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Abstract. The methodology for optimal single-type sensor placement has been extensively
discussed in the literature. However, little attention has been devoted to the distribution of
multi-type sensors. The application to large structures, such as bridges or towers, poses a sig-
nificant challenge. Some responses, for example, the displacements of a bridge over a river,
cannot be easily measured directly. Consequently, indirect techniques can be employed to esti-
mate the deflections of such structures. In this contribution, a Kalman filter-based algorithm is
presented to address this sensor placement problem. The effectiveness of the proposed method
is numerically demonstrated using the example of an actual tied-arch bridge.
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1 INTRODUCTION

One of the first studies targeting optimal placement of sensors is presented in [1]. In this
study, the authors utilized a mass-lumped beam that has an unknown shear stiffness. To min-
imize the uncertainties of the related stiffness parameters, the singular value decomposition
of the displacement sensitivity matrix was applied. More elaborate analyses can be found in
[2], which employ the Fisher Information Matrix (FIM). The article [3] focuses on two sensor
placement tests along a simply supported beam under random load. A different approach is in-
troduced in [4], called Effective Independence (EFI), with an illustrative application to a space
structure. This method aims to iteratively maximize the determinant of the FIM. Based on the
mode shapes, the location contributing the least to the rank of the FIM is deleted from the set
of candidate sensor locations. A version of the method that considers measurement noise is
described in [5]. The EFI has proven to be an important concept and has been used in several
further works, such as [6, 7, 8] and in the approach presented in [9] which employed convex
relaxation (CR) for computational efficiency. In [10], the authors presented a probabilistic con-
cept rooted in the Bayesian framework. The goal was to find the sensors locations that result
in the least estimation uncertainty of the identified structural parameters. A genetic algorithm
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was applied for optimization, system identification, and detection of damage. An extension of
this approach is presented in [11], where the sensors are sequentially placed one by one in the
position that yields the greatest entropy reduction. Reference [12] provides a comprehensive
review of Bayesian method applications to model updating of dynamical systems. The kriging
method is utilized in [13] to state the objective function based on the response estimation error.
The best placements of the available sensors are found using an algorithm that combines genetic
and gradient procedures.

Measurements of displacement can be conducted using various methods, among which di-
rect reference-based techniques such as linear variable differential transducers, laser Doppler
vibrometers, and computer vision-based systems [14] are most popular. Additionally, com-
bined [15] and indirect methods [16] are often employed. This work addresses the problem of
optimal sensors placement for displacement evaluation of a railway bridge using two types of
inertial sensors.

2 THE RAILWAY ARCH BRIDGE

To evaluate the sensor selection procedure, a railway arch bridge located in central Poland
was chosen as the test subject. It is a single-track structure, which primarily serves passenger
trains traveling at speeds of up to 200 km/h, inducing predominantly vertical vibrations. A full
order numerical model was developed using the Abaqus software package. A general view of
the model is presented in Fig. 1a. A modal analysis was then conducted, resulting in the full
mode shapes matrix ΦF. From this matrix, few primary (dominant) mode shapes, denoted as
ΦFP, were extracted in accordance with the following formula:

qF(t) = ΦF ηF(t) =
[
ΦFP ΦFS

][ ηP(t)
ηS(t)

]
≈ ΦFP ηP(t), (1)

where the vector qF represents generalized displacements, while ηP and ηS denote the modal
coordinates for primary and secondary mode shapes, respectively. The term ΦFS ηS(t) does
not significantly contribute to the structural response qF(t), and it is neglected in the following
derivations.

(a) Fine finite model (3D).
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(b) Coarse finite model (2D).

Figure 1: Numerical models of the single track railway bridge.
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Processing the full-order model requires considerable computational resources; hence, a
reduced-order model, as illustrated in Fig. 1b, with a coarser discretization can be efficiently
employed. To obtain the generalized displacements, qR, and the mode shapes, ΦR, from the
full-order model, the selection matrix L can be utilized:

qR(t) = LqF(t), ΦR = LΦFP. (2)

Subsequently, the equation of motion for the reduced-order model can be expressed as:

η̈P(t) + 2ZΩ η̇P(t) +Ω2ηP(t) = ΦT
RBRuR(t), (3)

where the diagonal matrices Z and Ω contain the viscous damping ratios and natural frequen-
cies, respectively. The matrix BR arranges the loads over the DOFs of the reduced-order model,
and uR is the load exerted by the train. The state-space representation of the dynamic system
can be written with the observation vector y(t):

{
ż(t) = Ac z(t) +Bc u(t) +w(t),

y(t) = Cz(t) +Du(t) + v(t),

(4a)
(4b)

where w(t) and v(t) represent the unknown disturbances of the process and the measurement

noise, respectively. The state and input matrices are represented by Ac =

[
0 I

−Ω2 −2ZΩ

]

and Bc =
[
0 ΦT

RBR

]T. The output matrix C and the direct transmission matrix D are
defined as:

C =




CdΦR 0
CiΦR 0

−CaΦR Ω2 −2CaΦRZΩ


 and D =




0
0

CaΦRΦ
T
RBR


 . (5)

In Eq. (4b) the observation vector y(t) is arranged by displacement sensors, inclinometers, and
accelerometers, where the matrices Cd, Ci, and Ca in Eq. (5) are the output submatrices for the
aforementioned sensors.

3 SENSOR SELECTION PROCEDURE BASED ON KALMAN FILTER

For practical applications involving real measurements, the discrete-time state-space repre-
sentation with zero-order hold (ZOH) is used instead of the continuous-time representation. For
this purpose, Eqs. (4) are rewritten as:

{
zk+1 = Azk +Buk +wk,

yk = Czk +Duk + vk,

(6a)
(6b)

In these equations, zk+1 = z(k∆t+∆t) and zk = z(k∆t) denote the discrete-time state vectors
computed at the (k + 1)st and kth time step, respectively, where ∆t represents the time step.
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The state and input matrices formulated in discrete time, A and B, depend on the corresponding
continuous-time matrices stated in Eq. (5) as follows:

A = eAc∆t, B = A−1
c

(
eAc∆t − I

)
Bc.

The observation vector yk has components that they differ by orders of magnitude. To avoid
numerical problems, the vector is normalized using a diagonal matrix S in the following way:

ỹk = Syk = SCzk + SDuk = C̃zk + D̃uk, (7)

where the diagonal of S is defined by the reciprocals of standard deviations, σ−1
d , σ−1

i , and
σ−1
a , of the measurement noise corresponding to the displacement sensors, inclinometers, and

accelerometers.
The Kalman filter estimates the current state in an iterative fashion. The algorithm is listed in

Fig. 2. Each iteration consists of two steps: (a) the time update, which is based on the informa-
tion from the previous time step, and (b) the measurement update based on the measurements
performed in the current time step. As a result, an estimate of the full state vector ẑ+k and
its covariance matrix Pk are computed in each time step. The matrix Pk tends to converge

Data initialization
Initial estimates of ẑ+0 and P+

0

Time update (prediction)

1. Project the state ahead
ẑ−k = Aẑ+k−1 +Buk−1

2. Project the covariance matrix ahead
P−

k = AP+
k−1A

T +Q

Measurement update (correction)

1. Compute the Kalman gain matrix
G̃k = P−

k C̃
T
[
C̃P−

k C̃
T + R̃

]−1

2. Update the estimate using measurement
ẑ+k = ẑ−k + G̃k

[
ỹk − C̃ ẑ−k − D̃uk

]

3. Update the covariance matrix
P+

k =
[
I− G̃kC̃

]
P−

k

Figure 2: Kalman filter algorithm.
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asymptotically to a certain fixed matrix P. Finally, the covariance matrix F of the estimated
unmeasured target responses of interest is given by

F = C̃eP
(
C̃e

)T

. (8)

The optimal sensor configuration is obtained iteratively, with sensors deleted one at a time
from the candidate sensor set in each iteration. The covariance matrix F is determined for the
current candidate sensor set and used to assess the associated estimation error. The estimation
error can be defined in different ways; however, in this work, two measures are considered: one
based on the Frobenius norm ϵF = ∥F∥F and one utilizing the mean diagonal of the covariance
matrix F, i.e., ϵ = mean(diag(F)). The iterative sensor removal process is performed in the
two following ways:

1. using the greedy algorithm, where the testing covariance matrices Fj and the correspond-
ing estimation error (ϵFj or ϵj) are computed for the candidate sensor set with the jth sensor
deleted. This is repeated for all sensors j, and finally, the sensor is removed whose re-
moval generates the best estimation error. This is the reference approach proposed earlier
in [17, 18].

2. based on the magnitude of the rows of the cross-covariance matrix FC = C̃P
(
C̃e

)T

.
The row with the minimum magnitude corresponds to the deleted sensor. Thereafter,
both estimation error measures (ϵF and ϵ) are computed to assess the error.

The greedy algorithm requires a significantly larger computational effort compared to the sec-
ond approach. The iteration process is terminated when either the desired number of sensor is
achieved or a limit estimation error is reached.

4 NUMERICAL EXAMPLE

To perform numerical tests of sensor placement, consider the arch bridge discussed in Sec-
tion 2. The bridge is loaded by a 24-axle passenger train travelling at a speed of 160 km/h.
The candidate sensor set includes inclinometers and accelerometers at all nodes of the reduced
order model, as shown in Fig. 3. Horizontal and vertical displacements were selected for eval-
uating structural vibrations as the target response location set. Six primary modes are used to
approximate the structural vibrations, and it is assumed that six sensors are to be placed over
the structure.

Figure 3: Candidate sensor set: inclinometers (green colored) and accelerometers (in horizontal
and vertical directions, red colored).
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Figure 4: Estimation errors during iterations using (a) mean diagonal and (b) Frobenius norm
of the covariance matrix.

Table 1: Estimation errors in the last (84th) iterations.

proposed algorithm greedy algorithm
ϵ84 ϵF84 ϵ84 ϵF84

0.472 23.734 0.436 24.889

For both algorithms, the estimation errors (ϵFi and ϵi) were computed during iterations, as
shown in Fig. 4. Table 1 contains estimation errors from the last iteration. Although both
the greedy and proposed algorithms yield similar error estimations, they differ significantly in
their computational requirements and sensor distribution outcomes. On average, the greedy al-
gorithm requires 280 s to be solved, whereas the proposed algorithm finishes in only 6.1 s using
a typical PC computer. The obtained sensor location are presented in Fig. 5. In this figure,
the first two sensor locations were obtained using greedy algorithms with estimation error mea-
sures ϵi (Fig. 5a) and ϵFi (Fig. 5b). The proposed algorithm produces a unique solution since
the sensor selection process does not depend on the estimation error measures ϵi nor ϵFi . This
algorithm yields the sensor distribution shown in Fig. 5c, which includes both inclinometers
and accelerometers. The reference response at node 4 (see Fig. 1b) was compared with the
reconstructed responses in Fig. 6.

5 CONCLUSIONS

In the contribution, two approaches based on the Kalman filter for optimal sensor place-
ment are presented. For the sake of computational efficiency, a reduced-order model of an
actual single-track railway arch bridge is used. The reduced-order model, with few dominant
mode shapes, is developed to limit the size of the candidate location set for the sensors (in-
clinometers and accelerometers) and the response reconstruction set (displacements). As the
candidate sensor set comprises sensors of different types, the responses are normalized with
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(a) Selected sensors obtained for the greedy algorithm using ϵ.
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(c) Selected sensors obtained for the proposed algorithm (independent of
the estimation error measure).

Figure 5: Determined sensor selection sets for the greedy and proposed algorithms.
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Figure 6: Comparison of the reference vertical displacement (at node 4) with the reconstructed
displacements.

504
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respect to the standard deviation of the measurement noise before applying the Kalman filter.
The obtained sensor distributions are different for each algorithm; however, in all cases, the
reconstructed responses are very close to the reference ones. The important conclusion is the
computational effectiveness demonstrated in the investigated example: the proposed algorithm
is approximately 45 times faster than the previous greedy algorithm.
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