of sensitivity vectors jjS?j jj that

provide a good measure of identifiability of the associated parameters. A small perpendicular

part implies that a change of the associated parameter can be nearly fully compensated by

changes of remaining parameters, rendering the considered parameter poorly identifiable. As

expected for the continuous protocol the parameter c5a is least identifiable, however, for the

pulsatile protocols the least identifiable are the parameters δ and ε.

In Fig 5D we show the three largest scaled ratios of the parameter estimation error to the

experimental error. The calculation is based on assumption that all experimental points have

lognormally distributed errors with the same geometric standard deviation σdata. Then the

parameter estimation error to the experimental error ratio is equal to ln(σlinear,j)/ln(σdata),

where σlinear,j is the corresponding geometric standard deviation of parameter estimation

error; the subscript ‘linear’ stands for the method of calculation using sensitivity matrix S (see

Methods for details). Not surprisingly, for each protocol, the three largest error ratios corre-

spond to the three smallest norms of perpendicular parts jjS?jj jj confirming that these parame-

ters are the least identifiable. Fig 5C and 5D, show that the on–off protocol out-competes the

remaining protocols or their combinations. For this protocol the least identifiable parameter,

i1a, is better identifiable than the least identifiable parameter for any of remaining protocols.

In Fig 6 we focus the identifiability analysis on three particular experiments, i.e., the contin-

uous protocol, the combination experiment, and the on–off protocol. Fig 6A shows that the

simple on–off protocol, out-competes remaining two protocols giving the higher scaled singu-

lar values. When the norms of sensitivity vectors Fig 6B, or their perpendicular components

Fig 6C are juxtaposed, the on–off protocol is comparable to the combination experiment. In

Fig 6B and 6C, parameters stand in the growing order of respectively norms of sensitivity vec-

tors and their perpendicular components for the on–off protocol. We may notice that the sen-

sitive parameters like i1a (i.e., having a high norm of sensitivity vector) maybe poorly

identifiable, i.e., may have a small perpendicular component (which allows to partially com-

pensate a change of such parameters by respective changes of remaining parameters). A com-

parison of Fig 6C and 6D (with palindromic order of parameters), in turn confirms that

parameters with small perpendicular components have a large parameter estimation error to

experimental error ratio (and thus may be poorly identifiable based on noisy data).
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To sum up, according to our sensitivity-based linear analysis all model parameters are iden-

tifiable, however, the continuous protocol results with very poor identifiability of c5a (govern-

ing the IκBα degradation). The simple on-off protocol results in comparable or better

parameters identifiability than the more complex protocols including the combination experi-

ment. The idea behind the on-off protocol is such that a 2 hour-long TNF stimulation phase

suffices for a rise of all variables (except IKKn, which decreases in response to TNF), and a 10

hour-long washout phase allows for their substantial decrease S6 Fig. Such an experiment, sur-

prisingly not often conducted, allows to determine both forward and backward rates. The time

points for fitting are distributed more densely in time intervals in which given variables change

more rapidly, which typically means higher sensitivity to parameters. However, to make the

Fig 6. Identifiability analysis of the reduced model—comparison of the protocols: Continuous, combination experiment and on–

off. (A) Scaled singular values. (B) Scaled norms of sensitivity vectors ||Sj||. (C) Scaled norms of perpendicular components jjS?j jj. (D)

Scaled ratios of parameter estimation error to experimental error ln(σlinear,j)/ln(σdata). Scaling with
ffiffiffiffiffiffiffiffi
dim
p

allows for a comparison of the

three protocols having a different dimension of sensitivity vectors.

https://doi.org/10.1371/journal.pone.0286416.g006
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protocol experimentally feasible, the number of time points is limited (i.e., time points for dif-

ferent variables partially overlap).

Practical identifiability analysis of the reduced model based on Monte

Carlo simulations

In this section we verify the practical identifiability of model parameters with help of Monte

Carlo simulation [31, 35]. We use the fitted reduced model to simulate the experimental trajec-

tory for the on-off protocol (S6 Fig) Next, we use 50 in silico simulated measurements (gener-

ated by the reduced model as defined in Table 2) from the on-off protocol trajectory to refit

the model again (using stochastic fitting algorithm; see Methods). Alternatively, we perturb

randomly these measurements before refitting. In this latter procedure we mimic the experi-

mental errors [36]. More precisely, we draw values of measurements from the lognormal dis-

tribution, Lognormal(μ, σ2), with median exp(μ) equal to the unperturbed value, and σ = ln

(σdata), where σdata is the assumed geometric standard deviation (sometimes called a multipli-

cative standard deviation) of measurement values. In Fig 7 we chose three values of σdata, equal

to 1.1, 1.2 and 1.3, and for each σdata we draw k = 50 sets of measurements. For each set of mea-

surements we refit the 13 model parameters. For Fig 7 we select 6 parameters with the highest

geometric standard deviation and project k refitted sets of these parameters on the 5 × 6/2 = 15

respective planes. We also show the marginal distribution for each of these 6 parameters. The

results for the remaining 7 (better identifiable) parameters are illustrated in S7 Fig. Of note 50

in silico simulated measurements in the on-off protocol correspond to 41 independent data

points, because n time points of any time series give n − 1 independent values due to scaling by

the geometric average of the series. In the on-off protocol there are 5 series for WT cells for 5

variables, IKKa, NF-κB, A20, total IκBα, and mRNA IκBα, and 4 series for A20 KO cells for

the same variables excluding A20. As a consequence the number of independent data points is

by 9 smaller than the number of measurements, see S2 Table.

The obtained parameter scatter plots for σdata = 1.3 are confronted with 75% confidence

ellipses obtained from the linear analysis for the same σdata, showing that parameter uncer-

tainty determined by the linear analysis is comparable to that of determined by Monte Carlo

simulations. Fig 7A shows that due to the use of stochastic fitting algorithm, even when unper-

turbed measurements are used for k independent fittings, the obtained parameters differ from

the original ones and correspondingly, their geometric standard deviations σcarlo,j are greater

than 1, see Fig 7B. As shown in Fig 7B for all parameters σcarlo,j grows with σdata. For most of

the parameters the value of σcarlo,j obtained for σdata = 1.3 is comparable to the value of σlinear,j

obtained in the linear noise approximation also for σdata = 1.3, while for some of them (e.g. δ)

is markedly larger, and a bit surprisingly for some of them (e.g. i1a) is significantly lower. Inter-

estingly, the upper bound of σcarlo,j and σlinear,j for all parameters for σdata = 1.3 is similar, close

to 3.5 giving the maximum parameter estimation error to the experimental error ratio equal to

ln(3.5)/ln(1.3)� 4.8 assuring reasonable identifiability of all parameters based on the simple

on-off stimulation protocol.

The performed linear as well Monte Carlo indentifiability analyses are local in that sense

that they start from the nominal parameter values. One can expect that for substantially differ-

ent parameters the reduced model can be found non-identifiable.

Characteristic behaviors

In this section we discuss the characteristic dynamical behaviors that can be exhibited by the

reduced model (depending on the assumed parameters) in the response to the tonic TNF
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Fig 7. Practical identifiability of the reduced model based on Monte Carlo simulations. (A) A comparison of 75%

confidence ellipses (shown in black) computed for σdata = 1.3 in the linear sensitivity matrix based analysis with results

from 50 Monte Carlo simulations for four values of σdata (1.0, 1.1, 1.2, 1.3). Shown are projections on 15 planes

spanned by 6 parameters with the largest geometric standard deviations σcarlo,j (for σdata = 1.3). (B) The geometric

standard deviation of parameter estimation error σcarlo,j obtained in Monte Carlo simulation for four values of

geometric standard deviations of measurements, σdata (1.0, 1.1, 1.2, 1.3), is compared with the geometric standard

deviation of parameter estimation σlinear,j obtained from the linear analysis for σdata = 1.3.

https://doi.org/10.1371/journal.pone.0286416.g007
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stimulation. In Fig 8 prior to the tonic TNF stimulation at t = 1h, cells remain in the ‘TR = 0’

steady state in which (IKKn, IKKa, NFκBn, A20, IκBα, IκBαt) = (1, 0, 0, 0, 0, 0).

For the nominal parameter values, i.e., fitted to the original model (see Table 1) the system

exhibits damped oscillations and eventually converges to the ‘TR = 1’ steady state in which all

six variables are greater than zero (see Fig 8A). The dynamics is characterized by a sharp

increase of NFκBn up to 1 (its maximal value). In the short NFκBn increasing phase, IκBα
remains close to zero, and then starts increasing after NFκBn reaches 1, see Fig 8A, right sub-

panel.

The observed (damped) oscillations are a consequence of two negative feedbacks mediated

by IκBα (directly inhibiting NF-κB) and A20 (inhibiting IKKa that targets IκBα for degrada-

tion). The IκBα feedback is associated with a time delay due to an intermediate step involving

IκBα transcript, and the process of IκBα translocation. Increasing the strength of IκBα medi-

ated feedback (by decreasing the IκBα degradation coefficients a2 and c5a) and the associated

time delay (by decreasing the IκBα nuclear import coefficient i1a), we observe the appearance

of limit cycle oscillations, Fig 8B. As expected, the amplitude of sustained IκBα oscillations is

much higher (about 3 fold with respect to the nominal parameters, Fig 8B, right sub-panel),

and the period of oscillations is longer (the second NFκBn peak is at about 5 not 3 hours, Fig

8B, left sub-panel).

A further decrease of parameter a2 causes the growth of the oscillations amplitude, and

changes their character, so they resemble spiky oscillations, Fig 8C. The right subpanel in Fig 8

shows the limit cycle, which consists of one ‘slow’ segment (in which NFκBn� 0) and one

‘fast’ segment or spike (away from NFκBn� 0).

Next, we investigate effects of A20 on the NF-κB dynamics. We may observe that after

removing A20 negative feedback by setting k2 = 0 the reduced model does not exhibit any

oscillations, but after slight overshooting reach ‘TR = 1’ the steady state characterized by a high

level of nuclear NFκBn, Fig 9A. This is due to the fact that A20 mediated negative feedback is

necessary for functioning of the primary negative feedback of IκBα, as only inhibition of IKKa

allows for IκBα accumulation. Finally, we consider consequences of a dramatic increase of

both negative feedbacks resulting from the increase of parameters k2 and i1a. For the modified

parameters we observe a system behavior close to the perfect adaptation [37]. An instant rise

of stimulus (from TR = 0 to TR = 1) results in a spike of NFκBn followed by a small amplitude

damped oscillations converging to the steady state in which NFκBn is close to zero as in the ‘TR

= 0’ steady state, Fig 9B. The perfect adaptation means that the system responds to the tempo-

ral change of the stimuli rather than to the actual stimuli amplitude [38].

Clearly, NFκBn dynamics can be dramatically changed by manipulating model parameters.

The results presented above indicate that system (1–6) can produce characteristic dynamical

responses to a TNF signal: a pulse, damped oscillations, or periodic oscillations (small-ampli-

tude or spike-type). The system is able to respond in a non-adaptive or adaptive way, depend-

ing on the strength of negative feedbacks.

Methods

Normalization of in silico generated data

The applied normalization of the model generated data is based on assumption that experi-

mental measurements are log-normally distributed, i.e., errors are proportional to the mea-

sured value of a given variable, provided that this value is above some threshold [36]. Hence,

we normalize each simulated time series xi in two steps

1. replacing each xi by x0i ¼ xiþ ρ × max(xi), with ρ = 0.03.
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Fig 8. Three types of the oscillatory responses of the reduced model to tonic TFN stimulation: Left subpanels show nuclear

NFκBn(t) in response to tonic TNF stimulation started at t = 1 hour, whereas the right subpanels show trajectories projected on

the (NFκBn, IκBα) plane. (A) Damped oscillations observed for the nominal (fitted to the original model) parameters values (see

Table 1), in particular a2 = 0.0762, c5a = 0.000058, i1a = 0.000595 (modified in panels B and C). The black dot on right subpanel

shows the ‘TR = 1’ stable steady state. (B) Limit cycle oscillations of nuclear NFκBn(t) observed in simulations performed for a2 =

0.02, c5a = 0.00001, i1a = 0.0001 and other parameters unchanged. The orange dot on the right subpanel shows the ‘TR = 1’ unstable

steady state surrounded by a stable limit cycle (black line). A numerically computed orbit (shown in red) approaches the stable limit

cycle. (C) Periodic relaxation-like oscillations observed in simulations performed for a2 = 0.01, c5a = 0.00001, i1a = 0.0001 and other

parameters unchanged. Again, the orange dot on the right subpanel shows the ‘TR = 1’ unstable steady state surrounded by a stable

limit cycle (black line).

https://doi.org/10.1371/journal.pone.0286416.g008
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2. replacing each x0i by yi ¼ x0i/ðP
n
i¼1

x0iÞ
1
n.

The first normalization step is needed to avoid values smaller than 0.03 × max(xi) that typi-

cally represent nothing, but measurement noise. The second normalization step reflects the

observation that most of the currently available data is in arbitrary units, and thus must be nor-

malized. Normalization by geometric (not arithmetic) mean of time series, reflects the assump-

tion that multiplicative changes of all variables are more important than additive change. An

immediate consequence of normalization is that a time series of n measurements of a given

variable gives n − 1 independent numbers.

Model fitting

The original and reduced models are both implemented in BioNetGen (cvode solver) and

MATLAB. The simulated model outputs are normalized as described above.

In order to fit the reduced model to the original model, we use PyBioNetFit [34], where the

corresponding parameter estimation problem in the least-squares sense for the log-

Fig 9. Influence of A20 feedback on the reduced model responses to tonic TNF stimulation. Left subpanels show nuclear NFκBn(t) in

response to tonic TNF stimulation started at t = 1 hour, whereas the right subpanels show trajectories projected on the (NFκBn, IκBα) or

(NFκBn, A20) planes. (A) Numerically computed solution for k2 = 0 (and other parameters unchanged, as in Table 1) implying absence

of A20 mediated feedback (as in A20 KO cells). (B) Nearly-perfect adaptation observed in the model variant with significantly stronger

negative feedbacks mediated by A20 and IκBα. Numerical simulations are performed for k2 = 3.57 and i1a = 0.01 (changed from the

nominal values k2 = 0.0357 and i1a = 0.00595) and other parameters unchanged.

https://doi.org/10.1371/journal.pone.0286416.g009

PLOS ONE Identifiable model of the canonical NF-κB pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0286416 June 2, 2023 18 / 26

https://doi.org/10.1371/journal.pone.0286416.g009
https://doi.org/10.1371/journal.pone.0286416


transformed systems is formulated [39, 40]. More precisely, the parameter estimation proce-

dure finds a parameter set minimizing the following objective function

Jð~yÞ ¼
XN

i¼1

ðlnyR
i � lnyO

i Þ
2
; ð7Þ

where yR
i denotes the reduced model outputs, yO

i denotes the original model outputs, and Nis

the number of all measurements in the considered protocol. This objective function quantifies

the deviation of the (log-transformed) reduced model trajectories from the trajectories of the

(log-transformed) original model.

The Average Multiplicative Distance (AMD) between the original and the reduced model

(either fitted or not fitted) is defined as

AMD ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðlnyR
i � lnyO

i Þ
2

s !

ð8Þ

with N denoting the number of measurements. We denote by AMDWT and AMDA20KO the

average multiplicative distance for WT and A20KO cells, respectively.

Linear identifiability analysis

For the linear identifiability analysis [41–44] we use a sensitivity matrix defined as S = sij,
where sij ¼

@lnðyiÞ

@lnðyjÞ
¼

@yi
@yj

yj
yi

measures a multiplicative change of data value yi with respect to a mul-

tiplicative change of the parameter θj (j = 1, 2, . . ., p), where p is the number of parameters,

equal to 13 for the reduced model and 23 for the original model. The matrix S is calculated

based on the considered stimulation protocols with the corresponding series of measurements

of the five reduced model variables (as detailed in S1 Table and Table 2). The resulting sensitiv-

ity matrix consists of 13 (for the reduced model) or 23 (for the original model) sensitivity vec-

tors, Sj, each of length equal to the number of data points in a given experiment or series of

experiments. The elements sij of the sensitivity matrix are calculated numerically using the

finite differences method [45], with 1% increase/decrease of parameter values. In our analysis,

parameters were individually perturbed by a 1% increase/decrease of the original values.

The singular values are calculated by singular value decomposition (SVD) [3, 46, 47]. The

perpendicular parts S?j of sensitivity vectors Sj are calculated as S?j ¼ Sj � P∗;jSj. The matrix

P∗;j ¼ S∗;jðST
∗;jS∗;jÞ

� 1ST
∗j

is the so-called projection matrix, where S*,j denote a matrix formed by

removing the j-th sensitivity vector from the full sensitivity matrix S.

To calculate ratio of parameter estimation error to the experimental error, we assume that

experimental data points errors are log-normally distributed, each with the same standard geo-

metric deviation σdata. As a consequence one may expect that the corresponding parameter

estimates are also log-normally distributed with standard geometric deviation σlinear,j, where

j = 1,. . .,p is the parameter index. By definition, Rj=ln(σlinear,j)/ln(σdata). Based on the equation

(3.20) in [48], the random variable ξpar = [ξpar,1, . . ., ξpar,p] describing the (linear) parameter

estimation error is given by the following formula:

xpar � ðSTSÞ� 1STxobs; ð9Þ

where ξobs = [ξobs,1, . . ., ξobs,m] is a random variable describing the experimental error. Hence,

the ratio Rj of the parameter estimation error to the experimental error can be calculated as the

l2-norm of the j-th row vector of the S pseudo-inverse matrix A≔ (STS)−1ST. We used a math-

ematically equivalent, but more numerically stable, calculation of Rj based on QR-
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decomposition of S (see [39]). In this approach the ratio Rj is given by the l2-norm of the i-th

row vector of the R� 1
a matrix, where Ra denotes the matrix composed of the first p rows of an

upper triangular matrix R from the QR-decomposition of the sensitivity matrix S.

Monte Carlo based identifiability analysis

The geometric standard deviation of parameter estimation in Monte Carlo simulations is cal-

culated as

scarlo;j ¼ exp½SDðlnðyj;kÞÞ�; ð10Þ

where SD denotes a standard deviation, and θj,k are k = 50 numerical estimates of parameter θj,

j = 1, . . ., p = 13, based on model refitting to the k perturbed trajectories.

Discussion

Mechanistic models of signaling pathways, including the NF-κB pathway, are typically non-

identifiable, meaning that their parameters may not be determined based on existing data [49].

In simple words, by fitting a non-identifiable model to experimental data the researcher dem-

onstrates the model ability to reproduce biological observations, but get no or little insight into

parameters describing the regulatory process. When a model is structurally non-identifiable,

an arbitrary large change of a given parameter can be compensated by an appropriate change

of some other parameter (or parameters) rendering this parameter pair (set) non-identifiable,

whereas practical non-identifiability arises when parameters may not be determined based on

available data with adequate precision. It is thus desirable to reduce mechanistic models in

such a way that they still capture dynamics of the observed variables, but reach the stage at

which all their parameters become identifiable. One should notice, however, a frequent draw-

back of reduced identifiable models, i.e., the presence of “composite” parameters that do not

represent biochemical constants.

Resolving non-identifiability involves a number of steps, some straightforward, whereas

some requiring understanding of model dynamics, which can hardly be pursued according to

a simple rule-based algorithm. The most obvious step is model non-dimensionalization.

Indeed, when experimental data give only the relative changes of model variables, the dimen-

sional model may not be identifiable, because it “predicts” absolute values that are not mea-

sured. The second step can involve the removal of equations for fast variables by assigning the

steady-state values to corresponding variables. This step requires at least the approximate

knowledge of time scales of modeled processes. The third step may require the removal of

some intermediates that are not experimentally measured. This step is more challenging,

because these intermediates contribute to time delays between observed variables. Impor-

tantly, a series of intermediates is associated with a time delay that follows an Erlang-type dis-

tribution, and thus may not be reproduced by a single process associated with an exponential

distribution of time delay.

In this study we focused on the deterministic model of the NF-κB pathway, which contains

15 equations, and in which temporal profiles of nuclear NF-κB are regulated by two inter-

linked negative feedback loops mediated by IκBα and A20. Based, essentially, on the three

above-outlined types of reductions, we reduced the considered model to 6 equations parame-

terized by 13 parameters. We have demonstrated that the reduced model can satisfactorily

reproduce the behavior of the original model in response to the tonic stimulation and five pul-

satile experimental protocols (studied before). Moreover, the reduced model can reproduce

(after refitting) the original model behavior even when parameters of the original model are

randomly changed up to threefold from their original values (which may be needed to
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reproduce behaviors of different cell types). Next, we demonstrated that the reduced model is

structurally and practically identifiable based on experimental protocols and measurements

that have been previously applied to the analysis of NF-κB pathway. This implies that the

reduced model conserves dynamical properties of the original model, but in contrast to the

original model, its parameters can be determined. In particular, we showed, theoretically, that

a relatively simple on–off protocol in which 2 hour-long TNF stimulation is followed by a 10

hour-long TNF wash-out phase, and in which the main five models variables are measured,

suffices to identify model parameters. The on–off protocol of properly chosen lengths of the

on and the off phases allows to determine both the forward and backward rates, and thus can

be considered as a first choice protocol to investigate dynamics of regulatory systems. We veri-

fied practical parameter identifiability for this protocol with the help of Monte Carlo simula-

tions in which we refitted the model parameters to perturbed observables. The obtained

parameter estimation errors follow unimodal distributions with geometric standard deviations

comparable to those predicted by the linear analysis based on the sensitivity matrix. This indi-

cates that the reduced model can be fitted to noisy data.

Finally, we demonstrated that the reduced model may exhibit (depending on the assumed

parameters controlling negative feedbacks) different types of responses characteristic to regu-

latory motives controlled by negative feedback loops [50]: nearly-perfect adaptation, damped

or sustained oscillations. These responses may allow to reproduce and explain behaviors of dif-

ferent cells types.

In the last years various techniques to resolve “easier” structural and “harder” practical

identifiability have been developed (reviewed in [1]). Even if some of these techniques have

been tested on the Lipniacki et al. 2004 model [5]: see [2, 9, 10] or its later variant (from [51])

[11], to the best of our knowledge, none of these models have been demonstrated to simulta-

neously exhibit practical identifiability based on selected experiment (or experiments) and to

reproduce experimentally verified trajectories of the original models (reviewed in Ref. [17]).

The first reduced model (based on the pioneering Hoffmann et al. 2002 model), containing

three variables (free nuclear NF-κB, IκBα mRNA and free cytoplasmic IκBα), was proposed by

Krishna et al. [6]. Since the model is non-dimensional and contains only 5 parameters, it is

likely identifiable based on existing data for WT cells, but since it has no A20-mediated feed-

back loop, it may not distinguish between WT and A20 KO cells. Because the Krishna et al. [6]

model accounts only for IKK-driven IκBα degradation (parameter C governing IκBα degrada-

tion is assumed to be proportional to IKK considered as a stimulus), in the absence of stimula-

tion, IκBα may remain on an arbitrarily high level. As a consequence, the model may not

reproduce responses to TNF pulses observed by Ashall et al. [21], just because at the second

TNF pulse the level of IκBα is very high. We found, however, that when parameter C is

assumed constant, while parameter A, proportional to the source term for nuclear NF-κB, is

considered as an input, the model possesses a natural (0,0,0) steady state in the absence of stim-

ulation. Under such interpretation the model may be fitted to the Lipniacki et al. 2002 model

[5] and satisfactorily reproduce NF-κB and IκBα mRNA profiles, however, the free cyto-

plasmic IκBα profile is different, S8 Fig. Consequently, AMD between these two models

exceeds 2, implying a relatively poor fit. The Krishna et al. 2006 model [6] was later supple-

mented by equations for active and inactive IKK [7], but still the resulting 5-variable model

neglects the A20-negative feedback loop (A20 is assumed to be constant). Moreover, the

model is presented in a dimensional form, and thus may not be identifiable based on data

without absolute mRNA and protein levels measurements. Another 5-variable model (without

A20) was constructed by Zambrano et al. [8], but neither its identifiability nor responses to

pulsatile TNF stimulation (the authors assume exponential decrease of the active IKK fraction)

were analyzed.
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In summary, we demonstrated the possibility to reduce the NF-κB pathway model to a

model that is identifiable, but still capable of reproducing rich dynamics of the original model

in response to tonic as well as pulsatile TNF stimulation. Our approach can hardly be auto-

mated, as it uses intuitive knowledge about the dynamics of the regulatory system and time

scales associated with the involved biochemical processes. Nevertheless, we hope that our

study opens a new perspective in modeler-assisted model reduction, and will help to represent

other regulatory pathways in terms of identifiable models. Such representation brings the sys-

tem biology methods closer to those characteristic for physics, where the models, even if

approximate, have well-defined parameters. The proposed reduced NF-κB pathway model can

serve as a building block for more comprehensive models of the innate immune response and

cancer, where NF-κB plays a key regulatory role.
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S4 Fig. Dynamics of the original, reduced and reduced fitted models in combination exper-

iment in A20 KO cells defined in S1 Table. Red dots indicate time points from which the

nuclear NF-κB and total IκBα protein in silico measurements are used for fitting the reduced

model to the original one. The time points for the remaining variables are given in S1 Table.
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S5 Fig. Simulations of the original model for A20 KO cells for five different sets of parame-

ters and the corresponding reduced model with refitted parameter values (see S3 and S4

Tables). Simulations are performed for the combination experiment defined in S1 Table. For
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S6 Fig. Dynamics of the reduced fitted model for the on-off protocol in WT cells defined

in Table 2.
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S7 Fig. Practical identifiability of the reduced model based on Monte Carlo simulations. A

comparison of 75% confidence ellipses (shown in black) computed for σdata = 1.3 in the linear

sensitivity matrix based analysis with results from 50 Monte Carlo simulations for four values

of σdata (1.0, 1.1, 1.2, 1.3). Shown are projections on 21 planes spanned by 7 parameters with

the smallest geometric standard deviations σcarlo,j (for σdata = 1.3).
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S8 Fig. Fit of the ‘reinterpretted’ Krishna et al. 2006 model to Lipniacki et al 2004 model.

In contrast to the original Krishna et al. assumption, it is assumed that the parameter C (gov-

erning IκBα degradation) remains constant, while the parameter A (multiplicating the source

term for NF-κB) attains its nominal value, when TNF is on, and zero value, when TNF is off.

The trajectories are plotted in log scale; dots denote fitting time points, and the trajectories are

plotted as saw lines between these points. The discrepancy between free cytoplasmic IκBα tra-

jectories causes that average multiplicative distance between these two models equals 2.06.

(PDF)

S1 Table. Summary of the considered stimulation protocols of the NF-κB system in WT

and A20 KO cells used for in silico experiments. Each table block describes one TNF stimula-

tion protocol for which the measured variables are: IKKa, nuclear NF-κB, A20, total IκBα pro-

tein denoted by IκBα* (IκBα* = IκBα + 1 − NFκB), and IκBα mRNA. For each variable the

measurement times used for the sensitivity-based identifiability analysis and reduced model

fitting are given.

(PDF)

S2 Table. List of protocol sets, the corresponding numbers of measurement time points

(N), and sensitivity vectors dimensions (dim). Protocol sets are joint for WT and A20 KO.

The combination experiment consists of 6 protocols: continuous and all pulsatile ones. The
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.
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S3 Table. Parameter sets of the original model. Five parameter sets of the original model ran-

domly selected by varying the original parameters at most three-fold from their original values.
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S4 Table. Fitted parameter sets of the reduced model obtained from fitting to the original

model with varied parameter sets.
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S1 Text. Details of the NF-κB models simulations.
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S1 Code. Numerical codes for computational NF-κB models: Reduced (developed in this

study), Hoffmann et al. 2002 [16], Lipniacki et al. 2004 [5], Krishna et al. 2006 [6], Ashall

et al. 2009 [21] and Murakawa et al. 2015 [32].
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