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Abstract. Early pancreatic cancer diagnosis and therapy drastically increase the
chances of survival. Tumor visualization usingCT scan images is an important part
of these processes. In this paper, we applyMixed Reality (MR) andArtificial Intel-
ligence, in particular,Machine Learning (ML) to prepare image-guided 3Dmodels
of pancreatic cancer in a population of oncology patients. Object detection was
based on the convolution neural network, i.e. the You Only Look Once (YOLO)
version 7 algorithm, while the semantic segmentation has been done with the
3D-UNET algorithm. Next, the 3D holographic visualization of this model as an
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interactive, MR object was performed using theMicrosoft HoloLens2. The results
indicated that the proposed MR and ML-based approach can precisely segment
the pancreas along with suspected lesions, thus providing a reliable tool for diag-
nostics and surgical planning, especially when considering organ reconstruction
during pancreaticoduodenectomy.

Keywords: Extended Reality ·Mixed Reality · Augmented Reality ·
Head-Mounted Displays · Artificial Intelligence · Image-guided surgery

1 Introduction

Pancreatic cancer is most often diagnosed in a locally advanced stage, where local vessel
involvement is more probable (Kenner et al. 2021), (Rawla et al. 2019). Since the early
symptomsof thedisease aremostly non-specific, an efficient diagnosis in the initial stages
of the disorder is crucial in improving survival rates (Gheorghe et al. 2020). Experienced
oncological surgical centers are capable of performing radical local resection with vessel
reconstruction; however, this is often an intraoperative decision. Advances in 3D visu-
alization of CT imagery provide a crucial preoperative decision-making tool to identify
possible regions of vascular involvement, the feasibility of resection, and the extent of
potential vessel reconstruction. This is particularly useful given that vascular invasion
necessitating reconstruction is itself a negative prognosticator for long-term outcomes.
Preoperative planning that shows the extent of invasion may avoid an operation, instead
opting for alternatives such as neoadjuvant chemotherapy. Moreover, image-guided nav-
igation fits in with the assumptions of an alternative to traditional solutions, minimally
invasive surgeries (MIS) (Kochanski et al. 2019). Thus, early pancreatic diagnosis is of
high importance.

Recently the development of head-mounted displays (HMDs) has opened many
possibilities for the use of immersive technologies like Augmented Reality (AR), and
Mixed Reality (MR) in various fields, particularly medicine with a special emphasis on
the medical education sector (Klinker et al. 2020), (Garlinska et al. 2023), (Pregowska
et al. 2022) and surgery (Wang et al. 2023). Since HMDs are the portable alternative
to the standard computer monitors, they have the potential to revolutionize surgery
by enabling augmenting the operating field through digital data visualization (Quero
et al. 2019), (Acidi et al. 2023), (Brockmeyer et al. 2023). Overlaying an image, such
as radiography (X-ray), magnetic resonance imaging (MRI), or computed tomography
(CT) on anatomical landmarks allows the operator to visualize organs, vessels, and
irregularities such as tumors (England et al. 2023) compared the perception of images
by radiologists using HDMs or traditional monitor, finding that HDMs provided a higher
quality and thus more actionable image. The application of HDMs in surgery may help
to improve efficiency by providing the doctor with a more accurate preoperative image.
(Patric & Baowei 2023) described the interface of the AR-based system for visualization
of prostate biopsy with the color and transparency of each element of the 3D model
being adjustable in real-time. (Pan et al. 2020) described AR-based navigation in deep
anterior lamellar keratoplasty, finding that AR enables accurate detection and tracking
of the corneal contour complex in real-time. Another interesting application of HMDs
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is a medical ultrasound-guided 3D visualization (Ruger et al. 2020) (Nguyen et al.
2022). (von Haxthausen et al. 2023) presented an MR-based real-time volumetric in situ
ultrasound for guiding vascular punctures. The holographic remote mode was used to
send the rendered images to the HMDs. One of the main issues in the wide application
of AR/MR in surgery is providing a sense of depth perception for the operator. The main
limitation of the proposed approach is the difficulty in distinguishing relevant structures
from noise and occlusion.

Machine Learning (ML) and particularly deep neural networks (DNNs) have revo-
lutionized image segmentation (Chen et al. 2018), (Polyviou & Zamani 2023), (Hasan
et al. 2023), (Chen et al 2023). Precise segmentation of lesions may contribute to effi-
cient diagnostics and more effective, targeted therapy. For example, (Hosny et al. 2019)
presented an algorithm for the segmentation of pigmented skin lesions, which enables
diagnoses at an earlier stage without invasive medical procedures. Given its flexibil-
ity and scalability, ML can be an efficient tool for cancer diagnosis, in particular, the
early disease stages (Young et al. 2020), (Granata et al. 2023). (Hayward et al. 2010)
assessed multi-layer perceptron neural networks, Bayesian nets, and locally weighted
naive Bayesian nets for clinical performance in a pancreatic cancer database. They found
that ML algorithms provide a substantial improvement in predicting clinical outcomes.
Themost commonly usedML-based algorithms in image semantic segmentation, in par-
ticular in segmentation of different tumors, are Convolutional Neural Networks (CNNs)
(Badrinarayanan et al. 2017), particularly the U-Net (Li et al. 2020), and its variation
U-Net++ (Zhou et al. 2018), R2UNet (Alom et al. 2019). (Ren et al. 2023) examined
the application of Attention U-Net to the prediction of solid pancreatic tumors. The
proposed approach was based on feature fusion to assess the extent and boundaries of
solid tumors. This approach was particularly helpful in generating early-stage images
of tumors, thereby augmenting the training and testing sets. In (Janssen et al. 2021)U-
nets with a DenseNet161 encoder were applied to the segmentation of residual tumors
in pancreatic cancer histopathology samples. The results obtained show that AI-based
algorithms can help the assessment of residual tumor burden. Another application ofML
was shown by (Lee et al. 2021), i.e. the evaluation of the survival prediction of pancreas
cancer based on Random Forest and the Cox proportional-hazards model.

In this paper, we also propose a so-the virtual shared experience paradigm, in which
the primary HMD is worn by physicians with a secondary HMD worn by patients.
Mixed Reality and Artificial Intelligence were applied to prepare 3D visualizations of
preoperative surgical oncology patients’ imaging.

2 Research Methodology

The study “Holographic MedAssistant” was conducted following the Declaration of
Helsinki, and approved by the Medical Ethical Committee of the Jagiellonian Uni-
versity Medical College (JUMC) in Krakow, Poland No: 1072.6120.27.2020 and
1072.6120.92.2022.



324 K. Proniewska et al.

2.1 Image Segmentation Based on Opened Database Source

Pancreatic segmentation from abdominal computer tomography (CT) images is a chal-
lenge because themorphology of the pancreas, i.e., its shape and position, has significant
variability and may result in blurred boundaries (Dai et al. 2023). Also, the pancreas
makes up a small amount of an entire abdominal CT scan.Moreover, the often the border
between the pancreas and background is very subtle making it especially challenging to
precisely define its boundaries. Segmentation was usually done manually by an expert
moving a pointer. This was highly inefficient and often subject to error depending on the
experience of the expert, especially when considering such challenging organs as the
pancreas. Thus, accurate and automated segmentation will be important in the future of
surgical planning. However, automated pancreas segmentation will also face the chal-
lenges described in segmenting a pancreas manually (Bagheri et al. 2020). In this paper,
the data were obtained and delivered as de-identified DICOM files from open datasets.
We have selected from a large collection (−100 3D CT images -) of healthy patients,
namely 1) 281 patients with pancreatic tumors, (Simpson et al. 2019) and 2) 80healthy
patients (Roth et al. 2015), and the relevant anatomical structures were labeled using
a series of Machine Learning-based segmentation algorithms by You Only Look Once
(YOLO) version 7, which is open-source software to use under GNU General Public
License v3.0 license (see, Fig. 1).

In this study, CT dicom files were processed in an open-source medical image anal-
ysis software, 3D Slicer (version 5.2.2, functiongrow from seeds function) to segment
key structures. Anatomical landmarks including the pancreas, superior mesenteric vein
(SMV), splenic vein (SV), portal vein (PV), abdominal aorta, and celiac trunk along
with its branches were isolated and converted into a 3D mask using a combination of
region-based segmentation to define organs and blood vessels as a volume rendering.
An output surface matrix, or model, was obtained that identifies an object or instance
to which each pixel belongs using input tags, or seeds. Object detection, i.e. localizing
and identifying structures in a digital image or video was done first (Amit et al. 2020),
followed by the bounding box, and ultimately object classification. Figure 2 shows an
object detection example in a CT scan to show the liver and spine, i.e. it shows the
bounding boxes around the detected regions. This is a different procedure than semantic
segmentation, as in semantic segmentation the algorithm will classify each pixel (or
voxel in 3D images) in a class (Thoma 2016). The semantic segmentation on a CT slice
was visualized in Fig. 3 as a example.

The detection of pancreatic lesions consists of three stages. First, the region of inter-
est (ROI) containing the pancreas, then the detection of a lesion in a pre-selected area
of interest, and clinical validation consisting in comparing the results of the pancreatic
lesion detection, including algorithms alone and combining the results of the algorithms
with radiological verification to the standard approach, i.e. manual radiological assess-
ment. The automated algorithm relies on a pipeline with twomajor steps, first is to detect
the ROI i.e. the area around the pancreas, and then feed this detected ROI to another
step that would perform the final segmentation. From a computer science point of view,
the first step is called object detection and it relies on the YOLOv7 algorithm, while the
second step is called semantic segmentation and relies on the 3D-UNET algorithm.
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Fig. 1. Automatically generated region of interest by the YOLO training script

Fig. 2. Object detection in CT scan image. Red box around the pancreatic region. (Color figure
online)
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Fig. 3. Semantic segmentation in CT scan image. Note that the pancreas was marked by yellow
color. (Color figure online)

The YOLO algorithm depends on deep learning for object detection (Redmon et al.
2016). It depends on the idea of the images passing only once through the neural network,
hence the name, this is done by dividing the input image into a grid and predicting for
each grid cell the bounding box and the probability of that class. The algorithm predicts
different values about the object, i.e. the coordinates of the center of the bounding box
around the object, the height and width of the bounding box, the class of the object, and
the probability, or the confidence of the prediction. This way of working may cause the
algorithm to detect the object multiple times, to avoid duplicate detections of the same
object the algorithmuses non-maximumsuppression (NMS),whichworks by calculating
a metric called Intersection over Union or (IOU) between the boxes according to the
following formula.

IOU = Area of overlap

Area of Union
. (1)

If the IOU between two boxes is larger than a threshold, the box with a higher con-
fidence score is chosen and the other is ignored. There have been many improvements
to the YOLO algorithm (Redmon & Farhadi 2017), (Bochkovskiy et al. 2020), (Zhu
et al. 2021). In this study, YOLO version 7 (YOLOv7), which was released in 2022, is
applied (Wang et al. 2022). It has several structural modifications that provide higher
accuracy, faster performance, improved scalability, and greater flexibility for customiza-
tion. YOLOv7 operates in pixel space, i.e., 2D space. Thus, there is a need to extract
the three-dimensional ROI for the pancreas from different anatomical planes (Axial,
Coronal, Sagittal) and combine this information to get the 3D ROI. Figure 4 shows the
general idea of the YOLOv7 algorithm. The first row shows the pancreas detection in
the three planes, combining this information would produce the coordinates in the voxel
space.
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Fig. 4. The general functional structure of the YOLOv7 algorithm to detect the pancreas 3D ROI.

The next step, i.e., training the 3D UNET usually requires a substantial amount
of computational power. However, since the image size will be significantly reduced,
as shown in Fig. 4, the computational power will likewise be reduced allowing more
freedom to optimize network parameters.

UNET is a convolutional neural network architecture, which was introduced by
Ronneberger et. al (2015) (Ronneberger et al. 2015), it was built upon a well-established
architecture called a fully connected network (FCN) (Shelhamer et al. 2014), to perform
semantic segmentation on biomedical images, in the original paper, which was cited
more than 62,000 times by the time this article was written, described the architecture
as having two paths contracting path (also known as encoder) and an expansive path
(also known as a decoder). The contracting path consists of 3 × 3 convolutional layers
followed by 2× 2 max-pooling layers with strides equal to two, after each max-pooling
the number of features channels is doubled, while the expansive path is like a mirror for
the contracting path with upsampling layers instead of max pooling, and a final 1 × 1
convolutional layer that should have a number of channels equal to the required number
of classes, UNET also have skip connections between the two paths, which copies the
images from steps of the contracting path to the mirrored stages of the expansive path.

The architecture showed promising results when applied to biomedical images espe-
cially when applying data augmentation with elastic deformation and trained with a
weighted loss function with reasonable training time.

Although the original work considered 2D images only, the 3DUNET appeared later
in 2016 to perform volumetric segmentation, using 3 × 3 × 3 window convolutional
layers followed by 2 × 2 × 2 max-pooling layers with strides equal to two, This had
many uses in segmenting CT images (Wu et al. 2020) and MRI images (Tomassini et al.
2023).
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3D UNET would require more parameters which would apply limitations on the
complexity of the model, also 3D data needs more memory space to handle, which
might affect the size of the batches, we tend to deal with this problem by performing
object detection step first to significantly reduce the size of the input data.

These steps were implemented using Python in the Google Colab Pro cloud service
environment. NVIDIA T4 GPU was used for training of YOLO v7 algorithm whereas
Tesla A100 was used for training of U-Net, using a loss function based on a combination
of dice loss and Cross entropy. The object detection part (using the YOLO v7 algorithm)
was evaluated for precision and recall. The semantic while the segmentation part (U-
New) was evaluated with the dice sore, IOU as well as voxel-level ROC curve with
AUC.

For YOLO a total of 100 epochs were used, with batch size 40, learning rate =
0.01, and momentum= 0.937, whereas U-Net was trained for 50 epochs, using ADAM
optimizer, learning rate of 0.01, momentum = 0.99, beta_1 = 0.9 and beta_2 = 0.999
with 544,970 trainable parameters. The total training time took approximately 4 h (1.5
h for YOLO and 2.5 h for U-Net).

2.1.1 Input Data for Neural Network

The input data should be standardized to be inserted into a neural network using
YOLOv7. The proper format of data is to have pairs of images and text files, where
the text files contain information about the objects in the image, in it the class of the
object should be specified, as well as the coordinates of the center of the bounding
box with the high and width of that box, Fig. 4 shows the proper encoding of the data.
Coordination and dimensional information should be normalized to have values between
zero and one, this can be done by assuming that the top left corner of the image has the
coordination of (0, 0) and the bottom right corner has the coordination of (1, 1), see
Fig. 5.

Fig. 5. Data encoding inside text files so that they can be used as input to the YOLOv7 algorithm.

Thus, even though the masks provided by experts have only the semantic segmenta-
tion information i.e., the class of each voxel, it is relatively easy to generate information
about the bounding box, since the algorithm needs only to get the largest bounding box
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in each plane to build a good 3D box. We chose only to train on the 2D images that
have bounding boxes with sizes greater than 95.00% of the largest bounding box in that
image. In practice, the steps to generate the data for YOLOv7 are following repeat step
two for the other planes.

• Step 1: Load the image.
• Step 2: Iterate through the slices in one plane.
• Step 3: Check if the image has a pancreas.
• Step 4: if not skip this slice.
• if yes:

• Detect the bounding box.
• Register its coordinates and its size,
• Register the number of the slice.

• Step 5: When done from all slices, calculate the max bounding box size.
• Step 6: iterate through the registered sizes.
• Step 7: if the size of the bounding box is greater or equal to the max size:

• Adjust the window/level of the image to the abdominal preset.
• Export the image as a jpeg file.
• Normalize the coordinates.
• Add numerical encode for the plane (0 for Axial, 1 for Coronal, and 2 for Sagittal)
• Export this information as a text file that has the same name as the image.

After generating all training data, it should be divided into three sets, i.e., training
60.00%, validation 10.00%, and testing 30.00%. The training set is the largest portion of
the dataset and is used to train themodel. It is used to optimize themodel’s parameters and
learn patterns from the data. The model is exposed to both input data and corresponding
output labels during training. The validation set is used to fine-tune the model and
select the best hyperparameters. It is typically used for model selection, hyperparameter
tuning, and performance monitoring. The validation set helps to evaluate the model’s
performance on unseen data and can be used tomake adjustments to improve themodel’s
generalization. The test set is a completely independent dataset that is used to evaluate
the final performance of the model. It is used to simulate the model’s performance on
new, unseen data. The test set should be representative of the real-world data the model
is expected to encounter. The model should not be exposed to the test set during the
training or validation phases to prevent any potential bias or overfitting.

Training time took approximately 4 h (1.5 h for YOLO v7 algorithm and 2.5 h for
U-Net). The YOLO v7 algorithm model performance expressed as a relation between
the precision and recall is visualized on the precision-recall (PR) plot in Fig. 6.

The U-Net model performance expressed as a dice score in the test set (independent
frommodel development) was 0.73 (95.00%CI: 0.68–0.77) for healthy subjects and 0.72
(95.00%CI: 0.7–0.74) for patients with cancer. The IOU was 0.58 (95%CI: 0.53–0.63)
and 0.57 (95.00%CI: 0.54–0.6), respectively.Voxel-levelAUCswere 0.9865 (95.00%CI:
0.98646–0.98658) and 0.9898 (95.00%CI: 0.98976–0.98989), respectively. High values
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Fig. 6. Precision-Recall graph for YOLO algorithm.

of AUCs compared to the values of dice/IOU resulted in the good identification of
background voxels, which are not taken into account in the dice/IOUmetrics. The AUCs
are voxel-level hence the number of observations is very large resulting in very narrow
confidence intervals Fig. 7 and Fig. 8.

Fig. 7. ROC curve for cancerous cases.
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Fig. 8. ROC curve for healthy cases.

2.2 Future Manual Segmentation Approach to Machine Learning Concept

The next stage of this project is to gather data from local university hospitals and
anonymized them, then data can be uploaded to the open-source medical imaging soft-
ware, 3D Slicer (version 5.2.2). The resulting structures transfer into color-coded seg-
ments visible on CT scans and convert into a merged 3D file in STL format. Bearing
in mind patient experience, additional structures also visualize to provide a more robust
image that while largely not surgically relevant, helped them see and understand the
relationship between local and overall anatomy, the extent of their surgery, and precisely
what findings on a CTwarranted them being scheduled for surgery to begin with. A stan-
dardized approach is to adopted to always visualize the same structures namely, bone,
arterial, venous (portal and systemic), liver, gall bladder, stomach, spleen, kidneys, and
pancreas, together with masses described by radiology along with separately marked
areas of resection and potential anastomosis. According to this approach, several stages
of manual segmentation have been provide:

• Step 1: independent radiologists make the characteristic points and the pancreas
on each cross-section of each image according to a developed and strictly defined
protocol, which served as partly a training set and partly as a bounding box.

• Step 2: detection models for each point and pancreas are constructed. The diagnostic
capabilities of the constructed models, calculated based on the test set, are used to
calculate the sample size required for validation, which will be performed on an
independent, new dataset obtained from other centers. The new data set is evaluated
by a panel of three independent experts, which enabled the selection of the so-called
Ground Truth, based onwhich the diagnostic ability to detect characteristic points and
the pancreas will be assessed. For each point, a binary decision will be determined, as
well as the probabilities of the given class. Parameters like sensitivity, and specificity,
the area under the ROC curve, and parameters related to the classical (JA) FROC
methodology for MRMC-type problems are used as diagnostic endpoints. For each
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point, a binary decision will be determined as well as the probability of cancer, i.e.
semantic segmentation.

• Step 3: segmentation of the pancreas and tumor. A set of pancreatic cancer patient
data is obtained. The CT images are cropped to contain only an area that included
the pancreas. Segmentation is performed by radiologists on each cross-section of
each image according to a developed and strictly defined protocol, which is treated
as partly a training and partly a test set.

• Step 4: validation results from the previous two steps (Step 2 and Step 3) are used to
calculate the required number of cases to adequately assess the diagnostic capacity of
the created models in comparison to radiologists. A panel of three experts segmented
the pancreas, with cancer confirmed by histopathology, forming the so-called Ground
Truth – a reference for assessing the diagnostic capacity of both radiologists and
algorithms. A validation dataset was collected from pancreatic cancer patients and
non-pancreatic patients who had a CT.

• Step 5: radiologists segment images of the pancreas and tumors. An algorithm-based
segmentation was performed independently (first detect the area of interest, then
segment the pancreas and tumor).

• Step 6: The cases segmented by the algorithm are reviewed by radiologists. This
allowed the radiologists’ diagnostic capacity to be compared to the algorithmand radi-
ologists assisted by the algorithm. The time to diagnose, cognitive load, and fatigue
of the radiologist is also measured. Sensitivity, specificity, the area under the ROC
curve, and parameters related to the classical (JA)FROC methodology for MRMC-
type problems were diagnostic endpoints. The ability to segment was assessed using
the Dice coefficient. Moreover, the number of observations in the validation set is
sufficient to perform analogous analyses with subgroups defined by confounding
factors.

2.3 Mixed Reality Application with the Possibility of Artificial Intelligence
Enhancement as a Future Approach

Development of a mixed reality application that has the potential for enhancement
through the integration of Artificial Intelligence (AI) technology. The mention of AI
enhancement implies that the application could utilize AI algorithms, techniques, or
functionalities to enhance its capabilities. AI can bring various benefits to mixed reality
applications, such as improved object recognition, intelligent interaction, natural lan-
guage processing, or personalized experiences. The specific AI enhancements would
depend on the goals and requirements of the application, but the overarching idea is to
leverage AI to augment and optimize the mixed reality experience for users. Based on
our knowledge of manual individual case studies preprocedural planning, as described
below, we can easily transfer this application to an AI approach based on dedicated
algorithms like YOLO.

The creation of theMixed Reality-based application, which will be tailored to run on
HMDs, e.g.,Microsoft HoloLens 2, to displayDicomdata as 3Dmodels can be described
in the two steps. The first is to create the model, using data in the Dicom format. The
second is the creation of the application to visualize the model. Before proceeding to
step one, it is necessary to understand what kind of data will be processed in step one.
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When performing an MRI or CT scan the human body is split into slices of varying
millimeter thickness. Each slice is saved next as a grey-scale Dicom file similar to the
picture. The quality of a model resulting from this data depends on the size of the pixel
used to save the slice as a picture and the thickness between each slice. Typical thickness
can be between 0.5–6 mm, depending on the purpose and quality needed. Thinner slices
minimize the signal-to-noise ratio and produce optimal 3D segmentation models. The
first step in segmentation utilizes the open-source software 3DSlicer. Model creation
(step 1) is as follows:

• Load Dicom files into 3DSlicer. Data is displayed as grayscale pictures where the
user can manipulate the slider to move between slices.

• Using the module “Segment Editor” the user creates layers on visible image slices
signifying the anatomical structure to be segmented.

• The 3Dslicer function “Threshold”, allows users to set a range of greyscale that will
automatically label structures fitting within that range across all available slices. This
involves specifying the minimum and maximum intensities based on the histogram
of a region of interest in the slice view, i.e., where a high-intensity, white region such
as bone is selected while omitting soft tissues. This allows users to preview what will
be included. After confirming that the selected range captures the desired structures,
the resulting mesh can be previewed in 3D.

• This mesh is referred to as a mask and provides the limits of structures that will be
segmented.

• Additional algorithms applied to this mesh include seeding and filling slices. Seeding
involves tagging two or more specific regions of interest in sagittal, coronal, and
axial views of a CT scan. For example, an object and background, where the object
corresponds to the desired organ and the background corresponds to all undesired
regions. After tagging these respective seeds, a customized GrowCut algorithm is
applied to grow the region of seeded interest while excluding the region of undesired
structures. This expands the binary “object” and “background” tags voxel by voxel
along with a statistical weight as to the probability a given voxel still corresponds
to the object. Filling slices is similar except it seeds only an “object” in one view,
i.e., axial predominantly for vertical structures such as the inferior vena cava. Upon
manually tagging the object in multiple levels of the CT scan, the Fill between Slices
algorithm, based on ND morphological contour interpolation, is applied to form a
3D mask corresponding to the object. These algorithms are automated, however, the
resulting models require varying degrees of manual correction which is done before
accepting the finalized 3D mask they generate.

• Exporting the finalized model will be done via the function “Export segment to file”
with OBJ format. This will then be accepted by Unreal Engine.
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Creating the MR-based application (step 2) with the Unreal Engine is as follows

• Install the Visual Studio package.
• Start Unreal Engine and create a simple new blank mobile application.
• Add the plugin “Microsoft OpenXR” which adds tools useful for Extended Reality

devices.
• Create a new object which will use the HoloLens 2 positional data to create a virtual

space.

This allows the application to understand the position and perspective from which a
user wearing the HoloLens 2 will be watching the 3D model (see Figure 9).

• Create an AR session to allow applications to link with Augmented Reality devices.
• AR session configuration.
• A final plugin to the project, “Mixed Reality UX Tools” will control interactions

between the user, environment, and the displayed model.
• Import the created 3D model and interact with it in a virtual space
• Finally, this bundle is packaged as a file that can be directly imported to any HoloLens

2 device (see Fig. 10).

Fig. 9. A final plugin to the project, “Mixed Reality UX Tools” will control interactions between
the user, environment, and the displayed model.
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Fig. 10. Manual individual case studies preprocedural planning as a future approach for AI algo-
rithms. 3D visualization of the pancreas and related organs as a digital file that can be directly
imported to any HoloLens 2 device.

3 Case Study Description to Present the Concept of Automatization
for Preprocedural Planning with 3D Visualization

The presented case study refers to a 74-year-old male with cancer involving the head of
the pancreas who was scheduled for a pancreaticoduodenectomy. Upon review of the
organ segmentation model, a region at the SMV/PV junction measuring approximately
2.5 cm was identified as likely requiring intraoperative reconstruction to avert changing
the procedure into a prophylactic bypass anastomosis, see Fig. 11 and Fig. 12.
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Fig. 11. Segmentation and volume rendering of key anatomical landmarks including arteries,
veins, and pancreas. The arteries are red, the veins are purple, and the pancreas was marked by
translucent blue color. The yellow crosshair indicates the region overall between the SMV/PV and
pancreas, i.e., the area potentially requiring vessel reconstruction.

Based on the source data, is it possible to visualize images in the form of 3D images
in the pre-procedural process (see Fig. 13) as well as interprocedural (see Fig. 14).

The results can beconfirmed intraoperatively where a patch was successfully applied
following vessel dissection and pancreatic head resection (see Fig. 15).
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Fig. 12. Segmentation and volume rendering including CT scan image views of the approxi-
mately 2.5 cm region of potential vessel reconstruction. The arteries were marked by red color,
veins are marked by purple color, while the pancreas was marked by translucent blue color. The
yellow crosshair indicates the region overall between the SMV/PV and pancreas, i.e., the area
potentially requiring vessel reconstruction (lower image: views from left to right – horizontal,
coronal, sagittal). (Color figure online)
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Fig. 13. Distal pancreatectomy sample. Superior view angled caudal to rostral showing a model
rendering that is to be uploaded onto the HoloLens 2. Arteries are in red, systemic veins in blue,
portal veins in purple, and lungs in pink, with a yellow lesion proximal to the pancreatic tail section
in orange. (Color figure online)

Fig. 14. Intraoperative use of the HoloLens2 depicting surgeons discussing a case in a shared
experience virtual space.
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Fig. 15. Completed blood patch at the region predicted by 3D visualization.

4 Conclusion

The availability of an automated and non-invasive tool for visualization of the pan-
creas and its abnormalities can greatly improve the pre and intraoperative process along
with providing previously impossible benefits to patient experience. Organ and vessel
segmentation with subsequent 3D visualization with Artificial Intelligence and Mixed
Reality enhancement can substantially improve planning, reduce the incidence of unfore-
seen intraoperative decision-making, and improve clinical outcomes. Thus, the proposed
approach can be considered as both an accurate and efficient image segmentation tool
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of the pancreas and its abnormalities, which is crucial for diagnostics and delivery of
targeted therapy.

In the future, the application of preoperative image-guided 3D visualization sup-
ported by Machine Learning to the prediction of organ reconstruction during pancre-
aticoduodenectomy via Head-Mounted Displays holds tremendous potential. This com-
bination of technologies can revolutionize surgical planning and execution, leading to
improved outcomes and enhanced patient care.

With advances in medical imaging techniques, including computed tomography
and magnetic resonance imaging, surgeons have access to detailed 3D representations
of the patient’s anatomy. By utilizing ML algorithms, these preoperative images can
be analyzed and processed to provide accurate predictions and simulations of organ
reconstruction outcomes.

Head-Mounted Displays, such as augmented reality glasses, enable surgeons to
visualize the patient’s anatomy in a more immersive and intuitive manner. By wear-
ing HMDs, surgeons can overlay the 3D visualizations onto the patient’s body during
surgery, enhancing their spatial awareness and precision.

Machine Learning algorithms play a crucial role in this process. They can be trained
on large datasets of preoperative images, incorporating factors such as patient demo-
graphics, disease characteristics, and surgical outcomes. This training enables the ML
models to learn patterns and make accurate predictions about the success of different
organ reconstruction approaches.

By leveragingML-supported 3D visualization andHMDs, surgeons can benefit from
the following future perspectives:

• Enhanced Surgical Planning: Surgeons can thoroughly examine the patient’s anatomy
in3Dandvisualize potential complications before the actual surgery.This allows them
to devise personalized surgical plans, considering factors like the location of blood
vessels, tumor margins, and other critical structures.

• Real-time Intraoperative Guidance: During the surgery, HMDs can overlay the preop-
erative 3D visualizations onto the surgical field, providing real-time guidance to the
surgeon. ML algorithms can help identify and highlight key anatomical structures,
assisting the surgeon inmaking informed decisions and optimizing the reconstruction
process.

• Reduced Complications: The combination ofML predictions and visual guidance can
help minimize the risk of complications during pancreaticoduodenectomy. Surgeons
can anticipate potential issues, such as vascular involvement or inadequate margins,
and adjust their approach accordingly, thereby reducing postoperative complications
and improving patient outcomes.

• Training and Education: ML-supported 3D visualization via HMDs can be a valu-
able tool for training new surgeons. Trainees can benefit from interactive virtual
simulations, allowing them to practice complex procedures and refine their skills in
a controlled environment before performing surgeries on actual patients.

• Remote Collaboration and Expertise: The integration of ML and HMDs also enables
remote collaboration and consultation with experts. Surgeons can share live surgical
views and 3D visualizations with off-site specialists, allowing for real-time guidance
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and support during complex cases. This can be particularly beneficial in regions with
limited access to specialized surgical expertise.

While these future perspectives hold great promise, their realization requires further
advancements in medical imaging, ML algorithms, and HMD technologies. Addition-
ally, comprehensive validation through clinical trials and regulatory approvals will be
essential to ensure the safety and efficacy of these applications.

In summary, the application of preoperative image-guided 3D visualization sup-
ported by Machine Learning to the prediction of organ reconstruction during pancre-
aticoduodenectomy via Head-Mounted Displays has the potential to transform surgi-
cal practices. By leveraging ML algorithms and immersive visualization, surgeons can
enhance surgical planning, and intraoperative guidance, and ultimately improve patient
outcomes in this complex surgical procedure.
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