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A B S T R A C T

Needle-like twins are observed experimentally within the transition layer at the martensite–twinned martensite
interface. We utilize a phase-field approach to investigate this microstructure. Our goal is to simulate the
morphology of the transition layer and to perform a detailed analysis to characterize its interfacial and
elastic micro-strain energy. To illustrate the micromechanical framework developed for that purpose, sample
computations are carried out for a CuAlNi shape memory alloy undergoing a cubic-to-orthorhombic martensitic
transformation. A particular focus of the study is on size-dependent morphology through examining the impact
of twin spacing. Additionally, our results reveal that certain twin volume fractions lead to the emergence of
twin branching as a way to minimize the total free energy stored in the microstructure.
1. Introduction

Pseudoelasticity and shape memory effect are the two most promi-
nent features of shape memory alloys (SMAs). These features are inher-
ent to the martensitic phase transformation and to the accompanying
microstructures which encompass a rich array of interfaces across vari-
ous spatial scales. Notably, the martensite–martensite (twin) interfaces,
which are intrinsically coherent and free of (micro) stresses, stand out
as the most ubiquitous type that form the primary constituent of the
intricate microstructures at higher scales [1]. Experimental investiga-
tions have shown that the martensitic transformation often proceeds by
the evolution of nested laminated microstructures consisting of (quasi)
periodic, planar and macroscopically sharp interfaces [2,3]. These char-
acteristics, indeed, serve as the backbone of the crystallographic theory
of martensite which postulates that the interfaces are macroscopically
compatible and stress-free [1,4].

Nevertheless, local incompatibilities do exist and are primarily con-
centrated within thin transition layers along the macroscopic interfaces.
The local incompatibilities must be accommodated by elastic strains
(referred to as ‘elastic micro strains’) accompanied by micro stresses, as
a result of which the transition layers develop a microstructured mor-
phology [3,5–8]. A well-known example of a macroscopic interface is
the habit plane that mediates the austenite and the domain of twinned
martensite (note that the austenite and a single variant of martensite
rarely form a compatible interface). The morphology of the corre-
sponding transition layer and its energetic characteristics have been
extensively investigated in the literature using various approaches,
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including analytical estimates based on simplified kinematics [9], shape
optimization method [10,11], and phase-field modeling [12–14]. It is
generally acknowledged that the morphology of a transition layer is
driven by the material’s propensity to minimize the total free energy
and that its complex pattern is governed by the interplay between
the elastic micro-strain energy and the interfacial (surface) energy of
the phase boundaries. Branching, i.e., refinement of twin spacing, in
the vicinity of the macroscopic interface represents a well documented
manifestation of morphological changes within the transition layers [8,
15–18].

At the same time, morphologies featuring needle-like twins emerge
at the macroscopic interface between a single variant of martensite
and twinned martensite or between two distinctly oriented twinned
martensite domains [6,7,17,19]. The so-called 𝜆-microstructure is an
example of a microstructure involving such macroscopic interfaces.
As shown by Seiner et al. [17,19], a macroscopically non-uniform
martensitic transformation can be induced and controlled by a tem-
perature gradient in a CuAlNi single-crystal bar, which leads to the
formation of the 𝜆-microstructure. This microstructure comprises four
interfaces, all intersecting at a line, namely two austenite–twinned
martensite and two martensite–twinned martensite interfaces (the lat-
ter referred to as ‘‘twinned-to-detwinned interface’’ by the authors).
An optical micrograph of the resulting 𝜆-microstructure is depicted in
Fig. 1. A closer look at the corresponding martensite–twinned marten-
site interface, see Fig. 1(c), reveals the needle-like appearance of the
twins. The authors examined the structure of the needles via white-
light interferometry and found out that the needles bend and taper
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Fig. 1. 𝜆-microstructure in CuAlNi: (a) a sketch of the macroscopic morphology, (b) a close-up view of the 𝜆-microstructure at the intersection region, and (c) a close-up view of
the martensite–twined martensite interface involving needles. The optical micrographs in panels (b, c) are provided courtesy of H. Seiner, see [19].
Source: Reproduced with permission from Elsevier.
as they approach the domain of pure martensite variant and that, at
some locations, branching of the twins takes place. These distinctive
characteristics have been also observed for a different SMA material,
namely In-Tl [20], and also at the macroscopic interface between two
twinned martensite domains, e.g., [6,7]. It is worth noting that needles,
in general, have been reported in a variety of microstructures, e.g.,
[21–24], and that a particular attention in the literature has been
devoted to the theoretical and numerical analysis of needle-like mor-
phologies, e.g., [19,25–30]. Within this context, a number of model-
ing approaches have demonstrated their potential in simulating com-
plex spatially-resolved microstructures at the meso-scale, including
the phase-field method [27] and the sharp-interface discrete-particle
method [28].

To understand the formation mechanism of intriguing macroscopic
interfaces, it is necessary to analyze the morphology and to determine
the energy-based characteristics of the transition layers. With these
two objectives in mind, a detailed modeling-based investigation of the
martensite–twinned martensite interface in a CuAlNi single crystal is
pursued in this study, with a special emphasis on the related size
effects. To accomplish this, we leverage a conventional (two-phase)
phase-field model which has been simply derived from our earlier
multiphase-field model [31], and thereby retains its essential features,
especially the finite-strain kinematics, consideration of the full elastic
anisotropy of martensite variants and formulation in the variational
framework. It should be stressed that the viscous evolution amounts to
the minimization of the total free energy, comprising the elastic strain
energy and the interfacial energy, thus making the phase-field method
a suitable framework to address the problem at hand. It is noteworthy
that the primary focus of our analysis is on the transition layers with
the needle of one variant not terminating at the same variant, as shown
in Fig. 1(c). To the best of our knowledge, the only closely-related study
in this context is that by Seiner et al. [19], who examined the structure
of such needles via a finite-element-based sharp-interface model.

A well-known drawback of the phase-field method is its requirement
for a sufficiently dense finite-element mesh in order to accurately
resolve the diffuse interfaces, and thereby, to properly describe the
associated interfacial energy [31,32]. At the same time, it is necessary
to adopt a physically relevant value for the interfacial energy density
parameter, which sets the length scale of our diffuse interfaces to
the order of few nanometers. These two factors together limit the
size of the computational domain that can be simulated (in our case,
the computational domain is assumed periodic and encloses one twin
pair). This size (on the scale of < 200 nm) is visibly smaller than
what has been observed in the experiment, which is of the order of
10 μm, see Fig. 1(c). Therefore, while some qualitative comparisons
have been drawn throughout the analysis, we do not aim for any direct
quantitative comparison with the available experimental data.
2

The paper is organized as follows. In Section 2, we recall the basic
equations of the crystallographic theory of martensite in order to lay the
theoretical foundation for the problem at hand. The phase-field model
is briefly described in Section 3. Subsequently, Section 4 presents the
simulation setup, the obtained results and the ensuing discussions.

2. Basic equations of the crystallographic theory of martensite

According to the crystallographic theory of martensite, the require-
ment of kinematic compatibility is imposed at zero stress and implies
that the deformation gradients on the opposite faces of a planar inter-
face are rank-one connected [1,4]. In line with this geometrical defi-
nition, the kinematic compatibility condition between two stress-free
variants of martensite, here variant A and variant B, is mathematically
expressed as

𝐑𝐔B − 𝐔A = 𝐚⊗ 𝐥, (1)

which is called the twinning equation. In Eq. (1), 𝐔A and 𝐔B represent
the (symmetric) transformation stretch tensors of the two variants
involved (known from crystallography) and the unknowns are the
twinning shear vector 𝐚, the normal to the interface 𝐥, and the rotation
tensor 𝐑. In an analogous manner, in the case of an interface mediating
a single variant of martensite and a twinned martensite, which is
referred to as M–MM interface, the compatibility equation takes the
form

�̂�
(

𝜆0𝐑𝐔B + (1 − 𝜆0)𝐔A
)

− 𝐔A = 𝐛⊗𝐦, (2)

where 𝜆0 represents the twin volume fraction and is here chosen
arbitrarily in the range 0 < 𝜆0 < 1, while the unknowns are the
shear vector 𝐛, the normal to the interface 𝐦, and the rotation tensor
�̂�. Note that the interface normals 𝐥 and 𝐦 refer to the undeformed
configuration of austenite. The solution procedure for the twinning
equation (1) and the M–MM interface equation (2) can be found in
the references cited above. To provide further clarity and to serve as
an example, we present below the solution for a selected twin volume
fraction of 𝜆0 = 0.3.

In the present paper, the focus of our main analysis is on the
type-I twin in CuAlNi shape memory alloy (the case of type-II twin is
commented in Appendix). The martensitic transformation in this alloy
proceeds via a cubic-to-orthorhombic structural change and involves
six martensite variants. Among the martensite variant pairs with type-
I twin relation, we have selected a representative pair (A,B) = (1, 3),
which is characterized by the following transformation stretch tensors
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(here and below, all tensor and vector components are given in the
austenite cubic basis),

𝐔A = 𝐔1 =
⎛

⎜

⎜

⎝

(𝛼 + 𝛾)∕2 0 (𝛼 − 𝛾)∕2
0 𝛽 0

(𝛼 − 𝛾)∕2 0 (𝛼 + 𝛾)∕2

⎞

⎟

⎟

⎠

,

𝐔B = 𝐔3 =
⎛

⎜

⎜

⎝

(𝛼 + 𝛾)∕2 (𝛼 − 𝛾)∕2 0
(𝛼 − 𝛾)∕2 (𝛼 + 𝛾)∕2 0

0 0 𝛽

⎞

⎟

⎟

⎠

, (3)

with the stretch parameters 𝛼 = 1.0619, 𝛽 = 0.9178 and 𝛾 = 1.023 [1].
The solutions of the twinning equation (1) and the M–MM interface
equation (2) for 𝜆0 = 0.3 are then obtained as follows

𝐚 = (−0.0515,−0.1637,−0.1869),

𝐥 = (0,−0.7071, 0.7071),

𝐛 = (0.0003, 0.0563,−0.0535),

𝐦 = (0.2272, 0.6226, 0.7486),
(4)

nd the corresponding rotation tensors are given by

=
⎛

⎜

⎜

⎝

0.9997 0.0163 −0.0185
−0.0185 0.9918 −0.1262
0.0163 0.1265 0.9918

⎞

⎟

⎟

⎠

,

̂ =
⎛

⎜

⎜

⎝

0.9999 −0.0117 0.0108
0.0108 0.9970 0.0765

−0.0116 −0.0763 0.9970

⎞

⎟

⎟

⎠

. (5)

t should be noted that 𝐛 and 𝐦 presented in Eq. (4) correspond to the
on-trivial solution of the M–MM interface. A trivial solution is simply
btained as 𝐦 = 𝐥, 𝐛 = 𝜆0𝐚 and 𝐑 = 𝐈, where 𝐈 is the identity tensor,
ee a more detailed discussion in [33].

. Phase-field model for twinning

A conventional phase-field model of twinning is utilized in this
tudy. In this section, we provide a concise description of the model
nd briefly discuss its finite-element implementation. For more details,
nterested readers are referred to the multi-phase versions of the model
hat have been developed in our previous studies [31,34], see also [13]
or an earlier version featuring hierarchical order parameters.

The deformation gradient 𝐅 and the non-conserved order parame-
er 𝜙 constitute the primary variables in the model. The finite-strain
inematic description relies on the multiplicative decomposition of
he deformation gradient 𝐅 into the elastic part 𝐅e and the part 𝐅t

ssociated with the twinning transformation, viz.,

= 𝐅e𝐅t, 𝐅 = ∇𝝋, (6)

here 𝝋 denotes the deformation mapping from the reference config-
ration to the current configuration, 𝐱 = 𝝋(𝐗). Within the context of
winning, where only two martensite variants are involved, a single
rder parameter 𝜙 is adequate to characterize the material state. In the
resent model, the order parameter 𝜙 is interpreted as the relative twin
olume fraction and is bounded within the range 0 ≤ 𝜙 ≤ 1, where
= 0 and 𝜙 = 1 correspond to pure martensite variants (here, variant
and variant B, respectively), while the intermediate values 0 < 𝜙 < 1

epresent the diffuse twin interfaces.
Among the available formulations for the transformation deforma-

ion gradient 𝐅t, the rank-one mixing rule is adopted [35,36]
t = 𝐔A + 𝜙 𝐚⊗ 𝐥, (7)

hich is defined explicitly in terms of one of the solutions (𝐚, 𝐥) of
he twinning equation (1) (recall that the twinning equation has two
olutions). By construction, the transformation deformation gradient 𝐅t

n Eq. (7) is rank-one connected to 𝐔A for any value of 0 ≤ 𝜙 ≤ 1, so that
planar diffuse interface with the normal 𝐥 is fully compatible. Note,

owever, that compatibility is not ensured within a diffuse interface
i.e., for 0 < 𝜙 < 1) that has the orientation of the other solution of the
winning equation, and elastic strains are then needed to accommodate
he incompatibility within such an interface, see the related discussion
3

n Remark 2.5 in [37]. s
At this point, a variational formulation of the model is derived fol-
owing the approach of Hildebrand and Miehe [38], see also [13]. This
mplies that the model unknowns (𝝋, 𝜙), and therefore the microstruc-
ure evolution, are governed by the minimization problem formulated
or the total incremental potential of the system,

= 𝛥 +𝜏 → min
𝝋,𝜙

(8)

hich is subject to the inequality constraint for the order parameter
≤ 𝜙 ≤ 1. Here, 𝛥 denotes the increment of the total Helmholtz

ree energy, and 𝜏 denotes the incremental dissipation potential. We
onsider the model to be constrained to isothermal processes. Conse-
uently, the total Helmholtz free energy  and the dissipation potential
𝜏 are defined (for the entire body 𝐵) as

= ∫𝐵

(

𝐹el + 𝐹int
)

d𝑉 , 𝜏 = ∫𝐵
𝐷𝜏 d𝑉 . (9)

t thus remains to define the Helmholtz free energy contributions,
amely the elastic strain energy 𝐹el and the interfacial energy 𝐹int,
nd also the (time-discrete) dissipation function 𝐷𝜏 . Note that the
bsence of a chemical energy contribution in the Helmholtz free energy
s justified by the assumption that, under stress-free conditions, the
artensite variants are energetically equivalent.

Following our previous works [31,34], a Hencky-type anisotropic
lastic strain energy is considered, which takes the form

el =
1
2
(det 𝐅t)𝐇e ⋅ L𝐇e, 𝐇e = 1

2
log𝐂e, 𝐂e = (𝐅e)T𝐅e, (10)

where 𝐇e is the logarithmic elastic strain, 𝐂e is the elastic right Cauchy–
Green tensor and L = (1 − 𝜙)LA + 𝜙LB is the (effective) fourth-order
lastic stiffness tensor, obtained by Voigt-type averaging of the elastic
tiffness tensors of martensite variants A and B, see [39] for the general
orm of an elastic stiffness tensor with orthorhombic symmetry.

On the other hand, a double-obstacle potential with an isotropic
radient energy term is adopted for the interfacial energy [40],

int =
4𝛾tw
𝜋𝓁

(

𝜙(1 − 𝜙) + 𝓁2∇𝜙 ⋅ ∇𝜙
)

, (11)

where 𝛾tw is the interfacial energy density (per unit area) associated
with the martensite–martensite (twin) interface and 𝓁 is the corre-
ponding interface thickness parameter. The interfacial energy of the
orm (11) leads to a theoretical (i.e., under stress-free conditions)
nterface thickness of 𝜋𝓁.

The final component of the model to be specified is the time-discrete
issipation function 𝐷𝜏 . In line with the conventional phase-field
odeling, a viscous dissipation is employed here, which is expressed as

𝜏 = 𝜏𝐷 = 𝜏
2𝑚

(

𝜙 − 𝜙𝑛
𝜏

)2
, (12)

where 𝑚 is the interface mobility parameter, 𝜏 is the time increment and
𝜙𝑛 is the order parameter at the previous time step. It is noteworthy that
he form (12) is obtained by applying the backward-Euler method to
ntegrate the rate-potential 𝐷 = (1∕2 𝑚)�̇�2 which is expressed in terms
f �̇�, the rate of the order parameter.

We now briefly outline the most important aspects of the finite-
lement implementation of the phase-field model described above. The
ctual unknowns of the model in the implementation are the displace-
ent field 𝐮 = 𝝋 − 𝐗 and the order parameter 𝜙. As will be discussed

n Section 4, our analysis is restricted to the generalized plane strain
ondition. Thus, spatial discretization is done by using isoparametric
-noded serendipity elements (with a reduced 2 × 2 Gauss integration
ule) for the displacement field 𝐮 and 4-noded bilinear elements for
he order parameter 𝜙. The resulting discretized nonlinear equations
re solved in a monolithic fashion by using the Newton method. The
enalty regularization method is employed to enforce the inequality
onstraint for the order parameter, 0 ≤ 𝜙 ≤ 1, as done in our prior
tudies involving multiple order parameters [31,34].

For an efficient and reliable computer implementation, the AceGen
ystem is used [41,42], which features automatic differentiation and
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Fig. 2. (a) The setup of the problem and the initial conditions, and (b) a schematic illustration of the nominal and effective (energy-minimizing) macroscopic M–MM interfaces.
In panel (a), the sketch in the middle depicts the full periodic domain and the sketch on the right depicts the actual computational domain used in the simulations. To enhance
the clarity of the sketches, the aspect ratio of the objects has been considerably decreased beyond their actual proportions.
code simplification capabilities, and thereby, guarantees an exact com-
putation of the tangent matrix. The simulations are carried out by using
AceFEM, a finite-element environment closely connected with AceGen.

4. Phase-field simulations: results and discussion

In this section, we present and discuss the results obtained from
our phase-field simulations. The setup of the problem and the material
parameters are outlined in Section 4.1, while the quantitative measures
which are used for analyzing the simulation results are described in
Section 4.2. The discussion of the simulation results commences with
the analysis of a representative case in Section 4.3. Subsequently,
the effect of twin spacing and the related size effects are studied in
Section 4.4. Finally, in Section 4.5, the effect of twin volume fraction
is investigated.

4.1. Problem setup and material parameters

The purpose of our computational study is to conduct a detailed
analysis of the macroscopic M–MM interface in a CuAlNi single crystal
(see Fig. 1) by using the phase-field model presented in Section 3.
Within such a macroscopic interface, a microstructured transition layer
(of some finite width) is formed in which the local incompatibility be-
tween the (macroscopically) homogeneous phases of single martensite
variant and twinned martensite is accommodated by elastic strains. It
is assumed in the present study that this transition layer is morphologi-
cally periodic along the M–MM interface with the period being the twin
spacing ℎ containing a twin pair. Meanwhile, outside of the transition
layer and far away from the M–MM interface, the elastic micro-strain
energy and the related stresses are expected to tend to zero. Accord-
ingly, in the finite-element simulations, the domain under study is
chosen to be sufficiently long in the direction parallel to the twin inter-
faces, i.e., a geometrical aspect ratio of at least 2𝐿∕ℎ = 40 is selected
where 2𝐿 denotes the height of the domain, and with the periodic
boundary conditions enforced at the corresponding edges, see Fig. 2(a).
It is noteworthy that our computational problem is closely related to
that of Tůma and Stupkiewicz [14] on the austenite–twinned marten-
site interfaces, see also [10] for the related sharp-interface modeling
study.
4

Nevertheless, it turned out from our simulations that the far-field
elastic micro-strain energy is non-zero, indicating that the elastic strains
(and hence energy) are not confined to a transition layer along the
M–MM interface. Thereby, as will be elaborated in Sections 4.2 and
4.3, corrections ought to be made in order to subtract the far-field
energy contributions from the energy of the macroscopic interface, as
accomplished in [43]. It should be pointed out that the far-field energy
contributions diminish by increasing the geometrical aspect ratio 2𝐿∕ℎ.
However, acquiring zero far-field energy contributions, as confirmed
by our auxiliary simulations, would require a very long computational
domain, which, due to the computational restrictions, is not feasible.

As discussed in Section 2, the twinning plane normal 𝐥 and the
M–MM interface normal 𝐦 can be obtained from the crystallographic
theory. Accordingly, the domain under study is oriented such that the
problem refers to a plane that contains both 𝐥 and 𝐦, as shown in
Fig. 2(a). This means that the global 𝑥1 axis aligns with 𝐥 and the global
𝑥2 axis deviates from 𝐦 by a characteristic angle 𝜃. As a result, the
domain takes the shape of a parallelogram, and the angle 𝜃 measures
the deviation of the parallelogram from a rectangular shape. A gener-
alized plane strain condition is considered in the simulations, which
implies that, while the problem is independent of the out-of-plane
spatial dimension, it accounts for a non-zero out-of-plane displacement,
e.g., [10,14].

A deformation-controlled loading is applied through prescribing
a constant average (overall) deformation gradient �̄�. Subsequently,
the microstructure is allowed to attain a steady (equilibrium) state
(i.e., the minimum of the total free energy is obtained through a viscous
evolution of the microstructure). This state is then taken as the subject
of the analysis. The average deformation gradient �̄� is defined in the
following form

�̄� = 𝜅0𝐅1 + (1 − 𝜅0)(𝜆0𝐅2 + (1 − 𝜆0)𝐅3), (13)

with the individual deformation gradients 𝐅1, 𝐅2 and 𝐅3 being equal to

𝐅1 = 𝐔A, 𝐅2 = �̂�𝐑𝐔B, 𝐅3 = �̂�𝐔A. (14)

Here, 𝐔A = 𝐔1 and 𝐔B = 𝐔3, see Eq. (3), represent the transfor-
mation stretch tensors of the two martensite variants involved, and
the rotations �̂� and 𝐑 come from the crystallographic theory, see
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Eq. (5). Accordingly, the average deformation gradient �̄� corresponds
to (theoretically) stress-free conditions. Eq. (13) involves two volume
fractions, namely 𝜆0 and 𝜅0 (referred to as ‘nominal’ volume fractions in
the sequel). The former controls the relative twin volume fraction and
is an input in the crystallographic theory equations, cf. Eq. (2), while
the latter controls the overall volume fraction of the single martensite
and twinned martensite regions within the computational domain and
is adjusted such that the domain of twinned martensite is sufficiently
large to accommodate a rather long needle-shaped microstructure. Note
that the initial state of the system is set by prescribing the order
parameter 𝜙 in accordance with the nominal volume fractions 𝜆0 and
𝜅0, see Fig. 2(a).

Our simulations revealed negligible discrepancies between the re-
sults of type-I and type-II twins. As a consequence, our primary focus
in this study is on the analysis of type-I twins, while the striking re-
semblance between the simulation results of type-I and type-II twins is
illustrated in Appendix. As such, the mixing rule (7) is here formulated
in terms of the type-I solution of the twinning equation, as given in
Eq. (4).

The computational domain is discretized by using a uniform finite-
element mesh (unless stated otherwise). The size of the elements 𝑑 is
set such that the mesh is fine enough to properly resolve the interfaces
and to capture the subtle features of the resulting microstructure. More
specifically, a ratio of approximately 5 is considered between 𝜋𝓁 and
𝑑, where the former is the theoretical interface thickness. Periodic
boundary conditions are enforced on both the displacement field 𝒖 and
the order parameter 𝜙. To reduce the computational cost, the two-fold
rotational symmetry of the microstructure about the central point (see
point 0 in Fig. 2(a)) is exploited, and thereby, only one half of the
domain (of the size ℎ×𝐿) is computed. Accordingly, the anti-periodicity
of the displacement field 𝒖 and the symmetry of the order parameter
𝜙 with respect to the point 0 are enforced at the bottom edge, and
similarly at the top edge.

The following material parameters are used in all the simulations.
The anisotropic elastic constants of orthorhombic martensite, namely
𝑐11 = 189, 𝑐22 = 141, 𝑐33 = 205, 𝑐44 = 54.9, 𝑐55 = 19.7, 𝑐66 = 62.6,
𝑐12 = 124, 𝑐13 = 45.5, 𝑐23 = 115 (all in GPa), are adopted from
the available literature data [44,45]. The interfacial energy density is
selected as 𝛾 = 0.02 J∕m2, see e.g., [14]. Finally, the mobility parameter
𝑚 takes the value of 𝑚 = 1 (MPa s)−1. Note that our analysis does
not concern the microstructure evolution process and is limited to the
steady-state microstructure. Therefore, the mobility parameter 𝑚 acts
merely as a regularization parameter and its value does not affect the
final results.

4.2. Quantitative description of the microstructure

Throughout the analysis, in addition to the examination of morpho-
logical features of the predicted microstructures, we employ a set of
quantitative measures to characterize the microstructures and compare
them across different cases. The selected measures are established
based on the following averaging operations,

⟨⋅⟩ = ⟨⋅⟩|𝜂 =
1
𝑤 ∫

𝑤∕2

−𝑤∕2
(⋅) d𝜉, (15)

⋅} = 1
𝐿 ∫

𝐿

0
⟨⋅⟩|𝜂 d𝜂 = 1

𝑤𝐿 ∫

𝐿

0

(

∫

𝑤∕2

−𝑤∕2
(⋅) d𝜉

)

d𝜂,

see Fig. 2(a) for the definition of 𝜉 and 𝜂 coordinates. Accordingly,
through the width-averaging operation ⟨⋅⟩, the average order parameter
⟨𝜙⟩, the integrated elastic strain energy ℎ⟨𝐹el⟩, cf. Eq. (10), and the
integrated interfacial energy ℎ⟨𝐹int⟩, cf. Eq. (11), are obtained. Note
that these averages can be evaluated at arbitrary height, thus ⟨⋅⟩ = ⟨⋅⟩|𝜂 .
At the same time, the respective overall quantities are determined via
the volume-averaging operation {⋅}, namely the overall order param-
ter {𝜙}, the total elastic strain energy el = ℎ𝐿{𝐹el} and the total
nterfacial energy  = ℎ𝐿{𝐹 }.
5

int int l
In order to effectively characterize the overall elastic micro-strain
energy of the macroscopic M–MM interface, we define the energy-based
measures 𝛾 tot

el and 𝛤 tot
el as

𝛾 tot
el =

el
𝑤

, 𝛤 tot
el =

𝛾 tot
el
ℎ

, (16)

where 𝛾 tot
el represents the elastic micro-strain energy per unit area of the

M–MM interface, while the energy factor 𝛤el measures the dependence
of the energy on the microstructure. Both 𝛾 tot

el and 𝛤 tot
el provide a

quantification of the elastic strain energy of the M–MM interface,
however, the energy factor 𝛤 tot

el is of particular importance, as it filters
out the first-order dependence of 𝛾 tot

el on the twin spacing ℎ, and thus
in this sense it can be considered size-independent [10,14].

The results of our simulations reveal the presence of non-zero values
of the elastic strain energy ℎ⟨𝐹el⟩ far from the M–MM interface, i.e., at
the upper and lower boundaries of the computational domain at 𝜂 = 0
and 𝜂 = 𝐿, see, for instance, Fig. 4 in Section 4.3 and the associated
discussion. It is therefore desirable to mitigate these far-field energy
contributions by correcting the elastic micro-strain energy measures.
To this end, we first define the effective volume fractions 𝜆∗ and 𝜅∗ as
follows

𝜆∗ = ⟨𝜙⟩|
|𝜂=0 , 𝜅∗ = 1 −

{𝜙}
𝜆∗

. (17)

Note that while 𝜅0, cf. Eq. (13), specifies the nominal position of
the M–MM interface, 𝜅∗ specifies the corresponding effective (actual)
position, as delineated in Fig. 2(b). Next, the ‘corrected’ total elastic
strain energy corr

el is calculated by subtracting the contributions of the
ar-field energies ∞,0

el and ∞,𝐿
el from the total elastic strain energy el,

ee [43], viz.,
corr
el = el − ∞,0

el − ∞,𝐿
el , (18)

here
∞,0
el = (1 − 𝜅∗)ℎ𝐿⟨𝐹el⟩|𝜂=0, ∞,𝐿

el = 𝜅∗ℎ𝐿⟨𝐹el⟩|𝜂=𝐿. (19)

ote that the far-field energies ∞,0
el and ∞,𝐿

el can be also computed
y using the nominal volume fraction 𝜅0 (by simply substituting 𝜅∗ by

𝜅0). This aspect is discussed in the subsequent sections. Finally, the new
energy-based measures 𝛾el and 𝛤el are defined as

𝛾el =
corr

el
𝑤

, 𝛤el =
𝛾el
ℎ
. (20)

An additional energy-based measure that is consistently used to
assess the macroscopic M–MM interface is the excess interfacial energy
density 𝛾exs

int defined as

𝛾exs
int =

exs
int
𝑤

, exs
int = int −  ref

int . (21)

ere,  ref
int represents the total interfacial energy related to the nominal

needle-less) M–MM interface (i.e., when only the two parallel planar
win interfaces are accounted for) and is calculated either based on the
ffective volume fraction 𝜅∗, i.e.,  ref

int = 2(1 − 𝜅∗)𝐿𝛾tw, or based on the
ominal volume fraction 𝜅0, i.e.,  ref

int = 2(1 − 𝜅0)𝐿𝛾tw. Recall that 𝛾tw
s the interfacial energy density associated with the local martensite–
artensite interface, see Eq. (11). In fact, 𝛾exs

int in Eq. (21) represents the
xtra interfacial energy density resulting from the difference between
he predicted microstructure and the needle-less microstructure, see
he schematic representation of the respective M–MM interfaces in
ig. 2(b).

.3. Modeling M–MM interface: a representative study

In this section, we present the analysis of a representative study,
ith the aim to elucidate the individual characteristics of the simulated
icrostructures, as a preliminary step prior to examining their col-

ective macroscopic responses. The computational domain considered
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Fig. 3. Simulation results corresponding to the representative study: the steady-state microstructure containing a needle-shaped domain of variant B in both the undeformed and
deformed configurations. The color contours represent the fields of the order parameter 𝜙 and von Mises stress. The parallel dashed lines overlaid on the undeformed microstructure
delineate the trajectory of the planar interfaces and are extended up to the effective position of the M–MM interface (specified by 𝜅∗), while the inclined solid line indicates the
nominal position of the M–MM interface (specified by 𝜅0). The place at which the dashed lines and the actual interfaces begin to diverge indicates the onset of the wedge-shaped
region of the microstructure.
Fig. 4. Simulation results corresponding to the representative study: the longitudinal profiles of (a) the integrated elastic strain energy ℎ⟨𝐹el⟩, (b) the integrated interfacial energy
ℎ⟨𝐹int⟩, and (c) the average order parameter ⟨𝜙⟩. The yellowish curve in panel (a) refers to the case where the profile of the elastic strain energy is corrected by means of
subtracting the far-field energy contributions. The arrow in panel (a) indicates the position where the division of the curve into two segments (see the text) would take place if
the nominal volume fraction 𝜅0 were used for the correction.
in this study has dimensions of ℎ × 𝐿 = 70 × 1400 nm2, the selected
nominal volume fractions are 𝜅0 = 0.4 and 𝜆0 = 0.3, and the interface
thickness parameter is adopted as 𝓁 = 1 nm. The computational
domain is discretized into approximately 250 000 elements of the size
𝑑 = 0.625 nm, thus resulting in approximately 2.5 million degrees of
freedom.

Fig. 3 depicts the simulation results in terms of the steady-state
microstructure. The microstructure is visualized in both the unde-
formed and deformed configurations, and is represented by the spatial
distribution of the order parameter 𝜙 and of the von Mises stress. As
shown in Fig. 3, the microstructure in its steady state has developed
a distinctive needle-shaped domain of martensite variant B. While
the needle appears to be straight in the undeformed configuration, it
exhibits a visible bending in the deformed configuration with a bending
angle of approximately 5◦ (measured at the needle apex) with respect
to the longitudinal axis (global 𝑥2 axis). The observed bending of
the needle conforms with the experimental observations, e.g., [19,46],
as well as with the previous modeling analyses, e.g., [19,25,27,29].
Another noteworthy feature of the microstructure pertains to the exces-
sive diffuseness of the needle apex. Our auxiliary simulations, aimed
at investigating the effect of the interface thickness parameter 𝓁 on
the microstructure, confirmed that such excessive diffuseness does not
represent a physical characteristic of the microstructure, but rather a
6

numerical artifact arising from the phase-field modeling framework.
It was observed that reducing 𝓁 results in a significantly less diffuse
needle apex. It is, however, important to note that a smaller 𝓁 requires
a relatively finer finite-element mesh, which renders the computations
excessively costly, and thus has not been considered in our main
simulations.

From the distribution of the von Mises stress, we observe that the
stress is predominantly concentrated in the area surrounding the curved
interfaces (within variant A) close to the needle apex. Conversely,
within the needle itself (within variant B), the stress is considerably
lower. Interestingly, our von Mises stress distribution shows qualitative
(and to some extent quantitative) similarities with the stress distribu-
tion obtained by Seiner et al. [19], in particular, the stress distribution
related to the ‘optimal’ case that results from the minimization of elastic
energy, see Fig. 8 therein.

We continue the discussion by examining the longitudinal profiles of
the integrated elastic strain energy ℎ⟨𝑓el⟩, integrated interfacial energy
ℎ⟨𝑓int⟩ and the average order parameter ⟨𝜙⟩, see Fig. 4. It is immediate
to see that the elastic strain energy reaches its peak within the region
occupied by the needle apex and then decays rapidly away from this
region. Contrary to the notion that the elastic micro-strain energy
vanishes far away from the M–MM interface, we observe that the far-
field elastic strain energy is non-zero and is equal to ℎ⟨𝐹 ⟩

| = 2.1 ×
el |𝜂=0
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Fig. 5. The steady-state microstructure (represented in the undeformed configuration) for different twin spacing ℎ. The parallel dashed lines indicate the trajectory of the planar
interfaces and are extended up to the effective position of the M–MM interface (specified by 𝜅∗), while the inclined solid lines indicate the position of the nominal M–MM interface
(specified by 𝜅0).
10−3 J/m2 and ℎ⟨𝐹el⟩||𝜂=𝐿 = 1.2 × 10−4 J/m2. Notably, the presence of
non-zero energy contribution at 𝜂 = 0 is directly linked to the observed
noticeably higher value of the effective volume fraction 𝜆∗ = 0.35
compared to the nominal volume fraction 𝜆0 = 0.3. And this, in turn,
leads to a deviation between the effective volume fraction 𝜅∗ = 0.49 and
the nominal volume fraction 𝜅0 = 0.4, as highlighted by the dashed and
solid white lines overlaid on the undeformed microstructure in Fig. 3.
The underlying cause of this omnipresent discrepancy can be sought in
the dominant role of the interfacial energy, stemming from the limited
size of the computational domain, and will be further discussed in
Section 4.4.

As discussed previously in Sections 4.1 and 4.2, we opt to mitigate
the far-field energy contributions by introducing the corrected elastic
micro-strain energy measures 𝛾el and 𝛤el, see Eq. (20). As an illustration
of this correction, the corrected profile of the integrated elastic strain
energy ℎ⟨𝐹el⟩ is depicted in Fig. 4(a). This correction is accomplished
by dividing the curve into two segments using the effective volume
fraction 𝜅∗, where the first segment spans from 𝜂 = 0 to 𝜂 = (1 −
𝜅∗)𝐿, and the second segment spans from 𝜂 = (1 − 𝜅∗)𝐿 to 𝜂 = 𝐿.
Subsequently, we subtract the far-field elastic strain energy ℎ⟨𝐹el⟩||𝜂=0 =
2.1×10−3 J/m2 from the first segment and ℎ⟨𝐹el⟩||𝜂=𝐿 = 1.2×10−4 J/m2

from the second segment. Note that the area beneath this corrected
curve is equal to corr

el , cf. Eq. (18). Alternatively, the correction can
be also made by employing the nominal volume fraction 𝜅0, which is,
however, less relevant here. The division of the curve into two segments
would then take place at a different position, as shown by the arrow in
Fig. 4(a).

Our discussion in this section concludes by drawing attention to
the trend of the interfacial energy ℎ⟨𝐹int⟩. Specifically, ℎ⟨𝐹int⟩ =
0.0406 J/m2 remains almost constant throughout the entire length
of the twinned martensite domain. Considering that two martensite–
martensite interfaces are present, the resulting interfacial energy den-
sity amounts to ℎ⟨𝐹int⟩∕2 = 0.0203 J/m2, which is only marginally
higher than the interfacial energy density 𝛾tw = 0.02 J/m2 used in the
simulations. This discrepancy is likely due to the finite resolution of the
interfaces in our simulation, leading to a slightly inexact integration of
the interfacial energy.

4.4. Size effects

This section aims to investigate the impact of twin spacing ℎ on
the microstructure and on the energy-based characteristics of the M–
MM interface and, thereby, elucidate the related size effects. A series
of simulations are carried out for twin spacing ℎ ranging from ℎ =
20 nm to ℎ = 160 nm. Note that the geometrical aspect ratio is the
same in all cases, 𝐿∕ℎ = 20. As discussed in Section 4.1, in order to
maintain a reasonable resolution of the predicted microstructures, the
ratio of 𝜋𝓁∕𝑑 = 5 (recall that 𝜋𝓁 refers to the theoretical interface
7

thickness and 𝑑 to the element size) is kept constant throughout all
simulations. As such, it is not computationally feasible to perform all
the simulations using a fixed interface thickness parameter 𝓁. Instead,
a common strategy, as adopted in previous studies [14,34], is utilized
in which 𝓁 and 𝑑 are proportionally increased, and this facilitates the
extension of our analysis over a broader range of twin spacing. As it
will be shown, the choice of 𝓁 has a small influence on the simulation
results, confirming the validity of our analysis outcomes.

Prior to a quantitative examination of the results, it should be
pointed out that within the realm of phase-field modeling, the size-
dependence of the microstructure stems from the inherent length-scale
brought by the interfacial energy and manifests itself as a result of the
competition between the elastic strain energy and interfacial energy.
Indeed, this fundamental premise underpins all the size-dependent
characteristics observed in this study. Specifically, as the twin spacing
ℎ is increased, it leads to a shift in the balance of energy from the
interfacial energy to elastic strain energy, and hence the minimization
of the total energy gives rise to needle-shaped microstructures with rel-
atively longer wedges. On the contrary, for small ℎ, since the interfacial
energy is dominant, it is energetically favorable for the microstructure
to develop a smaller area of interfaces, i.e., a relatively short domain of
needle-shaped martensite. This is, however, achieved at the cost of an
increase in the elastic strain energy. In particular, since the total volume
fraction of variant B (quantified by {𝜙}) is indirectly constrained by
the displacement boundary conditions to be close to the nominal one
(i.e., {𝜙} = (1− 𝜅∗)𝜆∗ ≈ (1− 𝜅0)𝜆0), the shortening of the needle results
in an increase in the twin volume fraction, hence 𝜆∗ > 𝜆0. This is then
accommodated by the elastic strain energy that does not vanish far from
the M–MM interface.

Fig. 5 depicts the steady-state microstructures for different twin
spacing ℎ, allowing for a clear observation of the size-dependent mi-
crostructural changes described above, in particular, concerning the
discrepancy between the effective and nominal volume fractions. A
quantitative examination of the microstructures (see Fig. 6(a)) reveals
that this discrepancy is, as expected, more pronounced for smaller
ℎ. As ℎ is increased, both 𝜆∗ and 𝜅∗ gradually tend towards their
corresponding nominal values. A direct outcome of the microstructural
changes depicted and quantified in Figs. 5 and 6(a) is reflected in
the plot of excess interfacial energy density 𝛾exs

int (Fig. 6(b)), which is
calculated once based on the nominal volume fraction 𝜅0 and once
based on the effective volume fraction 𝜅∗, see Eq. (21) and the related
discussion. It follows that both graphs in Fig. 6(b) exhibit similar mono-
tonically increasing trend and that they are visibly distant, notably for
smaller ℎ. The monotonically increasing trend of 𝛾exs

int is associated with
the elongation of the wedge-shaped region of the microstructure as ℎ
increases and with the related extra interfacial energy.

Fig. 7 provides a demonstration of the size effects in terms of the
elastic micro-strain energy measures 𝛾 and 𝛤 . It can be observed that
el el
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Fig. 6. The impact of twin spacing ℎ on (a) the effective volume fractions 𝜆∗ and 𝜅∗, and on (b) the excess interfacial energy density 𝛾exs
int . The solid and dashed curves in panel

(b) correspond to cases where 𝛾exs
int is determined based on the effective volume fraction 𝜅∗ and nominal volume fraction 𝜅0, respectively, cf. Eq. (21).
Fig. 7. The graphs of the elastic micro-strain energy 𝛾el (a) and the corresponding energy factor 𝛤el (b) as a function of twin spacing ℎ. The solid and dashed curves refer to cases
where the calculation of the elastic strain energy measures 𝛾el and 𝛤el is done based on the effective volume fraction 𝜅∗ and nominal volume fraction 𝜅0, respectively, cf. Eqs. (18)
and (19). Notice that, apart from the initial segment where ℎ is relatively small, the two curves exhibit a reasonably good agreement.
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while 𝛾el exhibits a roughly linearly increasing trend, the energy factor
𝛤el exhibits a nonlinearly decreasing trend, seemingly an opposing
ehavior to that of the excess interfacial energy density 𝛾exs

int shown in
ig. 6(b). The diminishing trend of 𝛤el is a clear indication of the shift in
he balance of energy as ℎ varies and highlights the interplay between
he interfacial energy and elastic strain energy contributions. Although
el appears to converge towards a limit value, similar to other curves

n Fig. 6, this limit value remains unattainable within the range of ℎ
explored in this study.

It is worth highlighting that the range of the values of the energy
factor 𝛤el observed in Fig. 7(b), from 2 MJ/m3 to nearly 4 MJ/m3,
s consistent with the findings of Seiner et al. [19]. Specifically, their
optimal’ microstructure exhibits a value of 2.9 MJ/m3, and their
experimental’ microstructure exhibits a value of 4 MJ/m3 (we have
etermined these values based on the overall elastic strain energy and
omain geometry reported therein). Indeed, upon extrapolating the
imulation data to encompass larger twin spacings it becomes evident
hat our energy factor 𝛤el has a limit value only marginally lower
han 2 MJ/m3. This substantiates the relevance of the quantitative
omparison made with the data of [19] in which a twin spacing of
0 μm was used.

In Figs. 6 and 7, we have presented the collective responses showing
he size effects. In order to gain a deeper understanding on the effect
f twin spacing ℎ, representative individual profiles of average elastic
train energy ⟨𝐹 ⟩ and order parameter ⟨𝜙⟩ are reported in Fig. 8.
8

el i
This section concludes with a discussion of the impact of the inter-
face thickness parameter 𝓁 on the simulation results, as it is essential
to ensure that the choice of 𝓁 does not compromise the validity of
the analysis outcomes. While this can be partly discerned from Figs. 6
and 7, further investigation deems necessary. Fig. 9 presents magnified
views of the needle-shaped martensite domains obtained for a fixed
twin spacing ℎ = 70 nm but for various interface thickness parameters 𝓁.
As expected, the apex of the needle becomes more diffuse as 𝓁 increases
(Fig. 9(a)). However, no significant morphological changes are evident.
This is also confirmed by the magnified views of the corresponding
trimmed microstructure visualizations (Fig. 9(b)), in which the diffuse
interfaces are excluded by representing variant B via trimmed order
parameter 𝜙 ≥ 0.5 and displaying it using a single color.

Furthermore, Fig. 10 depicts the individual profiles of the elastic
strain energy ℎ⟨𝐹el⟩ and interfacial energy ℎ⟨𝐹int⟩ for various 𝓁. Except
or some visible effects in the vicinity of the energy peaks, which
s expected due to the change in the diffuseness of the needle apex,
he profiles are practically insensitive to the choice of 𝓁. It should be
entioned that the same conclusion holds for the profile of the order
arameter ⟨𝜙⟩, which is not included in Fig. 10.

.5. Effect of twin volume fraction

The twin volume fraction 𝜆0 is regarded as a crucial input parameter

n the analysis of the M–MM interface, as its selection has profound
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Fig. 8. The impact of twin spacing ℎ on the profile of the average elastic strain energy ⟨𝐹el⟩ (first row) and average order parameter ⟨𝜙⟩ (second row) for three different interface
thickness parameters 𝓁, namely (a) 𝓁 = 1 nm, (b) 𝓁 = 1.5 nm, and (c) 𝓁 = 2.5 nm. The vertical dashed lines in the first row indicate the position of the actual M–MM interface
(specified by 𝜅∗).
Fig. 9. Magnified views of the needle for varying interface thickness parameter 𝓁, with a fixed computational domain of ℎ × 𝐿 = 70 × 1400 nm. In panel (b), the microstructures
are represented by the trimmed order parameter 𝜙 ≥ 0.5 displayed by a single color, thus excluding the diffuse interfaces.
implications on the microstructure and the related quantitative char-
acteristics. With that in mind, in this section, we seek to gain insight
into the effect of twin volume fraction 𝜆0 on the simulation outcomes.
To this end, simulations are conducted by varying 𝜆0 within the range
of 0.1 and 0.9 with an increment of 0.1. A computational domain with
dimensions of ℎ × 𝐿 = 50 × 1250 nm2 is selected, a nominal volume
fraction of 𝜅0 = 0.2 is adopted and an interface thickness parameter of
𝓁 = 0.5 nm. The latter yields microstructures with less diffuse interfaces
compared to those presented in preceding sections. To maintain the
same microstructure resolution as before, i.e., to keep the ratio of
9

𝜋𝓁∕𝑑 = 5, without a significant increase of the computational cost, a
non-uniform finite-element mesh (non-uniform only in the longitudinal
direction) is employed. More specifically, the mesh is finer in the vicin-
ity of the needle apex (where the microstructure is more susceptible to
morphological changes) and comprises nearly equiaxed elements of the
size 𝑑 = 0.3125 nm, while it is coarser sufficiently far from the needle
apex and comprises elongated elements. It should be remarked that
our primary observation was that the morphology of the microstructure
changes considerably within the 𝜆0 range of 0.5 to 0.7. Consequently,
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Fig. 10. The effect of interface thickness parameter 𝓁 on the profile of the elastic strain energy ℎ⟨𝐹el⟩ (first row) and on the profile of the interfacial energy ℎ⟨𝐹int⟩ (second row)
or different twin spacings, namely (a) ℎ = 70 nm, (b) ℎ = 100 nm, and (c) ℎ = 130 nm.
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o augment the analysis, two additional simulations are performed for
0 = 0.55 and 𝜆0 = 0.65.

The steady-state microstructures for different twin volume fractions
0 are compared in Fig. 11. Notably, two distinct families of microstruc-
ures emerge within the range of 𝜆0 investigated. For 𝜆0 ≤ 0.5, the
icrostructure exhibits a single needle of variant B, which increases

n height with increasing 𝜆0. On the other hand, for 𝜆0 ≥ 0.6, variant A
s engaged with the needle-shaped morphology and this is accompanied
y the formation of an apparent interface between the domains of
winned martensite and single martensite. Unlike the microstructures
or 𝜆0 ≤ 0.5, the height of the needle is only minimally influenced by
0. An intriguing observation is that the two families of microstructures
re mediated by a transitional microstructure at 𝜆0 = 0.55, which is
learly distinct from the microstructure of either family. Specifically, in
his transitional microstructure, the needle-shaped domain of variant B
xhibits a branching morphology, which arises as a means to reduce the
lastic strain energy of the system. Similar observations of branching, as
spontaneous energy-minimizing mechanism, have been made in other
hase-field modeling investigations [14,27]. A closer examination of
he microstructures for 𝜆0 = 0.6 and 𝜆0 = 0.65 reveals the occurrence of
ranching also in these cases, as can be seen clearly in the periodically
epeated microstructure for 𝜆0 = 0.6 in Fig. 11(b). Another noteworthy
bservation from the microstructure visualizations in Fig. 11(b) is
hat the apparent interface between the twinned martensite and single
artensite domains is not perfectly straight and takes on a stepped

ppearance.
Fig. 12 summarizes the effect of the twin volume fraction 𝜆0 on the

acroscopic characteristics of the M–MM interface. Here, the primary
bservation pertains to the fact that the nominal and effective volume
ractions tend towards each other as 𝜆0 increases, see Fig. 12(a). In
articular, for the second family of microstructures, i.e., for 𝜆0 ≥ 0.6,
he graphs of the effective and nominal volume fractions almost over-
ap. For the first family of microstructures, i.e., for 𝜆0 ≤ 0.5, however,
10
here exists a visible discrepancy (as already discussed in Section 4.4
or 𝜆0 = 0.3) which diminishes as 𝜆0 increases. Consequently, the

graphs of the excess interfacial energy density 𝛾exs
int and elastic micro-

strain energy 𝛾el (and thus also 𝛤el) (Fig. 12(b, c)) exhibit distinctive
behaviors for the two families of microstructures and, thereby, have
been depicted by separate curves. Both 𝛾exs

int and 𝛾el energy measures
have a monotonically increasing trend from both the right and left
directions, i.e., as 𝜆0 increases for the first family and as 𝜆0 decreases
for the second family, and peak at specific 𝜆0. More precisely, the peak
for excess interfacial energy density 𝛾exs

int occurs at 𝜆0 = 0.55, associated
with the special branching morphology observed, and the peak for
elastic micro-strain energy 𝛾el occurs at 𝜆0 = 0.6.

It is worth mentioning that the graph of the elastic micro-strain
energy 𝛾el resembles qualitatively the bell-shaped curve proposed by
Petryk et al. [43], which describes the elastic micro-strain energy of
a generic transition layer linking laminated and homogeneous half-
spaces. Their bell-shaped curve exhibits a symmetry with respect to
the volume fraction of 0.5. Here, such a symmetry is not observed as
a result of the substantial differences in the microstructures of the two
families.

5. Conclusion

We have employed a conventional phase-field approach to model
the microstructural features of the transition layer between a single
martensite variant and a twinned martensite domain in a CuAlNi
single crystal. The most salient feature of the microstructure is the
presence of needle-like twins terminating at the interface, which has
been successfully reproduced in our simulations, especially the bending
and tapering of the needles that are in qualitative agreement with the
experimental findings of Seiner et al. [19]. Our primary objective has
been to quantify the energy-based characteristics of the transition layer.
In view of this, we have investigated the influence of the twin spacing
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Fig. 11. The steady-state microstructure for various nominal twin volume fractions 𝜆0: (a) the microstructures in the deformed configuration for 𝜆0 values ranging from 0.2 to
0.9, and (b) magnified views of the periodically repeated microstructures (in the undeformed configuration) for 𝜆0 values of 0.6, 0.7 and 0.8. The microstructures for 𝜆0 = 0.6
and 𝜆0 = 0.65 exhibit some excessive diffuseness close to the needle apex, which can be circumvented by using a smaller interface thickness parameter 𝓁. Notice that, for space
reasons, a portion of the microstructures in panel (a) is clipped from the left. As such, the microstructure for 𝜆0 = 0.1, which possesses a relatively shorter needle but otherwise is
similar to that for 𝜆0 = 0.2, has not been included.
Fig. 12. The effect of the twin volume fraction 𝜆0 on (a) the effective volume fractions 𝜆∗ and 𝜅∗, (b) the excess interfacial energy density 𝛾exs
int , and (c) the elastic micro-strain

energy measures 𝛾el and 𝛤el. In panel (a), the dashed curves indicate the nominal volume fractions 𝜆0 and 𝜅0. Notice that, in panels (b) and (c), the energy measures are plotted
as a function of the effective volume fraction 𝜆∗. Moreover, the solid and dashed curves refer to cases where the calculations are done based on the effective volume fraction 𝜅∗

and nominal volume fraction 𝜅0, respectively.
(size effects) and the twin volume fraction on the interfacial and elastic
strain energy measures. The obtained values, particularly for the elastic
strain energy factor 𝛤el and the stresses, are in a quantitative agreement
with those obtained in [19] using a sharp-interface approach. A notable
outcome of our analysis is the emergence of branching microstructure
11
for certain twin volume fractions. Also, the microstructures and the
energy measures predicted for type-I and type-II twins are found to be
surprisingly similar. Our study exhibited a small impact of the phase-
field length-scale parameter on the simulation results, confirming the
validity of our analysis outcomes.
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Fig. 13. The effect of the twin type on the simulation results for the representative study (𝜆0 = 0.3, see Section 4.3): (a) the profile of the elastic strain energy ℎ⟨𝐹el⟩, (b) the
profile of the interfacial energy ℎ⟨𝐹int⟩, and (c) the profile of the average order parameter ⟨𝜙⟩.
Fig. 14. The effect of the twin type on the simulation results for the case with the nominal volume fraction 𝜆0 = 0.7 (see Section 4.5): (a) the profile of the elastic strain energy
ℎ⟨𝐹el⟩, (b) the profile of the interfacial energy ℎ⟨𝐹int⟩, and (c) the profile of the average order parameter ⟨𝜙⟩.
−
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Appendix. Effect of twin type

In this appendix, we present the simulation results obtained for
type-II twin and compare them with those of type-I twin. Two cases
are selected for this analysis, namely the case with the dimensions of
ℎ × 𝐿 = 70 × 1400 mm2 and the nominal volume fractions of 𝜅0 = 0.4
and 𝜆0 = 0.3 (the representative case discussed in Section 4.3) and
the case with the dimensions of ℎ × 𝐿 = 50 × 1250 and the nominal
volume fractions of 𝜅0 = 0.2 and 𝜆0 = 0.7 (see the study of the effect
of twin volume fraction in Section 4.5). The longitudinal profiles of the
integrated elastic strain energy ℎ⟨𝐹el⟩, the integrated interfacial energy
ℎ⟨𝐹int⟩ and the average order parameter ⟨𝜙⟩ for the two twin types are
compared in Figs. 13 and 14. The results consistently reveal that the
effect of twin type is negligible, as only some truly minor discrepancies
can be detected, see the insets in Figs. 13(a) and 14(a).

It is to be remarked that for these additional simulations, the rank-
one mixing (7) is redefined in terms of the type-II solution of the
twinning equation, i.e., 𝐅t = 𝐔A+𝜙𝐚∗⊗ 𝐥∗, where 𝐚∗ = (−0.0036, 0.1691,
0.1921) and 𝐥∗ = (0.2282, 0.6885, 0.6885).
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