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Predictive power 
of non‑identifiable models
Frederic Grabowski , Paweł Nałęcz‑Jawecki  & Tomasz Lipniacki *

Resolving practical non‑identifiability of computational models typically requires either additional 
data or non‑algorithmic model reduction, which frequently results in models containing parameters 
lacking direct interpretation. Here, instead of reducing models, we explore an alternative, Bayesian 
approach, and quantify the predictive power of non‑identifiable models. We considered an example 
biochemical signalling cascade model as well as its mechanical analogue. For these models, we 
demonstrated that by measuring a single variable in response to a properly chosen stimulation 
protocol, the dimensionality of the parameter space is reduced, which allows for predicting the 
measured variable’s trajectory in response to different stimulation protocols even if all model 
parameters remain unidentified. Moreover, one can predict how such a trajectory will transform 
in the case of a multiplicative change of an arbitrary model parameter. Successive measurements 
of remaining variables further reduce the dimensionality of the parameter space and enable new 
predictions. We analysed potential pitfalls of the proposed approach that can arise when the 
investigated model is oversimplified, incorrect, or when the training protocol is inadequate. The 
main advantage of the suggested iterative approach is that the predictive power of the model can be 
assessed and practically utilised at each step.

Non-identifiable or sloppy models are ubiquitous in systems  biology1,2. Non-identifiability, in practical terms, 
means that parameters obtained through model fitting cannot be trusted: either because arbitrarily large changes 
of some parameters can be fully compensated by changes of other parameters (structural non-identifiability) or 
because plausible parameters may differ widely due to noise in measurements (practical non-identifiability). A 
closely related property is sloppiness. In sloppy models, some combinations of parameters define stiff directions, 
along which model responses change rapidly, whereas the remaining combinations define sloppy directions, 
along which model responses change insignificantly. It is important to note that non-identifiability or slopiness 
is a property of a model together with a dataset, not just the model itself. Additional data can make the model 
(more)  identifiable3 and can reduce the number of sloppy directions.

Non-identifiability and sloppiness have a lot in common, however the first is perceived as a model disadvan-
tage that should be resolved, whereas the second is perceived as a ubiquitous property of complex models we 
have to live  with2. Typically, structural non-identifiability is relatively easy to resolve by nondimensionalisation 
and reparametrization. Practical non-identifiability is a harder problem, usually requiring additional experi-
ments (which can be expensive or time-consuming), or manual model  reduction4,5. An identifiable model that 
reflects underlying biochemistry can be seen as the ultimate goal of systems biology. However, model reduction, 
performed to reach identifiability, may lead to composite parameters that lack straightforward biochemical 
 interpretation6–8. Additionally, a reduced model may not be able to accommodate new data containing measure-
ments of previously omitted variables. An alternative approach to non-identifiable, sloppy models is to identify 
stiff directions, and analyse system behaviour along these directions, which is an effective way of reducing the 
dimensionality of the investigated parameter space, without changing the  model9.

In this study, we focus on practically non-identifiable models, but instead of reducing them to reach iden-
tifiability, we train them on limited datasets and investigate their predictive power after such training. It was 
observed earlier by Brown et al.10,  Cedersund11, van Mourik et al.12, Monsalve-Bravo et al.9 and others that 
sloppy, non-identifiable models may lead to informative predictions; nevertheless the standard solution is to 
make models identifiable before predictions are  made3, as reviewed in Refs.4,13. In this paper, we analysed the 
predictive power of non-identifiable models in more detail in the context of systems biology and investigated 
how successive inclusion of model variables in training influences  predictions14. We view modelling as the fol-
lowing iterative procedure: perform experiment → train model on gathered data → assess its predictive power, 
if required perform additional experiments → train model again, narrowing down its plausible parameter space 
and thus increasing its predictive power. This approach stems from the fact that in (systems) biology additional 
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measurements are usually relatively expensive and/or time-consuming, so researchers try to constrain the model 
by performing a minimal necessary set of  experiments15,16. This procedure increases the number of stiff directions 
and ultimately allows one to predict the investigated variables with high accuracy. To illustrate the procedure 
outlined above we considered a biochemical signalling cascade with a negative feedback loop—a motif ubiqui-
tous in regulatory pathways (e.g.  MAPK17,18, NF-κB19,20,  p5321,22). As an auxiliary example, we analysed a simple 
damped mechanical oscillator consisting of three masses with one of them subject to forcing.

We investigated the trained model’s ability to predict the system responses to different temporal stimulation 
protocols as well as responses that arise when one of the parameters is multiplied or divided by a factor of 10. The 
latter corresponds to perturbations that can be introduced by inhibitors or mutations causing protein hyperactiv-
ity, while the change of stimulation protocol can be interpreted as a modification of the therapy schedule. In the 
last decade, investigation of responses to complex temporal stimulations was enabled by optogenetic receptors 
which allow arbitrarily complex stimulation  protocols23,24. We demonstrated that training a relaxed model, with 
three hypothetical negative feedback loops, leads to equally good predictions as training the nominal model, and 
correctly suggests the location of the nominal feedback loop. In contrast, training oversimplified or incorrect 
models leads to inaccurate predictions with (misleadingly) narrow prediction bands. This suggests the use of a 
more relaxed model structure when the exact network wiring is unknown or uncertain.

Model training relies on the exploration of the space of plausible parameters, i.e. parameters giving predic-
tions within an expected error bound of the measurements. There are several methods to explore the parameter 
space (e.g. Fisher information  matrix16,25, profile  likelihood3,4, Bayesian  methods26–28, approximate Bayesian 
 computation29, nested  sampling30). We chose the Bayesian approach and sampled the parameter space by per-
forming Markov Chain Monte Carlo (MCMC) simulations using the Metropolis–Hastings  algorithm31. This 
method allows us to start from broad, non-informative priors and explore the posterior parameter distributions 
confined by smaller or larger datasets, and consequently obtain straightforward probabilistic predictions. To avoid 
over-focusing on the details of the Bayesian approach, we will refer to posterior parameter samples as the set of 
plausible parameters, and to the process of running the MCMC simulation and obtaining the samples as training.

Results
Sequential training of the signalling cascade model. We considered a four-step signalling cascade 
with negative feedback(s) resembling the MAPK cascade (RAS → RAF → MEK → ERK), outlined in Fig.  1a, 
with corresponding equations given in Fig. 1b. The cascade is activated by a time-dependent signal S(t), which 
depends on the stimulation protocol chosen. Nominal model parameters (used for generating training data) and 

Figure 1.  Signalling cascade model. (a) Scheme of the 4-level biochemical signalling cascade model activated 
by a time-dependent signal S(t). Strengths of feedbacks f2 and f3 are set to zero in the nominal model but are 
allowed to assume positive values in the ‘relaxed’ model. (b) Model equations. (c) Model parameters used for 
generating training data and prior distributions used for training. (d) Simulated trajectories of K1, K2, K3, and 
K4 in response to Strain used for model training; softlog(x) = log(0.001 + x). Error bars show measurement errors 
assumed for the generation of training data.
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assumed lognormal parameter priors used during model training are given in Fig. 1c. We note that, by default, 
the strengths of feedbacks to the second and third step of the cascade are zero (f2 = f3 = 0)—later we investigate 
a ‘relaxed’ model in which f2 and f3 are allowed to be positive. The training dataset was generated by simulating 
trajectories of the four model variables, K1, K2, K3, and K4 using an ‘on–off ’ stimulation protocol and randomly 
perturbing them in order to mimic experimental errors (Fig. 1d). The error bars are plotted at measurement time 
points (every hour) and show the magnitude of the assumed experimental errors. We used three such gener-
ated measurement replicates for training (see “Methods” for details). The training dataset was used to train two 
models: the ‘nominal’ model for which we assume f2 = f3 = 0, and a ‘relaxed’ model (in the next section) in which 
we allow f2 and f3 to assume positive values, also with a lognormal prior (Fig. 1c).

First, we trained the nominal model using only the trajectory of the last variable, K4. We observe that the 
resulting model accurately predicts the trajectory of K4 in response to two very different stimulation protocols 
(Fig. 2a,b), but fails to predict the trajectories of any of the remaining variables. For these three variables, the 
80% prediction bands are very broad, implying that the trained model contains little information about these 
variables. Next, the training dataset was expanded to additionally include the trajectory of K2, and we observe 
that also the trajectory of this variable can be reliably predicted (Fig. 2c). Finally, the complete training dataset 
containing trajectories of all four variables resulted in a “well trained” model, which predicts the trajectories of 
all variables (Fig. 2d).

By investigating the space of plausible parameters (i.e., posterior samples) we may notice that even for the 
well-trained model the marginal probability distributions show that all 9 parameters may vary by about an 
order of magnitude, and when training is performed only on K4 (or K2 and K4) parameters may vary by about 
two orders of magnitude (Fig. 2e). This shows that the model trained only on the last variable of the cascade, 
K4, can accurately predict this variable’s trajectories in response to different stimulation protocols, even though 
all model parameters remain uncertain, suggesting sloppiness of the trained  model10. To better understand this 
feature we numerically analysed the dimensionality of the plausible parameter sets (see “Methods” section for 
details) obtained after training the model on (i) K4, (ii) K2 and K4, and (iii) all four variables (Fig. 2f). Since we 
are interested in multiplicative changes of parameters, we performed a principal component analysis (PCA) on 
sets of (natural) logarithms of plausible  parameters9. Exponents of the square roots of the principal values (vari-
ances) λi can be interpreted as principal multiplicative deviations of parameter values, δi = exp(√λi). The prior 
parameter distributions are LogNormal(μ = 1, σ = 3) clipped to [0,  104], which gives δi,prior ≈ exp(3) ≈ 20 (for all 
i), implying that “on average” all prior parameter values can vary 20-fold from the median. After training on all 
variables, the largest principal multiplicative deviation is δi ≈ 12, however, the 4 smallest δi are much lower, below 
1.5 (note that δi = 1 implies no variation along the i-th principal component), indicating that these directions are 
stiff. This implies that the dimensionality of the plausible parameter space was effectively reduced by 4 due to 
training. When training is performed only on K4, dimensionality is reduced by 1 (only the smallest δi is below 
1.5), and when training uses K2 and K4, dimensionality is reduced by 2 (the two smallest δi are below 1.5). There-
fore, in agreement with intuition, model training reduces the dimensionality of the plausible parameter space. 
In our example, measurement of n variables reduces dimensionality by n. Importantly, even reduction from 9 to 
8 dimensions allows for reliable predictions of a single variable of interest that was measured to train the model.

The principal components (eigenvectors) can be used to gain additional insight. Each stiff direction defines a 
combination of parameters that is well-constrained by data used for training (Fig. S1a). The single stiff direction 
that emerges after training on K4 has four positive coordinates corresponding to activation parameters (a1–a4) 
and five negative coordinates corresponding to deactivation parameters (d1–d4) and the negative feedback (f1). 
The same pattern appears when training includes two, or all four variables; in the emerging stiff directions, coor-
dinates corresponding to activation and deactivation have opposite signs. Stiff directions span a stiff subspace, 
and this subspace can be more intuitively visualised when a linear combination of stiff vectors minimising the 
number of dominant coordinates is chosen (Fig. S1b). One can now readily see that even after training on all four 
model variables, only the ratios of activation/deactivation parameters can be determined, not these parameters 
themselves.

Finally, we investigated whether the trained model is able to predict responses to test protocols that arise after 
a multiplicative change of a given model parameter. Such a change is equivalent to a system perturbation that can 
be introduced experimentally by knockdown or overexpression of a reacting protein. To test this, after training 
the model on K4, we modified each set of plausible parameters by multiplying or dividing a given parameter by a 
factor of 10. As shown in Fig. 3, for each of the 9 parameters such a modification allows to correctly predict, with 
relatively narrow prediction bands, the response of the nominal model with the corresponding parameter change.

Training a relaxed model. Frequently, experiments are performed not only to constrain the parameters of 
a known model but to deduce the structure of the model itself. To explore this scenario, in Fig. 4 we introduced 
a ’relaxed’ model, in which we allowed strengths of the three negative feedbacks shown in Fig. 1a to assume 
positive values during training (assuming prior lognormal distributions, as shown in Fig. 1c). This increases 
the number of free parameters from 9 to 11. Again, this relaxed model was trained on in silico-generated data, 
based on the nominal model with one feedback. Regardless of whether only K4 or all variables are included in 
the training dataset, the relaxed model performs equally well as the nominal model on test protocols (compare 
Fig. 4a versus Figs. 2a, 4b versus Fig. 2d). We note that the marginal distributions of the three feedback param-
eters remain broad (Fig.  4c). This means that, even without knowing strengths of individual feedbacks, the 
model can give reasonable predictions. Nevertheless, these distributions indicate that the (nominal) feedback 
f1 is dominant.
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Figure 2.  Training the nominal model. (a,b) Prediction of model responses to two test signals, Stest, after 
training on the trajectory of K4 (generated in response to the training protocol, Strain, shown in Fig. 1d). Black 
dotted lines show trajectories of the nominal model, coloured lines show (point-wise) medians of predictions, 
contours show 80% prediction bands; softlog(x) = log(0.001 + x). (c) Prediction of model responses after 
training on trajectories K2 and K4. (d) Prediction of model responses after training on trajectories of all four 
model variables, K1, K2, K3 and K4. (e) Histograms obtained from 10,000 samples generated from the posterior 
distribution of model parameters after training on K4 (blue); K2 and K4 (orange); K1, K2, K3 and K4 (purple). 
Grey contours show prior distributions. (f) Dimensionality reduction of the parameter space by successive 
inclusion of model variable trajectories into the training set. Bar heights show principal multiplicative deviations 
δi = exp(√λi), where λi are principal values (variances) of log-parameters.
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The above example suggests that if there exists uncertainty about model structure, it is advisable to train a 
more relaxed model, which can still result in satisfactory predictions, and eventually, after gathering more data, 
can provide a hint about true model structure.

Training a simplified model. Given insufficient knowledge about the cascade structure and a small data-
set, it might be tempting to train a simplified model. Here, we give an example that showcases potential pitfalls of 
this approach. As previously, the training set was a perturbed trajectory of K4 generated by the nominal model—
however, we attempted to train a model that contains only two signalling steps, in which K1 directly influences 
K4 (formally in the equation for K4 we replace K3 by K1, and equations for K2 and K3 are omitted). Training the 
simplified model on the ‘on–off ’ protocol shows some discrepancy between the original and simplified model 
trajectories (Fig. 5a, note the logarithmic scale of the plot). When the trained model is verified on the test stimu-
lation protocol, the observed discrepancy is more visible, meaning that the simplified model is not able to make 
accurate predictions (Fig. 5b). Crucially, the 80% prediction band is relatively narrow, similar to that obtained for 
the correct model (Fig. 5b versus Fig. 2a). Thus the trained simplified model is “sure” (even if marginal param-
eter distributions of 3 out of 5 model parameters remain very broad—Fig. 5c) about its inaccurate predictions.

In certain cases where approximate predictions are still satisfactory, the simplified model can be a reasonable 
solution. However, as demonstrated above, one should be very careful when interpreting parameters and making 
predictions, since some conclusions might be an artefact of using a wrong model to compute posterior prob-
abilities. Finally, in contrast to the relaxed model, the simplified model cannot be improved by additional data.

Figure 3.  Predicted responses after changing model parameters. (a,b) Prediction of model responses to two 
test signals, Stest (shown in each panel top left), after training on the trajectory of K4 (generated in response to 
the training protocol, Strain, shown in Fig. 1d). In each chart, one of the parameters (shown in square brackets) 
was multiplied (red) or divided (blue) by a factor of 10. Black dotted lines show trajectories of the nominal 
model, coloured lines show (point-wise) medians of predictions, contours show 80% prediction bands; 
softlog(x) = log(0.001 + x).
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Analysis of potential pitfalls. In Fig. S2 we investigate training based on an inadequate stimulation pro-
tocol. The protocol’s ‘on’ phase lasts only 1 h (compared to 4 h in Fig. 2), and as a result, the model predictions 
have a broad 80% prediction band. The prediction band for K4 is broad when training includes K4 only, and 
remains broad even when training includes all four model variables. Higher uncertainty of trained model tra-
jectories is associated with larger principal multiplicative deviations δi, compared to values obtained for training 
shown in Fig. 1d. This example highlights the importance of designing a good stimulation protocol for training. 
If our goal is to obtain accurate predictions of K4 only, training on K4 with the help of an appropriate protocol 
(Fig. 2a) gives much better results than training on all variables employing a suboptimal protocol (Fig. S2c). This 
pitfall is relatively simple to resolve—one has to adjust the training protocol so that it allows capturing charac-
teristic temporal responses of the system. Whether the 1-h long ‘on’ phase is sufficient or not depends on the 
nominal model parameters.

In Fig. S3 we show an example where the prior model is incorrect, i.e. has no negative feedback at all. We 
obtain discrepancies between measurement and model, which could be overlooked during training if, for exam-
ple, the measurement points were not distributed densely enough. From the trained wrong model we also obtain 
wrong predictions with very narrow prediction bands, as in the case of the simplified model discussed earlier. The 
key message from Fig. 5 and Fig. S3 is that a simplified or wrong model can make inaccurate or wrong predic-
tions with narrow prediction bands, and thus the width of prediction bands contains no information about the 
accuracy of the model. Narrow prediction bands imply that obtained constraints on parameters suffice for unique 
predictions, but these predictions are correct only under the condition that the model structure is also correct.

Mechanical analogue. We performed a similar analysis of a (distant) mechanical analogue of the signal-
ling pathway, a damped harmonic oscillator consisting of three masses connected by two springs (Fig. 6). The 
system is parametrized by 8 free parameters. For training, we used a protocol in which one of the masses is 
pushed with constant force for 10 s, which results in a displacement of all masses. Next, we used the trajectory of 
the opposite mass (or of all masses) to train the model. In the test protocol, a sinusoidal driving force was applied 
to the same mass as during training. Similarly to the signalling cascade model, we found that training on a single 
mass trajectory suffices to predict its trajectory (for a limited time) in response to a very different forcing, and 
training on all three masses allows for very accurate predictions of all trajectories, despite the fact that marginal 
distributions of model parameters remain broad.

Figure 4.  Training a relaxed model. (a) Prediction of model responses to test signal, Stest, after training on the 
trajectory of K4 (generated in response to the training protocol, Strain, shown in Fig. 1d). Black dotted lines show 
trajectories of the nominal model, coloured lines show (point-wise) medians of predictions, contours show 80% 
prediction bands; softlog(x) = log(0.001 + x). (b) Prediction of model responses after training on trajectories 
of all four model variables. (c) Histograms were obtained from 10,000 samples generated from the posterior 
distribution of model parameters after training on K4 (blue) or all model variables (purple). Grey contours show 
prior distributions.
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Discussion
The majority of systems biology models, including mechanistic models of intensely studied regulatory net-
works, are non-identifiable (or sloppy). Current techniques and algorithms allow practitioners to automatically 
resolve structural non-identifiability problems, however, resolving practical non-identifiability is harder, and 
frequently requires additional data or substantial model reduction. We see the model reduction problem as fol-
lows: regulatory networks have built-in signalling cascades that transmit signals between key nodes. In many 
cases, researchers are aware of components (typically kinases) of these signalling cascades, but measuring the 
kinetics of all these components is not feasible. It is thus tempting to skip these intermediate steps, but this solu-
tion is problematic since these intermediate steps introduce time delays that can be important for whole-network 
behaviour, such as oscillations. In the case of the discussed cascade S → K1 → K2 → K3 → K4 triggered in t = 0 from 
state K1 = K2 = K3 = K4 = 0 by the step signal S(t), the first, second and third time derivatives of K4 (at t = 0) are zero. 
When the cascade is reduced to S → K1 → K4, the second derivative of K4 becomes positive, which noticeably 
changes the system’s response, as shown in Fig. 5. To maintain observed dynamics (in particular oscillations) 
one can introduce nonlinearities, but as a consequence, the resulting model misses some components and has 
nonlinear terms not supported by underlying  biochemistry32,33.

Figure 5.  Training a simplified model. (a) Training a simplified (2-step) model on the nominal (4-step) model 
trajectory of K4. Only variables present in the simplified model are shown. Black dotted lines show trajectories 
of the nominal model, coloured lines show (point-wise) medians of the simplified model, contours show 80% 
prediction bands; softlog(x) = log(0.001 + x). (b) Prediction of the trained simplified model responses to the test 
signal, Stest. Same graphical convention as in (a). (c) Histograms were obtained from 10,000 samples generated 
from the posterior distribution of simplified model parameters. Grey contours show prior distributions.
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In response to the outlined problems with model reduction, we studied an alternative approach based on 
training the full mechanistic model on the available dataset and assessing its predictive  power2. We showed that a 
very limited dataset, insufficient to constrain any model parameters, can still allow for satisfactory  predictions10,11. 
In particular, we demonstrated that by training the signalling cascade model on the trajectory of the last compo-
nent of the cascade (obtained in response to some properly chosen training protocol), one can unambiguously 
predict its trajectory in response to other protocols, as well as parameter changes. This prediction is possible 
despite the fact that trajectories of all upstream variables remain unknown.

Investigation of the plausible parameter set allows for additional insight. In the considered example we 
observe that when training is performed on trajectories of n variables, the ‘effective’ dimensionality of the plau-
sible parameter set is reduced by n, and this reduction suffices to predict trajectories of the measured variables in 
response to other protocols. As discussed by Machta et al.34, the compression of the parameter space identifies stiff 
directions corresponding to composite parameters controlling observed variables. By picking a suitable basis for 

Figure 6.  Three-body harmonic oscillator. (a) Scheme of the model. All eight parameters (masses, mi; damping 
coefficients bi; spring constants ki) to be estimated are given together with their nominal values. Before the 
time-dependent force F(t) is applied, the system remains in equilibrium. (b) Model equations. (c,d) Training (c) 
and prediction (d), with only the trajectory of the red mass included in the training. As in the signalling cascade 
model, for training, we use three independently generated measurement replicates with Gaussian noise (sigma 
σerror = 0.3) added to the deterministic trajectory (black dotted line). Measurement points are at full seconds. 
Coloured lines show (point-wise) medians of predictions, contours show 80% prediction bands. (e,f) Training 
(e) and prediction (f), with trajectories of all masses included in the training, same convention as in (c,d). (g) 
Histograms were obtained from 10,000 samples generated from the posterior distribution of model parameters 
after training on red mass trajectory (red line) and after training on all masses trajectories (black line). Grey 
contours show (uniform) prior distributions.
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the stiff space, we confirmed our intuition that ratios of activation/deactivation parameters govern the dynamics 
of the cascade. Since stiff directions usually do not align with model parameters (as it is in our case), Gutenkunst 
et al. argued that in sloppy models, measuring system dynamics is an ineffective way of deriving parameter values, 
and conversely, measuring parameter values is an ineffective way of predicting system  dynamics2. In fact, even 
after training on trajectories of all model variables, most model parameters remained unidentified.

Model training can be generally understood as exploring the parameter space, in order to find plausible 
parameters, i.e. parameters leading to model trajectories in agreement with available data. In this context, many 
exploration methods are available. Locally, information about the uncertainty of parameters can be calculated 
using Fisher’s information matrix. For models with asymmetric but still unimodal loss landscapes, the (semi-
local) profile likelihood method can be used. For arbitrary loss landscapes, a Bayesian approach together with 
MCMC exploration is convenient, as

1. it allows for the inclusion of prior knowledge; if no such knowledge exists, training can start from some 
broad uninformative prior,

2. it allows for the analysis of how much a model has learnt by including a given dataset; this can be expressed 
by the reduction of the ‘effective’ dimensionality of the plausible parameter space, or entropy of the distribu-
tion of plausible parameters,

3. it allows us to assess the predictive power of the trained model, by sampling the posterior parameter distribu-
tion and computing prediction bands for variable trajectories.

The main disadvantage of MCMC compared to local (or semi-local) methods is that it can become computa-
tionally expensive, especially for high-dimensional parameter  spaces28. The computational cost is typically lower 
if exploration starts from a relatively narrow (informative) prior, or a more complete dataset is available, which 
results in a narrower posterior  distribution35. A promising method of accelerating MCMC exploration is based 
on reducing expensive model evaluations by local approximation of the  likelihood36,37.

In summary, the advantage of the studied approach to non-identifiability is twofold.

1. It does not require pre-emptive model reduction to avoid unmeasured variables in order to obtain predic-
tions. Certainty of the predictions obtained from the full model can be determined by predictive bands, and 
if these predictions are insufficiently narrow, the model can be further trained using additional measure-
ments of the variables of interest. Notably, these predictions are more reliable than predictions obtained from 
simplified models. While predictions from the full model may have wide predictive bands, the predictions 
from simplified models can be misleading (inaccurate with narrow bands) due to introduced simplifications.

2. If at a later time, measurements of previously unobserved variables are performed, no modification of the 
model structure is necessary. In contrast, reduced models may not be able to accommodate new data, simply 
because some components were omitted during reduction.

We hope that this approach will allow for easier collaboration, as it allows researchers to jointly work on the 
same model, improving it by performing new  experiments2.

Identifiable models or theories stem from physics, where they showed their superiority over other approaches. 
Whole branches of physics are based on a small number of fundamental theories. In systems biology, the situa-
tion is different: there are a lot of not-so-important models, typically having a large number of parameters that 
can neither be (feasibly) derived from more fundamental theories nor effectively measured. Currently, a very 
intensively developed approach to complex systems is based on neural networks. In this approach, one gets lit-
tle to no insight into how the system works but can get very good predictions. In this sense, Bayesian methods 
are a middle ground between classical, identifiable models and black box models such as neural networks. The 
Bayesian approach studied here works well in our case because we have a good prior on the model structure, 
even if the prior on model parameters is broad and uninformative. This approach can be impractical for very 
complex systems for which neural networks are typically used, but is able to both give useful predictions and 
obtain some insight into the underlying regulatory system. Even if the explanatory power of the trained non-
identifiable model is limited by the uncertainty of its parameters, its predictive power can make it useful (see 
also discussion in Refs.2,38).

We think that the discussed approach, based on model training on some selected variables and giving only 
partial insight into the system’s behaviour, may reflect true uncertainties in underlying  biology39,40. Considering 
a regulatory network one can identify core nodes. Because of their importance, the corresponding variables are 
frequently measured, and for the same reason one can expect relatively good replicability of these measurements. 
The intermediate pathway components are less tightly constrained and may exhibit higher  variability41. Daniels 
et al. argued that cell-to-cell variability in protein levels might be beneficial for robustness and  evolvability39. 
Variability of intermediate proteins implies that (for very practical reasons) these variables are not (frequently) 
measured; or even if they are measured, results are (understandably) not reported due to insufficient replicability. 
One can thus hypothesise, that in the case of intensively investigated regulatory systems, the remaining uncer-
tainty of model parameters and of trajectories of intermediate components may reflect their true variability, at 
least at the single cell level. One may hope that quantification of the variability of intermediate variables, and 
correlation between them will help to elucidate existing compensatory properties ensuring robustness of the 
whole regulatory network.
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Methods
Computational model simulations. Each model is represented by a set of ODEs and an input signal 
S(t), which are solved using an explicit Runge–Kutta (4,5) formula developed by Dormand-Prince. Model simu-
lations are used first to generate in silico measurements, and then to estimate parameter distributions based 
on these measurements. A measurement trajectory is evaluated at full hours (or at full seconds in the case of 
the mechanistic analogue model shown in Fig. 6) by adding to the ODE solution Gaussian noise (with sigma 
σerror = 0.3) that emulates measurement error. Parameter estimation (model training) is based on 3 independent 
measurement trajectories.

In the case of biochemical cascade models, ODE trajectory x(t) is log-transformed to y(t) =  log10(0.001 + x) 
before adding measurement noise.

Parameter estimation based on MCMC simulations. For each of the considered models we assume 
some prior parameter distribution P(θ) and use an MCMC algorithm to draw samples from the posterior param-
eter distribution P(θ | M), given in silico generated measurements M.

To estimate P(θ | M), we first calculate the likelihood of θ given a single measurement Lk,t,r(θ) = P(mk,t,r | θ) 
(where k is the measured variable, t is the time of measurement, and r = 1, 2, 3 is the measurement replicate) by 
simulating variable trajectories yk(t) for the parameter set θ. Then

where σerror is the measurement error (assumed 0.3 for all our models). The total likelihood given all measure-
ments of variable k is thus:

and the posterior distribution P(θ | M) is proportional to

where the product is over variables k selected for model training. Then f(θ) is used in MCMC simulations to 
draw samples from P(θ | M).

MCMC simulations are performed using the Metropolis–Hastings algorithm with Gaussian jumping dis-
tribution. We use 8 parallel chains, each with 1.5 million steps from which the first 0.25 million are removed 
(burn-in). This gives altogether 10 million parameter samples from which we retain every thousandth sample, 
i.e. 10,000 samples for model simulations. We compared the between- and within-chain variance estimates using 
the r-hat convergence statistics to find r-hat < 1.01, suggesting a sufficient length of chains. The effective sample 
size of the final sample was found to be at least 1000.

For the biochemical cascade models, we assume wide log-normal priors and thus use log-parameters during 
MCMC sampling. After this reparameterization, we use a spherically symmetric Gaussian jumping distribution 
with independent variables and σ = 0.2 (in the log scale). For the mechanical model, we use an elliptical Gaussian 
jumping distribution with σ = 1.0 for masses, σ = 0.2 for damping coefficients, and σ = 0.4 for stiffness coefficients. 
For the final fit (trajectories of all three masses observed) we decrease step size by a factor of 4.

To minimise biases we select wide, non-informative priors, however, it is worth noting that in practical 
applications informative priors can significantly increase model performance.

In summary, our statistical model can be itemised as follows:

1. θ ∼Prior distribution.
2. x(t) = Model ODEs solution for parameters θ and initial condition x(0) = x0.
3. y(t) = softlog(x(t)) := log(0.001+ x(t)) (only for signalling cascade).
4. mk,t,r ∼ N (yk(t), σerror).

where θ are the model parameters, σerror is the measurement error and mk,t,r is the r-th measurement of variable 
k at time t, drawn from normal distribution N (yk(t), σerror). Initial conditions for the ODE are kept constant 
and excluded from estimation. The softlog normalisation step is omitted for spring models. For all our models 
σerror = 0.3.

Principal component analysis. In Fig.  2F, Fig.  S1 and Fig.  S2D we use principal component analysis 
(PCA) to quantitatively describe the dimensionality reduction of the plausible parameter set. This approach 
works if the analysed set of points is “sufficiently flat”. Points on a half circle would have two big PC values, even 
though the space is clearly one-dimensional. In such a case dimensionality can be investigated locally, as pro-
posed by Little et al.42. In the half-circle example, this local PCA analysis would result in one small and one big 
PC value (for a sufficiently small spatial scale). We have verified that in our case local estimates result in higher 
PC values than the global ones; we thus conclude that our point clouds are sufficiently flat to justify using global 
PCA analysis.

Implementation. We implemented our models in Python using  jax43 and  diffrax44 (for ODE integration), 
and the MCMC algorithm using  blackjax45.

Lk,t,r(θ) =
1

σerror
√
2π

exp

(

−
1

2σerror2
(yk(t)−mk,t,r)

2

)

,

Lk(θ) =
∏

t,r
Lk,t,r(θ),

f (θ) = P(θ)P(M|θ) = P(θ)
∏

k
Lk(θ),
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Data availability
No experimental datasets were generated or analysed during the current study. All numerical results were 
obtained using code available at https:// github. com/ grfre deric/ ident ifiab ility.

Code availability
Our source code is available at https:// github. com/ grfre deric/ ident ifiab ility.
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