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Abstract. This contribution presents a sliding-mode control approach for the mitigation of
vibrations in frame-like structures. The control is implemented in a semi-active manner, that
is, without significant external control forces and substantial power consumption, which are
typical for active control approaches. Here, the control is achieved through dynamic, low-
cost modification of properties at selected structural nodes. The employed actuators have the
untypical form of two-state hinges, which can switch between two extreme states: no transfer
of bending moments (effectively a hinge) and full transfer of bending moments (a locked hinge
or a typical frame node). Consequently, the control forces are dissipative and coupled to the
response. Previous research in this area focused on purely energetic considerations, aiming for
global damping of vibrations. In contrast, this paper formulates the control objective in terms
of local displacements of a selected degree of freedom, which can be interpreted as the task of
isolating it from external excitations. This formulation is employed to define the target sliding
hyperplane. The state of the actuators is chosen such that the effective control forces push the
structural state toward the target hyperplane. The approach is verified in a numerical example
of a six-story shear-type structure subjected to random seismic excitation.
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1 INTRODUCTION

Structural vibrations result from operational conditions or extreme excitations and have ad-
verse effects on the involved structures [1]. A prime example includes satellite structures,
which tend to be extremely lightweight and flexible and thus excessively prone to prolonged
vibrations [2]. Another example is civil engineering structures subjected to seismic excitations.
Consequently, there is an ongoing, intense research effort in structural control [3, 4], where con-
trol techniques can be generally divided into passive, active, and semi-active approaches [5].
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Passive approaches focus on designing structures to optimally absorb vibrational energy [6].
This is usually achieved through specialized dissipative elements [7], seismic isolation sys-
tems [8], and tuned mass dampers [9]. Active approaches employ actuators that generate exter-
nal control forces, which is effective [10] but entails considerable energy costs and can result in
instabilities.

This contribution addresses semi-active control. Such approaches aim for optimal self-
adaptation of the controlled structure and rely on real-time, low-cost modifications of its ma-
terial or structural characteristics [11]. Good examples of employed actuators are semi-active
mass dampers [12]. In many semi-active systems, control forces are solely dissipative, and
the open-loop optimal control is of the bang–bang type. Consequently, the control problem is
reduced to determining the switching surface [13, 14].

Unconventional semi-active actuators include various stiffness-switched elements in the form
of slender bars with switchable axial stiffness [15] or structural joints with an on/off ability to
transmit bending moments between adjacent beams [16]. Such joints are essentially friction-
based lockable hinges, and early control laws aimed to stimulate local dissipation by maximiz-
ing nodal force–displacement hysteresis [17, 18]. However, these nodes can also be utilized
to trigger the transfer of vibrational energy to high-order modes, which are more effectively
damped by standard material damping mechanisms compared to low-order modes [19]. The
control laws involved are either simple heuristics [20] or more formal and explicitly aimed at
modal energy transfer [21]. These formulations focused on energetic measures of structural
vibrations. However, energy is a suitable overall measure of the severity of structural vibrations
but often does not correlate well with local vibration amplitudes. Therefore, this contribution
presents an approach inspired by [21] that focuses on minimizing displacement in a particular
degree of freedom (DOF). The sliding-mode control formulation is employed [22], and the slid-
ing hyperplane is defined in the configuration space by zero displacement in the target DOF. The
maximal switching frequency is constrained to account for the physical limits of the actuators
and prevent chattering. Additionally, the state is temporarily switched just before reaching the
target hyperplane, which is motivated by the optimal switching rules presented in [23].

2 ON/OFF NODE AND THE CONTROL METHOD

2.1 On/off node

The on/off node is designed to enable control of the transmission of bending moments be-
tween adjacent beams, see Fig. 1. In the finite element (FE) model, in addition to the two usual
displacement DOFs x and y, the node also has two rotational DOFs denoted θ1 and θ2. During
the FE model aggregation phase, the adjacent beams are allocated to either θ1 or θ2. The beams
assigned to the same rotational DOF are rigidly connected with a full transmission of moments
(beams A and B in Fig. 1). However, the transfer of bending moments between the two groups
of beams, assigned respectively either to θ1 (beam A and B) or to θ2 (beam C), can be con-
trolled by switching the hinge shown in the scheme between the locked and unlocked states.
In the unlocked state, both rotational DOFs rotate independently. In the locked state, the hinge
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implements a kinematic constraint of the following form: θ̇1 = θ̇2, which freezes the rotations
and allows the moments to be transmitted between the involved beams.

Figure 1: A controllable node

2.2 Equation of motion

The equation of motion for the controlled structure is expressed as follows:

Mü(t) +

(
C+

∑
i

γi(t)Ci

)
u̇(t) +Ku(t) = f(t), (1)

where the vector u(t) collects the generalized displacements and f(t) denotes the excitation
force. The matrices M, C, and K represent the mass, damping, and stiffness matrices, respec-
tively. The function γi(t) ∈ {0, 1} is the control signal of the ith controllable node. Finally, the
matrix Ci implements the locking action for the ith node and represents a viscous damper of
relative rotations between its two rotational DOFs:

Ci = ci Li

[
1 −1

−1 1

]
LT

i , (2)

where ci is a large coefficient, and Li is the local-to-global ((θ1, θ2)-to-global) coordinate trans-
formation matrix. The locking model relies on viscous damping. In dynamic analysis, it can be
proven to reliably model a rigid connection with full transmission of bending moments [24].

2.3 Control forces

In Eq. (1), the control forces can be shown explicitly by moving the control terms from the
left-hand side to the right-hand side:

Mü(t) +Cu̇(t) +Ku(t) = f(t)−
∑
i

γi(t)Ciu̇(t). (3)
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These control forces are switched on and off by means of the control functions γi(t) ∈ {0, 1}.
In modal coordinates ξ(t), defined as u(t) = Φξ(t), where the matrix Φ contains the modal
vectors as columns, the control forces are expressed as follows:

f̃i(t) = −ΦTCiΦξ̇(t) = −ΦTCiu̇(t). (4)

2.4 Sliding-mode control

The control objective is defined in terms of the displacement in a particular kth DOF:

uk = Φkξ = 0, (5)

where the column vector ξ denotes a point in the modal configuration space, and the row vector
Φk collects the modal amplitudes in the kth DOF. The proposed control aims to drive the modal
displacements towards the target hyperplane. For each controllable node, its state is determined
in such a way that the control forces, if activated, point toward the target hyperplane.

Let ξ(t) be the displacement vector in modal coordinates, and let ∆ξ(t) represent the vector
that points from ξ(t) perpendicularly towards the target hyperplane. It can be shows that

∆ξ(t) = −uk(t)
ΦT

k·

Φk·Φ
T
k·
. (6)

The direction of the control forces f̃i(t) (toward or outward the target hyperplane) can be deter-
mined based on the sign of the cosine between f̃i(t) and ∆ξ(t). Therefore, the initial candidate
for the control law is:

γi(t) = H
(
f̃i(t)

T∆ξ(t)
)
= H

(
uk(t)Φk·Φ

TCiu̇(t)
)
, (7)

where H(·) represents the Heaviside step function. This law is further modified by

1. Constraining the maximal switching frequency of a controllable node, which models the
limitations of physical actuators and helps to prevent chattering [25]. For each node, it is
assumed that the state switches must be separated by a time interval of at least ∆t.

2. Introducing a phase-related correction. Inspired by the optimal switching rules inves-
tigated in [23, 13], the control forces defined in Eq. (7) are reversed when the modal
displacement ξ(t) approaches the target hyperplane:

αi(t) =

{
1−H

(
uk(t)Φk·Φ

TCiu̇(t)
)

if 1 ≤ ψ(t) ≤ 1 + κ,
H
(
uk(t)Φk·Φ

TCiu̇(t)
)

otherwise,
(8)

where κ ∈ (0, 1) is a certain constant and ψ(t) is related to the phase:

ψ(t) =
2

π
arctan (uk(t), u̇k(t)) mod 2. (9)
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3 NUMERICAL EXAMPLE

3.1 Six-story shear structure and seismic excitation

The proposed control approach is tested using a model of a six-story shear-type structure
shown in Figure 2. The geometric and material characteristics of the structure are similar to
those in [21]. Each story measures 0.4×0.4 m, and each beam has a cross-section of 8×10 mm.
The material is steel (210 GPa, 7,860 kg/m3). Twelve controllable nodes (1.2 kg) are placed in
pairs at each story.

Figure 2: The simulated six-story shear-type structure, which is subjected to random seismic excitation. The
control objective is to minimize the horizontal displacements of the reference point (RP)

Euler–Bernoulli beam FEs are used. The FE model has 54 DOFs, out of which 6 are fixed.
The natural frequencies of the structure with all the nodes locked are 2.49, 7.75, 13.71, . . . ,
1724.89 Hz. If all nodes are unlocked, the natural frequencies decrease to 0.41, 2.56, 7.21, . . . ,
1756.95 Hz. A stiffness-proportional damping model is assumed with 1% damping ratio in the
first mode of the structure with all nodes locked. If all nodes are unlocked, the damping ratio of
the first node decreases proportionally to the natural frequency and equals only 0.16%.
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The excitation force f(t) in Eq. (1) models a random seismic excitation:

f(t) = −Mℓxa(t), (10)

where M denotes the mass matrix, the binary vector ℓx selects the horizontal DOFs, and a(t)
is the ground acceleration. In each time step tj the ground acceleration is an independently
drawn from the normal distribution, a(tj) ∼ N(0, 1). The two controllable nodes on each story
are operated synchronously, so that they are always in the same state. Structural response is
computed using the Newmark algorithm with α = 0.25, δ = 0.5, and the time step of 0.1 ms.

3.2 Responses

The two control parameters are chosen as κ = 0.04 and ∆t = 5 ms, resulting in a maximum
switching frequency of 100 Hz. The results are computed based on repeated simulations of a
20s-long time interval, each time with zero initial conditions. Quantitative assessment is per-
formed both in the time domain (response rms) and in the frequency domain (FRF amplitude).
In each considered case, 4000 simulations were performed. Eight cases are considered:

Case P: Passive structure, which serves the reference case and corresponds to the structure
with all nodes locked (typical frame structure).

Case A: All nodes controlled. Nodes are controlled synchronously for each of the six stories.
Accordingly, six independent control functions are computed and used.

Cases 1–6: Single controlled story. The nodes at only a selected story are controlled, while all
other nodes are locked. There is a single control function in each of these six cases.

Fig. 3 presents example responses computed for Case P, Case A, and Case 3.

Case P Case A Case 3
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Figure 3: Example RP displacements computed for the same realization of the random seismic excitation in Case P,
Case A, and Case 3
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3.2.1 Statistics of the response rms

For each of the 4000 independently simulated random seismic excitations, the rms of the RP
response was computed for the controlled structures (Cases A and 1–6) and then divided by the
corresponding rms of the passive structure (Case P). The histograms of the resulting rms ratios
are depicted in Fig. 4. The corresponding means and standard deviations are listed in Table 1.

Case A

Case 3
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Case 5
Case 6
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Figure 4: Histograms of the response rms ratios (controlled/passive) for the seven controlled cases

Table 1: Control effectiveness expressed in terms of the response ratios (controlled/passive): means and standard
deviations of the time-domain response rms ratios and the 1st mode amplitude ratios

Case A 1 2 3 4 5 6
rms ratio, mean [%] 23.08 49.33 38.66 37.63 45.63 60.88 75.48
rms ratio, std. dev. [%] 5.54 10.35 8.67 8.13 9.24 11.00 9.35
1st mode ampl. ratio, rms [%] 8.40 34.01 22.27 22.46 32.21 52.15 69.78
1st mode ampl. ratio, std. dev. [%] 3.44 14.12 9.31 9.09 13.06 19.55 18.42

3.2.2 Frequency-domain response

Figure 5 presents the mean amplitudes of the RP displacements computed for Case P (passive
structure) and Case A (structure with all nodes controlled). The ±σ bands of one standard
deviation are included. Figure 6 plots the mean amplitudes as computed for all cases: Case P,
Case A, and Cases 1–6.
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Figure 5: Frequency-domain amplitudes of the RP response computed for Case P and Case A: mean and ±σ band
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Figure 6: Frequency-domain mean amplitudes of the RP response for all cases

Figures 5 and 6 depict the amplitude in the frequency interval 0–16 Hz, which covers the
three lowest natural frequencies of the structure. In all cases the first mode dominates the
response. The two last rows of Table 1 list the basic statistics (means and standard deviations)
of the corresponding amplitude ratios (controlled/passive) for all control Cases A and 1–6.
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4 CONCLUSION

This contribution presents a semi-active sliding-mode control approach for mitigating vibra-
tions in frame structures. Unconventional actuators are employed: two-state switchable nodes,
essentially lockable hinges, that enable an on/off control of their ability to transmit bending
moments between adjacent beams. In contrast to earlier approaches, which focused on ener-
getic considerations, the proposed method concentrates on displacement response in a selected
degree of freedom.

The approach was tested on a six-story shear-type structure subjected to random seismic
excitation. The effectiveness was assessed statistically (means and standard deviations) in terms
of the rms of the time-domain response, as well as the FRF amplitude. Depending on the number
and placement of the actuators, the target response characteristics in the controlled structure
were reduced to 23–76% of their values in the passive structure.

Near-term research tasks include applications to nonparametrically modeled structures [26]
and modular structures [27], as well as adaptation, application, and evaluation in the context of
reinforcement learning techniques [28].
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