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Abstract
The existence and properties of intracellular waves of increased free cytoplasmic cal-
ciumconcentration (calciumwaves) are strongly affected by the binding and unbinding
of calcium ions to a multitude of different buffers in the cell. These buffers can be
mobile or immobile and, in general, have multiple binding sites that are not indepen-
dent. Previous theoretical studies have focused on the case when each buffer molecule
binds a single calcium ion. In this study, we analyze how calcium waves are affected
by calcium buffers with two non-independent binding sites, and show that the interac-
tions between the calcium binding sites can result in the emergence of new behaviors.
In particular, for certain combinations of kinetic parameters, the profiles of buffer
molecules with one calcium ion bound can be non-monotone.

Keywords Reaction-diffusion systems · Buffered calcium systems

1 Introduction

The spatio-temporal distribution of calcium ions plays a significant role in the control
of cellular processes such as fertilization, proliferation, morphogenetic development,
gene expression, learning and memory, synaptic communication, muscle contraction,
hormone secretion, cell movement and wound repair. In particular, in many cell types
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a wide range of stimuli (typically mediated by the binding of hormones or neurotrans-
mitters to receptors on the cell surface) initiate oscillations and waves of increased
calcium concentration, and it is the dynamic properties of these oscillations and waves
(in particular the period, localization, and amplitude) which act as the intracellular sig-
nal (Dupont et al. 2016; Falcke 2004–2005).

Although the processes that control the cytoplasmic calcium concentration differ
in detail between cell types, there is considerable overlap between the basic mecha-
nisms, and thus it makes sense to talk of a generic calcium oscillation or wave model.
Such a generic model relies on the excitable nature of the release of calcium from the
endoplasmic reticulum (ER), whereby a small increase in cytoplasmic calcium con-
centration can lead to the release of much greater amounts of calcium from the ER,
typically either through inositol trisphosphate receptors (e.g., in non-excitable cells),
through ryanodine receptors (e.g., in striated muscle cells), or through both types of
channels. Such excitable release of calcium from internal stores is generically called
calcium-induced calcium release, or CICR (Dupont et al. 2016).

Because of the inherently excitable nature of CICR, an understanding of the dynam-
ical behavior of calciumwaves can be gained by the analytical study of thewell-known
FitzHugh–Nagumo (FHN) excitable model (Fitzhugh 1960, 1961; Nagumo et al.
1962). Further, in many cell types calcium release happens on a much faster time
scale than the recovery process, and thus the FHN model can be reduced to the single
bistable model. This reduction is equivalent to the study of the leading front of wave
solutions in the FHN model.

However, the mechanism for controlling calcium waves differs from the traditional
excitable mechanism in one crucial respect: the presence of large numbers of calcium
buffer proteins. In normal conditions, more than 99% of cytoplasmic calcium ions
are bound by buffer proteins. This is because free calcium ions are poisonous to
the cell (because they activate so many things), and so buffers are used to control
the concentration of free calcium. Therefore, in order to study calcium waves, it is
necessary to investigate the dynamical behavior of buffered excitable systems. Along
this line, numerous researchers have studied calcium wave propagation in buffered
excitable systems with the presence of calcium buffers with a single binding site.
The buffered bistable model was proposed by Sneyd et al. (1998). The existence and
uniqueness of waves are established by a number of authors (Tsai and Sneyd 2005;
Kaźmierczak andVolpert 2008a, b), and stability is shown in Tsai (2007). One needs to
note that not every wave in mathematical sense is physiologically relevant. By this we
mean that the elevated stable equilibrium of calcium concentration should expand into
the region of lower stable equilibrium (ground state). A criterion for the existence of
a physiologically relevant wave is derived in Tsai and Sneyd (2011, Proposition 3.2).

Previous work on the effects of calcium buffers on calcium dynamics has mostly
assumed that calcium buffering can be modeled effectively by assuming that each
buffer molecule has a single calcium binding site. This assumption is, in general, not
satisfied; calcium buffers typically bind multiple calcium ions in a cooperative fash-
ion, with the binding of one calcium ion affecting the rate at which calcium binds
to the other binding sites (Schwaller 2010). However, recent work by Matveev and
his colleagues (Matveev 2018; Chen and Matveev 2021) has extended the traditional
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analysis of buffers with a single binding site to include the effects of a second binding
site, where the binding is cooperative. It is this general approach that we follow here.

It is important to note that cooperative binding is critical for our analysis. If the
buffer molecules have several independent calcium binding sites we can represent the
action of these buffers as a sum of buffer molecules each with a single binding site
(see e.g., Sect. 6 in Kaźmierczak and Sneyd 2021) . However, the assumption of coop-
erative binding means that the binding sites are not independent, and the probability
of calcium binding to any particular site will depend on which other binding sites are
already occupied.

In particular, we consider the extreme situation in which the calcium ions can bind
only consecutively, concentrating mainly on the case of two binding sites. Thus ini-
tially, calcium can bind only to the first site and the other sites are unavailable (hidden).
After binding a calcium ion to this site, the second consecutive site is activated, e.g.,
exposed as a result of changing the buffer molecule conformation. This process can
repeat consecutively. Unbinding of calcium follows an analogous process.

Another important fact is that due to the changeof conformation, the buffermolecule
canhave a different diffusion coefficient than initially (Sorensen andShea1996),which
additionally complicates the description. This phenomenonwill be, however, not taken
into account.

In this paper,we show that buffered systemswith buffermolecules possessingmulti-
ple dependent calcium binding sites can have specific properties, not shared by the sys-
temswith buffermolecules having only one binding site (or independent binding sites).

The plan of this paper is as follows. In Sect. 2, we present the mathematical model.
Section 3 is devoted to traveling wave problem and its fast buffering reduction. The
validity of the fast buffering reduction is given in the appendix. Then, in Sect. 4, a
criterion for the existence of a physiologically acceptable wave is derived. With this
criterion, the effect of two-site buffers on the dynamical behavior of calcium waves is
deduced in Sect. 5. Finally, conclusions and discussions are given in Sect. 6.

2 Buffered Bistable Model

Let us consider the case of buffer molecules which can bind m ≥ 2 calcium ions. For
simplicity, we will confine to one single type of buffer molecules. Now set

Mj = [M j ], j = 0, . . . ,m,

whereM j represents the buffermoleculewhich binds exactly j calcium ions. Note that
M0 stands for the unbound form of buffers. Let the process of binding and unbinding
of a calcium ion to the buffer molecule M j be described by the following reaction

scheme with the kinetic constants k j
+ and k j

−, respectively:

Ca2+ + M j

k j
+

�
k j
−

Ca2+M j ≡ M j+1, j = 0, . . . ,m − 1. (1)
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Let c and cb denote the concentration of free cytosolic calcium and the basal concen-
tration of free cytosolic calcium, respectively. Let D denote the diffusion coefficient
of free calcium ions, and DMj ≥ 0, j = 0, . . . ,m, the diffusion coefficient of the
j-th buffer Mj with calcium bound (DMj = 0 means that the j-th buffer is immo-
bile). Assuming, for simplicity, that the cell is one-dimensional, and using the law of
mass-action, we obtain the Buffered bistable model:

ct = Dccxx + f (c) +
m−1∑

j=0

[
−k j

+cM j + k j
−Mj+1

]

︸ ︷︷ ︸
calcium buffering

,

Mj,t = DMj M j,xx +
[
k j−1
+ cM j−1 − k j−1

− Mj − k j
+cM j + k j

−Mj+1

]
,

j = 1, . . . ,m − 1,

Mm,t = DMm Mm,xx +
[
km−1+ cMm−1 − km−1− Mm

]
,

M0,t = DM0M0,xx −
[
k0+M0c − k0−M1

]
. (2)

here f (c) denotes the calcium fluxes in and out of the cytoplasm, and, in general,
it contains a number of terms such as release from inositol trisphosphate receptors,
reuptake by pumps, and so on. Since the free cytosolic calcium possesses one high
stable steady state of calcium concentration in the models for calcium waves, we use
the bistable nonlinearity for f . Specifically, f is assumed to take the well-known
bistable nonlinearity

f (c) = S
(
c − c1

)(
c − c2

)(
c3 − c

)

:= S
(
c − cb

)(
c − (a + cb)

)(
(1 + cb) − c

)
(3)

whereS > 0 and a ∈ (0, 1) are constants. The zeros of f have the following biological
implications (see Smith et al. 2002 for more details): (i) the state c1 represents a stable
resting state at basal calcium concentration in cytosol; (ii) the state c3 is a state at high
calcium concentration in the cytosol; and (iii) the state c2 corresponds to a threshold
for the activation process (e.g., CICR).

According to what we said in Introduction, we do not take into account a possible
difference in diffusion coefficient due to change of buffer molecules conformation.
Therefore, throughout this paper we assume that

DM0 = DM1 = . . . = DMm := DM .

Then, by adding the equations for Mj , j = 0, 1, ...,m, we conclude that

⎛

⎝
∑

j=0,...,m

Mj

⎞

⎠

,t

= DM

⎛

⎝
∑

j=0,...,m

Mj

⎞

⎠

,xx

.
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The only solution of this equation which is bounded uniformly on IR is identically a
constant. We thus have

∑

j=0,...,m

Mj = b0,

where b0 represents the constant which is the total concentration of buffer molecules
at each spatial point. Consequently, we can replace M0 by b0 −∑ j=1,...,m Mj and
consider the resulting system consisting of the first m + 1 equations of system (2).
Then, system (2) is reduced to the following system

ct = Dccxx + f (c) − k0+b0c

+
m−1∑

j=1

[(
k0+ − k j

+
)
cM j + k j−1

− Mj

]
+
(
k0+c + km−1−

)
Mm,

M1,t = DMM1,xx

+ k0+b0c −
(
k0− + k0+c + k1+c

)
M1 +

(
k1− − k0+c

)
M2 −

m∑

j=3

k0+cM j ,

Mj,t = DMj M j,xx

+
[
k j−1
+ cM j−1 − k j−1

− Mj − k j
+cM j + k j

−Mj+1

]
, j = 2, . . . ,m − 1,

Mm,t = DMm Mm,xx +
[
km−1+ cMm−1 − km−1− Mm

]
. (4)

It is seen that the equations forMj , j = 2, . . . ,m, do not change, and that the equation
for M1 is modified. We note that for m ≥ 3 the obtained system is not monotone, so
does not enjoy the comparison principle and the existence theorem of traveling waves
in Volpert et al. (1994) due to the form of the equation for M1.

3 TravelingWave Problem and Fast Buffering Reduction

3.1 Buffered Bistable Model with Two Calcium-Binding Sites

To facilitate the discussion for the effect of multiple binding sites on traveling waves,
we will only focus on the case where a single type of buffer is present, and such a
type of buffer possesses exactly two calcium binding sites. Under the aforementioned
assumption, system (4) is reduced to the following Buffered bistable system:

ct = Dccxx + f (c) −
[
k0+b0c +

(
k1+c − k0+c − k0−

)
M1 −

(
k0+c + k1−

)
M2

]
,

M1,t = DMM1,xx + k0+b0c −
(
k0− + k0+c + k1+c

)
M1 +

(
k1− − k0+c

)
M2,

M2,t = DMM2,xx +
[
k1+M1c − k1−M2

]
. (5)
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A direct computation reveals that the constant states of system (5) are given by the
following expressions:

Pj :=
(
c j , M

j
1 , M j

2

)
, j = 1, 2, 3, (6)

where the c j are defined in (3), and the M j
1 and M j

2 are given by

M j
1 = k0+b0c j

k0− + k0+c j + k0+
k1+
k1−

c2j

, M j
2 = k1+

k1−
c j M

j
1 . (7)

3.2 TravelingWave Problem for Two-site BufferingModel

A traveling wave solution (c, M1, M2) of system (5) connecting P1 to P3 is a solution
of system (5) which is a function of the traveling wave coordinate variable ξ = x+vt ,
i.e.

(c, M1, M2)(x, t) = (c, M1, M2)(ξ), (8)

and satisfies the boundary conditions

lim
ξ→−∞(c, M1, M2)(ξ) = P1 and lim

ξ→+∞(c, M1, M2)(ξ) = P3, (9)

where v is the wave speed.
We make one remark about the notation of the traveling wave coordinate. Since we

use ξ = x + vt as the traveling wave coordinate, a wave solution with positive (resp.
negative) wave speed v corresponds to a wave propagating from the right to the left
(resp. from the left to the right).

Note that not all of wave solutions are biologically reasonable. When waves pass
throughout the whole cytosol, the free cytosolic calcium is at a high stable steady
state. Therefore, a positive wave speed v is required for a biologically reasonable
wave solution.

In terms of the moving coordinate ξ = x + vt , the wave profile (c, M1, M2) of
a traveling wave solution of system (5) satisfies the following ordinary differential
equations:

Dcc′′ − vc′ + f (c) − [k0+b0c + (k1+c − k0+c − k0−
)
M1 − (k0+c + k1−

)
M2
] = 0,

DMM ′′
1 − vM ′

1 + k0+b0c − (k0− + k0+c + k1+c
)
M1 + (k1− − k0+c

)
M2 = 0,

DMM ′′
2 − vM ′

2 + [k1+M1c − k1−M2
] = 0.

(10)

subject to the boundary condition (9).
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3.3 Rapid BufferingModel

In the following, we will apply the rapid buffering approximation (RBA) (Wagner and
Keizer 1994; Keener and Sneyd 1998) to analyze traveling wave solutions to system
(5). The RBA was first proposed by Wagner and Keizer (1994) to study the effect
of rapid buffers with a single binding site on calcium diffusion and oscillations. Its
central idea is to assume that buffering processes are very fast compared with the other
reactions. Mathematically, this means that

k j
± � 1 with

k j
−
k j
+

being constant, j = 0, 1.

According to the RBA, we will use the second and the third equations in system
(10) (the equation for M1) to calculate the expression Ib in the bracket of the first
equation of system (10), which in turn reduce the full system to a single equation for
the free calcium concentration. Here we give an outline of this approach. To proceed,
the expression Ib can be rewritten in the following form:

Ib :=
[
k0+b0c +

(
k1+c − k0+c − k0−

)
M1 −

(
k0+c + k1−

)
M2

]

=
[
k0+b0c −

(
k0− + k0+c + k1+c

)
M1 +

(
k1− − k0+c

)
M2

]

+ 2
[
k1+M1c − k1−M2

]

=: Ib1 + 2Ib2 (11)

where Ib1 and Ib2 denote the free terms in the second and third equation of system
(10). The presence of factor 2 in the last equality of (11) follows from the fact that
every M2 molecule has two calcium ions bound. We will thus calculate Ib1 and Ib2,
which in turn gives the value of Ib. Next, we rescale the expressions for Ib1 and Ib2
using the large parameter out of them. The rescaled expressions are then equated to
zero, to obtain the dependence of the functions M1 and M2 on the variable c. Finally,
by differentiation we calculate the DMM ′′

1 −vM ′
1 and DMM ′′

2 −vM ′
2, and thus obtain

the values of the unrescaled quantities Ib1 and Ib2, and so the Ib.
Now, we carry out the RBA for system (10). The rigorous verification of this

procedure is postponed to the appendix. As a large parameter L we take any of the
quantities k0,1± , e.g., L = k0+. Let us set

k0,1± =: Lκ
0,1
± . (12)

Then, system (10) can be written as:

Dcc′′ − vc′ + f (c) − L
[
κ0+b0c + (κ1+c − κ0+c − κ0−

)
M1 − (κ0+c + κ1−

)
M2
] = 0

DMM ′′
1 − vM ′

1 + L
[
κ0+b0c − (κ0− + κ0+c + κ1+c

)
M1 + (κ1− − κ0+c

)
M2
] = 0

DMM ′′
2 − vM ′

2 + L
[
κ1+M1c − κ1−M2

] = 0
(13)
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As the coefficients κ are of the order of 1, so we can write Ib1 and Ib2 in the form:

Ib1 = L
[
κ0+b0c − (κ0− + κ0+c + κ1+c

)
M1 + (κ1− − κ0+c

)
M2
] =: L I1,

Ib2 = L
[
κ1+M1c − κ1−M2

] =: L I2. (14)

The quantities I1 and I2 do not depend on any large parameters, so, asymptotically,
we are justified to demand I1 = 0 and I2 = 0. From the second equation we obtain

M2 = κ1+
κ1−

M1c. (15)

Putting this relation into I1 and equating it to zero, we obtain

M1(c) = κ0+b0c

κ0− + κ0+c + κ0+
κ1+
κ1−

c2
= b0c

K(c)
(16)

with K0, K1 and K defined by

K0 := k0−
k0+

= κ0−
κ0+

, K1 := k1−
k1+

= κ1−
κ1+

, K(c) := K0 + c + K−1
1 c2. (17)

Now differentiating (16) gives

dM1

dc
(c) =: θ1(c) = b0(K0 − K−1

1 c2)

K(c)2
. (18)

Hence, in the moving coordinate ξ = x + vt , we have

M ′
1(ξ) = θ1(c(ξ)) c′(ξ).

Now, a further differentiation of M ′
1(ξ) with respect to ξ gives that

− Ib1 = DMM ′′
1 − vM ′

1

= DM
[
θ ′
1(c(ξ))(c′(ξ))2 + θ1(c(ξ))c′′(ξ)

]− vθ1(c(ξ))c′(ξ). (19)

Likewise,

M2(c) = K−1
1 M1(c)c = K−1

1 c
b0c

K(c)
(20)

and

dM2

dc
(c) =: θ2(c) = K−1

1
b0c(c + 2K0)

K(c)2
(21)
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with

M ′
2(ξ) = θ2(c(ξ)) c′(ξ).

Hence

− Ib2 = DMM ′′
2 − vM ′

2

= DM
[
θ ′
2(c(ξ))(c′(ξ))2 + θ2(c(ξ))c′′(ξ)

]− vθ2(c(ξ))c′(ξ). (22)

Finally, by plugging (11), (19), and (22) into the c-equation of system (13), it follows
that the c-equation of system (13), and so that of system (10), can be rewritten as the
following Rapid buffered bistable system:

(Dc + DMθ(c)) c′′ + 2DMθ ′(c) (c′)2 − v(1 + θ(c))c′ + f (c) = 0, (23)

where

θ(c) = θ1(c) + 2θ2(c) =
b0
(
K−1
1 c2 + 4cK0K

−1
1 + K0

)

K(c)2

=
b0
(
K−1
1 c2 + 4cK0K

−1
1 + K0

)

(
K0 + c + K−1

1 c2
)2 (24)

It is worthwhile to note that Eq. (23) corresponds to the parabolic equation of the
form:

(1 + θ(c))ct = (Dc + DMθ(c)) cxx + 2DMθ ′(c) (cx )
2 + f (c) (25)

under the traveling wave ansatz c(x, t) = c(ξ) = c(x + vt).
Now, under the assumption of buffers with fast kinetics, a traveling wave solution

of the Buffering system (5) can be approximated by a solution of the Rapid buffering
system (23), as stated in the following proposition.

Proposition 1 (Rapid buffering reduction) Let scaling (12) be in force. Suppose that
(v0, c0) is a solution of the Rapid buffered bistable system (23) subject to the boundary
conditions

lim
ξ→−∞ c0(ξ) = cb and lim

ξ→+∞ c0(ξ) = 1 + cb.

Then, there exists a large L > 0 such that for each L > L0, we can find a traveling
wave solution (vL , cL , M1,L , M2,L) of the Buffering bistable system (5) such that

|vL − v0| = O(L−1), ‖cL − c0‖C2(IR) = O(L−1),

‖M1,L − M1(c0)‖C2(IR) = O(L−1), ‖M2,L − M2(c0)‖C2(IR) = O(L−1),
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where M1(·) and M2(·) are defined by (16) and (20), respectively.

The validity of Proposition 1 will be shown in the Appendix. (See the proof of a more
general Theorem A.1.)

3.4 A Useful Transformation�

Let us note that given the function θ , the structure of Eq. (23) is the same as the
structure of Eq. (12.34) in Keener and Sneyd (1998). Let us note that Eq. (23) can be
written as

(w(c))′′ − v(1 + θ(c))c′ + f (c) = 0, (26)

where

w(c) := Dcc + DM (M1(c) + 2M2(c)) = Dcc + DMb0c
1 + 2K−1

1 c

K(c)
. (27)

Now, as w′(c) = Dc + DMθ(c), then w is a monotonically increasing function of c.
So, w and c are inverse functions of each other. Let us denote

c = c(w) =: φ(w). (28)

We have

dφ

dw
=
(
dw

dc

)−1

= 1

Dc + DMθ(c(w))
, (29)

thus

dφ

dw
(w) > 0 for w ∈ IR+ ∪ {0}. (30)

Equation (26) can thus be converted into an equation for w:

w′′ − v(1 + θ(c(w)))
1

Dc + DMθ(c(w))
w′ + f (φ(w)) = 0. (31)

4 A Criterion for the Propagation of BufferedWaves

Theorem 1 (Existence and uniqueness of wave solutions of Rapid buffering system)
Let w1 and w3 be the unique real numbers such that φ(w1) = cb and φ(w3) =

1 + cb.
Suppose that

∫ w3

w1

f
(
φ(w)
)
dw > 0. (32)
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Then, there exist a positive increasing function c0 : IR → IR and a positive number
v0 such that (v0, c0) is a solution of the Rapid buffering system (23)–(24) subject to
the boundary conditions

lim
ξ→−∞ c0(ξ) = cb and lim

ξ→+∞ c0(ξ) = 1 + cb.

Moreover, the solution pair (v0, c0) is unique in the sense that if (v∗
0 , c

∗
0) is another

solution pair, then v0 = v∗
0 and c0 = c∗

0(· + ξ0) on IR for some ξ0 ∈ IR.

The proof of the theorem uses the standard shooting method and the arguments
from Sneyd et al. (1998) applied to the case of buffers with one binding site, but for
completeness and better reference below, we insert it here.

Proof of Theorem 1 According to the analysis given in Sect. 3.4, it suffices to consider
Eq. (31). To begin with, we will give local analysis of (31) around its singular points.
To see this, we can write (31) as a first-order system:

w′ = z
z′ = �(w) v z − f (φ(w))

(33)

where

�(w) := θ(φ(w)) =
b0
(
K−1
1 φ(w)2 + 4φ(w)K0K

−1
1 + K0

)

K(φ(w))2
,

�(w) := 1 + �(w)

Dc + DM�(w)
.

The steady states of this system are equal to (wi , 0), i = 1, 2, 3, where

φ(w1) = cb, φ(w2) = cb + a, φ(w3) = cb + 1. (34)

Noting that φ and w are inverse functions of each other by (27) and (28), this implies

w1 = w(cb), w2 = w(cb + a), w3 = w(cb + 1) (35)

Due to the fact that

d f (φ(w))

dw
= d f (φ(w))

dφ(w)
· dφ
dw
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and using (30) and (34), we conclude that the states w1 and w3 are stable, whereas w2
is unstable. In fact, we have

d f (φ(w))

dw

∣∣∣
w=w1

= −Sa 1

Dc + DMθ(cb)
=: d1 < 0 ,

d f (φ(w))

dw

∣∣∣
w=w2

= Sa(1 − a)
1

Dc + DMθ(a + cb)
=: d2 > 0 ,

d f (φ(w))

dw

∣∣∣
w=w3

= −S(1 − a)
1

Dc + DMθ(1 + cb)
=: d3 < 0 .

The eigenvalues of the linearization matrices at the singular points (wi , 0), i =
1, 2, 3, are solutions to the equations

λ2i − λ v�(wi ) + di = 0

and are given by the expressions:

λi± = 1

2

(
v�(wi ) ±

√
v2�2(wi ) − 4di

)
.

It follows that (w2, 0) is a repeller, whereas (wi , 0), i = 1, 2 are saddle points. The
eigenvectors corresponding to the positive eigenvalue at (w1, 0) and to the negative
eigenvalue at (w3, 0) can be written as:

V1 =
(
1,

2d1

v�(w1) −√v2�2(w1) − d1

)
=: (1, S1(d1, v)),

V3 =
(

−1,
−2d3

v�(w3) +√v2�2(w3) − d3

)
=: (−1, S3(d3, v)).

(36)

Before proceeding further, wemake two observations. First, as d1 < 0, d3 < 0, then
for v ≥ 0 the vector V1 has a positive slope, while the vector V2 has a negative slope.
Moreover, given d1 < 0, the function S1 is a strictly increasing function of v with
S1(d1, 0) = 2

√|d1| and limv→∞ S1(d1, v) = ∞. On the other hand, the function S3
decreases with v ≥ 0. Next, if z(ξ) = w′(ξ) > 0 for ξ in some interval (ξ1, ξ2), then
z can be treated also as a function of w via the identification z(w) = z(w(ξ)) = z(ξ).
Below, for simplicity, we will use the same symbol for z as a function of w.

Now, we go to the shooting scheme. To proceed, let us note that, for given v ≥ 0,
the trajectories of system (33 ) starting from (w1, 0) along the vector V1 satisfy the
equation

1

2
z2(w) = v

∫ w

w1

�(w)z(w)dw −
∫ w

w1

f
(
φ(w)
)
dw. (37)

Due to the form of f (·), we have f (φ(w)) < 0 for w ∈ (w1, w2), and hence

for v ≥ 0 , z(w) > 0 and z,w(w) > 0 for w ∈ (w1, w2]. (38)
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Now, we consider the trajectory with v = 0. Indeed, from (38) the trajectory with
v = 0 will lie above the w-axis for w ∈ (w1, w2]. On the other hand, according to
(37) and (32), for v = 0 the trajectory must touch the axis z = 0 for some w < w3.
Taken together, it follows that for v = 0, the trajectory must intersect the axis z = 0
for some w0 ∈ (w2, w3).

Next, we consider the trajectory with sufficiently large v. To proceed, let us first
consider the case v > 0. Then, due to the fact that f (φ(w)) < 0 for w ∈ (w1, w2),
we have by (37):

z2(w2) > −2
∫ w2

w1

f
(
φ(w)
)
dw =: z20.

Since system (33) is autonomous, without losing generality, we can suppose that, given
v > 0, w2 = w(ξ)|ξ=0. Thus, by the z-equation of (33), we conclude that, as long as
w(ξ) ≤ w3, z(ξ) = w′(ξ) satisfies the inequality

z′(ξ) > v�z − f , z(ξ = 0) > z0,

where � := infw∈(w2,w3) �(w) and f := supw∈(w2,w3)
f (φ(w)). Set z̃ := z −

f /(v�). Then, the last inequality implies that for ξ > 0

z̃′ > v� z̃, z̃(0) = z(0) − f

v�
> z0 − f

v�
.

It follows that, if v > 0 is sufficiently large, then z̃(0) > z0/2, and so for all ξ > 0

z(ξ) >
z0
2
exp(v�ξ) + f

v�
>

z0
2

.

As a result, given sufficiently large v > 0, the considered trajectory will cross the line
w = w3 for some z = zv > z0/2. The boundedness of zv is implied by the fact that
for any solution z such that z(w) > 0 and z,w(w) > 0 for all w ∈ (w1, w3], we have

z2(w3) = v

∫ w3

w1

z(w)�(w)dw −
∫ w3

w1

f
(
φ(w)
)
dw < vz(w3)

∫ w3

w1

�(w)dw,

where we used (32). This leads to the estimate

z(w3) < v

∫ w3

w1

�(w)dw.

To summarize, for v = 0 the trajectory of system (33) crosses the axis z = 0 for
w ∈ (w2, w3), and there exists v∗ > 0 sufficiently large such that the corresponding
trajectory crosses the line w = w3 for some finite zv∗ > 0. By using the continuity
argument, we conclude that there must exist at least one v0 ∈ (0, v∗), such that for
v = v0 the corresponding trajectory reaches the singular point (w3, 0). Moreover,
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such a v0 is unique. Suppose to the contrary that there exist v01 and v02 > v01, for
which the corresponding trajectories T1 and T2 join the points (w1, 0) and (w3, 0).
Then, the trajectory T2 starts at a bigger slope than T1, and, by the monotonicity of
trajectories with respect to v ≥ 0, T2 stays above T1 for all w ∈ (w1, w3). However,
according to the first observation after (36) T2 should cross T1 from above, hence we
arrive at contradiction. This completes the proof. ��

5 Separatrix Curve JC = 0 and Buffers’ Effect

As it is seen fromTheorem1 and its proof, the ’sine qua non’ condition for the existence
of traveling waves with positive speed is the positivity of the integral

∫ w3

w1

f
(
φ(w)
)
dw =

∫ 1+cb

cb
(Dc + DMθ(c))) f (c)dc. (39)

However, as the value of the integral
∫ 1+cb
cb

Dc f (c)dc is known, similarly to Tsai
(2013), we will consider only the integral

JC (a, K0, K1) := b−1
0

∫ 1+cb

cb
θ(c) f (c)dc

=
∫ 1+cb

cb
f (c)

(
K−1
1 c2 + 4cK0K

−1
1 + K0

)

(
K0 + c + K−1

1 c2
)2 dc. (40)

We note that if JC (a, K0, K1) > 0, then calcium traveling waves always propagate.
On the other hand, if JC (a, K0, K1) < 0, then waves will cease to propagate if the
product DMb0 is large enough so that

∫ 1+cb

cb
Dc f (c)dc + DMb0 JC (a, K0, K1) < 0.

Therefore, the presence of buffers can prevent the propagation of calcium waves only
if their kinetic characteristics satisfy JC (a, K0, K1) < 0. This suggest a detailed study
of the separatrix curve JC (a, K0, K1) = 0, which will be done later.

Before proceeding, let us note that, according to (1) and (17), the limit K1 → ∞
corresponds to the case of buffers with single calcium binding site. Biologically, this

can be explained by the fact that K1 = k1−
k1+
, so K1 tending to infinity means that the

reaction

Ca2+ + M1

k1+
�
k1−

M2.
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runs only from the right to the left. Therefore, in fact there are no molecules with two
calcium ions bound. Also note that in the limit K1 → ∞, the right-hand side of (40)
is reduced to

JC (a, K0) =
∫ 1+cb

cb
f (c)

[
K0

(c + K0)2

]
dc. (41)

Therefore, the condition that

JC (a, K0) < 0. (42)

is a necessary condition enabling one-site buffers to slow down or stop the propagation
of advancing calcium waves.

5.1 TheModified System Excitability Function a(K0, K1)

As we have noted, the separatrix curve JC (a, K0, K1) = 0 plays a key role in the
propagation of calcium traveling waves. In this subsection, we will investigate it in
more detail. To proceed, we will use the equation JC (a, K0, K1) = 0 to deduce
that the excitability variable a can be represented as a function a(·, ·) of the kinetic
characteristic pair (K0, K1). Let us remind that according to (3) we have assumed the
source function has the cubic form

f (c) = f (a; c) = S(c − cb)(c − cb − a)(1 − (c − cb)) (43)

where a ∈ (0, 1) and S is a positive constant. Recall that the parameter a in the source
function f characterizes the system excitability. Therefore, the function a(K0, K1)

characterizes the system excitability in the buffered system with the kinetic character-
istic pair (K0, K1). Further, for a given buffered system with the kinetic characteristic
pair (K0, K1), if 0 < a < a(K0, K1), then JC (a, K0, K1) > 0, and so waves always
propagate. On the other hand, if a > a(K0, K1), then JC (a, K0, K1) < 0, and so
waves may cease to propagate provided if the product (b0DM ) of the concentration
of total buffers and their diffusion coefficients are large enough. These follow from
the fact that the function JC (a, K0, K1) is decreasing in a, as shown in the following
lemma.

Lemma 1 For all a ∈ [0, 1], K0 ∈ [0,∞) and K1 ∈ [0,∞), we have

∂ JC
∂a

(a, K0, K1) < 0.

Proof The proof follows from the fact that due to (43) for c ∈ (cb, cb + 1)

d f

da
(a; c) = −S(c − cb) · (1 − (c − cb)) < 0.

��
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With the use of Lemma 1, the separatrix curve JC (a, K0, K1) = 0 gives rise to
the existence of the modified excitability function a(·, ·), as shown in the following
lemma.

Lemma 2 (Existence of the modified system excitability function a(K0, K1)) There
exists a function a : [0,∞) × [0,∞) �→ [0,∞) such that, for all K0 ∈ [0,∞) and
K1 ∈ [0,∞), we have

JC (a(K0, K1), K0, K1) = 0.

For all ε1 > 0, ε2 > 0, the function a(·, ·) is of C1 class of their arguments on the set
[ε1,∞) × (ε2,∞).

Proof The existence of the function a(·, ·) follows from the implicit function theorem
and Lemma 1. Likewise, the differentiability follows from the fact that, for j = 0, 1,
we have

∂a

∂K j
(K0, K1) = − ∂ JC

∂K j
(a, K0, K1)

(∂ JC
∂a

(a, K0, K1)
)−1

, (44)

fromwhich (andTheorem1) follows the boundedness and continuity of the derivatives.
��

It should be noted that for (K0, K1) tending to (0,∞)

JC,a(a, K0, K1) → K0

∫ 1+cb

cb
fa(a; c)c−2dc+K−1

1

∫ 1+cb

cb
fa(a; c)dc+h.o.t . → 0.

Next, JC (a, 0, K1) → K−1
1

∫ 1+cb
cb

f (a; c)dc + O(K−2
1 ), from where it follows

that a(0, K1) = 0.5 − |O(K−1
1 )|. Now, JC,K0(a, 0, K1) → ∫ 1+cb

cb
f (a; c)c−2dc +

O(K−2
1 ) = ∫ 1+cb

cb
f (0.5; c)c−2dc + O(K−1

1 ) < 0. It follows, according to (44), that
aK0(0, K1) → ∞ as K1 → ∞. These properties of the function a(K0, K1) are illus-
trated in the right panel of Fig. 2. Similar singularity analysis can be carried out for
(K0, K1) → (∞, 0).

Though the exact expressions of the modified excitability function a(·, ·) can be
obtained (e.g., by usingMathematica code), they very complicated, thus it is better to
use numerical simulations for the analysis. To fix our attention, in the remainder of
this section, we will choose

cb = 0.2 (μM) (45)

for the calcium ground concentration, unless it is indicated differently. The resting
cytoplasmic calcium concentration is typically around 100 nM, but can vary anywhere
from 20 nM to over 200 nM (Clapham 2007). The value we choose here is thus slightly
on the high side, but still within the physiological regime.
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Fig. 1 Form of separatrix curves JC (a, K0, K1) = 0 for cb = 0.2, for different values of a ∈ (0, 1)
and for K0 ∈ [0, 1]. Left panel: The case for small range of K1 ∈ [0, 5]. The dashed almost vertical
curve corresponds to the set of points for which a(K0, K1),K0 = 0, whereas the dashed almost horizontal
curve corresponds to the set of points for which a(K0, K1),K1 = 0. The bold curves correspond to the
two branches of the curve associated with the curve JC (a∗, K0, K1) = 0, where the critical parameter
a∗ ≈ 0.4174. These branches meet together at the critical point (K ∗

0 , K ∗
1 ) of the modified excitability

function a(K0, K1). The three lowest curves are depicted in the smaller scale in the left panel of Fig. 2. The
three curves in the left-hand side sector correspond (from right to left) to a = 0.42, 0.43 and 0.45. Right
panel: The case for large range of K1 ∈ [0, 100]. The curves have the same meanings as those in the left
panel

Fig. 2 Left panel: The three lowest curves JC (a, K0, K1) = 0 in the left panel graph of Fig. 1 corresponding
to a = 0.35, 0.32 and 0.29. The vertical straightline demarcates from the right the values of K0 for which
JC (0.35, K0, K1) ≤ 0 in the case of buffer molecules with only one site of calcium binding. The dashed
curve corresponds to the set of points for which a(K0, K1),K0 = 0 with a(K0, K1),K0 > 0 to the right
and a(K0, K1),K0 ≤ 0 to the left of it. Middle panel: Form of separatrix curves JC (a, K0, K1) = 0 for
large values of K0 ∈ [0, 1]. Right panel: Shape of the curves a(K0, K1) for fixed chosen values of K1. As
K1 → ∞, aK0 (0, K1) → ∞

For the case of one-site buffers, the exact expression of the function a(·, ·) is given
by Sneyd et al. (1998). For two-site buffers, approximate (asymptotic) formulae can
be only derived in some specific cases. For example, this can be done for very large
values of K0, as it is shown in Sect. 5.2.2.

The shapes of the curves JC (a, K1, K1) = 0 for some values of a ∈ (0, 1) are
depicted in Fig. 1. The critical point (K ∗

0 , K ∗
1 ) ≈ (0.133, 2.376) of the modified

excitability function a(·, ·) for which ∂a/∂K0(K ∗
0 , K ∗

1 ) = 0 and ∂a/∂K1(K ∗
0 , K ∗

1 ) =
0 divides the family of the curves JC (a, K1, K1) = 0 into two classes. Specifically,
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let a∗ = a(K ∗
0 , K ∗

1 ) ≈ 0.417425 be the critical excitability parameter. Then, for
a ∈ (0, a∗), the curve JC (a, K1, K1) = 0 consists of two parts: one is opening
upwards, and the other is opening downwards. On the other hand, for a ∈ (a∗, 1), one
component of the curve JC (a, K1, K1) = 0 opens to the left, and the other opens to
the right. This can be seen from the left and right panels of Fig. 1. The presentation
of the form of the curves JC (a, K1, K1) = 0 is continued in Fig. 2. In the left panel
of Fig. 2 we show the region of smaller values of K1, whereas in the middle panel the
region with larger values of K0. Finally, in the right panel we show the form of the
curves a(K0; K1) as a function of K0 for some given values of K1.

5.2 The Effect of Two-site Buffers

In this subsection, we analyze of the effect of binding sites on traveling wave solutions.

5.2.1 Admissible RegionA for Wave Propagation

In this subsection,we discuss the region in the K0K1 plane forwhich the corresponding
wave propagates from the right to the left, hence with v > 0. If these conditions are
satisfied we will simply say, for brevity, that the waves propagate.

To proceed, recall that for a fixed a ∈ (0, 1), if the kinetic pair (K0, K1) lies in the
region

A := {(K0, K1) ∈ IR2+ : JC (a, K0, K1) > 0
}
,

then the corresponding wave always propagates. On the other hand, if (K0, K1) falls
outside the region A(K0, K1), then waves cannot propagate provided if the product
b0DM is large enough.

In order to be compared with one-site buffers, we need to define a critical K0.
Indeed, for a given a ∈ (0, 1/2), there exists a critical Ks

0 ≥ 0 such that

JC (a, K0) < 0 for K0 ∈ (0, Ks
0) and JC (a, K0) > 0 for K0 > Ks

0 .

Therefore, for the case of one-site buffers, when K0 > Ks
0, waves always propagate,

whereas for K0 ∈ (0, Ks
0), waveswill be stopped provided if the product b0DM is large

enough. As it is seen from the left panel of Fig. 3, the minimal excitability parameter
a for which the action of buffer molecules can stop the advancing wave propagation is
approximately equal to 0.331. On the other hand, for two site buffers, it can be shown
that the minimal value of a is approximately not bigger than 0.254. (For example, for
K0 = 10 and K1 = 0.00007 it is equal to 0.254.)

These differences are also expressed in the regions in the K0K1-space, in for which
the advancing waves can propagate independently of the values of DMb0.

With the use of Ks
0, the region A is decomposed into two subregions A+ and A−,

defined by

A+ = A
⋂{

(K0, K1) : K0 ≥ Ks
0, K1 > 0

}
,
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Fig. 3 Admissible regionA = A+⋃A− in the K0K1 plane for which waves can propagate for cb = 0.2.
Left panel: Admissible region of propagation for one-site buffer molecules. Middle panel: a = 0.38.
Ks
0 = 0.2104. Right panel: a = 0.43. Ks

0 = 0.7736 . The one-site buffered wave can propagate if
K0 ≥ Ks

0 (independently of the value DMb0)

A− = A
⋂{

(K0, K1) : K0 ∈ (0, Ks
0), K1 > 0

}
.

The regionsA,A+,A−, for two characteristic values of the parameter a, are depicted
in Fig. 3.As shown in Fig. 3, one of the boundaries of the regionA− tends to the vertical
line K0 = Ks

0 as K1 ↗ ∞. This reflects the fact that JC (a, K0, K1) → JC (a, K0) as
K1 → ∞.

We first discuss the case where (K0, K1) ∈ A+. For one-site buffers, the corre-
sponding wave always propagates. For two-site buffers, although the corresponding
wave always propagates if K1 is large enough. On the other hand, the wave can fail
to propagate provided K1 is small and the product b0DM is large enough. As shown
in Fig. 3, such a region (bottom portion of purple color with K0 ≥ Ks

0) is relatively
small. (Note that the graphs in the middle and right panel are in the logarithmic scale.)
Hence, we can come to an approximate conclusion that two-site buffers retain propa-
gation for the kinetic pair (K0, K1) ∈ A+ for which one-site buffered waves always
propagate.

Next we consider the case where (K0, K1) ∈ A−. For one-site buffers, the corre-
sponding wave can be stopped provided b0DM is large enough. However, for two-site
buffers, some of the corresponding waves can propagate. Therefore, we can conclude
that two-site buffers can promote propagation for the kinetic pair (K0, K1) ∈ A− for
which one-site buffered waves can be stopped if the product b0DM is large enough.

5.2.2 Can Buffers with Multiple Binding Sites Facilitate CalciumWave Propagation?

One can ask an alternative question: Can the presence of buffers facilitate the propa-
gation of calcium waves? Let us consider the extreme case where waves do not exist
in the system with the absence of buffers, that is,

∫ cb+1

cb
f (c)dc < 0. (46)

Then, our question is the following. Suppose that condition (46) holds. Can the addition
of buffers promote the propagation of waves? Intuitively, this seems to be impossible.
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Fig. 4 Time evolution of free calcium concentration with a = 0.53, K0 = 35 and cb = 0.2. Left panel:
K1 = 0.1. The red continuous curve corresponds to traveling wave solution of Eq. (25) generated by the
initial condition c(x, 0) = 0.2+ H(x − 1000) for t = 400. The blue dashed curves correspond to traveling
waves generated by system (5) by the same jump condition for c and the corresponding initial conditions
for M1 and M2 for t = 400. Parameters used in the simulations: D = 300, b0 = DM = 150, L = 50,
κ0+ = κ1+ = 1, κ0− = 35, κ1− = 0.1, S = 500. Right panel: K1 = 1. L = 100, κ1+ = 1. Other parameters
as in the right panel. The inset figures illustrate that the corresponding parameter pair (a, K0) lies above
the separatrix curve JC (a, K0, K1) = 0 (Color figure online)

However, as we will see, one-site buffers cannot promote the propagation, whereas
two-site buffers can empower the propagation of advancing waves.
Single binding site

For the case of one-site buffers, the answer is negative, as it follows from the form
of the integral JC (a, K0) given by (41) and representing (up to a positive factor) the
influence of buffers. Indeed, using the mean-value theorem for integrals and the fact
that f is one sign on the intervals (cb, cb + a) and (cb + a, cb + 1), we can find
c− ∈ (cb, cb + a) and c+ ∈ (cb + a, cb + 1) such that

JC (a, K0) =
∫ a+cb

cb
f (c)

[
K0

(c + K0)2

]
dc +
∫ 1+cb

a+cb
f (c)

[
K0

(c + K0)2

]
dc

= K0

(c− + K0)2

∫ a+cb

cb
f (c)dc + K0

(c+ + K0)2

∫ 1+cb

a+cb
f (c)dc

<
K0

(c− + K0)2

∫ a+cb

cb
f (c)dc + K0

(c− + K0)2

∫ 1+cb

a+cb
f (c)dc

= K0

(c− + K0)2

∫ 1+cb

cb
f (c)dc < 0.

This in turn implies that

∫ w3

w1

f
(
φ(w)
)
dw = Dc

∫ 1+cb

cb
f (c)dc + DMb0 JC (a, K0) < 0.

Hence, in this case the waves cannot exist by Theorem 1.
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Two Binding Sites
For the case of two-site buffers, a successful propagation depends on whether the

quantity

∫ w3

w1

f
(
φ(w)
)
dw = Dc

∫ 1+cb

cb
f (c)dc + DMb0 JC (a, K0, K1)

is positive or not, as indicated by Theorem 1. Since the integral
∫ 1+cb
cb

f (c)dc is
negative, we need to look for a triplet (a, K0, K1) such that JC (a, K0, K1) > 0. Then,
for such a triplet (a, K0, K1), the corresponding wave will propagate provided the
product DMb0 is large enough.

First, the right-hand side of (40) can be written in the form

JC (a, K0, K1) := (K0)
−1 · J̃C (a, K0, K1) (47)

where for f given by (43),

lim
K0→∞ J̃C (a, K0, K1) =

∫ 1+cb

cb
f (c)

(
1 + 4c

K1

)
dc

= 12 + 20cb + 5K1 − 10a (2 + 4cb + K1)

60K1
.

It follows that for K1 > 0, in the limit K0 → ∞,

a(∞, K1) = 12 + 20cb + 5K1

10(2 + 4cb + K1)
= 1

2
+ 2

10(2 + 4cb + K1)
. (48)

For cb = 0.2 and K1 → 0, a(∞, K1) → 0.571. We have thus shown the following
theorem.

Theorem 2 For every fixed K1 > 0, there exists K0 > 0 sufficiently large, such that
a(K0, K1) > 1/2. It follows that for a < 1/2 traveling waves to Eq. (25) have
positive speed (v > 0) independently of the value of the product DMb0, whereas for
all a ∈ [1/2, a(K0, K1)) the waves have positive speed (v > 0) if only the product
DMb0 is sufficiently large.

It must be however remarked that, according to (47), for fixed a ∈ (0, 1) and
K1 > 0, the value of the integral JC (a, K0, K1) decreases approximately as (K0)

−1.
For the excitability parameters a ∈ (0, 1/2) the statement of the theorem is obvious

as the limit K0 → ∞ corresponds to the situation where calcium ions are completely
released from bound buffers by the reaction scheme (1) and the relation K0 = k0−/k0+.

On the other hand, for a > 1/2 the claim of the theorem seems paradoxical and it is
hard to find its physical explanation. Theorem 2 is confirmed numerically. Their results
are presented in Fig. 4. It is numerically shown that for K1 = 1 (left panel) and K1 =
0.1 (right panel), a(K0, K1) > 0.53. For these parameters and a = 0.53, there exist
traveling wave solutions with v > 0. Moreover, this result holds not only for traveling

123



10 Page 22 of 45 B. Kazmierczak et al.

wave solutions to the asymptotic Eq. (25) (heteroclinic solutions to Eq. (23), but also
to traveling waves of an initial system (5) representing Eq. (23) with sufficiently large
L .

5.2.3 Monotonicity Versus Non-monotonicity of Wave Profiles

As the initial system of reaction diffusion Eq. (5) is in general a non-monotonic one,
one can expect that the profiles of some of its components can be also non-monotone.
The same remark refers to the profiles of c, M1 and M2 defined by system (23), (18)
and (21). First, let us note that the profile of the c-component of the traveling wave
solutions to Eq. (23) is always monotone increasing, as can be seen from Lemma 1
and its proof. More precisely, we have

c′(ξ) > 0 and cb < c(ξ) < cb + 1 for all ξ ∈ IR. (49)

Therefore, it remains to consider the profiles M1 and M2 of bound buffers.
Single Binding Site

This case corresponds to K1 = ∞, hence from (18) and the fact that the
c-component of wave solutions is monotone increasing, it follows that the M1-
component of wave solutions is monotone increasing. Therefore, for the case of
one-site buffers, the profiles of the concentrations of free calcium ions and free/bound
buffers of wave solutions are always monotonic.
Two Binding Sites

For the case of two-site buffers, the situation is more complicated. Let us consider
the profile of the M1-component of wave solutions. For the M1-component of wave
solutions to be increasing, by (49), we have that M1,c(c(ξ)) = M1,c c′(ξ) > 0 on
IR. With the aid of (18), this is equivalent to the inequality K0 − K−1

1 c2 > 0 for
c ∈ (cb, cb + 1), and hence that K0 > K−1

1 (cb + 1)2. Therefore by (18), we can
conclude that

dM1

dξ
> 0 on IR ⇔ K0 > K−1

1 (cb + 1)2.

Similar arguments give that

dM1

dξ
< 0 on IR ⇔ K0 < K−1

1 c2b.

For each K1 > 0 fixed, the above two observations motivate us to define the
following two curves in the parameter (a, K0)-plane:

�l := {(a, K0) : K0 − K−1
1 c2b = 0},

(the solid (lowest) horizontal line in Fig. 5and 6)

�h := {(a, K0) : K0 − K−1
1 (1 + cb)

2 = 0}.
(the dotted (highest) horizontal line in Fig. 5 and 6)
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For the parameter pair (a, K0) lying between the curves �l and �h , the profile of the
M1-component of the corresponding wave solution is not monotonic, as illustrated in
Figs. 5 and 6 .

Another feature of the profile of the M1-component of wave solutions is that in the
presence of two-site buffers, it may not be heteroclinic. Indeed, for the profile of theM1
component to be heteroclinic, by (16), we must have that M1(c(−∞)) �= M1(c(∞)),
and so that M1(cb) �= M1(cb + 1). This motivates us to define the curve �m in the
parameter (a, K0)-plane as follows:

�m := {(a, K0) : M1(cb) = M1(cb + 1)}.
(the dashed (middle) horizontal line in Fig. 5 and 6)

Therefore, for the parameter pair (a, K0) lying on the curve �m , the profile of the
M1-component of the correspondingwave solution is homoclinic. Further, one can ver-
ify that for the parameter pair (a, K0) lying above�m , the profile of theM1-component
of the corresponding wave solution is heteroclinic with M1(c(−∞)) < M1(c(∞)),
whereas the one lying below �m , the corresponding profile of the M1-component
is heteroclinic with M1(c(−∞)) > M1(c(∞)). The aforementioned discussions are
illustrated in Figs. 5 and 6.

In contrast to the profile of the M1 component of wave solutions, the profile of the
M2 component is always monotone increasing, as can be verified by (21) and (49).
Further, by adding (18) and (21), we have that

d(M1 + M2)

dc
=

b0K0

(
1 + 2K−1

1 c
)

K(c)2
> 0 on IR.

Therefore, the profile of the total buffers in calcium-bound forms is always mono-
tone increasing. Finally, let us emphasize that similar monotonicity/nonmonotonicity
properties are shared by the profiles of traveling wave solutions to system (5), as it has
been shown in Figs. 5 and 6 .

6 Conclusions

In this work, we considered the properties of traveling wave solutions in systems of
reaction-diffusion equations describing the dynamics of calcium ions in the presence
of buffer molecules with two binding sites, which can reciprocally influence each
other depending on their state, i.e., on whether they are free or occupied. Moreover,
in the model we assumed that the binding takes place sequentially—the second after
the first. Likewise the unbinding takes place in the inverse direction. It is obvious that,
if the binding and unbinding processes at the two sites (in a given buffer molecule)
are independent, then the action of ‘two-site’ buffers coincides with the action of two
subpopulations of ‘one-site’ buffers with halved total densities. However, in general,
one site and two site models give different quantitative as well as qualitative results.
The proposed model with two site buffering molecules is described by system (5)
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Fig. 5 Left panel: The shape of the separatrix curve JC (a, K0, K1) = 0 for cb = 0.2 and a fixed K1 = 1
in the aK0 plane. Right panel: The profiles of the M1 component of wave solutions corresponding to
the following parameter pairs (a, K0): A = (0.43, 0.03), B = (0.43, 0.15), C = (0.43, 0.8), D =
(0.43, 2) shown in the left panel. The red continuous curves correspond to traveling wave solutions of
Eq. (25) generated by the initial condition c(x, 0) = 0.2 + H(x − 1000) for t = 200. The blue dashed
curves correspond to traveling waves generated by system (5) by the same jump condition for c and the
corresponding initial conditions for M1 and M2. Parameters used in the simulations: D = 300, L = 15,
κ0+ = κ1+ = κ1− = 1, S = 500, b0 = DM = 150. κ0− = 0.03, 0.15, 0.8 and 2, respectively, for the cases
A, B, C and D. The arrows denote the direction of wave propagation. The red and blue curves satisfy the
monotonicity properties assigned to the points A, B, C and D (Color figure online)

(Buffered bistable system) or the corresponding system of odes for the traveling wave
solutions (10). In Sects. 3.2–3.4, we derive from system (5), using the rapid buffering
approximation, the Rapid buffered bistable system (23), (18), (21) and its parabolic
counterpart (25), (18), (21). In Sect. 4, we formulate the condition for the existence of
traveling waves (with positive speed) independently of how large is the buffer diffu-
sion coefficient (DM ) and the total buffer concentration b0. Basing on the asymptotic
approximation of the proposed model, we can analyze the action of two-site buffers.
In particular, we can compare it with the effect of one-site buffering molecules. In
our study we chose the equilibrium level of cytosolic calcium ions (ground state) as
cb = 0.2 (μM), but all the conclusions derived in the paper hold qualitatively for all
positive values of cb. First of all, as it was mentioned in Sect. 5.2.1, two-site buffers
can stop calcium traveling waves for smaller values of the parameter a ∈ (0, 1/2),
i.e., for higher excitability, with respect to one-site buffers (0.254 vs. 0.331). In the
same subsection we analyze the shape of admissible regions in the K0K1-space for
two chosen excitability parameters a equal to 0.38 (high excitability) and a = 0.43
(low excitability). These shapes can have a very complicated form as it is seen from
the middle and right panel of Fig. 3. In particular, there emerges an additional region
guaranteeing the advancing wave propagation independently of the value DMb0.

In Sect. 5.2.3 we consider the problem of monotonicity of traveling wave profiles
as solutions to the asymptotic equations (23), (18) and (21). It thus follows from
relation (18) that for certain regions of parameter pairs (K0, K1) the profiles of M1
can be nonmonotone or even monotonically decreasing. Moreover, in Figs. 5, 6 we
show numerically that the same monotonicity properties hold also for M1 profiles of
traveling wave solutions to the initial system (5). This consistency can be treated as a
numerical proof of the validity of the asymptotic reduction.
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Fig. 6 Left panel: The shape of the separatrix curve JC (a, K0, K1) = 0 for cb = 0.2 and a fixed K1 = 0.1
in the aK0 plane. Right panel: The profiles of the M1 component of wave solutions corresponding to the
following parameter pairs (a, K0): A = (0.43, 0.3), B = (0.43, 1.5),C = (0.43, 8), D = (0.43, 15) shown
in the left panel. The red continuous curves correspond to traveling wave solutions of Eq. (25) generated
by the initial condition c(x, 0) = 0.2 + H(x − 1000) for t = 100. The blue dashed curves correspond to
traveling waves generated by system (5) by the same jump condition for c and the corresponding initial
conditions for M1 and M2. Parameters used in the simulations: D = 300, L = 15, κ0+ = κ1+ = κ1− = 1,

S = 500, b0 = DM = 150. κ0− = 0.03, 0.15, 0.8 and 2, respectively, for the cases A, B, C and D.
The arrows denote the direction of wave propagation. The red curves satisfy the monotonicity properties
assigned to the points A, B, C and D (Color figure online)

Finally, two-site buffers can also facilitate the propagation of calcium traveling
waves, i.e., induce their propagation, even in the case when it is impossible without
their presence. This is shown numerically in Fig. 4 both for the rapid buffered bistable
system and for the initial system (5) (Buffered bistable system).

This is a highly nonintuitive and unexpected result. Although it is well known
that calcium buffers (including the major calcium buffers calmodulin and calretinin)
generally have multiple binding sites that are not independent (Starovasnik et al. 1992;
Schwaller 2010; Prins and Michalak 2011), the possible effects of this on the speed
and existence of physiological waves remain almost entirely unexplored and unknown.
Unfortunately, it is difficult to perform an experiment in which the interactions of the
individual calciumbuffer binding sites canbemodulatedwhile leaving the total amount
of buffering unchanged; to our knowledge, this has never been attempted. Moreover,
such an experiment would have to be performed ensuring that the buffering power
remains within a relatively narrow region where the effects on waves of binding site
dependence can be seen.

In future work, we intend to generalize our analysis to buffers in which the binding
sites not only influence each other, but also have different binding and unbinding
coefficients. This however will necessitate considering a system with more equations.
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Appendix: Existence of Traveling Waves for Sufficiently Fast Binding
and Unbinding Reactions

In this appendix, we will consider the existence of solutions to the system

Dcc′′ − vc′ + f (c) − [k0+b0c + (k1+c − k0+c − k0−
)
M1 − (k0+c + k1−

)
M2
] = 0,

DMM ′′
1 − vM ′

1 + k0+b0c − (k0− + k0+c + k1+c
)
M1 + (k1− − k0+c

)
M2 = 0,

DMM ′′
2 − vM ′

2 + [k1+M1c − k1−M2
] = 0,

(A.1)

i.e., system (10). In the proof, we will use the modified method applied to a system
describing one kind of buffer molecules with one binding site Kaźmierczak and Per-
adzynski (2011). As it was done in Sect. 3.1, let us rescale the kinetic coefficients of
the considered system:

k0,1± =: Lκ
0,1
± . (A.2)

Hence, system (A.1) can be written in the form

Dcc′′ − vc′ + f (c) − L
[
κ0+b0c + (κ1+c − κ0+c − κ0−

)
M1 − (κ0+c + κ1−

)
M2
] = 0,

DMM ′′
1 − vM ′

1 + L
[
κ0+b0c − (κ0− + κ0+c + κ1+c

)
M1 + (κ1− − κ0+c

)
M2
] = 0,

DMM ′′
2 − vM ′

2 + L
[
κ1+M1c − κ1−M2

] = 0.
(A.3)

In fact, we will assume that the parameter L is sufficiently large.
Let us define

η2 =
[
κ1+M1c − κ1−M2

]
(A.4)

η1 = κ0+b0c −
(
κ0− + κ0+c + κ1+c

)
M1 +

(
κ1− − κ0+c

)
M2. (A.5)

From (A.4) and (A.5) we obtain:

M1(ξ) = b0κ0+κ1−c(ξ) + κ0+η2(ξ)c(ξ) − κ1−η1(ξ) − κ1−η2(ξ)

κ0+κ1+c(ξ)2 + κ0+κ1−c(ξ) + κ0−κ1−
(A.6)

M2(ξ) = b0κ0+κ1+c(ξ)2 − κ1+η1(ξ)c(ξ) − κ0+η2(ξ)c(ξ) − κ1+η2(ξ)c(ξ) − κ0−η2(ξ)

κ0+κ1+c(ξ)2 + κ0+κ1−c(ξ) + κ0−k1−
,

(A.7)

and, in turn, the expressions for the derivatives of M1(·) and M2(·). Having the expres-
sions for M ′

1(·), M ′
2(·), M ′′

1 (·) and M ′′
2 (·), we can write the second and third equation
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of system (A.1) in the form

DM
1

dM
Asec

(
η′′
1

η′′
2

)
− L

(
η1
η2

)
− DM

d 2
M

(
φ1
φ2

)
c′′(ξ) +

(
̃1

̃2

)
= 0, (A.8)

where

dM (c) := κ0+κ1+c(ξ)2 + κ0+κ1−c(ξ) + κ0−κ1−,

Asec =
(

κ1− −κ0+c(ξ) + κ1−
κ1+c(ξ) κ0− + (κ0+ + κ1+

)
c(ξ)

)
, (A.9)

whereas ̃1 and ̃2 are functions of c, c′, η1, η2 and v. Finally

φ1 = b0κ
0+κ1−
(
κ0−κ1− − c2κ0+κ1+

)

+ κ0+κ1−
(
κ1− + 2κ1+c

)
(η1 + η2) + κ0+

(
κ1−κ0− − κ0+κ1+c2

)
η2

:= φ10 + φ
η
1 , φ2 = b0cκ

0+(2κ0− + cκ0+)κ1−κ1+
+ κ0+κ1+c(2κ0− + κ0+c)η2 + κ1+

(
−κ0−κ1− + κ0+κ1+c2

)
(η1 + η2) := φ20 + φ

η
2 .

(A.10)

Let us note that

φ1(c)

dM (c)2
= θ1(c),

φ2c)

dM (c)2
= θ2(c)

where θ1 and θ2 are defined in (18) and (21), respectively.
In (A.8) the functions ̃1, ̃2 contain the terms vM ′

1 and vM ′
2, hence the terms

proportional to c′(·), η′
1(·) and η′

2(·) (obtained via the differentiation of (A.6) and
(A.7)), as well as the products of these derivatives contained in the functions DMM ′′

1
and DMM ′′

2 .
Next, let us note that c′′(·) can be obtained by means of the first equation of system

(A.1). This equation can be written as

c′′ = L
1

Dc
(η1 + 2η2) + 1

Dc

(
vc′ − f (c)

) := L
1

Dc
(η1 + 2η2) − 1

Dc
c(c, c

′).

Equation (A.8) can thus be written as

DM
1

dM
Asec

(
η′′
1

η′′
2

)
− χ L

(
φ1(η1 + 2η2)
φ2(η1 + 2η2)

)
− L

(
η1
η2

)
+
(

̃1 + χ φ1c

̃2 + χ φ2c

)
= 0,

(A.11)
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where

χ = 1

d 2
M

DM

Dc
= 1

d 2
M

d. (A.12)

Consequently, we obtain the system:

DM

(
η′′
1

η′′
2

)
− L A∗

sec

(
η1
η2

)
− χ(c) L A∗

sec

(
φ1(η1 + 2η2)
φ2(η1 + 2η2)

)
+
(

1
2

)
= 0,

(A.13)

with

A∗
sec =
(

κ0− + (κ0+ + κ1+
)
c(ξ) κ0+c(ξ) − κ1−

−κ1+c(ξ) κ1−

)
, (A.14)

and
(

1
2

)
= A∗

sec

(
̃1 + χ(c) φ1c

̃2 + χ(c) φ2c

)
,

hence the system

DM

(
η′′
1

η′′
2

)
− L A∗

sec

(
1 + χφ1 2χ(c)φ2
χφ1 1 + 2χ(c)φ2

)(
η1
η2

)
+
(

1
2

)
= 0, (A.15)

Let us consider the system corresponding to (A.8) for the variables η := η1 + η2, η2.
It is seen that this system has the form:

DM

(
η′′
η′′
2

)
− L Ad

(
η

η2

)
+
(



2

)
= 0 (A.16)

where

Ad = Ad (c, η, η2)

=
(

κ0−(1 + χφ1) + cκ0+(1 + χφ1 + χφ2) κ0−(−1 + χφ1) + cκ0+χ(φ1 + φ2)

−κ1+c(1 + χφ1) + κ1−χφ2 κ1− + cκ1+(1 − χφ1) + κ1−χφ2

)

(A.17)

and

 = 1 + 2

Let us note that the matrix Ad is obtained from the matrix

K = A∗
sec

(
1 + χφ1 2χφ2
χφ1 1 + 2χφ2

)
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via the relations

Ad11 = K11 + K21, Ad12 = K12 − K21 + K22 − K11,

Ad21 = K21, Ad22 = K22 − K21.

We will first analyze the properties of the matrix

B := Ad(c, η = 0, η2 = 0),

where φ10 and φ20 are defined in (A.10).
This matrix can be written as

B =
(

κ0− + cκ0+ −k0−
−cκ1+ k1− + ck1+

)

+χ

(
κ0−φ10 + cκ0+(φ10 + φ20) κ0−φ10 + ck0+(φ10 + φ20)

−cκ1+φ10 + κ1−φ20 −cκ1+φ10 + κ1−φ20

)

=: A + χ Aχ (φ10, φ20). (A.18)

Putting the expressions for φ10 and φ20 from (A.10) we obtain:

Aχ11 = Aχ12 = b0κ0−(κ0+)2κ1−
(
κ0− + c

(
0+ + cκ1+

))

Aχ21 = Aχ22 = b0cκ0+κ1−κ1+
(−κ0−

(
κ0+ − 2κ1−

)+ cκ0+
(
κ1− + cκ1+

))
.

Lemma A.1 There exists a constant cb ∈ (0, 1), such that for all sets of the coefficients
κ0± > 0, κ1± > 0, the trace of the matrix B positive.

Proof As it follows from straightforward calculations, the trace of B is equal to:

(κ0− + κ1− + c(κ0+ + κ1+))

+b0χκ0+κ1−
((

κ0−
)2

κ0+ + κ0−c
[(

κ0+
)2 + (−1 + c)κ0+κ1+ + 2κ1−κ1+

]

+c2κ0+κ1+(κ1− + cκ1+)
)

(A.19)

The first component of the sum is obviously positive. To prove the positivity of the
second component, let us note that the expression in the main bracket is positive for
κ0− ≥ 0 and c > 0, unless the coefficient (κ0+)2 + (−1+ c)κ0+κ1+ +2κ1−κ1+ is negative.
Next, the minimal value of the second-order polynomial with respect to κ0− is equal
to −�/(4κ0+), where

−� = 4c2(κ0+)2κ1+(κ1− + cκ1+) − c2
[
(κ0+)2 + (−1 + c)κ0+κ1+ + 2κ1−κ1+

]2
.

Suppose that c < 1. Then, (−1+ c)κ0+κ1+ < 0, but as we have assumed that [(κ0+)2 +
(−1+ c)κ0+κ1+ + 2κ1−κ1+] < 0, hence [(κ0+)2 + (−1+ c)κ0+κ1+ + 2κ1−κ1+]2 < [(−1+
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c)κ0+κ1+]2 = (−1 + c)2(κ0+)2(κ1+)2. It follows that

(−�) > c2(κ0+)2
[
4κ1+κ1− + 4c(κ1+)2 − (1 − 2c + c2)(κ1+)2

]

= 4c2(κ0+)2κ1+κ1− + c2(κ0+)2(κ1+)2
[
(−1 + 6c − c2)

]
.

The second term of the above sum is positive for c ∈ (0.1716, 5.8284) hence for
c ∈ (0.1716, 1). If c ≥ 1, then [(κ0+)2 + (−1+ c)κ0+κ1+ +2κ1−κ1+] > 0 and the second
component in (A.19) is positive and growing with c. The lemma is proved. ��
Lemma A.2 Let c > cb, where cb is determined in Lemma A.1. Then, there exist
D1 > 0 sufficiently small andD2 > D1 sufficiently large, such that for db0 ∈ [0,D1)∪
(D2,∞), the eigenvalues of B, λ10 and λ20 are both positive.

Proof By straightforward calculation it follows that

Det(B) = dM (c)
(
1 + d (dM (c))−2b0 κ0+κ1−(c2κ0+κ1+ + κ0−(κ0+ + 4cκ1+))

)
> 0.

(A.20)

As the eigenvalues of the matrix B are equal to

λ10 = 1

2

(
Trace(B) +

√(
Trace(B)2 − 4Det(B)

)
,

λ20 = 1

2

(
Trace(B) −

√(
Trace(B)2 − 4Det(B)

)
,

then according to Lemma A.1, they are real and positive if only

Trace(B)2 − 4Det(B) > 0. (A.21)

For d = 0, Trace(B)2 − 4Det(B) = Trace(A)2 − 4Det(A) is equal to

(κ0−)2 +
(
κ1− + c

(
−κ0+ + κ1+

))2 + 2κ0−
(
−κ1− + c

(
κ0+ + κ1+

))
.

This expression is positive unless the coefficient (−κ1− + c(κ0+ + κ1+)) is negative.
Then, the minimal value of the quadratic polynomial with respect to κ0− is equal to

(
κ1− + c

(−κ0+ + κ1+
))2 − (−κ1− + c

(
κ0+ + κ1+

))2 = 4c
(
κ1− − cκ0+

) · κ1+.

The last expression is positive, because κ1− −cκ0+ > cκ1+ > 0 for c > 0. It follows that
the eigenvalues of A are positive for some d ∈ [0, d1) for some d1 > 0 sufficiently
small.
Now, let us consider the case of d · b0 sufficiently large . Then, by (A.20), the Det(B)

grows proportionally to db0, whereas (Trace(B))2 grows proportionally to (db0)2. It
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follows that condition (A.21) is satisfied, so the second part of the thesis of the lemma
holds. The lemma is proved. ��

Now, we can generalize the result concerning the eigenvalues of the matrix B
expressed in Lemma A.2, to the matrix Ad , which in contrast to the matrix B, is
dependent on the functions η, η2. In this case to retain the positivity of the eigenvalues
of Ad , we must assume that the C0 norms of the functions η and η2 are sufficiently
small.

Lemma A.3 Let c > cb, where cb is determined in Lemma A.1. Suppose that
‖η̃(·)‖C3(IR) < C, ‖η̃2(·)‖C3(IR) < C, ‖η̃(·)‖C0(IR) < s0, ‖η̃2(·)‖C0(IR) < s0, with s0
sufficiently small (but independent of the parameter L). Then, there exist D1 > 0 suf-
ficiently small andD2 > D1 sufficiently large, such that for db0 ∈ [0,D1)∪ (D2,∞),
the eigenvalues of Ad(c, η̃, η̃2) are both positive for all ξ ∈ IR.

Definition 1 Given the functions c(·), η̃(·) and η̃2(·), let λ1(ξ) and λ2(ξ) denote the
positive eigenvalues of the matrix Ad(c, η̃, η̃2).

Remark For simplicity, in our denotation we have not emphasized in Definition 1 the
fact that the eigenvalues depend on the functions c(·), η̃(·) and η̃2(·). So in fact we
should use the notation:

λ1
[
c, η̃, η̃2

]
(ξ), λ2

[
c, η̃, η̃2

]
(ξ).

��
Let us start from the analysis of the homogeneous system adjoint to the homoge-

neous version of system (A.16), i.e.,

DM

(
η′′
η′′
2

)
− L Ad(c, η̃, η̃2)

T (ξ)

(
η

η2

)
= 0. (A.22)

We will show that Eq. (A.22) has no bounded smooth solutions in C2(IR) except for
zero solutions.
Consider the matrix

S(ξ) =
(
C1(ξ) C2(ξ)

)
(A.23)

where C1 and C2 are the column eigenvectors corresponding to the positive eigenvalues
λ1,2(ξ) of the matrix Ad(c, η̃, η̃2)(ξ), i.e.,

S−1(ξ) Ad(c, η̃, η̃2)(ξ) S(ξ) =
(

λ1(ξ) 0
0 λ2(ξ)

)
. (A.24)

Remark As the eigenvalues of the matrix Ad(c, η̃, η̃2), the entries of the matrix S(ξ),
i.e., depend on the functions c, η̃, and η̃2. So,

S(ξ) = S
[
c, η̃, η̃2

]
(ξ).
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Let us write

S−1(ξ) =
(
K1(ξ)

K2(ξ)

)
, (A.25)

where K1 and K2 are row vectors such that Ki · C j = δi j , i, j = 1, 2.
Simultaneously, the matrix Ad(c, η̃, η̃2)(ξ)T can be diagonalized by the matrix

S(ξ)T , i.e.,

S(ξ)T Ad(c, η̃, η̃2)(ξ)T [S−1(ξ)]T =
(

λ1(ξ) 0
0 λ2(ξ)

)
.

Let us denote

[S−1(ξ)]T =: J (ξ).

In fact, according to (A.26), we have

[S−1(ξ)]T =
(
KT

1 (ξ) KT
2 (ξ)
)
. (A.26)

Then, S(ξ)T = {[S(ξ)−1]T }−1 = J (ξ)−1. Multiplying Eq. (A.22) by J−1(ξ) we
obtain the system

DM J−1(ξ)J (ξ)J (ξ)−1
(

η′′
η′′
2

)
−L

(
λ1(ξ) 0
0 λ2(ξ)

)
J−1(ξ)

(
η

η2

)
= 0, (A.27)

hence, by denoting

J (ξ)−1
(

η

η2

)
= S(ξ)T

(
η

η2

)
=
(
J11(ξ)η + J12(ξ)η2
J21(ξ)η + J22(ξ)η2

)
=:
(

ζ1
ζ2

)
,

the system

DM

(
ζ ′′
1

ζ ′′
2

)
− L

(
λ1(ξ) 0
0 λ2(ξ)

)(
ζ1
ζ2

)
+
[
DMJ −1(ξ)

(
η′′(ξ)

η′′
2(ξ)

)
− DM

(
ζ ′′
1 (ξ)

ζ ′′
2 (ξ)

)]
= 0.

(A.28)

The term in the square bracket depends on c′′(ξ), c′(ξ), η′(ξ), η(ξ), η′
2(ξ), η(ξ) and

η2(ξ). To be more precise

[
J−1(ξ)

(
η′′(ξ)

η′′
2(ξ)

)
−
(

ζ ′′
1 (ξ)

ζ ′′
2 (ξ)

)]
= J−1(ξ)

(
η′′(ξ)

η′′
2(ξ)

)
−
(
J−1(ξ)

(
η(ξ)

η2(ξ)

))′′

= −2J−1(ξ)′
(

η′(ξ)

η′
2(ξ)

)
− J−1(ξ)′′

(
η(ξ)

η2(ξ)

)

= −2J−1(ξ)′
[
S(ξ)

(
ζ1(ξ)

ζ2(ξ)

)]′
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−J−1(ξ)′′
(

η(ξ)

η2(ξ)

)

= −
[
2J−1(ξ)′ J ′(ξ) + J−1(ξ)′′ J (ξ)

](
ζ1(ξ)

ζ2(ξ)

)

−2J−1(ξ)′ SJ (ξ)

(
ζ1(ξ)

ζ2(ξ)

)′

=: −Z

(
ζ1(ξ)

ζ2(ξ)

)
− Z1

(
ζ1(ξ)

ζ2(ξ)

)′
,

where the matrices Z(ξ) and Z1(ξ) do not depend on the parameter L . It follows that
system (A.28) can be written in the form:

DM

(
ζ ′′
1

ζ ′′
2

)
− L

(
λ1(ξ) 0
0 λ2(ξ)

)(
ζ1
ζ2

)
− DM Z(ξ)

(
ζ1
ζ2

)
− DM Z1(ξ)

(
ζ1
ζ2

)′
= 0.

(A.29)

As system (A.29) is linear, then we can normalize it by the demand that one of the
norms: ‖ζ ′

1‖C2(IR) or ‖ζ ′
2‖C2(IR) is equal to 1 and the other is not bigger than 1. To fix

our attention, we will assume that

‖ζ1‖C1(IR) = 1 and ‖ζ2‖C1(IR) ≤ 1. (A.30)

Let us denote

λi = min
ξ∈IR λi (ξ), i = 1, 2.

Suppose that the function ζ1(·) attains a positive maximum at a point ξ∗ ∈ IR. Then,
as Z and Z1 do not depend on L , ζ ′

1(ξ
∗) = 0 and ζ ′′

1 (ξ∗) < 0, hence

ζ1(ξ
∗)(Lλ1(ξ) − DMz11(ξ∗)) ≤ DM (|Z12(ξ∗)||ζ2(ξ∗)| + |Z112(ξ∗)||ζ ′

2(ξ∗)|)
(A.31)

thus, due to the assumed normalization

ζ1(ξ∗) ≤ 2

Lλ1
DM (|Z12(ξ∗)| + |Z112(ξ∗)|)

≤ C

Lλ1
. (A.32)

Likewise, if ζ1 attains a negative minimum at ξ∗, then

ζ1(ξ∗) ≤ 2

Lλ1
DM (|Z12(ξ∗)| + |Z112(ξ∗)|) ≤ C

Lλ1
, (A.33)

where C is independent of L .
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In the same way, we conclude that

|ζ2(ξ)| ≤ C

Lλ2
. (A.34)

Remark In analyzing the extrema of the functions ζ1 and ζ2, we assumed that they
are attained at finite values of ξ . The same reasoning can be applied also to extrema
attained at infinities. Consider, e.g., a positive maximum of ζ1 achieved at +∞. It
can happen, if there exists a sequence of increasing maxima, so it can be analyzed as
above. In the other, monotone case, for sufficiently large ξ we must have ζ ′

1(ξ) > 0,
ζ ′
1(ξ) → 0 for ξ → ∞, and ζ ′′

1 (ξ) < 0, so we can also use the arguments applied to
the case of finite ξ∗. The other cases can be analyzed similarly. ��
Next, it follows from the assumed normalization that the second derivatives of the
functions ζ1 and ζ2 are bounded from above and below by numbers independent of L .

Lemma A.4 Let ‖u′′(L; ·)‖C0(IR) ≤ d2, where d2 > 0 is independent of L. Suppose

that as L → ∞, ‖u(L; ·)‖C0(IR0) ≤ d0
L

for some finite d0 independent of L. Then,

the function u′(L; ·) satisfies the estimate ‖u′(L; ·)‖ ≤ d1
L1/2 , where d1 is a constant

independent of L.

Proof Suppose that at some ξ = ξ0 we have u′(ξ0) = L−pd1 > 0 for some d2 > 0

and p ≥ 0 as L → ∞. Then, u′(ξ) > L−pd1/2 on an interval (ξ0, ξ0 + L−p d1
2d2

).

Suppose next that u(ξ0) = c1L−1 for some |c1| ≥ 0 independent of L . Then, at ξ =
ξ2 := ξ0 + L−p d1

2d2
the value of u would be larger than c1L−1 + L−2p d21

4d2
. It follows

that, if p < 1/2, then L−2p/L−1 tends to ∞ as L → ∞, then u(ξ2)/L−1 → ∞
as L → ∞ in contradiction with ‖u(L; ·)‖C0(IR0) ≤ d0

L
. Similar reasoning can be

applied, when u′(ξ0) < 0. In conclusion, p ≥ 1/2 and the final estimate of the lemma
holds. ��

According to Lemma A.4, we conclude that |ζ ′
i (ξ)| < d1L−1/2, i = 1, 2, hence

using inequalities (A.31), (A.33), (A.34), we conclude that

‖ζ1(·)‖C1(IR) = sup
ξ∈IR

(
|ζ1(ξ)| + |ζ ′

1(ξ)|
)

≤ C

Lλ1
+ d1

L1/2 < 1.

As d1 is independent of L , then for L sufficiently large we arrive at contradiction
with the normalization condition (A.30). As the transformation (η, η2) �→ (ζ1, ζ2) is
smooth and invertible, then we have shown the validity of the following lemma.

Lemma A.5 Suppose that ‖c(·)‖C2(IR) < C, ‖η̃(·)‖C0(IR) < s0, ‖η̃2(·)‖C0(IR) < s0,
with s0 sufficiently small (but independent of the parameter L), ‖η̃(·)‖C2(IR) ≤ C and
‖η̃2(·)‖C2(IR) ≤ C. Then, for L sufficiently large, there is no C2-bounded nonzero
solution to system (A.29).
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As the transformation (η, η2) �→ (ζ1, ζ2) is smooth and invertible, then LemmaA.5
implies the following lemma.

Lemma A.6 Consider the homogeneous system corresponding to Eq. (A.22):

DM

(
η′′
η′′
2

)
− L Ad(c, η̃, η̃2)

T
(

η

η2

)
= 0. (A.35)

Suppose that the functions c(·), η̃ and η̃2 satisfy the conditions of Lemma A.5. Then,
for L sufficiently large, there is no C2-bounded nonzero solution to system (A.35).

Now, we will consider the system corresponding to system (A.16):

DM

(
η′′
η′′
2

)
− L Ad(c, η̃, η̃2)(ξ)

(
η

η2

)
+
(

(c, η̃, η̃2)(ξ)

2(c, η̃, η̃2)(ξ)

)
= 0 (A.36)

with the functions c(·), η̃(·) and η̃2 fixed and satisfying conditions listed in LemmaA.5.
Let us recall that, under these conditions, the matrix Ad(c, η̃, η̃2)(ξ) can be diago-
nalized according to (A.24) by means of the matrix S−1(ξ) given by (A.26). Thus,
multiplying system (A.36) by the matrix S−1(ξ), we obtain by means of (A.24) the
system:

(
ζ ′′
1

ζ ′′
2

)
− L

DM

(
λ1(ξ) 0
0 λ2(ξ)

)(
ζ1
ζ2

)
− �(ξ)

(
ζ1
ζ2

)
− �1(ξ)

(
ζ1
ζ2

)′
+
(

�1
�2

)
= 0,

(A.37)

where
(

�1(ξ)

�2(ξ)

)
= 1

DM
S−1(ξ)

(
(c, η̃, η̃2)(ξ)

2(c, η̃, η̃2)(ξ)

)
.

Let us note that the matrices � and �1 correspond to matrices Z and Z1 defined after
(A.28) by replacing J (ξ) by S−1(ξ). In this way, by denoting

L̃ = L

DM
,

system (A.37) can be written in the form:

(
ζ ′′
1

ζ ′′
2

)
− L̃ A f (ξ)

(
ζ1
ζ2

)
− �1(ξ)

(
ζ1
ζ2

)′
+
(

�1(ξ)

�2(ξ)

)
= 0, (A.38)

where

A f :=
(

λ1(ξ) + θ11(ξ)L̃−1 θ12(ξ)L̃−1

θ21(ξ)L̃−1 λ2(ξ) + θ22(ξ)L̃−1

)
,

where θi j are the entries of the matrix �.
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Lemma A.7 Let Q = {qi j }i, j=1,2 be a matrix independent of L̃. Let us consider the
matrix

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1

q11 + b11 q12 + b12 b13 b14
q21 + b21 q22 + b22 b23 b24

⎞

⎟⎟⎠ .

where bkl , k = 1, 2, l = 1, 2, 3, 4 behave like L̃−1 as L̃ → ∞. Suppose that
T race(Q) > 0, Det(Q) > 0 and Trace(Q)2 − 4Det(Q) > 0. Then, for L̃ → ∞,
the matrix has 4 real different eigenvalues, two positive and two negative, which can
be expressed in the form:

± 1√
2

√
tr(Q) ±

√
tr(Q)2 − 4det(Q) + O(L̃−1).

Proof The proof follows from the implicit function theorem. ��
To proceed, let us note that system (A.38) can be written by introducing additional

dependent variables corresponding to the first derivatives (ν + 1 := ζ ′ and ν2 := ζ ′
2)

as a first order system (of four equations), i.e.,

⎛

⎜⎜⎝

ζ ′
1

ζ ′
2

ν′
1

ν′
2

⎞

⎟⎟⎠− L̃

⎛

⎝
0 0 1 0
0 0 0 1

A f (ξ) �1(ξ)

⎞

⎠

⎛

⎜⎜⎝

ζ1
ζ2
ν1
ν2

⎞

⎟⎟⎠ = −

⎛

⎜⎜⎝

0
0

�1(ξ)

�2(ξ)

⎞

⎟⎟⎠ . (A.39)

System (A.39) can be formally treated as a linear system. For this representation of
system (A.16), we can use Lemma 4.2 in Palmer (1984). According to LemmaA.7, the
matrixmultiplying L̃ for every x ∈ IR, the 4×4matrix at the left-hand side of the above
system has two positive and two negative eigenvalues (as we assume that the functions
c̃, η̃ and η̃2 satisfy the conditions of Lemma A.5), so the dimensions of the stable and
unstable subspaces are equal to 2. It follows that the left-hand side operator in (A.39)
is Fredholm of index 0. Obviously, Lemma A.5 implies that the system adjoint to
the homogeneous counterpart of system (A.39) has no nonzero solutions bounded in
C1(IR) class. It follows that, for A f and (�1, �2)

T treated as given functions, system
(A.39) has a unique C1(IR) solution.

Consequently, given A f , �1 and �2, system (A.38) has a unique C2-bounded
solution. Let us establish estimates for the derivatives of this solution. To do this we
will make stronger assumptions concerning the functions c̃, η̃ and η̃2. Namely, we will
additionally assume that

‖c̃‖C3(IR), ‖η̃‖C3(IR) and ‖η̃2‖‖C3(IR) are bounded. (A.40)

First, let us estimate first the C0-norms of the solutions to system (A.38). Suppose
that at ξ = ξ∗ the function ζ1(ξ) attains a positivemaximum. According to the Remark
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after inequality (A.34) we can confine ourselves to the case ξ∗ ∈ IR. It follows from
the first equation of the system that ζ(ξ∗) ≤ C L̃−1. Proceeding in this way, we can
prove that

‖ζ1(·)‖C0(IR) ≤ C̃ L̃−1, ‖ζ2(·)‖C0(IR) ≤ C̃ L̃−1.

Moreover, according to Lemma A.5 the above estimates should be written as

‖ζ1(·)‖C0(IR) ≤ C L̃−1‖�1‖C0(IR), ‖ζ2(·)‖C0(IR) ≤ C L̃−1‖�1‖C0(IR). (A.41)

Next by differentiation of the equations in system (A.38) with respect to ξ , and
using the estimates of C0-norms, we can conclude that

‖ζ ′
1(·)‖C0(IR) ≤ C L̃−1‖�1‖C1(IR), ‖ζ ′

2(·)‖C0(IR) ≤ C L̃−1‖�2‖C1(IR). (A.42)

By means of the above estimates, it follows from Eq. (A.38) that ζ ′′
1 (ξ) and ζ ′′

2 (ξ) can
be bounded from above and below by a constant independent of L̃ . Consequently, it
follows from the differentiation of Eq. (A.38) with respect to ξ that

ζ ′′′
1 (ξ) and ζ ′′′

2 (ξ) are bounded uniformly for all ξ ∈ IR. (A.43)

Remark The differentiation of the equations of system (A.38) is well determined as
the entries of the matrix � is of C1 class and the entries of the matrix �1 are of C2

class, as we assume (see A.40) that the functions c̃, η̃ and η̃2 are of C3 class. Next, the
eigenvalues λ1 and λ2 depend only on these functions (but not of its derivatives) and
�1 and �2 are of C2 class. ��
In view of the fact that the transformation (η, η2) �→ (ζ1, ζ2) acting from C2(IR) to
C2(IR) is well defined and invertible, then, according to Lemma A.5, the following
lemma holds.

Lemma A.8 System (A.35) has no nonzero C2(IR)-bounded solutions (η(·), η2(·)).
System (A.36) has a unique C2-bounded solution.

Proof The second claim of the lemma can be proved by repeating the reasoning given
after system (A.39). ��

Next, due to the properties of the transformation (η, η2) �→ (ζ1, ζ2), it follows that
according to (A.41) and (A.42) we can write

‖η(·)‖C1(IR) ≤ C L̃−1‖�1‖C1(IR), ‖η2(·)‖C1(IR) ≤ C L̃−1‖�2‖C1(IR). (A.44)

Differentiating Eq. (A.16) twice with respect to ξ we obtain

DM

(
η′′′′
η′′′′
2

)
− L Ad(ξ)

(
η′′
η′′
2

)
= L

[
2Ad(ξ)′

(
η′
η′
2

)
+ Ad(ξ)′′

(
η

η2

)]
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−
(

′′(ξ)

′′
2(ξ)

)
=:
(
T̃ (ξ)

T̃2(ξ)

)
(A.45)

Using (A.44), we conclude that the right-hand side of the above equation can be
estimated by a constant not depending on L for all ξ ∈ IR. Multiplying the both sides
of the last equation by S−1(ξ) we obtain the equation:

DMS−1(ξ)

(
η′′′′
η′′′′
2

)
− L

(
λ1(ξ) 0
0 λ2(ξ)

)(
S−1(ξ)

(
η′′
η′′
2

))
= S−1(ξ)

(
T̃ (ξ)

T̃2(ξ)

)

(A.46)

As

S−1(ξ)

(
η′′′′
η′′′′
2

)
=
[
S−1(ξ)

(
η′′
η′′
2

)]′′ − 2S−1(ξ)′
(

η′′′
η′′′
2

)
− S−1(ξ)′′

(
η′′
η′′
2

)
.

In view of the first remark after (A.42), the second and the third derivatives of the
functions η and η2 are of the order of O(1), hence by denoting

(
ϑ1
ϑ2

)
:= S−1(ξ)

(
η′′
η′′
2

)

We can write Eq. (A.46) as:

DM

((
ϑ1
ϑ2

))′′
− L

(
λ1(ξ) 0
0 λ2(ξ)

)(
ϑ1
ϑ2

)
=
(
T (ξ)

T2(ξ)

)
, (A.47)

where the functions T and T2 are of the order of O(1) and independent of L . It thus
follows from the maximum principle and the Remark after (A.34) that

‖η′′‖C0(IR) ≤ L−1O(1), ‖η′′
2‖C0(IR) ≤ L−1O(1).

Next, using the C0(IR) boundedness of the functions η′′′ and η′′′
2 and using the argu-

ments from the proof of Lemma A.4, we can show that

‖η′′′‖C0(IR) ≤ L−1/2 O(1), ‖η′′′
2 ‖C0(IR) ≤ L−1/2 O(1).

We have thus proved the following lemma.

Lemma A.9 Suppose that η, η2 denote a solution to Eq. (A.16), i.e.,

DM

(
η′′
η′′
2

)
− L Ad

(
η

η2

)
+
(



2

)
= 0. (A.48)
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Suppose that the solution satisfies the estimate ‖η(·)‖C2(IR) ≤ C, ‖η2(·)‖C2(IR) ≤ C,
where the constant C does not depend on L. Then, the following estimates hold:

‖η(·)‖C2(IR) + ‖η2(·)‖C2(IR) ≤ L−1 C
(
‖c(·)‖C3(IR) + ‖[η, η2, c](·)‖C3(IR) + ‖[η, η2, c](·)‖C3(IR)

)
,

‖η′′′·)‖C0(IR) + ‖η′′′
2 (·)‖C0(IR) ≤ L−1/2 C

(
‖c(·)‖C3(IR) + ‖[η, η2, c](·)‖C3(IR) + ‖[η, η2, c](·)‖C3(IR)

)
,

where the constant C depends on the C2 properties of the entries of the matrix Ad , but
does not depend on L as L → ∞.

Let us note that the first equation of system (A.1) can be written as

Dcc
′′ − vc′ + f (c) − Lη1 − 2Lη2 = 0

and consequently in the form independent of L:

Dcc
′′ − vc′ + f (c) + DM (M ′′

1 + 2M ′′
2 ) − v(M ′

1 + 2M ′
2) = 0.

Differentiating (A.6) and (A.7) we can subsequently write it in the form:

(
Dc + DM (φ̃(c, η)

)
)c′′ + 2DM

(
θ ′(c) + ν1(η1, η2, c)

)
(c′)2

−v
(
1 + θ(c) + ν0(η1, η2, c)

)
c′ + f (c) + c(c, c

′, η, η′, η′′, v) = 0,(A.49)

where

φ̃(c, η) := (φ1 + 2φ2)(dM )−2

and φ1 and φ2 are defined in (A.10), whereas dM in (A.9). As it follows from (24) and
(A.10),

φ̃(c, η) = θ(c) + ν2(c, η1, η2), (A.50)

where ν2 is a linear function of η1 and η2, vanishing for η1 = η2 = 0. Its form can be
deduced from (A.10) to (A.9). Exactly, the same properties have the functions ν1 and
ν0. Moreover, as it is easy to check that similar properties are shared by the function
c with respect to η1, η2 as well as with respect to their derivatives.

Our aim is to prove the existence of a traveling wave solution to system (A.1) for
sufficiently large values of the parameter L and to show that as L → ∞ this traveling
wave solution tends together with its speed of propagation to the heteroclinic pair
given by the asymptotic Eq. (23). Our tool will be the implicit function theorem in
Banach spaces of differentiable functions.

Definition 2 For= i = 0, 1, 2, let Bi denote the sub-space of functions u(z) belonging
to BCi (IR) and tending to finite limits as z → ±∞ together with their derivatives
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(which tend to zero). Let Bi0 denote the subspace of Bi consisting of functions u
satisfying the condition:

u(0) = 1

2
[u(−∞) + u(∞)]. (A.51)

The norms in the spaces Bj are taken to be

‖u‖Bj =
j∑

k=0

sup
z∈IR1

∣∣∣∣
dk

dzk
u(z)

∣∣∣∣ .

In these norms Bi and Bi0 are Banach spaces. ��
We are now in a position to formulate our existence problem for system (A.1).

According to what was said above, upon defining

λ2 = L−1, (A.52)

and upon the diffeomorphic change of variables:

(η1, η2) �→ (η, η2) := (η1 + η2, η2), (A.53)

we can rewrite the system in the following form:

(Q(c, η, η2, v, λ), P(c, η, η2, v, λ)) = (0, 0), (A.54)

where Q is given by the left-hand side of (A.49) with η1 replaced by η − η2 and

P =
(

η

η2

)
− Rd(c, η, η2, λ)

(
(c, η, η2, v)

2(c, η, η2, v)

)
,

where we explicitly denoted the dependence of the functions  and 2 on the
speed parameter v. Here, given the set {κ0−, κ0+, κ1−, κ1+}, the corresponding values
of the parameters db0 and cb (according to Lemma A.2), v ∈ IR and λ2 � 1,
the functions c, η, η2 ∈ C3(IR) in the matrix Ad and the source terms  and 2,
Rd(c, η, η2, λ)(,2) is the unique bounded over the whole line solution to system
(A.16). Thus, solutions to system (A.1) are defined as the simultaneous zeros of the
mappings Q and P .

Let us note that for λ = 0 the quadruple (c, η, η2, v) = (C, 0, 0, v0), where (C, v0)

is a heteroclinic pair for Eq. (23) provided implicitly by Lemma 1. This follows from
the fact that for λ = 0, η ≡ 0, η2 ≡ 0, the terms ν j , j = 0, 1, 2 and c vanish
identically.

Lemma A.10 The following statements hold:

(1) Q is a well-defined mapping from some open neighborhood of the point
(c, η, η2, v, λ) = (C, 0, 0, v0, 0) in the space B30 × B3 × B3 × IR × IR to the
space B1.
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(2) Q(C, 0, 0, v0, 0) = 0.
(3) For all λ sufficiently close to 0, Q treated as a function of (c, η, η2, v) is continu-

ously Frechet differentiable at the asymptotic solution (C, 0, 0, v0).

Proof The proof of the lemma follows by a straightforward checking. ��
We have, by using (A.50),

DQ|λ=0[δc, δη, δη2, δv]
=
(
Dc + DMθ(C)

)
δc′′ +

(
2DMθ ′(C)C − v0(1 + θ(C))

)
δc′

+ ∂

∂c

[
DMθ(c)C ′′ + 2DMθ ′(c)C ′2 − v0θ(c)C ′ + f ′(c)

]∣∣∣
c=C

δc − δv(1 + θ(C))C ′

+ ∂

∂η

(
DMν2(C, η, η2)C

′′ + 2DMν1(C, η, η2)C
′2 − v0ν0(C, η, η2)C

′)
∣∣∣
η=0,η2=0

δη

+ ∂

∂η2

(
DMν2(C, η, η2)C

′′ + 2DMν1(C, η, η2)C
′2 − v0ν0(C, η, η2)C

′)
∣∣∣
η=0,η2=0

δη2

+
∑

( j)=0,1,2

∂

∂η( j)
c(C,C ′, η, η2, η

′, η′
2, η

′′, η′′
2 , v) δη( j)

∑

( j)=0,1,2

∂

∂η
( j)
2

c(C,C ′, η, η2, η
′, η′

2, η
′′, η′′

2 , v) δη
( j)
2

=
{(

Dc + DMθ(C)
)
δc′′ + DM

(
2θ ′(C)C − v0(1 + θ(C))

)
δc′

+ ∂

∂c

[
DMθ(c)C ′′ + 2DMθ ′(c)C ′2 − v0θ(c)C ′ + f ′(c)

]∣∣∣
c=C

δc − δv(1 + θ(C))C ′}

+F([δη, δη2]) := L0δc − δv(1 + θ(C))C ′ + F([δη, δη2]). (A.55)

Remark For simplicity, we are using the same symbols for the functions ν2, ν1 and ν0
expressed in terms of η and η1 instead of η1 and η2. ��
Lemma A.11 Suppose that the parameter db0 satisfies the assumptions of Lemma A.2.
The following statements hold:

(1) For any λ �= 0, with |λ| sufficiently small, P(·, ·, ·, ·, λ) is a well-defined mapping
from some open neighborhoodNP of the point (c, η, η2, v) = (C, 0, 0, v0) in the
space B30 × B3 × B3 × IR to the space B3.

(2) For every (c, η, η2, v) ∈ NP , ‖P(c, η, η2, v, λ)‖B3 → (η, η2)
T for λ → 0.

(3) For any λ �= 0, with |λ| sufficiently small, is continuously Frechet differentiable
close to the asymptotic solution (C, 0, 0, v0). Moreover, DP|λ[δc, δη, δη2] →
(η, η2)

T as λ → 0.

Proof Points 1. and 2. follow from Lemmata A.8 and A.9. To prove point 3., it suffices
to show that as λ → 0, i.e., L → ∞,

Rd(c + δc, η + δη, η2 + δη2, λ)

(
([c + δc, η + δη, η2 + δη2])
2([c + δc, η + δη, η2 + δη2])

)

−Rd(c, η, η2, λ)

(
([c, η, η2])
2([c, η, η2])

)
−→
λ→0

0.
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This statement is true, because for δc, δη and δη2 sufficiently small in C2(IR)-norm,
the assumptions of Lemmata A.8 and A.9 are fulfilled. ��

We have shown the validity of the following statement.

Lemma A.12 The mapping P can be continuously extended to the value λ = 0 by
assuming

P(c, η, η2, v, 0) ≡ 0.

Similarly, DP|λ can be continuously extended to the value λ = 0 by assuming

DP|λ [δc, δη, δη2] = 0.

In view of Lemmata A.10–A.12, we can use the implicit function theorem to prove
the existence of traveling waves for system (A.1). It thus suffices to show that the
linear system

DQ|λ=0[δc, δη, δη2, δv] = hc ∈ B1
δη = hη ∈ B3
δη2 = hη2 ∈ B3

(A.56)

defines an isomorphism between the spaces B30 × B3 × B3 × IR, i.e., (via Theorem
4.2-H in Taylor (1958)) and that the above system is boundedly invertible. Replacing
δη by hη and δη2 by hη2 in the first equation of the above system becomes

L0δc − δv(1 + θ(C))C ′ = h̃c, (A.57)

where

h̃c = hc − F([hη, hη2 ]) ∈ B1.

Let us recall that according to Lemma 1, w′(ξ) > 0 for all ξ ∈ IR, so due the
monotonicity of transformation (27), the profileC(·) of the traveling front toEq. (A.49)
with η ≡ 0, η2 ≡ 0 (and λ = 0), is monotonically increasing, i.e., C ′(ξ) > 0.
Moreover, C ′(ξ) → 0 as ξ → ±∞. It follows that the homogeneous version of
Eq. (A.57) has a unique bounded solution (up to a translation and a multiplicative
constant) equal to C ′(·), because the other linearly independent solution diverges at
infinities. However, this function does not belong to the space B30, because it does not
satisfy condition (A.51). It may be easily shown that a unique (up to a multiplicative
constant) solution to a conjugated equation has the form

C ′(ξ) exp(
∫ ξ

0
a(s)ds), a(s) =

(
2DMθ ′(C)C − v0(1 + θ(C))

)
,

hence the condition of orthogonality to the right-hand side of the equation

L0δc = −δv(1 + θ(C))C ′ + h̃c (A.58)
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takes the form

∫

IR
C ′(z) exp

(∫ z

0
a(s)ds

){
− C ′(z)(1 + θ(C(z))δv − h̃c(z)

}
dz = 0.

In view of the fact that C ′(ξ) > 0 for all ξ ∈ IR, the last equation is uniquely solvable
with respect to δv.
Leading order approximations

As the functions  and 2 are independent of the parameter L , then, according to
Lemma A.11 in the first nonzero approximations:

‖η‖C1(IR) ≈ L−1O
(
‖[C, v](·)‖C1(IR) + ‖2[C, v](·)‖C1(IR)

)
,

‖η2‖C1(IR) ≈ L−1O
(
‖[C, v](·)‖C1(IR) + ‖2[C, v](·)‖C1(IR)

)
,

‖η‖C2(IR) ≈ L−1O
(
‖[C, v](·)‖C2(IR) + ‖2[C, v](·)‖C2(IR)

)
,

‖η2‖C2(IR) ≈ L−1O
(
‖[C, v](·)‖C2(IR) + ‖2[C, v](·)‖C2(IR)

)
,

(A.59)

and

‖η‖C3(IR) ≈ L−1/2O
(
‖[C, v](·)‖C2(IR) + ‖2[C, v](·)‖C2(IR)

)
,

‖η2‖C3(IR) ≈ L−1/2O
(
‖[C, v](·)‖C2(IR) + ‖2[C, v](·)‖C2(IR)

) (A.60)

Due to (A.55) we thus have

‖h̃c‖C0(IR) ≈ L−1O(‖C‖C2(IR)),

thus the principal change in the speed

δv = (v − v0) ≈ L−1O(‖C‖C2(IR)).

Consequently, using (A.57), we conclude that similarly

‖c − C‖C2(IR) ≈ L−1O(‖C‖C2(IR)) (A.61)

and

‖c − C‖C3(IR) ≈ L−1/2O(‖C‖C3(IR)) (A.62)

Finally, if we denote by M10 and M20 the asymptotic limit of (A.6), (A.7), that is:

M10(ξ) = M10(C(ξ)) := κ0+b0C(ξ)

κ0− + κ0+C(ξ) + κ0+
κ1+
κ1−

C2(ξ)

(A.63)
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and

M20(ξ) = M20(C(ξ)) := κ1+
κ1−

M10(C(ξ))C(ξ). (A.64)

Let us denote

M1− = M10(cb), M1+ = M10(1 + cb),

M2− = cb
κ1+
κ1−

M1−, M2+ = (1 + cb)
κ1+
κ1−

M1+ .

We have thus proved the following theorem.

Theorem A.1 Suppose that |λ| = L−1/2 and that the parameter D = db0 satisfies
the conditions of Lemma A.2. Then, for every sufficiently small |λ| sufficiently small,
there exists a heteroclinic quadruple

(
c(·; |λ|), M1(·; |λ|), M2(·, L), v(|λ|)

)
∈ B30 ×

B3 × B3 × IR to system (A.1), such that c(±∞, |λ|) = C(±∞), M1(±∞) = M1±,
M2(±∞) = M2± and such that, as λ → 0,

‖c(·; |λ|) − C(·)‖C2(IR) = O(λ2), |v − v0| = O(λ2),

‖M1(·; |λ|) − M10(·)‖C2(IR) = O(λ2), ‖M2(·; |λ|) − M20(·)‖C2(IR) = O(λ2),

and

‖c(·; |λ|) − C(·)‖C3(IR) = O(|λ|),
‖M1(·; |λ|) − M10(·)‖C3(IR) = O(|λ|), ‖M2(·; |λ|) − M20(·)‖C3(IR) = O(|λ|).
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