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A B S T R A C T

This paper investigates the problem of parametric identification of highly uncertain bolted
connections. The unknown parameters representing stiffness of the connections are estimated
using two commonly accepted methods: (1) the traditional mode matching approach and
(2) a probabilistic Bayesian framework based on the maximum a posteriori (MAP) formulation.
Additionally, the uncertainties of the unknown parameters are also estimated and compared for
both methods. A numerical example and a real lab-scale frame structure with highly uncertain
bolted connections were used in the tests. In the experimental case, the system eigenvalues
(squares of the natural frequencies) and the mode shapes measured in a broad frequency range
were employed. The measured mode shapes were strongly disturbed by assembly discrepancies
of the bolted connections. Finally, both methods were compared in terms of computational
efficiency on a large-scale FE model (31,848 degrees of freedom). Despite the sophistication
of the Bayesian approach in treating the trade-off between measurement errors and expected
modeling errors, the results indicate that the two tested methods yield similar values for the
unknown parameters. The Bayesian approach requires numerical regularization to calculate the
parameter covariance matrix, which may decrease its reliability. In contrast, the mode matching
method avoids such numerical difficulties. Furthermore, the Bayesian approach requires a much
larger number of iterations and a careful selection of the weighting parameters.

. Introduction

Modern computer technologies allow for development and use of sophisticated finite element (FE) models. However, in many
ngineering applications, it is still difficult to reliably replicate the physical behavior of the system using its FE model. In such
ases, the model needs to be modified using experimentally measured data, and the respective process is called model updating [1,2].
sually, model updating has two main purposes: (1) identification of the unknown system parameters and (2) obtaining a model that
orrectly reproduces the behavior of the physical system [3]. In both cases, the model updating procedure is prone to measurement
oise and modeling errors. Additionally, the identification problem may be ill-conditioned. Thus, model updating methods should
ncorporate some knowledge about the involved errors, especially in damage assessment applications [4]. In practical problems, it is
sually assumed that the errors between the measurement data and the model output (including measurement noise and modeling
rror) are spatially and temporally uncorrelated. However, this is not always true, e.g., if sensors are distributed very densely on
he structure. Such correlations can affect the estimates of the unknown parameters and their uncertainties, as shown by Simeon
t al. [5].
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Fig. 1. Categorization of the Bayesian methods for model updating according to the processed measurement data.

The classical model updating methods can be categorized according to the way they obtain the updated model [1], that is,
into: (1) direct methods and (2) iterative methods. Direct methods have important disadvantages. They usually strive to exactly
reproduce the measurement data, which includes the measurement noise. Moreover, they often require either model reduction or
extrapolation of the measurement data from measurement locations to the configuration space of the model. As a result, the updated
model might be meaningless in terms of its physical properties. An example of a direct method was proposed by Yang and Chen [6].
The method searches for such increments of the mass and stiffness matrices that compensate for the error between the numerical
and the measured modal data.

In contrast to the direct methods that update raw structural matrices, the iterative methods operate at a higher level and update
the parameters of a certain parametric structural model. Such an approach does not usually allow for an exact reproduction of the
system behavior, but it is free from many disadvantages of the direct methods. Many iterative methods for model updating use modal
data. One of the classical approaches is based on modal sensitivity to certain predefined parameters of the structure, as proposed
by Friswell and Mottershead [7]. The objective function to be minimized is the norm of the error between the numerical and the
experimental modal data. Such an approach requires mode matching: the experimentally obtained modes need to be matched with
the numerical modes in order to calculate the objective function. It is thus called the mode matching method in the further parts of
this paper.

The categorization into iterative and direct methods is not always clear, as some methods are formally iterative but retain the
properties of direct methods. The iterative method proposed by Sarmadi et al. [8] fits the model to measurement data using the
direct formulation discussed in [6]. An iterative scheme is used to solve the equations augmented with a quadratic term to enhance
the accuracy. Like direct methods, it searches for entire matrices instead of predefined parameters. Another iterative method was
proposed by Yuan and Liu [9], and it also uses a matrix formulation instead of local model parameters. The model is updated by
minimizing the Frobenius norm of the difference between the initial (before updating) and the actual stiffness and damping matrices,
while keeping the eigenproblem satisfied for the measured modal data.

An example of a classical model updating method is the minimum variance method proposed by Collins et al. [10,11], which finds
the values of model parameters that provide the minimum variances. Similarly to the Bayesian methods, the approach is statistical in
nature. The Bayesian methods for model updating are usually formulated in a rigorous probabilistic framework and account for both
measurement and modeling errors [12]. They provide a powerful tool for parametric identification, and thanks to the probabilistic
formulation, they also allow for the calculation of the uncertainties of the identified parameters. Mode matching methods can also be
formulated probabilistically and classified as Bayesian methods when an additional regularization term is introduced based on prior
knowledge about the unknown parameters [13–15]. Regularization typically reduces the variance of the identified parameters, but
at the expense of increased bias error. This bias can be mitigated by incorporating prior knowledge about the estimated parameters
through constraints imposed on the objective function. Ostrowski et al. [16] demonstrated that mode matching with the constraint
that stiffness parameters can only decrease from their initial values (for damage detection purposes) significantly outperforms
methods that employ regularization based on the truncated singular value decomposition (TSVD). However, despite the effectiveness
of such constrained optimization, it may not always be applied, as prior knowledge about possible constraints is often limited.

The Bayesian methods for model updating can be categorized according to the type of data they process (Fig. 1) [3]:

• Bayesian frequency-domain approaches that utilize the properties of the power spectral density function and use frequency-
domain measurement data;

• Bayesian time-domain approaches that use time histories of the system output;
• Bayesian modal-domain approaches that use measured natural frequencies and mode shapes.

Frequency-domain approaches tend to be less computationally demanding than their time-domain counterparts. A computa-
tionally effective Bayesian spectral density method was proposed by Zhang et al. [17]. Frequency-domain approaches are suitable
2
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for both linear and nonlinear systems, while time-domain approaches are typically appropriate for linear systems only. They also
introduce fewer approximations while processing the measurement data. Furthermore, time-domain approaches can be applied to
nonstationary data, whereas frequency-domain approaches can usually be used only with stationary processes. Sedehi et al. [18]
proposed an interesting time-domain Bayesian approach that leverages the hierarchical structure of the probabilistic model to
accurately estimate the uncertainty propagation.

An advantage of Bayesian modal-domain methods is that the updating algorithm does not use large amounts of data. The modal
ata need to be extracted beforehand from the available measurement data. It can be performed using such classical methods as the
tochastic subspace identification [19,20]. Bayesian methods for identification of modal parameters are also available, such as the
utoregressive model proposed by Yang and Lam [21]. A modal-domain approach for the calculation of the posterior probability
ensity function for bolt loosening in large-scale structures was proposed by Yin et al. [22]. Periodically supported structures with
olted-flange joints were considered and divided into repetitive cells to reduce the computational effort, and Bayesian model class
election was employed to obtain a representative model of the joints.

Model updating based on balancing the eigenproblem equation avoids the mode matching problem, but it introduces numerical
ifficulties that often corrupt the results. The Bayesian formulation of the maximum a posteriori (MAP) estimate allows the
ptimization objectives to be augmented with regularization terms that balance the eigenproblem equation [23,24]. This reduces
umerical difficulties while still avoiding the mode matching problem.

In addition to measurement and modeling errors, a significant problem in model updating is the detectability and proper sensor
lacement. The detectability depends on system configuration: if a structural element does not take part in the response (is not
trained), then its stiffness cannot be identified [25]. Blachowski [26] discussed the problem of selecting appropriate sensor locations
nd used a modal sensitivity matrix to determine damage-sensitive locations. Exciting more vibration modes was found to be usually
ore effective than employing a greater number of sensors, which agrees with the observation on the detectability of stiffness

hanges: the more modes are excited and measured, the greater the chance to involve all structural members in the response. In
ractice, large-scale FE models are often used, which makes sensor placement a computationally demanding combinatorial problem.
n effective technique in such cases is convex relaxation, which represents the discrete problem with its continuous counterpart [27].

Measured modal data can be insufficient to detect some types of damage, such as the loss of preload in bolted connections.
iswal et al. investigated this problem and proposed a model updating strategy that employs time-domain displacement response
f the structure [28]. Due to local nonlinear effects, the model of the bolted connection had to be modified by adding a viscous
amper. Many researches focus on identifying bolted connections with only a single bolt, whereas civil structures or industrial
ystems commonly involve multiple-bolt connections. Wang et al. proposed a methodology using a genetic algorithm to monitor
onnections including multiple bolts [29]. Szopa et al. investigated a truss mast structure with 152 bolted connections [30]. A multi-
riteria optimization problem was formulated and solved to obtain Pareto-optimal solutions. However, the bolted connections were
ot parameterized independently of each other, and they shared the same parameters. The behavior of bolted connections depends
n local effects, such as the distribution of contact pressure, which can affect the equivalent stiffness of the connection [31]. Thus,
heir behavior can be sensitive to assembly discrepancies and operational wear. To the authors’ knowledge, there is a limited number
f publications dedicated to structures where all bolted connections are highly uncertain, i.e., their stiffness parameters are strongly
isturbed due to assembly discrepancies or operational wear. Such discrepancies can affect modal data, especially higher-order mode
hapes that become disturbed.

This paper compares and evaluates two widely accepted methods for model updating: (1) mode matching method, and (2) a
robabilistic Bayesian framework for maximum a posteriori (MAP) estimation without mode matching. They are compared using
umerical data with known exact parameter values, as well as a lab frame structure with 16 independently parameterized, highly
ncertain bolted connections. Section 2 describes the class of models considered, provides background on model updating based
n mode matching and the Bayesian approach. It includes also an illustrative numerical example. In Section 3, the lab-scale frame
ith 16 highly uncertain bolted connections is described. The FE model of the frame and two parameterizations of the connections
re introduced. The section ends with a description of the measured modal data and their statistical uncertainty metrics. Section 4
rovides an extensive comparison of the two tested methods in terms of the identified parameters, their uncertainties, and error
etrics that quantify the differences between the FE model and the real frame. Section 5 compares the computational efficiency

f both methods using a large-scale FE model, simulated measurement data, and known exact parameter values. Conclusions are
ummarized in Section 6.

. Parametric identification of bolted connections

.1. Model and parameterization of a bolted connection

A class  of structural models (𝐌,𝐊(𝜽)) is considered, where 𝐌, 𝐊 ∈ R𝑁d×𝑁d are the mass and stiffness matrices, respectively,
𝑁d is the number of degrees of freedom (DOFs), and 𝜽 ∈ R𝑁𝜃+ is the vector of 𝑁𝜃 unknown parameters of the model. The mass
matrix, 𝐌, is assumed to be known. The stiffness matrix, 𝐊(𝜽), is defined as follows:

𝐊(𝜽) = 𝐊0 +
𝑁𝜃
∑

𝑙=1
𝜃𝑙𝐊𝑙 , (1)

where 𝐊0 represents the well-known part of the structure, which can be estimated sufficiently accurately, e.g., based on the technical
documentation. The components 𝐊𝑙 are associated with uncertain parts of the structure, such as bolted connections, whose stiffness
remains unknown.
3
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Fig. 2. Bolted connection: (a) schematic representation; (b) parameterization with two parameters, 𝜃1 and 𝜃2, corresponding to the rotational stiffness of the
nominal value 𝑘R; (c) division into three substructures: beams 𝑆 (1) and 𝑆 (2), and the rigid body 𝑆 (3).

An example of a bolted connection is shown in Fig. 2a. Two beams are connected via a coupler. Due to relatively small size and
igh stiffness, the coupler is represented by a rigid body. The bolted connections between the coupler and the beams are modeled
s springs 𝑘R between the involved rotational DOFs, as shown in Fig. 2b. Hence, for the 𝑙th connection,

𝐊𝑙 = 𝑘R𝓵𝑙𝓵T
𝑙 , (2)

here 𝓵𝑙 =
[

⋯ 0 1 0 ⋯ 0 −1 0 ⋯
]T ∈ R𝑁d is a column vector of the appropriate dimension that selects the rotational

OFs involved in the 𝑙th bolted connection. The entire connection is assembled as shown in Fig. 2c. The dynamics of the substructures
(𝑖), 𝑖 = 1, 2, 3, is described by Eq. (3) [32].

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌̃ 𝐋𝐪̈(𝑡)
⏟⏟⏟
̈̃𝐪(𝑡)

+𝐊̃ 𝐋𝐪(𝑡)
⏟⏟⏟

𝐪(𝑡)

= 𝐟̃ (𝑡) + 𝐠(𝑡),

𝐁𝐪(𝑡) = 𝟎
𝐋T𝐠(𝑡) = 𝟎,

(3)

where

𝐌̃ =
⎡

⎢

⎢

⎣

𝐌̃(1) 𝟎 𝟎
𝟎 𝐌̃(2) 𝟎
𝟎 𝟎 𝐌̃(3)

⎤

⎥

⎥

⎦

, 𝐊̃ =
⎡

⎢

⎢

⎣

𝐊̃(1) 𝟎 𝟎
𝟎 𝐊̃(2) 𝟎
𝟎 𝟎 𝐊̃(3)

⎤

⎥

⎥

⎦

denote, respectively, the mass and stiffness matrices prior to system assembly, 𝐪(𝑡) is the corresponding displacement vector, 𝐋
represents the transformation matrix (or assembly matrix), 𝐪(𝑡) is the vector of unique displacements, 𝐟̃ (𝑡) represents the vector of
external forces, the vector 𝐠(𝑡) collects the coupling forces on the interfaces between the substructures 𝑆(𝑖), and 𝐁 is signed Boolean

atrix that selects DOFs involved in the interfaces between substructers 𝑆(𝑖).
The substructure 𝑆(3) represents a rigid body, and its motion is represented by three DOFs at its center of gravity. The

isplacements of 𝑆(3) are expressed in terms of the displacements at its interfaces, as shown in Fig. 2c. Due to such geometrical
ependencies, the assembly matrix 𝐋 is not purely Boolean [32]. According to the primal assembly formulation, Eq. (3) is

left-multiplied by 𝐋T, which yields the following equation of motion in unique coordinates:

𝐌𝐪̈(𝑡) +𝐊0𝐪(𝑡) = 𝐟 (𝑡), (4)

where 𝐌 = 𝐋T𝐌̃𝐋, 𝐊0 = 𝐋T𝐊̃𝐋, and 𝐟 (𝑡) = 𝐋T 𝐟̃ (𝑡). After the primal assembly of the structure shown in Fig. 2c, the rotational
stiffnesses defined in Eq. (2) are added to 𝐊0 according to Equation (1), and the system shown in Fig. 2b is finally obtained.

2.2. Mode matching for parameter estimation

The classical model updating framework based on modal sensitivity is discussed here. The model updating process amounts to
solving the optimization problem (𝖯1), defined as follows:

(𝖯1)
find 𝜽

to minimize 𝜀(𝜽),

where 𝜀(𝜽) is the weighted square error between the measured and numerical modal data, which is an error metric widely used for
model updating [1,7,13–16,26]:

𝜀(𝜽) = 𝐞T(𝜽)𝐖𝐞(𝜽). (5)

The error vector 𝐞(𝜽) involves both eigenvalues and mode shapes, and it is defined as follows:

𝐞(𝜽) =
[

𝝀̂
]

−
[

𝝀num(𝜽)
]

, (6)
4
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where the vectors 𝝀̂ ∈ R𝑁𝑚+ and 𝝍̂ =
[

𝝍̂ (1)T 𝝍̂ (2)T ⋯ 𝝍̂ (𝑁𝑚)T
]T

∈ R𝑁𝑚𝑁o collect the 𝑁𝑚 measured eigenvalues and mode shapes,
respectively, and 𝑁o denotes the number of sensor locations. Similarly, 𝝀num(𝜽) and 𝝓num(𝜽) collect the numerical eigenvalues

num
𝑚 (𝜽) and the properly scaled numerical mode shapes 𝑐𝑚𝝓

(𝑚)
num(𝜽) ∈ R𝑁d obtained from the FE model (𝐌,𝐊(𝜽)). The modal scale

factor 𝑐𝑚 is defined as:

𝑐𝑚 =
𝝍̂ (𝑚)T𝐃𝝓(𝑚)

num
‖

‖

‖

𝐃𝝓(𝑚)
num

‖

‖

‖

2
. (7)

The Boolean matrix 𝐃 ∈ {0, 1}𝑁o×𝑁d selects the measured DOFs, and 𝐋o in Eq. (6) is a block-diagonal matrix composed of 𝐃. The
weighting matrix 𝐖 in Eq. (5) is usually reciprocal to the measurement covariance matrix 𝜮M, whose entries correspond to the
elements of 𝐞(𝜽),

𝐖 = 𝜮−1
M . (8)

Alternatively, if 𝜮M is not available, then the weighting matrix can be calculated as follows:

𝐖 = diag
(

[

𝜆−21 , 𝜆−22 , ⋯ 𝜆−2𝑁𝑚 ,
𝑤𝜓

1
𝑁o

‖

‖

‖

𝝍̂ (1)‖
‖

‖

2 𝟏T
o ,

𝑤𝜓
1
𝑁o

‖

‖

‖

𝝍̂ (2)‖
‖

‖

2 𝟏T
o , ⋯

𝑤𝜓
1
𝑁o

‖

‖

‖

𝝍̂ (𝑁𝑚 )‖
‖

‖

2 𝟏T
o

]T)

, (9)

where 𝑤𝜓 is a weight that quantifies the lower measurement accuracy of the mode shapes in comparison to the natural frequencies,
and 𝟏o is the 𝑁o-long vector of ones.

From Eq. (5) it is evident that the mode matching method searches for the model (𝐌,𝐊(𝜽)) that best reproduces the measured
output of the system, as expressed in terms of its measured modal parameters.

2.3. Bayesian approach for parameter estimation

The Bayesian framework proposed by Yuen et al. [3,23] does not insist that the vibration modes 𝝓(𝑚) ∈ R𝑁d and eigenvalues
𝑚 ∈ R+ of the identified system satisfy the eigenvalue problem for the structural model (𝐌,𝐊(𝜽)). Instead, the framework explicitly
ncludes the insight that both measurement data and mathematical model of the structure are subject to certain errors. Accordingly,
he measurement error 𝐞M is introduced as follows:

𝐞M(𝝀,𝝓) =
[

𝝀̂
𝝍̂

]

−
[

𝝀
𝐋o𝝓

]

, (10)

here 𝝀 ∈ R𝑁𝑚 and 𝝓 =
[

𝝓(1)T 𝝓(2)T ⋯ 𝝓(𝑁𝑚)T
]T ∈ R𝑁𝑚𝑁d collect the system eigenvalues and mode shapes that remain

nknown. They are treated as random variables. For a FE model of class , the modeling error 𝐞 (𝝀,𝝓,𝜽) is introduced as follows:

𝐞 (𝝀,𝝓,𝜽) =
⎡

⎢

⎢

⎢

⎣

(

𝐊(𝜽) − 𝜆1𝐌
)

𝝓(1)

⋮
(

𝐊(𝜽) − 𝜆𝑁𝑚𝐌
)

𝝓(𝑁𝑚)

⎤

⎥

⎥

⎥

⎦

. (11)

dditionally, a quantity 𝐞𝜃 is introduced:

𝐞𝜃(𝜽) = 𝜽 − 𝜽0, (12)

here 𝜽0 is the vector of nominal values of the unknown parameters. The vector 𝐞𝜃 is used for regularization purposes. The unknown
arameters are strongly uncertain, and any prior of 𝜽0 is non-informative.

This framework for model updating explicitly includes both measurement and modeling errors. The aim is to find the maximum
posteriori probability (MAP). The posterior PDF of 𝝀, 𝝓, and 𝜽 is given as

𝑝(𝝀,𝝓,𝜽|𝝀̂, 𝝓̂) = 𝐾𝑝𝑝(𝝀̂, 𝝓̂|𝝀,𝝓,𝜽)𝑝(𝝀,𝝓|𝜽)𝑝(𝜽), (13)

here the coefficient 𝐾𝑝 results from the unknown PDF of the measured quantities 𝝀̂ and 𝝓̂, and it is assumed to be constant, while
(𝜽) is the prior PDF of 𝜽.

In the Bayesian approach the unknown modal data 𝝀 and 𝝓, along with the unknown parameters 𝜽, are searched for as the most
robable values. Thus, the optimization problem (𝖯2) is formulated as follows:

(𝖯2)
find 𝝀, 𝝓, 𝜽

to minimize 𝐽𝑝(𝝀,𝝓,𝜽),

here, using the Gaussian probability model, the objective function 𝐽𝑝(𝝀,𝝓,𝜽) is defined as the logarithm of the posterior
robability (13),

𝐽𝑝(𝝀,𝝓,𝜽) = −2 ln 𝑝(𝝀,𝝓,𝜽|𝝀̂, 𝝓̂) = ln𝐾2
𝑝 + 𝐞T

M𝜮
−1
M 𝐞M + 𝜎−2 𝐞T

𝐞 + 𝐞T
𝜃𝜮

−1
𝜃 𝐞𝜃 . (14)

n Eq. (14), 𝜮M is the diagonal covariance matrix of the measurement data that characterizes the measurement noise. The preselected
5

oefficient 𝜎 represents the standard deviation of the error related to the model class , and 𝜮𝜃 is the prior covariance matrix of
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w

𝐞𝜃 . The parameter 𝜎 expresses the relative importance of the measured modal data vs. the model class . That is, for a large 𝜎
(large expected modeling error), the most probable modal data are close to the measured modal data. For a small 𝜎 (small expected
modeling error), the most probable modal data are similar to the numerical modal data. Thus, the Bayesian framework provides a
control of the trade-off between the modeling and measurement errors.

2.4. Uncertainties of identified parameters

Both methods allow for estimation of the uncertainties of the parameters 𝜽 of the updated model. The Bayesian approach
allows also for estimation of the uncertainties of 𝝀 and 𝝓. In the mode matching approach, the covariance matrix of the unknown
parameters, 𝜮̂𝜃 , is expressed as

𝜮̂𝜃 =
(

𝐒T(𝜽)𝜮−1
M 𝐒(𝜽)

)−1 , (15)

provided the vector 𝜽 is calculated with the weighting matrix expressed as in (8). For the Bayesian approach, assuming the Gaussian
probability model, the covariance matrix 𝜮𝜆𝜙𝜃 is equal to the reciprocal of the Hessian matrix 𝐇 of the objective function 𝐽𝑝(𝝀,𝝓,𝜽),

𝜮̂𝜆𝜙𝜃 = 𝐇−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2𝐽𝑝
𝜕𝝀𝜕𝝀T

𝜕2𝐽𝑝
𝜕𝝀𝜕𝝓T

𝜕2𝐽𝑝
𝜕𝝀𝜕𝜽T

𝜕2𝐽𝑝
𝜕𝝓𝜕𝝀T

𝜕2𝐽𝑝
𝜕𝝓𝜕𝝓T

𝜕2𝐽𝑝
𝜕𝝓𝜕𝜽T

𝜕2𝐽𝑝
𝜕𝜽𝜕𝝀T

𝜕2𝐽𝑝
𝜕𝜽𝜕𝝓T

𝜕2𝐽𝑝
𝜕𝜽𝜕𝜽T

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

=

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜎−2 𝐆𝜆 + [𝜮−1
M ]𝜆𝜆 −2𝜎−2 𝐋1 + [𝜮−1

M ]𝜆𝜙𝐋0 −𝜎−2 𝐋2

𝜎−2 𝐆𝜙 + 𝐋T
0 [𝜮

−1
M ]𝜙𝜙𝐋0 𝜎−2 𝐋3

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝜎−2 𝐆T
𝜃𝐆𝜃 +𝜮−1

𝜃

⎤

⎥

⎥

⎥

⎥

⎦

−1

,

(16)

here:

𝐋1 =
⎡

⎢

⎢

⎣

𝝓(1)T𝐌(𝐊(𝜽) − 𝜆1𝐌) 𝟎
⋱

𝟎 𝝓(𝑁𝑚)T𝐌(𝐊(𝜽) − 𝜆𝑁𝑚𝐌)

⎤

⎥

⎥

⎦

, 𝐋(𝑡th col.)
2 =

⎡

⎢

⎢

⎣

𝝓(1)T𝐌𝐊𝑡𝝓(1)

⋮
𝝓(𝑁𝑚)T𝐌𝐊𝑡𝝓(𝑁𝑚)

⎤

⎥

⎥

⎦

,

𝐋(𝑡th col.)
3 =

⎡

⎢

⎢

⎢

⎣

[

(𝐊(𝜽) − 𝜆1𝐌)𝐊𝑡 +𝐊𝑡(𝐊(𝜽) − 𝜆1𝐌)
]

𝝓(1)

⋮
[

(𝐊(𝜽) − 𝜆𝑁𝑚𝐌)𝐊𝑡 +𝐊𝑡(𝐊(𝜽) − 𝜆𝑁𝑚𝐌)
]

𝝓(𝑁𝑚)

⎤

⎥

⎥

⎥

⎦

, 𝐆𝜆 =
⎡

⎢

⎢

⎣

𝝓(1)T𝐌2𝝓(1) 𝟎
⋱

𝟎 𝝓(𝑁𝑚)T𝐌2𝝓(𝑁𝑚)

⎤

⎥

⎥

⎦

,

𝐆𝜙 =
⎡

⎢

⎢

⎣

(𝜆1𝐌 −𝐊(𝜽))2 𝟎
⋱

𝟎 (𝜆𝑁𝑚𝐌 −𝐊(𝜽))2

⎤

⎥

⎥

⎦

, 𝐆𝜃 =
⎡

⎢

⎢

⎣

𝐊1𝝓(1) ⋯ 𝐊𝑁𝜃𝝓
(1)

⋮ ⋮ ⋮
𝐊1𝝓(𝑁𝑚) ⋯ 𝐊𝑁𝜃𝝓

(𝑁𝑚)

⎤

⎥

⎥

⎦

,

and the subscripts of the reciprocal covariance matrix 𝜮−1
M indicate the block that corresponds to the respective variables: eigenvalues

(𝜆𝜆) or mode shapes (𝜙𝜙).
In both cases the covariance matrices are not diagonal. The variances of the identified parameters are located on the diagonal

of the covariance matrices.

2.5. Bias–variance trade-off

The estimation error consists of the systematic error (bias) and the covariance error. The more measurement data is available
in relation to the number of unknown parameters, the smaller the parameter variances are. Conversely, utilization of a more
sophisticated model (with a larger number of unknown parameters) with the same set of measurement data decreases the bias
error at the expense of higher parameter variances. This interplay between the bias and the variance is known as the bias–variance
trade-off. It can be affected using the technique called regularization, which provides means to balance the relative importance of
the measurement data and the numerical model. In case of the Bayesian approach described in Section 2.3, regularization intensity
is controlled by the parameter 𝜎 .

Mode matching can also be formulated and classified as a MAP problem. It results in an additional regularization term added
to the objective function defined in Eq. (5). Assuming the Gaussian probability model and using Eq. (8), the objective function
becomes:

𝜀𝑝(𝜽) = −2 ln 𝑝(𝜽|𝝀̂, 𝝓̂) = −2 ln𝐾𝑝𝑝(𝝀̂, 𝝓̂|𝜽)𝑝(𝜽) = ln𝐾2
𝑝 + 𝐞T(𝜽)𝜮−1

M 𝐞(𝜽) + 𝐞T
𝜃𝜮

−1
𝜃 𝐞𝜃 . (17)

The additional regularization term is related to the prior probability density function 𝑝(𝜽). Without it, minimization of the objective
function corresponds to finding the maximum likelihood estimator.

Ostrowski et al. [15] applied regularization as in Eq. (17) and investigated the influence of measurement noise on parametric
6

identification when only few first vibration modes were measured due to equipment limitations. However, this paper considers
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examples with sufficient amount of measurement data (in comparison to the number of unknown parameters), so that additional
regularization with the term 𝐞T

𝜃𝜮
−1
𝜃 𝐞𝜃 is not necessary. Mode matching without regularization (that is, searching for the maximum

ikelihood) is thus used in the following, as described in Section 2.2.
In the MAP formulation described in Section 2.3, the prior term 𝐞T

𝜃𝜮
−1
𝜃 𝐞𝜃 is also less important due to abundant measurement

data. A covariance matrix 𝜮𝜃 with large entries is thus used, which corresponds to a limited knowledge or a lack of a prior knowledge
about 𝜽. However, an intense regularization by means of 𝜎 is still necessary due to the use of an objective function that allows
to avoid the mode matching problem. Measured data cannot be directly used in Eq. (11), as the measured mode shapes have to
be expanded to the DOFs of the FE model and due to the sensitivity of this norm to the measurement noise [3]. Regularization is
provided by replacing in Eq. (11) the measurement data with the introduced random variables 𝜆𝑚 and 𝝓(𝑚).

2.6. Minimization algorithms

This subsection discusses the optimization methods used to minimize the objective functions in both considered methods.

2.6.1. Mode matching: Gauss–Newton minimization
The objective function is a quadratic form with respect to 𝐞. However, solving the optimization problem (𝖯1) is not straightforward

due to the nonlinear dependence of the numerical modal data 𝜆num
𝑚 (𝜽) and 𝝓(𝑚)

num(𝜽) on the unknown parameters 𝜽. A widely accepted
ethod for minimization of such objective functions is the Gauss–Newton method [33]. Friswell and Mottershead [1] adopted this
ethod for various problems of model updating. It is employed in this paper, and in each iteration step the modal data are locally

inearized with respect to the increment 𝛥𝜽. This yields the following function to be minimized in each step of the optimization
rocedure:

𝐽𝜀(𝛥𝜽) = (𝐒(𝜽)𝛥𝜽 − 𝐞(𝜽))T 𝐖 (𝐒(𝜽)𝛥𝜽 − 𝐞(𝜽)) , (18)

here 𝐒(𝜽) is the Jacobian matrix of the numerical modal parameters with respect to 𝜽. By pursuing ∇𝐽𝜀(𝛥𝜽) = 𝟎, the following
quation is obtained:

𝐒T(𝜽)𝐖𝐒(𝜽)𝛥𝜽 = 𝐒T(𝜽)𝐖𝐞(𝜽). (19)

inally, the values of the unknown parameters are updated in each iteration step as follows:

𝜽𝑘+1 = 𝜽𝑘 + 𝜅𝜃𝛥𝜽𝑘 = 𝜽𝑘 + 𝜅𝜃
(

𝐒T(𝜽𝑘)𝐖𝐒(𝜽𝑘)
)−1 𝐒T(𝜽𝑘)𝐖𝐞(𝜽𝑘), (20)

here 𝑘 indexes the iteration steps, and the scaling factor 𝜅𝜃 is determined by trial and error. The objective function in Eq. (17)
an also be minimized with the Gauss–Newton method analogously, as demonstrated in works [13–15].

.6.2. Bayesian approach: alternating subspace search
An iterative minimization procedure has been adopted here, as proposed by Yuen et al. [3,23]. Each iteration step is divided into

hree substeps, at which the objective function 𝐽𝑝 is consecutively minimized with respect to only one of 𝝀, 𝝓, or 𝜽, while the other
wo are treated as constant. Such an approach allows 𝐽𝑝 to be handled at each substep as a quadratic function. In the initialization
tep 𝜽𝑘=1 = 𝜽0 and 𝝀𝑘=1 = 𝝀̂ are selected, and 𝐊(𝜽𝑘=1) is calculated. Then, in the 𝑘th iteration step, the following substeps are
mplemented:

𝝓𝑘+1 = arg min
𝝓

𝐽𝑝(𝝀𝑘,𝝓,𝜽𝑘) = (21)

=
(

𝜎−2 𝐆𝜙 + 𝐋T
0 [𝜮

−1
M ]𝜙𝜙𝐋0

)−1 𝐋T
0

(

[𝜮−1
M ]𝜙𝜆(𝝀̂ − 𝝀𝑘) + [𝜮−1

M ]𝜙𝜙𝝍̂
)

,

𝝀𝑘+1 = arg min
𝝀

𝐽𝑝(𝝀,𝝓𝑘+1,𝜽𝑘) = (22)

=
(

𝜎−2 𝐆𝜆 + [𝜮−1
M ]𝜆𝜆

)−1 (𝜎−1 𝐠𝜆 + [𝜮−1
M ]𝜆𝜆𝝀̂𝑘 + [𝜮−1

M ]𝜆𝜙(𝝍̂ − 𝐋0𝝓𝑘+1)
)

,

𝜽𝑘+1 = arg min
𝜽

𝐽𝑝(𝝀𝑘+1,𝝓𝑘+1,𝜽) = (23)

=
(

𝜎−2 𝐆T
𝜃𝐆𝜃 +𝜮−1

𝜃
)−1 (𝐆T

𝜃𝐠𝜃 +𝜮
−1
𝜃 𝜽0

)

,

here:

𝐠𝜆 =
⎡

⎢

⎢

⎢

⎣

𝝓(1)T
𝑘+1𝐌𝐊(𝜽𝑘)𝝓

(1)
𝑘+1

⋮

𝝓(𝑁𝑚)T
𝑘+1 𝐌𝐊(𝜽𝑘)𝝓

(𝑁𝑚)
𝑘+1

⎤

⎥

⎥

⎥

⎦

, 𝐠𝜃 =
⎡

⎢

⎢

⎢

⎣

(𝜆1𝐌 −𝐊0)𝝓
(1)
𝑘+1

⋮

(𝜆𝑁𝑚𝐌 −𝐊0)𝝓
(𝑁𝑚)
𝑘+1

⎤

⎥

⎥

⎥

⎦

.

The above minimization approach has the advantage that it does not require calculation nor inversion of full Hessian matrix
Eq. (16)). However, it may result in a slow convergence in certain cases, as shown further in this paper. It is due to the alternating
inimization in the three subspaces, which has similar properties to the steepest/coordinate descent. The Gauss–Newton or, more

enerally, Newton optimization approaches cannot be used due to severe ill-conditioning of the Hessian matrix, as evidenced in
7

ase of structures considered in this paper.
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Fig. 3. (a) Scheme of a structure with a bolted connection; (b) the FE model representing the measured system; (c) the FE model to be updated including the
modeling errors. The green arrows denote measured DOFs.

Fig. 4. (a) Dependence of the first four natural frequencies of the beam structure on the parameter 𝜃, and (b) the corresponding mode shapes for 𝜃 = 0.5.

2.7. Illustrative example

This subsection illustrates the challenges in vibration-based identification of stiffness parameters. A cantilever beam with a
bolted connection at its midpoint is considered, as depicted in Fig. 3. It has a length of 𝐿 = 0.6 m and is made of steel with
𝐸beam = 2.1 ⋅ 1011 Pa and 𝜌 = 7840 kg/m3. Its cross-section is the same as in the view ‘‘A–A’’ in Fig. 8. The bolted connection is
assumed to be weightless and represented by the rotational stiffness 𝑘r = 𝐸beam𝐼∕𝐿 = 3887.6 Nm/rad between the involved rotational
DOFs, where 𝐼 = 5.55 ⋅ 10−9 m4 is the second moment of area of the cross-section. This stiffness is scaled by the parameter 𝜃.

The dependence of the first four natural frequencies on the stiffness of the bolted connection, expressed in terms of the scaling
parameter 𝜃, is plotted in Fig. 4a. A sensitivity range can be observed in which most frequencies depend on 𝜃. Below this range, the
bolted connection behaves like a hinge, and above this range, it acts as a semi-rigid node. Identifying the stiffness parameter outside
this sensitivity range can be challenging or even impossible. The third natural frequency is insensitive to the parameter 𝜃. Fig. 4b
illustrates the first four mode shapes for 𝜃 = 0.5, and the third mode shape indeed does not involve bending of the connection.

For the Bayesian approach, proper selection of weighting parameters is not straightforward. Their influence on the error of the
identified parameters is discussed. The FE model depicted in Fig. 3b is treated as the measured physical system. The rotational
stiffness parameter of the bolted connection, which is to be identified, has a value of 𝜃exact = 0.5. The FE model to be updated is
similar, but it has a two times sparser FE mesh (Fig. 3c). The Young’s modulus of the beams in this model:

• in CASE I: 𝐸1 = 1.5𝐸beam, meaning the Young’s modulus is overestimated;
• in CASE II: 𝐸2 = 0.6𝐸beam, meaning the Young’s modulus is underestimated.

These differences in mesh and material properties represent modeling errors. The measured DOFs are denoted by green arrows in
Fig. 3a and b.

The covariance matrix 𝜮M is diagonal and corresponds to a coefficient of variation (CoV) of the modal data equal to 1%. Gaussian
noise with a respective level was added to the modal data extracted from the FE model representing the measured system. A one-
element covariance matrix 𝜮𝜃 = [100] was used to reflect the high assumed uncertainty of 𝜃. The results of the Bayesian approach
are compared to those of the mode matching method. The error metric 𝜀 is calculated using the weighting matrix 𝐖 specified in
Eq. (8). In the Bayesian approach, it quantifies the fit of the model to the measurement data and is not used during optimization.

Stopping conditions are different for CASE I and CASE II due to very different convergence patterns. The maximum number of
iteration steps is limited to 200 in CASE I and 2 ⋅ 105 in CASE II. In all cases, the search is also stopped in the 𝑘th iteration, if the
update 𝛥𝜃 satisfies |𝛥𝜃 |∕𝜃 < 2−52 (floating point relative accuracy).
8
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Fig. 5. Influence of the parameter 𝜎 on the updating procedure for the model with an overestimated Young modulus (CASE I): (a) error and final value of
pdated parameter 𝜃, (b) modeling and measurement error, (c) error between numerical and measured modal data 𝜀, and (d) first 10 iteration steps of evolution

of the unknown parameter 𝜃 during the updating procedure for 𝜎 = 𝜎min𝜃 and 𝜎 = 𝜎min𝜀 compared with mode matching.

CASE I. The Bayesian model updating procedure was performed for different values of the weighting parameter 𝜎 . The dependence
of the final updated value of the joint stiffness 𝜃 on 𝜎 , along with its error, the modeling error (𝐞T

𝐞), the measurement error
𝐞T
M𝜮

−1
M 𝐞M), and the error 𝜀 between experimental and numerical modal data (Eq. (5)) is presented in Fig. 5. The minimum error

f the identified 𝜃 does not correspond to the minimum value of 𝜀 due to modeling errors, which are the overestimated Young
odulus and crude discretization. The modeling error metric 𝐞T

𝐞 also does not correspond with 𝜀. As noted in Section 2.3, a lower
alue of 𝐞T

𝐞 does not necessarily indicate a better fit of the model to the measurement data. This is because a lower 𝜎 results in
he most probable modal parameters (𝝀 and 𝝓) being closer to the numerical values obtained from the FE model, thereby reducing
he modeling error 𝐞 as per the eigenvalue formulation Eq. (11). Conversely, an overestimated value of 𝜎 can result in a higher
odeling error 𝐞T

𝐞 as the most probable modal data are then close to the measured data, resulting in a smaller measurement error
T
M𝜮

−1
M 𝐞M at the cost of a higher modeling error.

For 𝜎 < 𝜎min𝜃 stiffness of the bolted connection is underestimated (Fig. 5a), while for 𝜎 > 𝜎min𝜃 it is overestimated. The
ependence of the estimate on 𝜎 is monotonic and almost linear. For 𝜎 smaller than the lower limit of the considered range, 𝜃 is
stimated as zero or even negative, which results in numerical instabilities.

Fig. 5d depicts the evolution of the unknown parameter 𝜃 obtained for two different values of 𝜎 , as well as using the mode
atching method. The parameter that was identified for 𝜎 = 𝜎min𝜀, which provides the minimum error 𝜀, was approximately 20%

maller than the exact value and is similar to the result obtained using the mode matching method. A minimum value of 𝜀 was
chieved by compensating for the overestimation of Young’s modulus, as seen in Figs. 3c and 5d. In practice, selecting 𝜎 close to
 = 𝜎min𝜃 is not straightforward. In this example, it was accomplished through full enumeration and assuming that the exact value
f the rotational stiffness is known. Such information is not available in real systems.

For all 𝜎 within the range shown in Figs. 5a-c, both the most probable mode shapes and the numerical mode shapes are well-
orrelated with these obtained from the FE model that represents the measured system (Fig. 4b). Thus, they are not separately
lotted.

Parameter uncertainties have been calculated for both the mode matching method and the Bayesian approach. In the former
ase, the CoV of the estimated unknown parameter was 𝑉 𝜃 = 4.44 ⋅10−5 (Eq. (15)). In the later case, the estimation of uncertainty is
ot straightforward due to the ill-conditioning of the Hessian matrix 𝐇 (Eq. (16)). The covariance matrix 𝜮̂𝜆𝜙𝜃 cannot be calculated

as a direct inverse of 𝐇 because the condition number of 𝐇 is as high as 1.2 ⋅ 1016. Hence, it was computed using regularization via
truncated singular value decomposition (TSVD). The matrix 𝐇 was first decomposed into 𝐇 = 𝐔𝐒𝐕T, where 𝐒 = diag(𝑠1, 𝑠2,… 𝑠𝑁𝑠 ) is
a diagonal matrix containing singular values of 𝐇, while 𝐔 and 𝐕 are unitary matrices that collect the left and right singular vectors
of 𝐇. The regularized inverse of 𝐇 is then given as

̃ ̃ ̃−1 ̃T
9

𝜮𝜆𝜙𝜃(𝑠tol) = 𝐕(𝑠tol)𝐒 (𝑠tol)𝐔 (𝑠tol), (24)
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Fig. 6. Regularization of the covariance matrix 𝜮̃𝜆𝜙𝜃 (𝑠tol) in CASE I: (a) L-curve; (b) L-curve in the region around the selected 𝑠tol1 and 𝑠tol2, shown in a lin–lin
cale; (c) singular value spectrum of 𝐇. Solutions 1 and 2 correspond to two adjacent values of the variances of the identified 𝜃 that are significantly higher
nd significantly lower, respectively, than the one calculated by mode matching.

here 𝐒̃(𝑠tol) is a matrix obtained from 𝐒 by removing its columns and rows corresponding to the singular values 𝑠𝑖 that are less
han a tolerance value 𝑠tol, and the matrices 𝐔̃(𝑠tol) and 𝐕̃(𝑠tol) contain the corresponding remaining left and right singular vectors.

The appropriate value of 𝑠tol is selected using the L-curve method, which analyzes the dependence of the Frobenius norm
𝜮̃𝜆𝜙𝜃(𝑠tol)

‖

‖

‖F
on the error metric

𝐸(𝑠tol) =
‖

‖

‖

‖

1
2

(

𝐇𝜮̃𝜆𝜙𝜃(𝑠tol) + 𝜮̃𝜆𝜙𝜃(𝑠tol)𝐇
)

− 𝐈
‖

‖

‖

‖F
, (25)

as obtained for various levels of the truncation threshold 𝑠tol. Fig. 6a displays the entire L-curve, while Fig. 6b focuses on the region
around the selected threshold. Due to ill-conditioning, the computed values of 𝐇𝜮̃𝜆𝜙𝜃(𝑠tol) and 𝜮̃𝜆𝜙𝜃(𝑠tol)𝐇 might not be equal, hence
their mean is used in Eq. (25). The solutions for which some of the computed variances on the diagonal of 𝜮̃𝜆𝜙𝜃(𝑠tol) are negative
are indicated with red dots. The corresponding singular value spectrum is presented in Fig. 6c.

The characteristic corner, which is typical of L-curves, is not distinguishable in Fig. 6a plotted in log–log scale, making it difficult
to select an appropriate value of 𝜎tol. Two adjacent solutions were thus selected based on the corner visible in lin–lin scale (Fig. 6b).
The first solution, represented by a green dot, has a CoV of 𝑉 𝜃 = 2.3 ⋅10−2, which is significantly higher than that calculated through
mode matching. The CoV for the second solution, represented by a yellow diamond, is 𝑉 𝜃 = 1.45 ⋅10−7, which is significantly lower.
This indicates that the calculated uncertainty in the Bayesian approach is highly dependent on the selected threshold 𝑠tol and may
be influenced by ill-conditioning. The larger the 𝑠tol, the smaller the norm ‖

‖

‖

𝜮̃𝜆𝜙𝜃(𝑠tol)
‖

‖

‖F
and the variances become. As a result, the

reliability of the estimated uncertainties cannot be guaranteed. This example does not discuss the variances of the most probable
modal parameters 𝝀 and 𝝓, but these are investigated in the experimental example presented in Section 4.4.

CASE II. The results obtained for the underestimated Young’s modulus are shown in Fig. 7. Unlike in CASE I, the value of 𝜃
found using the Bayesian approach is overestimated for each 𝜎 (Fig. 7). In this case, 𝜎min𝜃 = 𝜎min𝜀, and the trade-off between
measurement and numerical errors is less pronounced. Similar as the mode matching, the Bayesian method also tends to fit model
to the measurement data when the optimal 𝜎 is selected. However, as shown in Fig. 7d, the mode matching method estimates the
unknown parameter 𝜃 closer to its exact value 𝜃exact . Moreover, mode matching yields a significantly lower value of 𝜀 = 2.93 ⋅ 105,
which is about two times smaller than that obtained using the Bayesian approach with the optimal 𝜎 (Fig. 7c).

The mode matching method finds the estimate of the unknown parameter in a few iterations, whereas the parameter estimated
using the Bayesian approach slowly converges to its final value over more than 2⋅104 iterations. This contrasts with CASE I, where no
more than 10 iterations were needed. The minimization process utilizing the alternating subspace search, described in Section 2.6.2,
may encounter convergence problems when dealing with a complex objective function (e.g., with a trough-like shape). Here, the
objective function is influenced by the change of the Young modulus. It has been observed that the rate of convergence is highly
dependent on factors such as the Young modulus, initial parameter 𝜃0, and the measured vibration modes. This stands in contrast
to mode matching, which employs the Gauss–Newton minimization algorithm and proves to be generally robust in regard to these
factors. Convergence problems are also encountered in the experimental and large-scale examples described later in this paper, and
they can be challenging to remedy.

The Bayesian approach yields for 𝜎 = 𝜎min𝜃 acceptable results, as evidenced in Fig. 7d. However, the obtained third most
probable mode shape is not well-correlated with its measured counterpart (compare Fig. 7e and 4b). The MAC (Eq. (26)) between
these mode shapes for 𝜎 = 101.8 is equal to 0.314, whereas for the third numerical mode shape it is 0.999. For 𝜎 > 𝜎min𝜃 , all
the most probable mode shapes are well-correlated with the corresponding measured shapes, e.g., for 𝜎 = 102.4 the MAC between
the third most probable mode shape and the measured shape is 0.999. This change in correlation of the third most probable mode
shape results in a sudden change of various error metrics at 𝜎 = 𝜎min𝜃 , as seen in Fig. 7a-c. The parameter 𝜃 turns out to be strongly
overestimated when all the most probable mode shapes are well-correlated with the measured shapes, and it is closer to its exact
value (even if still overestimated) only when one of the most probable modes shapes is not well-correlated with the measured shape.
It shows the sensitivity of the Bayesian method to the selected value of 𝜎 . In contrast, the mode matching method performs robustly
10

also with the underestimated Young modulus and yields almost exact results.
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Fig. 7. The influence of the 𝜎 parameter on updating procedure of the model with underestimated Young modulus (CASE II): (a) error and final value of
updated parameter 𝜃, (b) modeling and measurement error, (c) error between numerical and measured modal data 𝜀, (d) evolution of unknown parameter 𝜃
during updating procedure for 𝜎 = 𝜎min𝜃 and 𝜎 = 𝜎min𝜀 compared with mode matching, and (e) the third most probable mode shape identified for 𝜎 parameter
slightly lower and slightly larger than 𝜎 = 𝜎min𝜃 .

3. Structure under investigation

The frame structure used in experimental tests is shown in Figs. 8a (schematic) and 8b (photograph). It has six semi-actively
lockable joins, which were in the locked state during the experiments, and thus, they are treated as rigid bodies. They connect
to structural beams via bolted connections, whose stiffness parameters are highly uncertain and require identification. Further
information on the joints can be found in [34–36]. Fig. 9a shows a joint with details of the bolted connection. The structure is
fixed to the support as depicted in Fig. 8b.

3.1. Finite element model

The lab structure is modeled using a 2D FE model (Fig. 10a). The bolted connections are represented by their rotational stiffness,
parameterized as described in Section 2.1. The joints are modeled as rigid bodies with mass 𝑚J = 1.86 kg and mass moment of
inertia 𝐼J = 1.55 ⋅ 10−3 kg/m2 and represented as offsets between the respective nodes in the FE mesh, similar to the coupler shown
in Fig. 2b. The nominal rotational stiffness of each bolted connection is 𝑘R = 104 Nm/rad. The nominal stiffness of the beam profiles
corresponds to the Young’s modulus of steel 𝐸 = 2.1 ⋅105 MPa, while their material density is 𝜌 = 7840 kg/m3. The FE model employs
finite elements with 6 DOFs and cubic shape functions based on the Euler–Bernoulli beam theory. The total number of DOFs in the
FE model is 𝑁d = 139.

The sensitivity of modal parameters to the rotational stiffness of the bolted connections is analyzed as discussed in Section 2.7.
Fig. 9b shows the dependence of the first 10 natural frequencies obtained from the FE model on the rotational stiffness of the bolted
connections. A common scaling parameter 𝜃 is used for all 16 bolted connections, that is, 𝜽 = 𝟏𝜃, where 𝟏 is a vector of ones with
the appropriate dimension. The natural frequencies are represented by dotted lines, while the solid lines indicate the frequencies of
11
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Fig. 8. Considered frame structure: (a) scheme and dimensions, (b) photo of the laboratory rig.

Fig. 9. (a) Joint with bolted connections, (b) dependence of natural frequencies (dotted lines) and natural frequencies matched with those obtained for 𝜃 = 1
(solid lines) on the rotational stiffness of the bolted connections. The nominal rotational stiffness of each bolted connection is 𝑘R = 104 Nm/rad.
12
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Fig. 10. FE model of the considered structure: (a) FE mesh and parameterization of bolted connections and beam Young’s modulus, (b) simplified parameterization
or initial model updating, (c) numbering of parameters for precise model updating.

he modes that best match the successive modes obtained for 𝜃 = 1, based on the modal assurance criterion (MAC):

MAC
(

𝝓(𝑚)
num(𝟏𝜃),𝝓(𝑛)

num(𝟏)
)

=

(

𝝓(𝑚)T
num(𝟏𝜃)𝝓(𝑛)

num(𝟏)
)2

‖

‖

‖

𝝓(𝑚)
num(𝟏𝜃)‖‖

‖

2
‖

‖

‖

𝝓(𝑛)
num(𝟏)‖‖

‖

2
. (26)

If a solid line that covers a dotted line shifts to overlay another dotted line, it indicates a change in the order of the matched numerical
modes. The plot demonstrates that the matched numerical natural frequency may not depend monotonically on the index of the
mode being matched. The mode switching effect is evident from the sudden changes in the matched natural frequencies. Some
frequencies switch several times, as seen for 𝑓num

8 (𝟏𝜃) and 𝑓num
9 (𝟏𝜃). For some values of the 𝜃 parameter, several modes obtained for

𝜃 = 1 can be matched to the same mode (overlapping solid lines) which leaves other modes unmatched (dotted-only lines). These
observations emphasize the importance of careful matching of numerical and experimental modes when using the mode matching
method.

For 𝜃 = 1, the first five natural frequencies of the FE model are close to the corresponding measured values (Table 2). The
order of the first five natural frequencies is the same as the measured ones, but the higher frequencies need to be matched before
comparison. The natural frequencies are highly sensitive to the parameter 𝜃 near 𝜃 = 1, except for the 7th and 8th frequencies.
These properties suggest that the selected value of 𝑘R is appropriate as the nominal value and 𝜽0 = 𝟏 as the initial value of the
unknown parameters.

Two parameterization methods are used. The first, simplified to two parameters, is shown in Fig. 10b and scales the rotational
stiffness of all vertical and horizontal bolted connections by 𝜃1 and 𝜃2, respectively. This simplified procedure can be used for
initial model updating before employing the fine parameterization shown in Fig. 10c, where one parameter is used per each bolted
connection (totaling 16 parameters) and an additional parameter for scaling the stiffness of the beams. This allows for precise tuning
of the model to measurement data.

3.2. Experimental modal analysis

Due to the uncertainties of the bolted connections, performing modal analysis in a broad frequency range proved challenging.
To determine the optimal type and location of excitations and sensors required to reveal all vibration modes, an iterative
modal identification procedure was performed. This involved alternating experimental measurements with numerical tests using
increasingly accurate FE models. Successive iterations revealed the expected modes to be excited in the subsequent experiments.
Table 1 summarizes the experiments, measured quantities, and methods. Modal data were extracted from measured signals using
the stochastic subspace identification method with the aid of the LMS SCADAS system and LMS Test.Lab software.

The vibration modes identified in data sets #4 and #5 are inconsistent due to different excitations (impact-testing vs. modal
shakers), so some of the vibration modes identified in data set #4 do not appear in #5, and vice versa. Additionally, the number of
accelerometer locations increases in subsequent data sets. To obtain the final natural frequencies and mode shapes, all data must
be synthesized. This also enables the estimation of variances for the modal parameters used in model updating and the calculation
of uncertainties for the unknown parameters.
13
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Table 1
Measured quantities and methods used in specific experiments.

Data set Measured quantities method

#1 First five natural frequencies (IPa only)
measured with 18 sensor locations

Impact testing

#2 First eight natural frequencies,
corresponding mode shapes and modal
damping factors (IPa only), measured
with 18 sensor locations

Impact testing – Roving Hammer

#3 First ten natural frequencies,
corresponding mode shapes and modal
damping factors (IPa only), measured
with 27 sensor locations

Impact testing – Roving Hammer

#4 First 25 natural frequencies,
corresponding mode shapes and modal
damping factors (IPa and OoPb, range:
0–1 kHz), measured with 41 sensor
locationsc

Impact testing – Roving
Accelerometer

#5 From 6th to 24th natural frequencies,
corresponding mode shapes and modal
damping factors (IPa and OoPb, range:
60–1000 Hz), measured with 41 sensor
locationsc

modal shakers – Roving
Accelerometer

aIP: in-plane vibration modes.
bOoP: out-of-plane vibration modes.

cThe data sets #4 and #5 are not fully consistent and contain several different identified mode shapes.

The vibration modes were identified in the frequency range from 0 to 1 kHz, including both in-plane (IP) and out-of-plane (OoP)
odes. The focus is on the IP modes as the investigated frame was designed to examine and control IP vibrations. The average

alues and the CoVs of the natural frequencies of the IP modes, 𝑓𝑚 and 𝑉 𝑓
𝑚 , are listed in Table 2, along with the normalized

standard deviation (NSD) of the mode shapes, 𝑆𝜓𝑚 . The NSD is calculated as follows:

𝑆𝜓𝑚 =
𝜎𝜓𝑚

RMS
(

𝝍̂ (𝑚)
) , (27)

here 𝜎𝜓𝑚 is the average standard deviation obtained as the mean of standard deviations of 𝑚th mode shape that are calculated at

ach sensor location from all available data sets. RMS
(

𝝍̂ (𝑚)
)

is calculated as RMS
(

𝝍̂ (𝑚)
)

=
√

1
𝑁o

∑𝑁o
𝑠=1 𝜓̂

(𝑚)2
𝑠 , and 𝜓̂ (𝑚)

𝑠 represents
he 𝑚th measured mode shape at the 𝑠th sensor location, synthesized from all measurement sessions. To find the averaged mode
hape and 𝜎𝜓𝑚 , vibration modes from different data sets were scaled to the mode shapes from data set #5 (or data set #4 for modes
issing in #5) using the modal scale factor 𝑐𝑚 defined in Eq. (7). The modal scale factor was calculated using only the sensor

locations common for the two vectors.
The average standard deviation 𝜎𝜓𝑚 is used to reconstruct the covariance matrix 𝜮M, Eq. (8). The diagonal block 𝜮𝑚 of 𝜮M that

corresponds to the 𝑚th mode shape is calculated as follows:

𝜮𝑚 = (𝜎𝜓𝑚)
2𝐈𝑁o×𝑁o =

[

RMS
(

𝝍̂ (𝑚)
)

𝑆𝜓𝑚
]2

𝐈𝑁o×𝑁o , (28)

where 𝐈𝑁o×𝑁o is the identity matrix of appropriate dimensions. In Eq. (28), the NSD is expanded to encompass all sensor locations
instead of calculating it independently for each specific sensor location. This approach is adopted due to the limited number of
measurement sessions (up to four, as in data set #1 only natural frequencies were measured) and due to the varying number of
sensor locations in different data sets. Moreover, covariance matrices estimated in this manner result in better conditioning of the
optimization problems described in Sections 2.2 and 2.3.

The CoVs for natural frequencies, shown in Table 2, have small values close to 1%. This is due to the accurate measurement of
the natural frequencies. The differences between the different data sets may arise from the long time intervals between measurement
sessions and the fact that the structure was disassembled and reassembled once. The CoV maintains a relatively constant trend for
subsequent natural frequencies: the larger the measured natural frequency, the larger its variance. The NSD values for the mode
shapes are greater by approximately one order of magnitude, as the measurement of mode shapes is less accurate. The NSD exhibits
an increasing trend with the mode order, similar to the standard deviation of natural frequencies, consistent with the constant trend
of the CoV. For some frequencies only two measurements are available, and thus the CoV may be calculated with a significant
uncertainty.

The power spectral density function (PSD) for three impact points, along with the IP mode shapes and natural frequencies of the
OoP modes, is shown in Fig. 11. Some peaks of the PSD plot are not as distinguishable as others due to the reduced controllability of
particular modes by external forces, corresponding to the limited displacement of the mode shape at impact locations or directions
(e.g., OoP modes), see top-right corner of Fig. 11. IP mode shapes without a pronounced PSD peak have nodes close to the impact
14
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Table 2
Statistical metrics for the measured natural frequencies and mode shapes from all datasets.

IP mode Selected Freq. 𝑓𝑛 [Hz] for each dataset Mean CoVa NSDb

𝑚2D [−] 𝑚 [−] #1 #2 #3 #4 #5 𝑓𝑚 [Hz] 𝑉 𝑓
𝑚 [%] 𝑆𝜓𝑚 [%]

1 1 9.39 9.49 9.46 9.23 – 9.39 1.24 5.22
2 2 30.41 30.60 30.50 30.54 – 30.51 0.26 5.63
3 3 70.40 71.55 71.55 70.98 72.52 71.40 1.10 4.70
4 4 228.84 228.99 229.11 225.51 225.85 227.66 0.80 7.67
5 5 250.18 250.40 250.39 247.89 247.72 249.32 0.55 11.56
6 – – 324.66 328.60 – 324.68 325.98 0.70 22.23
7 – – 335.95 – 338.92 338.88 337.92 0.50 8.91
8 – – – 369.92 363.50 – 366.71 1.24 80.77
9 6 – – 427.81 424.17 430.57 427.51 0.75 27.23
10 – – – 500.44 499.75 – 500.09 0.10 42.95
11 7 – – – 572.17 591.12 581.64 2.30 14.47
12 8 – – – 768.83 763.60 766.22 0.48 13.57
13 9 – – – 830.41 821.71 826.06 0.75 22.03
14 – – – – – 886.99 886.99 – –
15 – – – – 955.52 – 955.52 – –

aCoefficient of variation.
bNormalized standard deviation for corresponding mode shapes.

Fig. 11. Power spectral density function (PSD) for three impact points with marked identified IP modes and natural frequencies of OoP modes. Impact locations
are illustrated in the top-right corner of the figure.

locations. However, there are three IP modes (325 Hz, 339 Hz, and 365 Hz) that should be well excited by at least one impact, but
their PSD peaks are not distinctive and have values lower by one or more orders of magnitude than those of the other IP modes,
including higher-order modes. Based on the contribution of the vibration modes to the PSD function, only the IP vibration modes
1–5, 9, 11–13 were selected for model updating. Their numbering is shown in the second column of Table 2.

It is an important observation that many mode shapes display significant asymmetries and other shape deviations, which is due
to discrepancies in the assembly of the bolted connections. This indicates that the parameters of the bolted connections are highly
uncertain.

4. Rotational stiffness identification using experimental data

The methods discussed in Section 2 are used to identify the parameters of the bolted connections in the laboratory-scale structure
described in Section 3. Whenever necessary, numerical modes are matched to the 𝑚th experimental mode using the following
15
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criterion:

𝑘𝑚 = argmax
𝑘

[

MAC
(

𝝍̂ (𝑚),𝝓(𝑘)
num(𝜽)

)]

. (29)

or notational simplicity, the index 𝑘𝑚 of the matched numerical mode is replaced in this section with the number 𝑚 of the
experimental mode it is matched to.

4.1. Estimation based on mode matching

The FE model with the fine parameterization shown in Fig. 10c is employed for model updating based on mode matching without
using the preliminary crude parameterization (Fig. 10b). This is due to the numerical stability of the method. A value of 𝜅𝜃 = 0.3
was selected by trial-and-error as it resulted in a fast convergence of the algorithm (Eq. (20)). The stop condition is that for all
components 𝜃𝑙 of the vector 𝜽, the absolute value of the relative increment |𝛥𝜃𝑙 |

𝜃𝑙
must be below 10−5. The initial values for all

unknown parameters are set equal to one. The weighting matrix is reciprocal to the measurement covariance matrix (Eq. (8)),
which is selected so that it corresponds to the data presented in Table 2.

The results are depicted in Fig. 12. The relative error between the numerical and measured natural frequencies converges to
nearly zero. The frequency errors decreased from the highest value of almost 40% (for the second mode) to below 5% for all modes
(Fig. 12d). The MAC between the measured and numerical mode shapes increased to almost one (above 0.9 for all modes), whereas
before model updating, the lowest MAC value was below 0.5 (Fig. 12e).

A precise reproduction of structural dynamics was achieved with a significant dispersion in the identified parameters. The
parameters identified for the bolted connections on the left-hand side of the structure (Fig. 12a) differ from those on the right-
hand side (Fig. 12b), indicating that assembly discrepancies may be related to deviations in mode shapes. The parameter related
to the Young’s modulus of the beam material decreases during optimization, although its change is not as significant as that of the
parameters related to the bolted connections. This is in agreement with engineering practice, as the uncertainty in Young’s modulus
is usually much lower than that of a bolted connection, where many local effects can influence the actual stiffness.

Regarding mode switching effect, the indices 𝑘𝑚 of the numerical modes matched to the measured modes are plotted in Fig. 13.
At the beginning of the model updating procedure, the 12th numerical vibration mode is matched to both the sixth and seventh
experimental vibration modes. In the first iteration, this vibration mode is thus doubled in Eq. (18) and further calculations. In
subsequent iteration steps, the 11th and 13th numerical vibration modes are matched with the sixth and seventh experimental
ones, respectively. From the second iteration step the numerical modes do not change their matching order. These changes in mode
order result in a small increase in the error of the seventh natural frequency (Fig. 12d) and a decrease of the MAC between the sixth
measured mode shape and the matched numerical shape (Fig. 12e) in the second iteration. The mode-switching effect occurs only
once, and it does not induce any numerical instability or diminish the quality of the model updating procedure. Results in shown
in Fig. 13 indicate that the MAC criterion can correctly match modes even for wide-band frequency modal data. It is related to the
relatively dense sensor network.

A comparison between the numerical mode shapes, 𝝓(𝑚)
num(𝜽), calculated for the final value of 𝜽 and the measured mode shapes

is presented in Fig. 14 (left-hand side of each subfigure). Additionally, the numerical mode shapes calculated for the ideally rigid
connections, 𝝓(𝑚)

r , are also compared with the measured mode shapes, 𝝍̂ (𝑚), as shown in the right-hand side of each subfigure. It is
evident that the independent parameterization of the bolted connections enables fitting the model to even highly asymmetric mode
shapes. In contrast to the numerical mode shapes of the updated model, 𝝓(𝑚)

num(𝜽), the mode shapes 𝝓(𝑚)
r are significantly different

rom the measured ones. The corresponding numerical natural frequencies, 𝑓 r
𝑚, are also greater by 20%–150% compared to the

pdated numerical frequencies.
An inspection of Fig. 12a and the sixth vibration mode depicted in Fig. 14f reveals that a near right angle between the bottom

orizontal beam and the connected beams on the left-side corresponds to a high stiffness of the bolted connections parameterized
y 𝜃2 and 𝜃11. The high values of these parameters are also consistent with the fact that the mode shape shown in Fig. 14i, which
ostly involves the vibration of the beams connected to the bottom-left joint, has the highest natural frequency 𝑓num

9 (𝜽) = 818.81 Hz.

.2. Estimation using the Bayesian approach

This subsection discusses the Bayesian framework for parametric identification. To leverage the key property of the MAP
ormulation, which considers both measurement and modeling errors, special attention is given to the selection of the parameter 𝜎
n Eq. (14).

To facilitate the convergence, the Bayesian updating procedure is divided into two stages:
Stage I The simplified parameterization is used (Fig. 10b) and only the first five modes are considered. The initial parameters

or the iterative algorithm are set as 𝜽̃0 =
[

1 1
]T.

Stage II All selected measured vibration modes, 𝑚 = 1, 2,… , 9 (as listed in Table 2), are used and the independent
parameterization of each bolted connection and the Young’s modulus of the beams is adopted (Fig. 10c). The initial parameters
for the iterative algorithm, 𝜽0 =

[

𝜃01 𝜃02 ⋯ 𝜃017
]T, are equal to the final values of the corresponding parameters updated in

tage I: for the vertical beams, 𝜃01 = 𝜃02 = ⋯ = 𝜃010 = 𝜃1; for the horizontal beams, 𝜃011 = 𝜃012 = ⋯ = 𝜃016 = 𝜃2; and the additional
16

parameter introduced at this stage, 𝜃017 = 1.
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Fig. 12. Evolution of parameters in model updating based on mode matching: (a) stiffness parameters of the bolted connections on the left hand side of the
structure, (b) stiffness parameters of the bolted connections on the right hand side of the structure, (c) stiffness parameter of the beams, (d) relative frequency
error, and (e) MAC between the measured and numerical mode shapes.

The assumption is that the reduced parameterization employed in Stage I provides the values of the parameters around which
the optimal parameters determined in Stage II are scattered. This division of the updating process helps to avoid local minima of
the objective function.
17
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Fig. 13. Indices 𝑘𝑚 of the numerical modes matched with the experimental modes during subsequent iterations of the mode matching method.

The covariance matrix of the measurement errors, 𝜮M, is identical to that used in the mode matching procedure. The remaining
weights need to be chosen. Following the recommendations of the authors of the method [23], 𝜮𝜃 , which represents the expected
covariance matrix of the unknown parameters, is selected to have large values: 𝜮𝜃 = 4.4 ⋅ 1026 ⋅ 𝐈𝑁𝜃×𝑁𝜃 for Stage I and 𝜮𝜃 =
8.1 ⋅1028 ⋅𝐈𝑁𝜃×𝑁𝜃 for Stage II. Larger values are chosen for Stage II because the matrices are proportional to the average measurement
rror variances which differ between Stage I and II. Large values of 𝜮𝜃 model the absence of prior knowledge about the parameters.
he stop condition in both stages is that, for all components 𝜃𝑙 of the vector 𝜽, the absolute value of the increment |𝛥𝜃𝑙| is less
han 10−9. The required increment has a much lower value than that used in mode matching model updating due to the slower
onvergence of the Bayesian method.

Finally, the parameter 𝜎 , which represents the expected modeling errors, must be selected. As discussed in Sections 2.3 and
.7, if 𝜎 is too small, 𝜆𝑚 and 𝝓(𝑚) will remain close to their numerical counterparts, and the FE model (𝐌,𝐊(𝜽)) will not change
uring the model updating, as it will be treated as more reliable than the measurements. Conversely, if 𝜎 is too large, 𝜆𝑚 and
(𝑚) can fit too strongly to the measurement data, thereby also reproducing measurement noise. It is thus recommended to initially
elect a small value of 𝜎 . If an appropriate trade-off between measurement and modeling errors is not achieved, then 𝜎 should be
ncreased.

Taking into account the above considerations, a parametric study was performed for Stage I. The model updating procedure
as performed for different values of 𝜎 . The results are shown in Fig. 15. Due to the significant computational effort required to
pdate the model for each particular 𝜎 , the maximum number of iterations was limited to 15,000. This limitation does not apply
o other results. Figs. 15b and 15c reveal that, as 𝜎 increases, the modeling error for the updated model also increases, and the
rror between the most probable modal and measured data decreases. This is in agreement with the considerations above and in
ection 2.7.

According to the recommendations of the authors of the method [23], the value of 𝜎I
 = 104 was selected for Stage I as it results

in the most probable mode shapes 𝝓(𝑚) being well-fitted to the measured mode shapes, including their asymmetry, but still avoiding
reproduction of measurement noise. This is evident in Fig. 16, which depicts the most probable vibration modes obtained for the
selected value of 𝜎I

 . Due to the reduced parameterization (Fig. 10b), the numerical mode shapes 𝝓(𝑚)
num(𝜽), obtained from the updated

E model, cannot reproduce the asymmetry of the structure, unlike the most probable mode shapes 𝝓(𝑚).
It is clear that the selected value of 𝜎I

 results in an appropriate balance between measurement and modeling errors. This is
emonstrated by the fact that both 𝐞T

𝐞 and 𝐞T
M𝜮

−1
M 𝐞M are far from their maximum values. Moreover, the metric 𝜀, which measures

he error between the numerical and measured modal data, reaches a near-minimum value at 𝜎 = 𝜎I
 , despite the fact that it was

ot considered during the selection of 𝜎I
 .

Fig. 17 shows the evolution of unknown parameters, natural frequency errors, and MAC values for the selected 𝜎I
 . Fig. 17b

isplays the relative error between numerical and measured natural frequencies (solid lines), and the measured and most probable
alues (dashed lines). The most probable frequencies tend to converge to the numerical values, while both simultaneously converge
o the measured values. This is particularly visible for the third mode. However, the first and second numerical natural frequencies,
nlike the corresponding most probable frequencies, do not converge properly to the measured values. This can be attributed to the
ystematic error (bias) related to the reduced parameterization of the FE model.

The Bayesian approach requires approximately 2 ⋅ 105 iterations to complete the model updating process in Stage I. The slow
onvergence may be attributed to the division of each iteration step into three sub-steps and the subsequent minimization of the
bjective function with respect to the variables 𝝀, 𝝓, and 𝜽. Similar difficulties are observed in the illustrative example with an
18

nderestimated Young’s modulus of the beams, as depicted in Fig. 7d.
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Fig. 14. Comparison of numerical mode shapes 𝝓(𝑚)
num(𝜽) obtained with the mode matching method (solid lines) and measured mode shapes 𝝍̂ (𝑚) (blue points at

sensor locations), together with an analogous comparison obtained for FE model with bolted connections assumed to be ideally rigid.

Fig. 15. Dependence of various error metrics in the Bayesian approach on the parameter 𝜎 for Stage I: (a) weighted norm 𝜀 of the differences between numerical
and measured modal data, (b) modeling error 𝐞T

𝐞 , and (c) measurement error weighted with respect to its reciprocal covariance matrix 𝐞T
M𝜮

−1
M 𝐞M.
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Fig. 16. Numerical mode shapes 𝝓(𝑚)
num(𝜽) (a–e) and the most probable system mode shapes 𝝓(𝑚) (f–j) (solid lines) obtained in Stage I of Bayesian model updating

for 𝜎 = 𝜎I
 , compared with the measured mode shapes 𝝍̂ (𝑚) (blue points at sensor locations).

The MAC values between the measured and most probable mode shapes, and the measured and numerical mode shapes, remain
relatively constant (Fig. 17c). The MAC values calculated for the most probable shapes are higher than those for the numerical
shapes due to a closer reproduction of the measured mode shapes. This can be observed by comparing Figs. 16a–e and f–j.

In order to select an appropriate value for 𝜎 in Stage II, a similar analysis as in Stage I was performed. The results are shown
in Fig. 18. The value of 𝜎II

 = 9 ⋅ 104 was selected through trial-and-error to fit the most probable modal data to the measured data.
As shown in Fig. 18c, this value is just behind a small step-like decrease of the measurement error metric. This sudden decrease
corresponds to the value of 𝜎 below which not all most probable mode shapes are yet well correlated with the measured mode
shapes. Similar to Stage I, the selected value of 𝜎II

 results in both the modeling and measurement errors being far from their
maximum values (see Figs. 18b and 18c, respectively). Once again, the error between the numerical and measured modal data is
close to its minimum value, despite not being used during the selection of 𝜎II

 .
The evolution of the unknown parameters and the error metrics for 𝜎 = 𝜎II

 is shown in Fig. 19. The third and seventh numerical
natural frequencies exhibit the largest errors at the final iterations (Fig. 19d). The most probable third natural frequency remains
close to the measured value, while the seventh converges to the numerical value. This suggests that the selected class of models
is unlikely to accurately reproduce the third natural frequency and that the seventh numerical frequency is more reliable than the
measured one.

Similar as in Stage I, the convergence is slow (5 ⋅ 105 iterations). As with the mode matching approach, the parameters related
to the bolted connections on the right-hand side of the structure differ from those on the left-hand side and are strongly dispersed.
The parameter 𝜃17 (Young’s modulus of the beams) does not change as significantly as the other unknown parameters.

The MAC values for the numerical mode shapes are similar to those obtained using the mode matching approach and attain an
acceptable level. The most probable shapes are closer to the measured ones than the numerical shapes, thus their corresponding
MAC values are also closer to one. Both the numerical and the most probable mode shapes are very similar to the numerical mode
shapes obtained using the mode matching approach and, therefore, they are not shown here.

4.3. Comparison of identification results

Values of 𝜃𝑙 , 𝑙 = 1, 2,… , 17, obtained through mode matching and the Bayesian model updating approach are compared in
Fig. 20. The horizontal lines represent the mean values, 𝜃 and 𝜃 , calculated for all vertical (𝜃 to 𝜃 ) and horizontal (𝜃 to 𝜃 )
20
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Fig. 17. Evolution of parameters in Stage I of Bayesian model updating for 𝜎 = 𝜎I
 : (a) unknown parameters, (b) relative frequency error for numerical natural

frequencies (solid lines) and the most probable natural frequencies (dashed lines), (c) MAC between the measured and numerical mode shapes (solid lines) and
between the measured and the most probable mode shapes (dashed lines).

Fig. 18. Dependence of various error metrics obtained with the Bayesian approach on 𝜎 for Stage II: (a) weighted norm of the differences between the numerical
and measured modal data 𝜀, (b) modeling error 𝐞T

𝐞 , and (c) measurement error weighted with respect to its reciprocal covariance matrix 𝐞T
M𝜮

−1
M 𝐞M.

olted connections, respectively. The significant dispersion of the parameters for both methods is due to assembly discrepancies and
ndicates the uncertainty of such bolted connections.

A comparison of 𝜃v and 𝜃h with the corresponding parameters 𝜃1 and 𝜃2 obtained in Stage I of Bayesian model updating (Fig. 17a)
hows that 𝜃1 and 𝜃2 are not equal to the mean values of the respective parameters 𝜃𝑙. This is due to the nonlinearities in the
igenvalue equation with respect to 𝜽 (Fig. 9b). High values of 𝜃𝑙 cause the bolted connections to behave more like semi-rigid
odes, and for stiffer bolted connections, the modal data is less sensitive to changes in the stiffness parameters. As a result, directly
alculating the mean of the parameters can overestimate the common value obtained through reduced parameterization.
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Fig. 19. Evolution of parameters in Stage II of Bayesian model updating for 𝜎 = 𝜎II
 : (a) stiffness parameters of the bolted connections on the left-hand side

of the structure and on the (b) right-hand side of the structure, (c) stiffness parameter of the beams, (d) relative frequency errors for the numerical natural
frequencies (solid lines) and the most probable natural frequencies (dashed lines), (e) MAC between the measured and numerical mode shapes (solid lines) and
between the measured and the most probable mode shapes (dashed lines).
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Fig. 20. Comparison of the unknown parameters obtained using independent parameterization of each bolted connection with both the mode matching approach
nd the Bayesian approach, together with the corresponding mean values for the vertical and horizontal bolted connections.

Table 3
Comparison of results obtained with the mode matching and Bayesian approach.

Method Coefficient of variation,
Eq. (30)

Weighted square error, Eq. (5) Number of iterations

𝑉 v
𝜃 [%] 𝑉 h

𝜃 [%] 𝜀 [–]

Mode matching 59.67 131.96 1591.5 50
Bayesian 77.97 154.35 1797.25 2 ⋅ 105 + 5 ⋅ 105

The comparison of the parameters obtained using both methods shows a good agreement, with the exception of parameters
elated to the very stiff bolted connections, i.e. 𝜃2 and 𝜃11 (Fig. 20). Table 3 summarizes the selected properties of the results
btained from both methods. It is evident that the CoVs calculated for all vertical bolted connections and all horizontal ones,

𝑉 v
𝜃 =

√

1
15

∑10
𝑙=1

(

𝜃𝑙 − 𝜃v

)2

𝜃v
, 𝑉 h

𝜃 =

√

1
5
∑16
𝑙=11

(

𝜃𝑙 − 𝜃h

)2

𝜃h
, (30)

respectively, have different values for each method. The mode matching approach results in a smaller scatter of the parameters and
a lower error metric 𝜀 (Eq. (5)).

In terms of computational efficiency, the mode matching method outperforms the Bayesian approach. The mode matching method
requires only 50 iterations, while the Bayesian approach requires approximately 7 ⋅ 105 iterations, performed in two stages.

4.4. Uncertainties of the identified parameters

The identified parameters are not only characterized by their expected values, but also by their uncertainties, which are quantified
by the covariance matrix. For the parameters estimated using the mode matching method, it was calculated as per Eq. (15). The
standard deviations and the CoVs are presented in Fig. 21. The large standard deviations of the 11th, and to a lesser extent 2nd,
parameter can be attributed to the differences in their values as obtained from the mode matching and Bayesian approaches (Fig. 20).
The uncertainty of the 17th unknown parameter is the smallest due to the fact that this parameter scales the Young’s modulus of
the beams. The CoVs for the parameters related to the bolted connections are around 10%, which is a relatively high value. This
can be attributed to the complex parameterization of the FE model. As the number of unknown parameters increases, the systematic
error (bias) decreases, but this comes at the cost of a higher variance, which is known as the bias–variance trade-off.

In the Bayesian approach, the covariance matrix 𝜮̂𝜆𝜙𝜃 cannot be calculated as direct inverse of the Hessian matrix 𝐇 (Eq. (16))
due to its ill-conditioning (the condition number of 𝐇 is 1.5 ⋅ 1015). The covariance matrix was thus calculated using the TSVD
regularization and the L-curve technique, as described in Section 2.7. Fig. 22a presents the L-curve plot, that is, the dependence
of the Frobenius norm of the calculated covariance matrix ‖

‖

‖

𝜮̃𝜆𝜙𝜃(𝑠tol)
‖

‖

‖F
on the error 𝐸(𝑠tol) defined in Eq. (25). Fig. 22b focuses

on the vicinity of the selected singular value threshold. The solutions that exhibit negative values of variances on the diagonal of
𝜮̃𝜆𝜙𝜃(𝑠tol) are indicated by red dots. The spectrum of singular values is depicted in Fig. 22c. The singular values decrease rapidly
below 𝑠tol = 0.0010756, which was selected as the threshold for the calculation of the regularized covariance matrix 𝜮̃𝜆𝜙𝜃(𝑠tol). This
23

threshold value corresponds to the smooth corner of the L-curve plotted a lin–lin scale, as seen in Fig. 22b.
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Fig. 21. Uncertainties of the unknown parameters 𝜃𝑙 estimated with the mode matching approach: (a) standard deviations and (b) coefficients of variation
CoVs).

Fig. 22. Regularization of the covariance matrix 𝜮̃𝜆𝜙𝜃 (𝑠tol): (a) L-curve with indicated selected 𝑠tol, (b) L-curve in the region around the selected 𝑠tol, shown in
lin–lin scale, and (c) spectrum of singular values 𝑠𝑖 for the matrix 𝐇.

Fig. 23. Uncertainties of the most probable parameters for the Bayesian approach (Stage II) obtained with the TSVD regularization: (a) standard deviations of
the eigenvalues 𝜆𝑚, (b) mean standard deviations of the mode shapes calculated from all DOFs of each mode shape 𝝓(𝑚), (c) standard deviations of the unknown
parameters 𝜃𝑙 , (d) CoVs of the eigenvalues 𝜆𝑚, (e) normalized standard deviation of the mode shapes 𝝓(𝑚), and (f) CoVs of the unknown parameters 𝜃𝑙 .
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Fig. 24. Four-bay frame FE model: (a) model geometry, (b) FE mesh of the coupler, and (c) FE mesh of the beam.

The uncertainties obtained from the diagonal of 𝜮̃𝜆𝜙𝜃(𝑠tol) for the selected 𝑠tol are shown in Fig. 23. Fig. 23b depicts the mean
standard deviations of all DOFs of the 𝑚th mode shape, and Fig. 23e presents the same value normalized as described in Eq. (27). The
7th most probable eigenvalue has the largest standard deviation. This corresponds to the higher CoV of the corresponding measured
natural frequency (Table 2) and a significant error between the 7th most probable natural frequency and the corresponding measured
value (Fig. 19d). Since the covariance matrix 𝜮̃𝜆𝜙𝜃(𝑠tol) is not diagonal, meaning that the random variables 𝝀, 𝝓, and 𝜽 are correlated,
the standard deviation of the 6th eigenvalue, which is the second largest, can be associated with the relatively high NSDs of the
most probable 6th mode shape and the 6th measured mode shape, as seen in Fig. 23e and Table 2. The standard deviation of the
3rd most probable eigenvalue corresponds to a higher CoV of the measured natural frequency (Table 2) and the large error of the
3rd numerical eigenvalue (Fig. 19d).

The estimated uncertainties of the most probable mode shapes are smaller than those of their measured counterparts. This is
because the most probable modal parameters are estimated based not only on measurements but also on the structural insights that
the FE model provides. However, the uncertainty of the most probable modal parameters may have been also artificially reduced
due to the numerical regularization. The uncertainties can be affected by rejection of small singular values of 𝐇 which reduces
‖

‖

‖

𝜮̃𝜆𝜙𝜃(𝑠tol)
‖

‖

‖F
and thus also the parameter variances.

The variances and CoVs of the identified parameters 𝜃𝑙 are in agreement with those obtained through the mode matching method
(Fig. 21), but they are higher. Similar to the uncertainties of the most probable modal parameters, the increased level of uncertainties
of the connection parameters 𝜃𝑙 may be affected by the numerical regularization and the selected value of 𝑠tol.

5. Computational efficiency in a larger-scale problem

The model updated in Section 4 using experimental data has 139 DOFs. This small-scale model properly reproduces structural
modal data. However, in engineering practice larger-scale FE models are usually used. The number of iterations required to update
a small-scale FE model may be not sufficient to assess the computational efficiency of the compared methods, which is a crucial
aspect in case of a larger-scale FE model.

In this section both considered model updating methods are compared on a larger-scale FE model of a real four-bay lab frame
described in detail in [25,37]. Despite the frame is not large itself, its FE model is designed to have a large number of DOFs, which
is crucial to assess the computational effectiveness. The geometry of the model is shown in Fig. 24a. The structure consists of 11
beams connected via six couplers. All beams and couplers are the same. Each beam has the dimensions of 490 × 80 × 8 mm. The
structure is fixed at its ends. It is meshed using tetrahedral FEs with quadratic shape functions, as shown in Figs. 24b and c.
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Fig. 25. Parameterization of the stiffness of bolted connections in the large-scale FE model. Rotation axes corresponding to the parameters are marked in blue.

Fig. 26. Vibration modes obtained for the large-scale FE model parameterized by the exact values of the unknown parameters.

The geometry of the bolted connections between the beams and the couplers is simplified. Each bolted connection is represented
by a pair of interfaces that are marked in Figs. 24b and c by distinctive colors. The FE nodes in each of these interfaces are constrained
to move as a rigid body, so that their motion is represented by 6 DOFs. The corresponding interfaces are then assembled in such a
manner that the three translational DOFs and the rotational DOF around the axis parallel to the beam are common. The remaining
two rotational DOFs (with their rotation axes perpendicular to the beam) are connected via two rotational springs parameterized
by two unknown parameters, as shown in Fig. 25. These parameters are common for all corresponding bolted connections between
beams and couplers. In other words, the entire structure is parameterized with four unknown parameters, 𝜃1 to 𝜃4. The rotational
stiffness constants 𝑘IP (for in-plane rotation) and 𝑘OP (for out-of-plane rotation) are equal to the bending stiffness of the beam
connected to the coupler, multiplied by 50. This bending stiffness is calculated as the stiffness against the bending moment applied
to the beam end, with the opposite end being fixed. The parameter 𝜃 , which is related to the out-of-plane rotation, is common
26
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Fig. 27. Dependence of various error metrics obtained with the Bayesian approach on 𝜎 : (a) parameter estimate error together with the value obtained with
the mode matching approach, (b) final values of the unknown parameters, (c) modeling error, (d) measurement error weighted by the reciprocal covariance
matrix, (e) weighted norm of the differences between the numerical and measured modal data 𝜀 together with the value obtained with the mode updating
pproach, and (f) evolution of the parameter estimate error during the updating procedure for 𝜎 = 𝜎min𝜃 , 𝜎 = 𝜎min𝜀 together with the error obtained in the

mode matching approach.

for all bolted connections, because an independent parameterization for all three bolted connections of the coupler would require
high-frequency modes to estimate the parameters. Finally, the considered FE model has 31,848 DOFs.

Measured data are simulated using the described FE model. Sensor locations are selected as the mesh nodes closest to 1/3 and 2/3
of the beam length and placed in the middle of the beam width. There are 22 sensor locations, and each sensor records displacements
in three directions (66 outputs total). The first six modes, depicted in Fig. 26, are used as the measurement data. They are obtained
for the following values of the parameters: 𝜃exact1 = 𝜃exact2 = 𝜃exact3 = 0.36 and 𝜃exact4 = 0.5. These values are later treated as the exact
values that are to be identified. To simulate measurement errors, Gaussian noise is added to the modal data. The eigenvalue noise is
characterized by a 1% coefficient of variation, whereas the mode shape noise has the normalized standard deviation (NSD, Eq. (27))
of 5%. These values are similar as for the measured data listed in Table 2, and they are contained in the matrix 𝚺M used in the
Bayesian approach. The weighting matrix used for mode matching is its reciprocal.

The initial values of the unknown parameters used in model updating are: 𝜃01 = 𝜃02 = 𝜃03 = 𝜃04 = 1. In the Bayesian approach
𝜮𝜃 = 1010𝐈4×4 is used. Mode matching is performed with the scaling factor 𝜅𝜃 = 0.4. For both methods the updating procedure is
stopped when, for all unknown parameters, the following stop condition is satisfied: |𝛥𝜃𝑙 |

𝜃𝑙
< 10−5.

The dependence of various error metrics on 𝜎 is shown in Fig. 27. To generate the plots 27a–e, the maximum number of iteration
27

steps was limited to 3000, in order to finish the calculations in a reasonable time. The error vector 𝝐𝜃 contains the differences between
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Fig. 28. Evolution of the unknown parameters for the Bayesian approach with 𝜎 = 𝜎min𝜃 and for the mode matching approach.

the current estimates of the unknown parameters and the corresponding exact values:

𝝐𝜃 = 𝜽 − 𝜽exact . (31)

Similarly to the previous analyses, both 𝜎 = 𝜎min𝜃 (Fig. 27a) and 𝜎 = 𝜎min𝜀 (Fig. 27e) are used to establish the trade-off between
the modeling error (Fig. 27c) and the measurement error (Fig. 27d).

The smallest parameter estimate error 𝝐T
𝜃 𝝐𝜃 obtained with the Bayesian approach is significantly larger than that obtained by

mode matching (Fig. 27a). It is due to the facts that the Bayesian approach requires more iteration steps than the maximum allowed
number of 3000 (as shown in Figs. 27f and 28, where 14,000 iteration steps are allowed) and that the unknown parameters 𝜃1, 𝜃2,
and 𝜃3 are strongly scattered around the exact value of 0.36. Mode matching yields results close to the exact values of the unknown
parameters in 20 iteration steps only.

Despite the large dimensions of the mass and stiffness matrices, the time required for a single iteration step could be reduced to
reasonable values of 7.6 s and 6.1 s for the mode matching and Bayesian approach, respectively. This time was achieved using a
six-core Intel® CoreTM i7-9750H processor with 32 GB RAM, a parallel implementation, and by exploiting the sparsity, symmetry,
positive-definiteness, and the block structure of the involved matrices. The calculation time per iteration step is comparable for both
methods, hence the number of iteration steps can be used as an indicator of the computational efficiency. In case of the Bayesian
approach it is significantly larger than 14,000 (Fig. 28), while the mode matching requires only 20 steps.

6. Conclusions

In this study, two widely accepted methods for model updating, namely (1) the traditional mode matching method and (2)
the Bayesian probabilistic framework based on the maximum a posteriori (MAP) formulation, were investigated, compared, and
evaluated using a numerical examples and experimental data. The unknown parameters to be identified represented the stiffness of
highly uncertain bolted connections in a frame structure. In the experimental study, the modal data of the structure were measured
in a broadband frequency spectrum, including both lower-order modes and higher-order modes characterized by local curvatures.
Such measurement data, and the high assembly discrepancies of the bolted connections revealed during the parametric identification,
allowed to expose the pros and cons of both tested methods.

The Bayesian approach in both numerical and experimental studies required more iterations to update the FE model compared
to the mode matching method. Tests on a large-scale FE model showed that both methods require a comparable computational time
per single iteration step, but the Bayesian approach needed significantly more time to update the model due to the larger number
of steps. To address numerical convergence problems, the experimental study required a two-stage model updating process, using
first a simplified and then a fine parameterization. In the Bayesian approach, a challenge was to select the weighting parameter
that represents expected model uncertainty, and it required several trial-and-error attempts. Both methods produced satisfactory
and consistent values of the estimated parameters, provided the Bayesian approach was granted enough time to perform the
required iterations. Only significant differences were noticed for the few stiffest bolted connections. For such stiff connections,
modal characteristics of the frame structure are less sensitive to the stiffness parameters.

In estimating uncertainties, the Bayesian approach required numerical regularization using the TSVD, while the mode matching
method did not encounter any numerical difficulties. The variances of the most probable modal parameters calculated through the
28

Bayesian approach were smaller than the variances of the measured modal parameters, but variances of the unknown parameters
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were slightly larger than those estimated through the mode matching method. The reason for this difference is not entirely clear:
the calculation of the exact covariance matrix in the Bayesian approach was not possible, and it is difficult to determine if it is a
result of a more reliable estimation or a side effect of the TSVD-based regularization. The estimated uncertainties of the unknown
parameters generally agree with the differences between their values obtained through both tested methods.

Notwithstanding the described drawbacks, the Bayesian approach has an important advantage: it does not require matching
etween numerical and experimental modes. It is a valuable property, especially when mode matching is difficult due to a limited
umber of sensors. Despite its less sophisticated framework, the mode matching method provided more reliable results and was
aster convergent. This suggests that it may be more suitable for practical applications, such as structural health monitoring, despite
he similar final results. The limitations of the Bayesian approach may arise from the optimization procedure, which sequentially
earches for the minimum of the objective function within three subspaces of the search space. In future research, it should be
nvestigated whether the convergence and numerical stability of the method can be improved by refining the minimization algorithm.
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