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Abstract. This contribution presents an approach to structural control based on reinforcement 
learning.  Reinforcement learning, a rapidly developing branch of machine learning, is based 
on the paradigm of learning through interaction with the environment.  Here, it is applied in the 
context of semi-active structural control, where the considered actuators take the form of 
viscous dampers with a controllable level of damping.  The control forces are thus coupled with 
the structural response, and the formulation is intrinsically nonlinear.  The related optimum 
control problems are usually more difficult than in the case of active structural control systems, 
which generate and apply arbitrary external control forces.  Analytical derivation of the 
optimum semi-active control is thus rarely possible, so that many control algorithms applied in 
practice are suboptimal and/or heuristic in nature.  Here, an effective control strategy is 
developed by means of the Q-learning approach.  The control algorithm is determined in 
interaction with the controlled system, that is, by applying initially random control sequences 
in order to observe, process, and optimize their effects.  Such an approach seems to be new and 
relatively unexplored in the field of structural control.  Verification is performed in a numerical 
experiment, where the Q-learning procedures interact with an independently simulated finite 
element model of a structure equipped with a tuned mass damper (TMD) and a controllable 
viscous damper.  The results attest to a performance significantly better than that of an optimally 
tuned conventional TMD. 

Key words: Reinforcement Learning, Semi-active control, Structural control, Damping, 
Vibration 

1 INTRODUCTION 

This contribution presents a control strategy for shear-type building structures under seismic 
excitation by customizing, developing, and applying the machine learning techniques of 
reinforcement learning (RL).  Structural vibration in engineering structures can have 
detrimental impact on structural conditions and operation.  It is also a crucial aspect in 
engineering safety, as excessive vibrations can negatively impact structural integrity.  To 
mitigate these detrimental effects, it is crucial to prevent the occurrence of harmful vibrations. 
Various approaches have been developed, including passive, active, and semi-active control 
methods.  This contribution focuses on semi-active control by means of a TMD (tuned mass 
damper) with a switchable level of viscous damping.  TMD is a device used to reduce vibrations 
in structures such as high-rise buildings and bridges by adding a secondary mass that opposes 
the motion of the main structure.  The TMD is typically attached to the structure via a spring 
and damper system and is tuned to a specific natural frequency to effectively counteract the 
vibrations [1].  The TMD method has proven to be highly effective and widely applicable, 
particularly in high-rise building design [2]. 
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TMD systems, developed in the 1970s as passive vibration control systems for building 
structures, have been implemented in many high-profile buildings.  Accurate calculation of a 
structure's fundamental vibration frequency is not always possible, and this frequency can 
change during extreme dynamic events, such as strong ground motion.  TMD systems may be 
partially effective for vibrations under ordinary winds when the fundamental frequency of the 
structure dominates the response.  However, they are less effective for irregular structures under 
strong ground motion when several vibration modes significantly contribute to the dynamic 
response of the structure [3]. 

This contribution applies the concept of reinforcement learning in the context of semi-active 
structural control systems and analyzes its impact on the control performance.  Reinforcement 
learning has many advantages that make it well-suited for solving problems that are challenging 
for other structural control techniques.  Its ability to learn from experience, adapt to changes in 
the environment, and take optimal decisions make it a valuable technique in many fields. 
Although the use of RL in structural control, particularly in semi-active control, is not yet 
widespread, there is a growing interest in its potential to improve the performance of control 
systems [4,5].  The main aim of this contribution is to test the application potential of the RL 
in semi-active structural control.  The investigated structure is a numerical model of an 11-story 
shear-type building equipped with a semi-active TMD.  The TMD is controlled by switching 
its viscous damping coefficient in an on/off manner.  The main result is a Q-learning control 
algorithm that mitigates the vibrations due to random seismic excitation significantly more 
efficiently than the optimally tuned conventional TMD.  Such a result provides initial insights 
into the potential of reinforcement learning for improving the performance of semi-actively 
controlled damping systems. 

2 REINFORCEMENT LEARNING 

2.1 The technique 

Reinforcement learning (RL) is a branch of machine learning that focuses on how intelligent 
agents can learn to make optimal decisions in dynamic and uncertain environments.  Unlike 
supervised learning, which relies on labeled data, and unsupervised learning, which involves 
identifying patterns in data without explicit feedback, reinforcement learning involves training 
an agent to learn the best actions through a trial-and-error process based on its interactions with 
an environment.  The agent receives feedback in the form of rewards or penalties, which it uses 
to improve its decision-making policies over time.  Reinforcement learning has shown 
remarkable successes in a wide range of applications, including robotics, gaming, and finance, 
and it has the potential to revolutionize many other fields in the future [6].  However, 
reinforcement learning also presents a number of unique challenges, including the exploration-
exploitation dilemma, the credit assignment problem, and sample inefficiency, which continue 
to be areas of active research in the field [7].  

This contribution tests the potential of the RL in semi-active structural control.  The RL 
approach contrasts with supervised learning (which requires optimum control sequences that 
are rarely known in semi-active control) and even more with unsupervised learning (which 
relies on the exploration of input data only).  It allows learning from interaction and can be seen 
as a completely new approach to structural control.  By allowing the system to learn, adjust and 
optimize its control strategy based on real-time feedback from the structure, reinforcement 
learning has the potential to significantly enhance the effectiveness of semi-active damping. 
The technique applied here involves training an artificial neural network by interacting with a 
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simulated environment that contains a numerical model of the structure.  The structure is 
subjected to random seismic excitation and its dynamics is simulated using the Newmark 
integration method.  The main result is a Q-learning control algorithm that mitigates structural 
vibrations significantly more efficiently than a conventional tuned mass damper.  

In Q-learning, the agent makes a decision based on observations, by comparing the learned 
expected reward value for different possible actions.  In the context of semi-active control, Q-
learning has emerged as a suitable approach for several reasons.  First, it is well-suited to 
problems that involve discrete actions, which is the case in bang-bang type control that is 
common in semi-active control systems.  Second, Q-learning is computationally efficient and 
can handle large state-action spaces, which is important for real-world applications.  Finally, 
Q-learning is flexible and can be straightforwardly adapted to different control approaches 
overall.  

2.2 Architecture of the RL agent 

In recent years, artificial neural networks (ANNs) have been successfully used to 
approximate the value function in Q-learning, resulting in the development of deep Q-networks 
(DQNs). DQNs have been shown to outperform traditional Q-learning methods, especially in 
tasks with large and continuous state or action spaces.  The use of neural networks in Q-learning 
allows the algorithm to learn more complex and abstract representations of the state space, 
improving the algorithm's ability to generalize to new situations.  In addition, DQNs are able to 
learn directly from raw sensory inputs, removing the need for hand-engineered feature 
extraction. 

The RL agent in this contribution employs a dense ANN to learn and encode the value 
function.  It is implemented in the Python programming language using TensorFlow and Keras, 
which are two popular open-source libraries for implementing ANNs.  TensorFlow is a low-
level library for building and training machine learning models, while Keras is a high-level API 
that simplifies the process of building neural networks.  An artificial neural network has been 
used with 6 hidden sequential dense layers, each consisting of 40 neurons.  The input layer 
provides the network with measurements of structural response.  The output layer has two 
neurons, which correspond to the possible states of the control signal.  The activation function 
used in the neural network is rectified linear unit (ReLU), which is a common choice in deep 
learning due to its ability to improve convergence during training.  Such a network architecture 
is fully sufficient to effectively encode the dynamics of the employed structure and the expected 
cumulative future rewards. 

3 STRUCTURE 

3.1 Shear-type building 

The investigated structure is an eleven-story shear-type structure with a TMD as a classical 
engineering device, consisting of a mass, a spring, and a viscous damper, attached to the last 
story, as shown in Figure 1.  The equation of motion for such a building model experiencing 
seismic excitation, without a control system, can be expressed as: 

 [𝑀]{�̈�}  +  [𝐶]{�̇�}  +  [𝐾 ]{𝑢}  =  −[𝑀]{𝑟}𝑎(𝑡)  (1) 

The total number of the degrees of freedom (DOFs) is n=12, which corresponds to the eleven 
stories and the single TMD.  The column vector {u} has n rows and represents the absolute 
displacements of each story and the TMD.  The column vector {r} also has n rows and denotes 
the displacement of each DOF resulting from the application of unit horizontal ground 
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displacement, that is, it consists of 12 ones.  The seismic excitation (ground acceleration) is 
denoted by a(t).  The matrices [M], [C], and [K] are n × n and represent the mass, damping, and 
stiffness of the structure, respectively.  The mass matrix is diagonal, and the mass of each story 
and the TMD are listed on the diagonal.  This assumes that the masses are lumped at the floor 
levels.  The damping matrix is proportional to the stiffness matrix.  The proportionality 
coefficient is chosen to achieve 2% of critical damping for the first mode of vibration of the 
structure without the TMD.  Building specifications, including the number of stories, their 
masses, and stiffness, are taken from literature [8].  

Figure 1.  The investigated 11-DOF structure with a semi-active TMD on the top level 

This report focuses on analyzing the effectiveness of a semi-active control system in 
mitigating the responses of the investigated shear structure.  To achieve this goal, a semi-active 
tuned mass damper (TMD) system, illustrated in Figure 1, is installed on the top floor. 
Additional TMDs can be incorporated if necessary.  The three essential parameters in a TMD 
system are the TMD mass, TMD stiffness, and TMD damping coefficient.  In the considered 
example, the mass of the TMD constitutes 3% of the total mass of the building, while its 
stiffness is selected as 2,509,600 N/m.  The damping coefficient is discussed in the following 
subsection. 
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3.2 Seismic load and feedback signal 

Structures subjected to seismic loads can experience significant damage due to the severity 
and unpredictable nature of ground motions.  To test the effectiveness of a control system in 
mitigating dynamic response (and thus the damage), it is usually necessary to evaluate its 
performance under a range of different ground motions.  In this contribution, to prevent the RL 
agent from learning to respond to a specific set of ground motions only (which would 
correspond to overfitting in supervised learning), the seismic load a(t) in equation (1) is 
assumed to be white Gaussian noise and is simulated anew for each training and evaluation 
episode.  This ensures that the measurements used to train and evaluate the proposed control 
system are based on a variety of ground motions and not biased towards any particular motion. 

The measurements used as a feedback in training and control are linearly transformed full 
state vectors, consisting of the relative displacements and velocities between the ground, 
successive floors, and the TMD.  This means that the RL agent has full information about the 
state of the structure.  Such a choice allows evaluating the ultimate potential of the control with 
the proposed RL agent. 

3.3 Control and evaluation 

The considered control is of the bang-bang type and affects the viscous damping coefficient 
of the TMD.  This results in the control signal that directly affects the damping matrix [C] in 
equation (1) in a linear manner, which corresponds to bilinear control.  In such control systems, 
the open loop optimal control is often of the bang-bang type.  Consequently, in the controlled 
structure considered here, the damping of the TMD can be switched between two states: no 
damping and very high damping.  In the latter case, the damping coefficient is large enough to 
model (in transient analysis) an effective merging of the TMD mass with the mass of the top 
floor.  

The objective of the control is to minimize the vibrations of the top floor of the building, as 
quantified by the root mean square (RMS) of its displacement.  During testing of the RL agent, 
three RMS values can be compared, two of which may be used as references: 

1) RMS in the RL-controlled structure,
2) RMS in the structure equipped with the optimally tuned passive TMD (reference 1:

passively controlled system),
3) RMS in the passive original 11-story structure without the TMD (reference 2: passive

uncontrolled system).
To generate these three RMS values, exactly the same white noise excitation is generated and 
applied to the structure. 

Figure 2 presents plots of the amplitudes of three frequency response functions (FRFs) of 
the considered system (last floor displacement related to ground acceleration).  Three cases are 
depicted, which correspond to the three following levels of the TMD damping:  

● the optimally tuned passive TMD (green line),
● the TMD without damping (blue line) and
● the highly damped TMD (yellow line).

The considered control amounts to dynamic switching between the blue and yellow 
characteristics, while the reference controlled system (optimally tuned passive TMD) 
corresponds to the green line. 

593



A. Jedlińska, D. Pisarski, G. Mikułowski, B. Błachowski, Ł. Jankowski 

Figure 2.  FRF amplitudes of the structure depicted in Figure 1 for three levels of TMD damping 

4 RESULTS 

4.1 Displacement RMS 

Response root mean square (RMS) is widely used in structural control as a performance 
metric.  In reinforcement learning, RMS is often used as a measure of the error or distance 
between the controlled system trajectory and the desired trajectory.  It can be used to evaluate 
the performance of an RL agent and the effectiveness of its actions.  Figure 3 plots the top floor 
displacement RMS per test episode, which is simulated (with zero exploration rate) every 10 
training episodes.  A relatively quick convergence to 75% of the RMS of the reference passively 
controlled structure can be observed, which attests to the high effectiveness of the proposed RL 
control.  

Figure 3.  RMS response ratio per test episode (RL-controlled system to reference passively controlled system). 
Test episodes are simulated every 10 training episodes.  Zero exploration rate is used 

594



A. Jedlińska, D. Pisarski, G. Mikułowski, B. Błachowski, Ł. Jankowski 

4.2 Convergence of rewards 

Training of the agent is performed based on the rewards obtained from each training 
interaction episode.  Rewards per episode are calculated based on the vibration level of the top 
floor.  At the end of each episode, the agent receives a numerical reward signal that reflects the 
quality of its behavior during that episode and quantifies the cumulative distance from the 
equilibrium point in all time steps.  The rewards per episode are used to update the value 
function, so that the agent can improve its behavior in subsequent episodes.  Figure 4 presents 
the characteristic increase of the total reward per training episode.  The value of 1000 
corresponds to a completely still structure. The results on the chart include the effect of a 10% 
exploration rate. 

Figure 4.  Total rewards per training episode 

4.3 Time-domain responses 

Figure 5 presents examples of time-domain displacement responses of the top floor in three 
cases: the RL-controlled structure, the reference passively controlled structure, and the 
uncontrolled original structure (without TMD).  A clear decrease in amplitudes can be noted: 
first by applying the optimum passive TMD, and then by using the RL agent. 

5  SUMMARY 

This contribution considered an application of reinforcement learning in semi-active 
structural control.  An 11-story shear-type building equipped with a TMD was considered.  The 
control signal was of the bang-bang type and related to the viscous damping of the TMD.  The 
results show that the proposed control system, using the full state vectors as measurement 
feedback, achieved a significant improvement in reducing the structural response to seismic 
excitations compared to the optimally tuned passive TMD.  
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Figure 5.  Examples of time-domain displacements 
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