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A B S T R A C T

The recently introduced quasi-extremal energy principle for incremental non-potential problems in rate-
independent plasticity is applied to select the deformation pattern and active slip systems in single crystals. The
standard crystal plasticity framework with a non-symmetric slip-system interaction matrix at finite deformation
is used. The incremental work criterion for the formation of deformation bands is combined with the quasi-
extremal energy principle for determining the active slip systems and slip increments in the bands. In this way,
the incremental energy minimization approach has been extended to the non-potential problem of deformation
banding in metal single crystals. It is shown that fulfilment of the mathematical criterion for incipient
deformation banding in a homogeneous crystal in the multiple-slip case under certain conditions requires non-
positive determinant of the hardening moduli matrix. Numerical examples of energetically preferable patterns
of deformation bands are presented for Cu and Ni single crystals.
1. Introduction

Metal single crystals plastically deformed by multiple slip tend to
form deformation patterns, with distinct sets of slip systems being acti-
vated in different subregions. A prominent example is the development
of deformation bands with alternating lattice orientation that cover the
entire crystal domain (grain). This is a different phenomenon than the
more frequently analysed formation of strongly localized slip bands or
shear bands that span over multiple grains, which is not examined here.
This article presents the energy-based approach to the phenomenon
of spontaneous deformation patterning, using the classical constitutive
formulation (Hill and Rice, 1972) of the rate-independent incremental
plasticity of single crystals with a generally non-symmetric constitutive
matrix describing the slip-system interaction. The slip-systems inter-
action matrix defines, in a given material state, a linear relationship
between slip rates and yield function rates for all slip systems, and
the familiar hardening moduli matrix is part of it. The inherent non-
uniqueness of the single crystal response, both with respect to the
active slip-system set and the non-uniform deformation pattern, is a
significant problem to overcome.

The ambiguity in the selection of active slip systems has been
a major difficulty in the algorithmic treatment of rate-independent
plasticity of single crystals for decades since the seminal work by Taylor
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(1938b), see the recent related literature (e.g., Prüger and Kiefer, 2020;
Scheunemann et al., 2020; Zhang et al., 2021) and references therein.
In this paper, the energy approach to the selection of active slip-systems
in single crystals, presented in the recent work (Petryk and Kursa,
2022), is extended to the simultaneous selection of the non-uniform
deformation pattern that results from the formation of deformation
bands.

The phenomenon of deformation banding in single crystals has been
observed experimentally for a long time, see an overview by Kuhlmann-
Wilsdorf (1999). It corresponds to the bands of rotated lattice orien-
tations, observed in X-ray or EBSD (electron backscatter diffraction)
measurements, (e.g., Barrett and Levenson, 1939; Honeycombe, 1951;
Butler et al., 2002; Dmitrieva et al., 2009), of an alternating pattern of
slip-plane traces, (e.g., Lee and Duggan, 1993; Basson and Driver, 2000;
Wert et al., 2003), or of misoriented domains separated by roughly
parallel dense dislocation walls observed by electron microscopy, (e.g.,
Bay et al., 1989; Huang and Hansen, 1997; Hughes et al., 1997; Huang
and Winther, 2007). Generally, each deformation band within a grain
deforms differently than the grain on average. The phenomenon of
deformation banding was characterized by Kuhlmann-Wilsdorf et al.
(1999) as ‘a potentially most valuable tool for the understanding of the
mechanism of plastic deformation’.
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As explained in earlier works (Chin and Wonsiewicz, 1969; Bay
et al., 1989, 1992; Lee and Duggan, 1993; Lee et al., 1993), plastic flow
is easier when some slip systems are active in one family of bands and
other slip systems are active in another family of bands. In this case,
the overall cross-hardening of active slip systems is reduced, resulting
in a lower total plastic work in the deformation bands than for uni-
form deformation. This leads to the main hypothesis that deformation
banding occurs because it is energetically superior to uniform plastic
deformation.

There are mathematical difficulties in formulating this intuitive
concept of work minimization in the geometrically exact framework
of finite elastoplastic deformation of single crystals. The approach
proposed in Ortiz and Repetto (1999) and Ortiz et al. (2000) to de-
scribe sequential lamination towards single-slip domains, and further
developments in Carstensen et al. (2002), Miehe et al. (2004), Conti and
Theil (2005), Carstensen et al. (2008), Hansen et al. (2010), Kratochvíl
et al. (2010), Kochmann and Hackl (2011), Homayonifar and Mosler
(2011), Kumar et al. (2020), Yalçinkaya et al. (2012), Klusemann and
Kochmann (2014), Anguige et al. (2018) and Dequiedt (2019), are
based on the assumption of existence of an incremental potential. But
in the multislip case, the slip-system interaction matrix is generally not
symmetric (Peirce et al., 1982; Franciosi and Zaoui, 1991; Madec and
Kubin, 2017), so that the incremental work or energy supplied does
not act in general as an incremental potential (Petryk, 2003; Petryk
and Kursa, 2013). If this constitutive matrix is preserved in its original,
non-symmetric form then the open question was how to choose active
slip systems from among the existing alternatives. The finite element
method provides a powerful tool for the numerical study of deformation
patterning, (e.g. Wang et al., 2018; Luan et al., 2020; Phalke et al.,
2022), but it cannot replace the analytical approach like this presented
here without rounding-off the yield-surface corners.

Recently, a new variational approach to the non-potential problems
in rate-independent plasticity has been developed through the proposed
‘quasi-extremal’ energy principle (QEP) when ordinary stationarity or
minimum principles fail (Petryk, 2020). The characteristic of this prin-
ciple is that the minimized energy function or functional explicitly
depends not only on variables undergoing variations but also on the
unknown solution taken as a parameter. When solving the incremental
problem of crystal plasticity, QEP reduces to the quasi-minimization
of the incremental energy function in which the standard quadratic
expression for deformation work is supplemented with a new bilinear
form based on the skew part of the slip-system interaction matrix.
The principle was applied by Petryk and Kursa (2022) to simulate
uniform large plastic deformations of a single crystal, with automatic
selection of currently active slip systems along the deformation path.
This was done without any need to symmetrize the constitutive matrix
of slip-system interaction.

The aim of this paper is to extend the latter work to a variational
approach to deformation banding in the non-potential case.

We adopt the classical constitutive framework established by Hill
and Rice (1972) for describing elastic–plastic finite deformation of
metal single crystals, which has been widely used in various but essen-
tially equivalent forms, cf. overviews by Asaro (1983), Havner (1992),
Bassani (1994) and Roters et al. (2010). Selected examples of numerical
simulation of deformation banding in fcc metal single crystals will be
presented to show potentialities of the constitutive algorithm based on
QEP. In the limit of a vanishingly small time step, the incremental
solution tends to an exact solution to the constitutive rate-problem.
The problem examined in this paper is local, i.e. formulated in the
continuum mechanics framework at a single material point without
slip-gradient effects. Extensions to non-local problems are possible
since the quasi-extremal energy principle formulated in Petryk (2020)
encompasses also the gradient-enhanced plasticity.

An overview of different algorithmic approaches to rate-independent
crystal-plasticity was presented in de Souza Neto et al. (2008), and
2

more recently in Petryk and Kursa (2022), so we do not repeat it d
here. The latter paper seems to be the first to explicitly show how
to proceed in the rate-independent crystal plasticity if there are non-
unique incremental solutions associated with distinct sets of active
slip-systems in a non-potential case.

This paper has naturally its limitations. For the sake of simplic-
ity, the generalized Schmid (normality) rule in the sense made pre-
cise by Hill and Rice (1972) is adopted. Non-associative plasticity
(cf. Bigoni, 2012) is included in the recent variational energetic for-
mulations for rate-independent thermodynamic systems (Petryk, 2020;
Ulloa et al., 2021) along with aspects of gradient plasticity. Variational
formulations and slip-system selection in the gradient-enhanced crystal
plasticity are examined in other works, (e.g. Kuroda and Tvergaard,
2006, 2008; Svendsen and Bargmann, 2010; Reddy, 2013; Miehe et al.,
2014; Erdle and Böhlke, 2017; Lewandowski and Stupkiewicz, 2018; Po
et al., 2019; Dequiedt, 2021; Reddy et al., 2021), and are not addressed
here. We do not circumvent the non-uniqueness problem in crystal
plasticity by applying a rate-dependent (viscoplastic) model as it is
frequently done, cf. Rice (1971), Peirce et al. (1983), Cuitiño and Ortiz
(1993), Lebensohn and Tomé (1993), Anand and Kalidindi (1994),
Raabe and Roters (2004), Dequiedt (2018), Prüger and Kiefer (2020),
Zhang et al. (2021) and many other works. No dynamic effects due
to interaction of multiple bands (Giarola et al., 2018) are considered
here. The present work is limited to the rate-independent analysis of
the quasi-static isothermal behaviour of ductile single crystals, with full
account of geometric nonlinearity at large deformation.

The paper is organized as follows. The constitutive framework is
recapitulated in Section 2 in the form suitable for the purposes of
this work. In Section 3 the quasi-extremal energy principle (QEP) is
specified for crystal plasticity, and its applicability to the selection
of active slip systems is discussed. Section 4 contains the theoretical
analysis of deformation banding in single crystals, which sheds light
on the role of latent hardening in deformation pattern formation.
Calculated examples of energetically preferable patterns of deformation
bands are presented in Section 5 for Cu or Ni single crystals deformed
plastically under macroscopic shear or channel-die compression. Sec-
tion 6 contains a summary of the obtained theoretical and numerical
results along with concluding remarks.

2. Constitutive framework

2.1. Rate-independent crystal plasticity

To take fully into account the dependence of the elastic–plastic
response on the loading path, the constitutive description in a time-
continuous setting is formulated in the rate form. The classical rate-
independent constitutive framework for elastic–plastic crystals at finite
isothermal deformation has been established by Hill and Rice (1972). It
was reformulated later in an essentially equivalent form in Peirce et al.
(1982), Asaro (1983), Bassani (1994) and has been widely used in the
literature until now. It is presented below in a condensed form, limited
to the aspects that are most essential for the purposes of the present
work.

First, by using the known transformation rules (Hill, 1978; Petryk,
2000) and the standard notation,1 the constitutive rate-equations of Hill

1 Notation: Bold-face characters denote vectors or second-order tensors
n a three-dimensional Euclidean space, and doublestruck capitals (like C)
enote fourth-order tensors. Direct juxtaposition of two tensors means simple
ontraction, a central dot – double contraction in the sense 𝐀 ⋅ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗 ,
nd ⊗ a tensor product. A superimposed mark −1, T or −T over a tensor
ymbol denotes an inverse, transpose or transposed inverse, respectively. A
uperimposed dot denotes the rate that is understood as the material time

+
erivative in the one-sided (forward) sense, d∕d𝑡 , and assumed to exist.



European Journal of Mechanics / A Solids 104 (2024) 105040H. Petryk and M. Kursa

r

r

a

w
r
1
a
w

w

f

𝑤

w
o
t
f

(
(

𝑓

w
p

C

2

t
t
i

t

𝐅

o
t

u
d
c

𝐒

∑

c

𝑓

w
s
l

𝜏

w
s
s
p
t
a
r

a

𝐅

w
o
t
t
i

s
d
a
a
m

𝜦

𝑔

I
p
t
s

t
i

2

m

and Rice (1972) are reformulated in the Lagrangian description as
follows

𝐒̇ = Ce ⋅ 𝐅̇−
∑

𝛽∈
𝜦𝛽

p𝛾̇
𝛽 , ̇𝑓 𝛼 = 𝜦𝛼 ⋅ 𝐅̇−

∑

𝛽∈
𝑔𝛼𝛽 𝛾̇𝛽 , 𝛼 ∈  = {1,… , 𝑁}.

(1)

Throughout the paper, a Greek superscript (usually 𝛼 or 𝛽, not an
exponent) is used as an index of the crystallographic slip-system on
which the rate of plastic shear (called slip rate) is denoted by 𝛾̇𝛼 ,
𝛼 = 1,… , 𝑁 and associated with the corresponding yield function 𝑓 𝛼 .
The respective 𝑁-dimensional vectors are denoted by (𝛾̇𝛼) and (𝑓 𝛼). If

𝛾̇𝛽 ≡ 0, then the fourth-order elastic stiffness tensor Ce =
T
Ce links the

ate 𝐒̇ of the first Piola–Kirchhoff stress tensor 𝐒 (called also Piola stress)
to 𝐅̇, the rate of the deformation gradient 𝐅 with respect to a fixed
eference configuration that is chosen arbitrarily. Non-zero sum of 𝜦𝛽

p𝛾̇𝛽

defines the direction of 𝐒̇p = 𝐒̇−Ce ⋅𝐅̇ as the residual decrement of stress
𝐒 after an infinitesimal cycle of 𝐅, and 𝜦𝛼 is normal to the 𝛼-th yield-
surface 𝑓 𝛼 = 0. The coefficients Ce,𝜦𝛼

p,𝜦
𝛼 , 𝑔𝛼𝛽 of the linear rate-Eqs. (1)

re known in the current state of the material denoted symbolically by
, and depend on it in the manner specified in Section 2.2. Henceforth,
e will restrict attention to 𝜦𝛼

p = 𝜦𝛼 , which implies the normality flow
ule in the sense discussed by Hill and Rice (1972), see also (Asaro,
983; Bigoni, 2012). The slip-system interaction matrix (𝑔𝛼𝛽 ) will play
n essential role in the later part of the paper. Further specifications
ill be provided in Section 2.2.

The principle of slip-system activity in the rate-independent frame-
ork reads

𝛾̇𝛼 ≥ 0, 𝑓 𝛼 ≤ 0, 𝑓 𝛼 𝛾̇𝛼 = 0 ∀𝛼 ∈  . (2)

It can be interpreted (Petryk, 2005) as the Kuhn–Tucker conditions
or a minimum of the virtual work-rate density

̃ (𝛾̃𝛼 , 𝐅̇) = 𝐒 ⋅ 𝐅̇ −
∑

𝛼
𝑓 𝛼 𝛾̃𝛼 , (3)

hich is defined for arbitrary virtual slip rates 𝛾̃𝛼 , not necessarily
beying the rule (2), while 𝐒 and 𝑓 𝛼 are known in a given state . With
he help of function 𝑤̃, the conditions (2) together take an equivalent
orm of the variational principle (Petryk and Kursa, 2013)

𝛾̇𝛼 = arg min
𝛾̃𝛼≥0

𝑤̃(𝛾̃𝛼 , 𝐅̇) . (4)

The value of 𝛾̇𝛼 is indeterminate for 𝑓 𝛼 = 0 from the principle (2) or
4) used in only one state . Unknown slip-rates 𝛾̇𝛼 are to be determined
not necessarily uniquely) from the consistency conditions

̇𝛼 ≤ 0, ̇𝑓 𝛼 𝛾̇𝛼 = 0 if 𝑓 𝛼 = 0 , (5)

hich makes the following constitutive rate-problem nonlinear (in fact,
iecewise-linear).

onstitutive Rate-Problem:
In a given state  and for prescribed 𝐅̇, find 𝛾̇𝛼 that satisfy
the conditions (1)2, (2) and (5) simultaneously ∀𝛼 ∈  . (6)

.2. Specification of constitutive equations

The relationships given in Section 2.1 are fundamental for the
heoretical part of this paper. In this section, they are specified by
ypical assumptions of the conventional theory of crystal plasticity used
n applications.

The common multiplicative split (Kröner, 1960) of a finite deforma-
ion gradient 𝐅 is adopted,

= 𝐅∗𝐅p , 𝐅∗ = 𝐑∗𝐔e , det 𝐅∗ > 0 , det 𝐅p = 1 , (7)

where 𝐅p is the plastic deformation gradient, and 𝐅∗ is the contraction
f the lattice rotation tensor, 𝐑∗, and the elastic stretch tensor relative
o the stress-free configuration of the lattice, 𝐔e.
3

[

Assume that elastic properties of the crystallographic lattice are
naffected by plastic flow and can be expressed by an elastic energy
ensity function, 𝜙e(𝐔e), whose exact form is inessential here. Then, at
onstant temperature,

∗ =
𝜕𝜙e

𝜕𝐅∗ = 𝐒
T
𝐅p , 𝐒̇∗ = C∗ ⋅ 𝐅̇∗ , C∗ =

𝜕2𝜙e

𝜕𝐅∗𝜕𝐅∗ ,

[C∗]𝑖𝑗𝑘𝑙 = 𝐶∗
𝑖𝑗𝑘𝑙 = 𝐹 p

𝑗𝑝𝐹
p
𝑙𝑞𝐶

e
𝑖𝑝𝑘𝑞 , (8)

by using Eqs. (7) and the standard chain rule of differentiation, where
the last equation is written down in Cartesian components with the
summation convention for repeated indices.

A yield function 𝑓 𝛼 is defined as the difference between the gen-
eralized shear stress 𝜏𝛼 resolved on the 𝛼-th slip system, such that
𝛼 𝜏

𝛼 𝛾̇𝛼 is the plastic work-rate per unit reference volume, and its
ritical (threshold) value, viz.

𝛼 = 𝜏𝛼 − 𝜏𝛼cr , 𝜏𝛼 = 𝜫 ⋅ 𝐍𝛼 , 𝜫 =
T
𝐅∗𝐒∗ , (9)

here 𝜫 denotes the Mandel stress (Mandel, 1971). The critical re-
olved shear stresses, 𝜏𝛼cr, obey the conventional incremental hardening
aw

̇ 𝛼cr =
∑

𝛽
ℎ𝛼𝛽 𝛾̇𝛽 , (10)

here the hardening moduli ℎ𝛼𝛽 may depend on the history of plastic
lips. Opposite slips on a given slip plane are treated as different slip
ystems (because each 𝛾̇𝛼 ≥ 0), so that the respective values of 𝜏𝛼cr are
ositive but need not be equal. This admits a back-stress related to
he split of 𝜏𝛼cr into energetic and dissipative parts. The split may be
rbitrary here, cf. Petryk and Kursa (2015, Remark 2), therefore the
elated thermodynamic description is omitted in this paper.

Evolution of the plastic deformation gradient 𝐅p, caused by the
ctivity of multiple slip-systems, is governed by (Rice, 1971)

̇ p(𝐅p)−1 =
∑

𝛼
𝐍𝛼 𝛾̇𝛼 , 𝐍𝛼 = 𝐦𝛼 ⊗ 𝐧𝛼 , 𝐦𝛼 ⋅ 𝐧𝛼 = 0 , (11)

here (𝐦𝛼 ,𝐧𝛼) define slip direction and slip-plane normal, respectively,
f the 𝛼-th slip system in the stress-free (intermediate) configuration of
he crystallographic lattice. By Jacobi’s formula for the rate of det 𝐅p,
he assumption 𝐦𝛼 ⋅ 𝐧𝛼 = 0 implies that the plastic deformation is
sochoric, det 𝐅p ≡ 1.

To complete specification of the quantities involved in the con-
titutive framework given in Section 2.1, it remains to define state-
ependent coefficients 𝜦𝛼 and 𝑔𝛼𝛽 of the constitutive rate-Eqs. (1),
ssuming the normality rule with 𝜦𝛼

p = 𝜦𝛼 . In full agreement with Hill
nd Rice (1972), it has been shown that the definition (9) and geo-
etric nonlinearity relationships imply that (Petryk and Kursa, 2013)

𝛼 =
(

C∗ ⋅ 𝐅∗𝐍𝛼 + 𝐒∗
T
𝐍𝛼

) −T
𝐅P , (12)

𝛼𝛽 = ℎ𝛼𝛽 + 𝑔𝛼𝛽geom , 𝑔𝛼𝛽geom = 𝐅∗𝐍𝛼 ⋅ C∗ ⋅ 𝐅∗𝐍𝛽 +𝜫 ⋅ 𝐍𝛽𝐍𝛼 . (13)

t follows that matrix (𝑔𝛼𝛽 ) is generally non-symmetric for two inde-
endent reasons: (ℎ𝛼𝛽 ) ≠ (ℎ𝛽𝛼) or 𝜫 ⋅ (𝐍𝛽𝐍𝛼 − 𝐍𝛼𝐍𝛽 ) ≠ 0. Unlike in
he reference (op. cit), the approach in this paper does not require any
ymmetrization of (𝑔𝛼𝛽 ); see also (Peirce et al., 1982).

The above constitutive description of the conventional crystal plas-
icity at finite deformation, or its equivalent, is the basis for determin-
ng the computational model for a given metal crystal.

.3. Finite time increments

For computational purposes, Constitutive Rate-Problem (6) is refor-
ulated in terms of increments over a small but finite time interval

𝑡𝑛, 𝑡𝑛+1]. The end-point values of a quantity 𝜓 evaluated at 𝑡𝑛 and 𝑡𝑛+1
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are denoted by 𝜓𝑛 and 𝜓𝑛+1, respectively, and the increment by a prefix
, 𝛥𝜓 ∶= 𝜓𝑛+1 − 𝜓𝑛 corresponding to 𝛥𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛.

An implicit backward-Euler difference scheme is applied to solve
pproximately the incremental problem that results from constitutive
ssumptions given in Section 2.1. For consistency with the constitutive
ate Eqs. (1) it is required that upon substituting

𝛾̇𝛼 =
𝛥𝛾𝛼

𝛥𝑡
, 𝐅̇ = 𝛥𝐅

𝛥𝑡
, (14)

he following conditions hold true

𝑛+1 − 𝐒𝑛 = 𝛥𝐒 + 𝑜(𝛥𝑡), 𝑓 𝛼𝑛+1 − 𝑓
𝛼
𝑛 = 𝛥𝑓 𝛼 + 𝑜(𝛥𝑡), 𝛼 ∈  , (15)

with 𝑜(𝛥𝑡)∕𝛥𝑡 → 0 as 𝛥𝑡 → 0. The approximate increments, 𝛥𝐒, 𝛥𝑓 𝛼 , are
obtained by backward time integration of Eqs. (1) starting from 𝑡𝑛+1 and
eeping the coefficients fixed,

̂𝐒 = Ce
𝑛+1 ⋅𝛥𝐅−

∑

𝛼∈
𝜦𝛼
𝑛+1𝛥𝛾

𝛼 , 𝛥𝑓 𝛼 = 𝜦𝛼
𝑛+1 ⋅𝛥𝐅−

∑

𝛽∈
𝑔𝛼𝛽𝑛+1𝛥𝛾

𝛽 . (16)

o satisfy Eqs. (1), the coefficients Ce
𝑡 , 𝜦𝛼

𝑡 and 𝑔𝛼𝛽𝑡 are assumed be
niformly continuous with respect to time 𝑡. 𝛥𝛾𝛼 is identified with
n unknown increment of shear on the 𝛼-th slip-system, and 𝛥𝐅 with
n increment of the deformation gradient whose components may be
artially known.

The two sets of conditions (2) and (5) for plastic slip-system activity
re reduced to so-called discrete consistency conditions,

𝛾𝛼 ≥ 0 and 𝑓 𝛼𝑛+1 ≤ 0 and 𝑓 𝛼𝑛+1 𝛥𝛾
𝛼 = 0 ∀𝛼 ∈  ,

(17)

ssuming that 𝑓 𝛼𝑛 ≤ 0 from the previous time step.
A time-discrete counterpart to Constitutive Rate-Problem (6) in

ection 2.1 takes the following form.

ncremental Constitutive Problem:
Given the state 𝑛 with 𝑓 𝛼𝑛 ≤ 0, 𝛥𝐅 and relationship (15)2,

find 𝛥𝛾𝛼 that satisfy the conditions (17) ∀𝛼 ∈  . (18)

As noted by Petryk and Kursa (2022), a solution to Incremental
onstitutive Problem (18) provides in the limit as 𝛥𝑡 → 0 an exact
olution to the Constitutive Rate-Problem (6) formulated at 𝑡𝑛. For
finite time step, the following expression for 𝑓 𝛼𝑛+1 will be used in

alculations,
𝛼
𝑛+1 ∶= 𝜏𝛼𝑛+1 − 𝜏

𝛼
cr 𝑛+1 , (19)

here 𝜏𝛼𝑛+1 is defined, as in Eq. (9), by the projection of the Mandel
tress 𝜫𝑛+1 on 𝐍𝛼 , and 𝜏𝛼cr 𝑛+1 is calculated incrementally using the
ardening law (10).

. Quasi-extremal energy principle

The reader is referred to Petryk (2020) for a detailed exposition of
he concept of a quasi-extremal energy principle in a general case. It
pecification developed in Petryk and Kursa (2022) for crystal plasticity
s briefly outlined below. The formulation in the rates is omitted, and
e go directly to considerations for a finite time step.

.1. Incremental constitutive quasi-potential

The key step is to construct an incremental energy function as a
trong variation of the work density functional at the end of a time step.
his incremental energy function differs from the usual incremental
ork density 𝛥𝑤 only by the last term,

𝜀(𝛾̃𝛼 , 𝛥𝐅;𝛥𝛾𝛼) = 𝛥𝑤(𝛾̃𝛼 , 𝛥𝐅) + 1
2

∑

𝛼,𝛽∈
𝛾̃𝛼(𝑔𝛼𝛽𝑛+1 − 𝑔

𝛽𝛼
𝑛+1)𝛥𝛾

𝛽 , (20)

where 𝛥𝑤 corresponds to a straight path along which virtual increments
of slips 𝛾𝛼(𝑡) vary in a time step 𝑡 ∈ [𝑡 , 𝑡 ] proportionally from 0 to
4

𝑛 𝑛+1
𝛾̃𝛼 for all 𝛼. 𝛥𝑤 is affected only by the symmetric part of matrix (𝑔𝛼𝛽𝑛+1),
while a skew part of (𝑔𝛼𝛽𝑛+1) and parameters 𝛥𝛾𝛼 affect only the last term
n Eq. (20). It follows that

𝜀(𝛥𝛾𝛼 , 𝛥𝐅;𝛥𝛾𝛼) = 𝛥𝑤(𝛥𝛾𝛼 , 𝛥𝐅) , (21)

ince the last term present in Eq. (20) then vanishes as a quadratic
orm with a skew matrix. However, the last term in Eq. (20) is crucial
or a correct extension of the incremental work minimization to non-
ymmetric matrices (𝑔𝛼𝛽 ) when 𝛥𝑤 does not act as a constitutive
otential for variable 𝛥𝛾𝛼 .

When evaluated to second-order with respect to 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛 by
ackward time integration, 𝛥𝑤 reads (Petryk and Kursa, 2022)

𝑤(𝛾̃𝛼 , 𝛥𝐅) = 𝐒𝑛+1 ⋅ 𝛥𝐅 −
∑

𝛼∈
𝑓 𝛼𝑛+1𝛾̃

𝛼 − 𝛥2𝑤(𝛾̃𝛼 , 𝛥𝐅) , (22)

here 𝛥2𝑤 is the second-order work expression

2𝑤(𝛾̃𝛼 , 𝛥𝐅) =
1
2
𝛥𝐅 ⋅ Ce

𝑛+1 ⋅ 𝛥𝐅 −
∑

𝛼∈

(

𝜦𝛼
𝑛+1 ⋅ 𝛥𝐅

)

𝛾̃𝛼 + 1
2

∑

𝛼,𝛽∈
𝛾̃𝛼𝑔𝛼𝛽𝑛+1 𝛾̃

𝛽 .

(23)

Note that the energy function 𝛥𝜀 is defined with the coefficients
evaluated at 𝑡𝑛+1 for a yet unknown incremental solution 𝛥𝛾𝛼 as a
parameter. If 𝛾̃𝛼 coincides with a solution 𝛥𝛾𝛼 then the incremental
work expression simplifies, on account of Eqs. (17)3 and (16), to

𝛥𝑤(𝛥𝛾𝛼 , 𝛥𝐅) = 𝐒𝑛+1 ⋅ 𝛥𝐅 − 𝛥2𝑤(𝛥𝛾𝛼 , 𝛥𝐅) (24)

with

𝛥2𝑤(𝛥𝛾𝛼 , 𝛥𝐅) =
1
2
𝛥𝐒 ⋅ 𝛥𝐅 (25)

since the remaining term ∑

𝛼 𝛥𝑓
𝛼𝛥𝛾𝛼 = 𝑜((𝛥𝑡)2) (cf. the consistency

condition (5)2) can be omitted in this second-order work expression.
The Taylor decomposition of 𝛥𝜀 takes the form

𝛥𝜀(𝛾̃𝛼 , 𝛥𝐅;𝛥𝛾𝛼) = 𝛥𝜀(𝛥𝛾𝛼 , 𝛥𝐅;𝛥𝛾𝛼) + 𝛥1𝜀(𝛾̃𝛼 , 𝛥𝛾𝛼) + 𝛥2𝜀(𝛾̃𝛼 , 𝛥𝛾𝛼)

+ 𝑜(𝛾̃𝛼 − 𝛥𝛾𝛼)2 , (26)

where
𝛥𝜀(𝛥𝛾𝛼 , 𝛥𝐅, 𝛥𝛾𝛼) = 𝛥𝑤(𝛥𝛾𝛼 , 𝛥𝐅) ,

𝛥1𝜀(𝛾̃𝛼 , 𝛥𝛾𝛼) = −
∑

𝛼∈
𝑓 𝛼𝑛+1(𝛾̃

𝛼 − 𝛥𝛾𝛼) ,

𝛥2𝜀(𝛾̃𝛼 , 𝛥𝛾𝛼) =
1
2

∑

𝛼,𝛽∈
(𝛾̃𝛼 − 𝛥𝛾𝛼)𝑔𝛼𝛽𝑛+1(𝛾̃

𝛽 − 𝛥𝛾𝛽 ) .
(27)

The key result is (Petryk and Kursa, 2022)

𝐒𝑛+1 =
𝜕𝛥𝜀
𝜕𝛥𝐅

, 𝑓 𝛼𝑛+1 = − 𝜕𝛥𝜀
𝜕𝛾̃𝛼

|

|

|

|𝛾̃𝛽=𝛥𝛾𝛽
, (28)

so that function 𝛥𝜀 acts precisely as a constitutive potential for 𝐒𝑛+1 and
a quasi-potential for 𝑓 𝛼𝑛+1.

3.2. Quasi-extremal energy principle (QEP) for incremental slips

In close analogy to Petryk (2020, Theorem 2) but with the modifi-
cation resulting from finite increments, the following proposition holds
true at a material point.

Proposition 1 (Quasi-extremal energy principle for incremental slips). A
solution (𝛥𝛾𝛼) to the following quasi-extremal energy principle (QEP):

(𝛥𝛾𝛼) = arg min
𝛾̃𝛼≥0

𝛥𝜀(𝛾̃𝛼 , 𝛥𝐅;𝛥𝛾𝛼) (29)

(i) solves Incremental Constitutive Problem (18), and
(ii) satisfies additionally the condition

∑

𝛼,𝛽∈
(𝛾̃𝛼 − 𝛥𝛾𝛼)𝑔𝛼𝛽𝑛+1(𝛾̃

𝛽 − 𝛥𝛾𝛽 ) ≥ 0 ∀𝛾̃𝛼 ≥ 0 subject to 𝑓 𝛼𝑛+1𝛾̃
𝛼 = 0 .

(30)
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Proof. It coincides with the proof of Proposition 3 in Petryk and Kursa
2022).

The left-hand expression of inequality (30) represents the second
ariation of the incremental energy function 𝛥𝜀 in a direction of 𝛿𝛾𝛼 =

(𝛾̃𝛼 − 𝛥𝛾𝛼), cf. Eq. (26). Therefore, condition (30) can be interpreted
as the energy condition for stability of the plastic deformation path
corresponding to a solution 𝛥𝛾𝛼 to Incremental Constitutive Problem
(18).

From Eq. (16)2 it can be seen that ∑𝛽 𝑔
𝛼𝛽
𝑛+1𝛿𝛾

𝛽 = −𝛿𝑓 𝛼𝑛+1, a variation
of 𝑓 𝛼𝑛+1 for fixed 𝛥𝐅, with a negative sign. Inequality (30) thus means
that the scalar product of a perturbation (𝛿𝛾𝛼) of incremental slips
and the associated perturbation (𝛿𝑓 𝛼) of yield functions is non-positive
for given 𝛥𝐅. This can be interpreted as a contractivity property that
supports the treatment of inequality (30) as the path stability condition.

For the potential problem when the skew part of matrix (𝑔𝛼𝛽 ) van-
ishes, QEP (29) reduces to straightforward minimization of 𝛥𝑤 referred
to as the incremental energy minimization (Petryk, 2003), initiated
in Petryk (1982).

Proposition 1 has provided a theoretical basis for the constitutive
algorithm which is described in detail in Petryk and Kursa (2022). A
modified algorithmic expression for the incremental deformation work
𝛥𝑤 is used there to improve convergence of the iterations required to
solve QEP (29). Lagrange multipliers are treated as additional variables
to satisfy the unilateral constraints imposed on 𝛾̃𝛼 . The non-smooth
and constrained non-convex minimization sub-problem in QEP (29) is
reduced to a smooth and unconstrained optimization problem by using
the augmented Lagrangian method (Bertsekas, 1996). The solution to
the 𝑘-th sub-problem is iteratively used as input to the (𝑘 + 1)-th
sub-problem until QEP (29) is satisfied within the given tolerance.
Specifically, the iterations are repeated until the conditions (17) are
met with the required accuracy. The algorithm was implemented in the
scientific computing environmentMathematica (www.wolfram.com) us-
ing the built-in function FindMinimum for an unconstrained search for
the minimum of a non-convex function, here the augmented Lagrangian
based on the incremental energy function 𝛥𝜀.

3.3. Selection of active slip-systems by QEP

In general, Incremental Constitutive Problem (18) can have non-
unique solutions which correspond to different sets of active slip sys-
tems. In such cases, the quasi-extremal energy principle QEP (29)
through the resulting additional condition (30) provides a criterion of
selection of the active slip-system set (Petryk, 2020). It is based on the
energy criterion of path stability and can thus be given a physical mean-
ing, being not based on arbitrarily assumed imperfections or random
selection. This is a generalization of the incremental energy minimiza-
tion approach limited to problems of potential type that exhibit the
needed symmetry property (Petryk, 2003), to non-potential problems of
crystal plasticity with a non-symmetric slip-system interaction matrix,
(𝑔𝛼𝛽 ) ≠ (𝑔𝛽𝛼). The ‘ambiguity’ in selecting the set of active slip systems
is frequently traced back to Taylor (1938b), although the consistency
conditions were not considered at that time. The QEP-based approach
overcomes this long-standing difficulty in the rate-independent crystal
plasticity without the need to symmetrize the matrix (𝑔𝛼𝛽 ).

The QEP-based crystal plasticity algorithm developed in Petryk
and Kursa (2022) enables automatic change of the set of active slip
systems along the calculated path of plastic deformation whenever
the minimum required in Eq. (29) is no longer met for the previous
set. Typically, such a change accompanies switching between different
corners or edges on the current yield surface for the crystal. The
mechanism of automatic selection of a new set of active slip systems
by incremental energy minimization was examined in Petryk and Kursa
(2015) in the case of the selectively symmetrized matrix (𝑔𝛼𝛽 ). It
remains essentially unchanged when QEP is applied to a non-symmetric
matrix (𝑔𝛼𝛽 ), as demonstrated in Petryk and Kursa (2022) and also by
5

t

numerical examples presented in Section 5 of this paper. The set 
of currently active slip systems is determined as part of the solution
to the minimization sub-problem in QEP (29), in distinction to other
approaches where  is assumed before solving the system of equations
𝑓 𝛼∈ = 0.

4. Energy approach to deformation banding

4.1. Energetically preferable pattern formation

The formation of a non-uniform deformation pattern under con-
ditions that would correspond to homogeneous deformation can be
considered as a symptom of instability in the energy sense of a uniform
quasi-static deformation path, which in plastic solids is usually not
accompanied by the loss of stability of equilibrium (Petryk, 1982).
Conditions for material stability can be derived by restricting the vir-
tual deviation from the examined deformation process (path) to a
neighbourhood of an interior material point.

The corresponding integral condition for a minimum of a functional,
expressed in terms of its properties at a point by Morrey (1952), was
applied to elastic strain energy by Ball (1977) and extended to the in-
cremental deformation work that includes plastic dissipation by Petryk
(1992). This has been done under the assumption that incremental
work density 𝛥𝑤 can be expressed as a function of the incremental
deformation gradient 𝛥𝐅. By negation of a minimum, the following
condition for instability of a uniform deformation mode 𝛥𝐅0 has been
btained,

1
||

∫
𝛥𝑤(𝛥𝐅0 +∇𝐰(𝐗)) d𝐗 < 𝛥𝑤(𝛥𝐅0) for some 𝐰 ∶ 𝐰 = 𝟎 over 𝜕 ,

(31)

where  of volume || is a bounded domain in the reference con-
figuration, which without loss of generality can be chosen arbitrarily,
and 𝐰 can be any continuous and piecewise differentiable perturbation
field on  ∪ 𝜕. Inequality (31) means that mechanical work can
be extracted from the deforming material element  embedded in a
continuum being unperturbed elsewhere.

In the problem considered in this paper, 𝛥𝑤 depends not only on 𝛥𝐅
but also on slip increments 𝛥𝛾𝛼 which are determined from the quasi-
extremal energy principle, QEP (29). Accordingly, the condition (31)
for material instability is now extended to

1
||

∫
𝛥𝑤(𝛥𝛾𝛼(𝐗), 𝛥𝐅0 + ∇𝐰(𝐗)) d𝐗 < 𝛥𝑤(𝛥𝛾𝛼0 , 𝛥𝐅0)

for some 𝐰 ∶ 𝐰 = 𝟎 over 𝜕 , (32)

here

(𝛥𝛾𝛼)(𝐗) = arg min
𝛾̃𝛼≥0

𝛥𝜀(𝛾̃𝛼 , 𝛥𝐅0 + ∇𝐰(𝐗);𝛥𝛾𝛼(𝐗)) . (33)

he unknown field 𝐰 represents the incremental deformation pattern
searched.

The incremental work minimization approach based on the con-
dition (32) was applied in Petryk and Kursa (2013) to deformation
banding in the case when the incremental work density 𝛥𝑤 played
he role of a constitutive potential. Under a similar assumption, the
elated approach was developed earlier by M. Ortiz and co-workers,
ee the references given in the Introduction. Here, the previous work is
xtended to the case (33) when the energy function 𝛥𝜀, rather than the
ncremental work density 𝛥𝑤 itself, is used as the constitutive quasi-
otential for determining incremental slips along with the unknown
et of active slip systems at a material point. As discussed above, this
eneralization has its physical motivation in the lack of symmetry of
he slip-system interaction matrix (𝑔𝛼𝛽 ).

http://www.wolfram.com
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4.2. Deformation bands

Consider a pattern of two families of parallel deformation bands of
a unit reference normal 𝐧, such that a pair (𝛥𝛾𝛼(𝐗),∇𝐰(𝐗)) alternates
between two values, (𝛥𝛾𝛼1 ,∇𝐰1) and (𝛥𝛾𝛼2 ,∇𝐰2), corresponding to two
different sets 1,2 of active slip systems (Fig. 1). The incremen-
tal statical and kinematical compatibility conditions across the band
interfaces read

(𝛥𝐒1 − 𝛥𝐒2)𝐧 = 𝟎 and 𝛥𝐅1 − 𝛥𝐅2 = 𝛥𝐛⊗ 𝐧 (34)

for some non-zero vector 𝛥𝐛 and some |𝐧| = 1. In terms of the
overall deformation gradient increment, 𝛥𝐅0 = 𝜂𝛥𝐅1 + (1 − 𝜂)𝛥𝐅2, the
deformation gradient increments in the bands are

𝛥𝐅1 = 𝛥𝐅0+(1−𝜂)𝛥𝐛⊗𝐧 , 𝛥𝐅2 = 𝛥𝐅0−𝜂𝛥𝐛⊗𝐧 , 0 ≤ 𝜂 ≤ 1. (35)

Suppose that the bands are long and of relatively small spacing 𝐻 ,
nd that the banded domain is surrounded by a boundary layer within
hich 𝐰 tends to zero as 𝜕 is approached. A rigorous construction
nown in the context of finite elasticity (Chipot and Kinderlehrer, 1988)
eads to a field 𝐰 of uniformly bounded gradient ∇𝐰, such that

1
|𝑀|

∫
𝛥𝑤(𝛥𝛾𝛼(𝐗), 𝛥𝐅0 + ∇𝐰(𝐗)) d𝐗

= 𝜂𝛥𝑤(𝛥𝛾𝛼1 , 𝛥𝐅1) + (1 − 𝜂)𝛥𝑤(𝛥𝛾𝛼2 , 𝛥𝐅2) + 𝑂(𝐻) , (36)

where 𝑂(𝐻) → 0 as 𝐻 → 0. Consequently, the energy condition (32) for
material instability is satisfied for band spacing 𝐻 sufficiently small (so
that 𝑂(𝐻) is less than the difference in inequality (32) after substituting
expression (36)) if

𝛥𝑤̄ = 𝜂𝛥𝑤(𝛥𝛾𝛼1 , 𝛥𝐅1) + (1 − 𝜂)𝛥𝑤(𝛥𝛾𝛼2 , 𝛥𝐅2) < 𝛥𝑤(𝛥𝛾𝛼0 , 𝛥𝐅0)

subject to Eqs. (33) and (35) for some 𝛥𝐛,𝐧, 𝜂 . (37)

It is possible to extend condition (37) to size-effects by adding to
𝛥𝑤̄ the energy contribution of the band interfaces and of the boundary
layer at 𝜕, in analogy to Chin and Wonsiewicz (1969), Ortiz and
Repetto (1999) and Ortiz et al. (2000). However, as mentioned in the
Introduction, the size-independent consequences of QEP are isolated
for study here, so a size-dependent analysis is beyond the scope of this
article. Accordingly, the attention is limited to volume fractions of the
bands, not their width. The deformation pattern is determined by the
free variables in the energy criterion (38) subject to (35) and (39),
that is, by the volume fraction and orientation of the bands together
with the incremental deformation gradient and the incremental slips
within the bands, while the width and placement of individual bands
are undefined.

As in Eq. (33), unknown 𝛥𝛾𝛼 are determined from QEP (29). Ac-
cordingly, the incremental work criterion for the onset of deformation
banding takes the form

min
𝛥𝐛,𝐧,𝜂

(

𝜂𝛥𝑤1 + (1 − 𝜂)𝛥𝑤2
)

< 𝛥𝑤0 subject to Eqs. (35) and (39), (38)

where

𝛥𝑤𝑖 = 𝛥𝑤(𝛥𝛾𝛼𝑖 , 𝛥𝐅𝑖) , (𝛥𝛾𝛼𝑖 ) = arg min
𝛾̃𝛼≥0

𝛥𝜀(𝛾̃𝛼 , 𝛥𝐅𝑖;𝛥𝛾𝛼𝑖 ) , 𝑖 = 0, 1, 2 .

(39)

A novelty in the present approach is the use of the quasi-extremal
energy principle QEP (29) in Eqs. (33) and (39) for determining the
sets of active slip systems and increments 𝛥𝛾𝛼 .

Finding the minimum in criterion (38) is a complex task that gen-
erally requires an appropriate numerical approach. There may be more
than one local minimum of the left-hand expression, and the lowest
value is not necessarily the most physically significant; examples will
be presented in Section 5.

To facilitate the minimization task and investigate in advance the
circumstances under which inequality (38) can have solutions, in the
next subsection we will address the incipient deformation banding
treated as a bifurcation problem in a given homogeneous state.
6

Fig. 1. Two families of deformation bands with different sets 1 ,2 of active
slip-systems.

4.3. Incipient deformation banding

The current homogeneous state of the material is regarded as
known. Consider an incipient deformation banding mode illustrated in
Fig. 1, expressed now in the rate form, which satisfies the statical and
kinematical compatibility conditions across discontinuity surfaces, viz.

(𝐒̇1 − 𝐒̇2)𝐧 = 𝟎 and 𝐅̇1 − 𝐅̇2 = 𝐛̇⊗ 𝐧 . (40)

Rice’s familiar condition for existence of a non-trivial solution to
qs. (40) with a non-zero jump has the form det𝐐n = 0, where 𝐐n
s the acoustic tensor based on the tangent stiffness moduli which are
ssumed the same within and outside a localization band (Rice, 1977).
hat approach is not applicable here since the sets of active slip-systems

n the bands, 1 and 2, are different and not known a priori, so the
angent stiffness moduli in the bands are different and unknown.

A more general approach has been developed by Petryk (2000),
hich does not require knowledge of the set of actually active inelastic
eformation mechanisms. Namely, the purely elastic acoustic tensor 𝐐e

n
has been used that is defined by (𝐐e

n)𝑖𝑘 = (Ce)𝑖𝑝𝑘𝑞𝑛𝑝𝑛𝑞 , in Cartesian
omponents with the summation convention. Given that 𝐐e

n is non-
ingular, det𝐐e

n ≠ 0 which is the ellipticity condition for the purely
lastic response, the following matrix has been defined,

𝛼𝛽
band = 𝑔𝛼𝛽 − (𝜦𝛼𝐧) ⋅

−1
𝐐e

n(𝜦
𝛽𝐧), 𝑔band = (𝑔𝛼𝛽band) with 𝛼, 𝛽 ∈  , (41)

here the slip-system set  is arbitrary. This matrix is known in a given
tate for a given band orientation 𝐧 ≠ 𝟎, which is not marked in the
atrix symbol to simplify the notation.

The exclusion condition for incipient deformation banding from a
iven homogeneous state, established in Petryk (2000), states that the
roblem (40) for given 𝐧 ≠ 𝟎 admits only the trivial solution (𝐛̇ = 𝟎) if
ll principal minors of the matrix (𝑔band) defined by Eq. (41) for the set
= {𝛼 ∈  ∶ 𝑓 𝛼 = 0} of the potentially active systems are positive,

iz.

det 𝑔band > 0 ∀ ⊆  . (42)

n the terminology of Cottle et al. (1992), it means that matrix 𝑔band
s a P-matrix. It is pointed out that fulfilment of condition (42) ex-
ludes incipient deformation banding for any possible unloading at the
ifurcation instant within the bands of reference orientation 𝐧.

The fundamental role played by matrix 𝑔band can be highlighted
s follows. Suppose that a fully admissible banding mode (𝐛̇,𝐧) exists
hich satisfies Eqs. (40) for slip rates 𝛾̇𝛼1 ≥ 0, 𝛾̇𝛼2 ≥ 0 in the bands (1)
nd (2), respectively. The joint set of active slip systems is denoted by

= {𝛼 ∈  ∶ 𝛾̇𝛼1 > 0 or 𝛾̇𝛼2 > 0} = 1 ∪2 . (43)

n writing down the constitutive rate Eq. (1)2 for each band and
ubtracting them, on account of Eq. (40)2 we obtain

̇𝛼
1 − ̇𝑓 𝛼2 = 𝐛̇ ⋅𝜦𝛼𝐧 −

∑

𝑔𝛼𝛽 (𝛾̇𝛽1 − 𝛾̇𝛽2 ) , 𝛼 ∈ . (44)

𝛽∈
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In turn, a similar action but applied to the constitutive rate Eq. (1)1
ives

𝐒̇1 − 𝐒̇2)𝐧 = 𝐐e
n𝐛̇ −

∑

𝛼∈
(𝛾̇𝛼1 − 𝛾̇𝛼2 )𝜦

𝛼𝐧 . (45)

he value of this expression must be 𝟎 on account of Eq. (40)1, so
hat (Petryk, 2000)

̇ =
−1
𝐐e

n

∑

𝛼∈
(𝛾̇𝛼1 − 𝛾̇𝛼2 )𝜦

𝛼𝐧 ⟺ (𝐒̇1 − 𝐒̇2)𝐧 = 𝟎. (46)

n substituting this into Eq. (44) and rearranging with the help of
q. (41), we obtain the relationship

̇𝛼
1 − ̇𝑓 𝛼2 = −

∑

𝛽∈
𝑔𝛼𝛽band(𝛾̇

𝛽
1 − 𝛾̇𝛽2 ) ∀𝛼 ∈ . (47)

ssuming that the consistency conditions (5) are satisfied in each band,
t follows that

𝛾̇𝛼1 − 𝛾̇𝛼2 )( ̇𝑓
𝛼
1 − ̇𝑓 𝛼2 ) = − ̇𝑓 𝛼2 𝛾̇

𝛼
1 − ̇𝑓 𝛼1 𝛾̇

𝛼
2 ≥ 0 . (48)

ence, on multiplying Eq. (47) by (𝛾̇𝛼1 − 𝛾̇𝛼2 ) (without summation over
), we arrive at a remarkable conclusion that

𝛾̇𝛼1 − 𝛾̇𝛼2 )
∑

𝛽∈
𝑔𝛼𝛽band(𝛾̇

𝛽
1 − 𝛾̇𝛽2 ) ≤ 0 ∀𝛼 ∈ . (49)

In words, inequality (49) means that 𝑔band reverses the sign of the
ector (𝛾̇𝛽1 − 𝛾̇𝛽2 ). By a known mathematical theorem, cf. Cottle et al.
1992, Theorem 3.3.4), fulfilment of the inequality (49) for (𝛾̇𝛽1 ) ≠ (𝛾̇𝛽2 )

implies

det 𝑔band ≤ 0 for some  ⊆  . (50)

Since  ⊆  , the derived condition (50) for deformation banding is
slightly stronger than violation of the exclusion condition (42) in its
basic form. In particular, condition (50) excludes that 𝑔band is positive
definite.

4.4. The role of latent hardening in deformation pattern formation

So far, in Section 4 we have only used the basic constitutive
assumptions given in Section 2.1. To highlight the role of hardening
moduli in the conditions (49) and (50) for deformation banding, further
constitutive specifications given in Section 2.2 as well as the structure
of matrix (𝑔𝛼𝛽band) are exploited. From Eqs. (13) and (41)1 it follows that

𝑔𝛼𝛽band𝛾̇
𝛽
1-2 = (ℎ𝛼𝛽 + 𝑔𝛼𝛽geom)𝛾̇

𝛽
1-2 − (𝜦𝛼𝐧) ⋅

−1
𝐐e

n(𝜦
𝛽𝐧)𝛾̇𝛽1-2 (51)

for any numbers 𝛾̇𝛽1-2 = 𝛾̇𝛽1 − 𝛾̇𝛽2 .
On writing down the evolution rule (11) for the plastic deformation

radient in each band and taking the difference, we obtain
∑

𝛽∈
𝐍𝛽 𝛾̇𝛽1-2 = (𝐅̇p

1 − 𝐅̇p
2)

−1
𝐅p . (52)

On using Eqs. (13)2 and (52), we obtain
∑

𝛽
𝑔𝛼𝛽geom𝛾̇

𝛽
1-2 = 𝐅∗𝐍𝛼 ⋅ C∗ ⋅ 𝐅∗(𝐅̇p

1 − 𝐅̇p
2)

−1
𝐅p +𝜫 ⋅ (𝐅̇p

1 − 𝐅̇p
2)

−1
𝐅p𝐍𝛼 . (53)

his can be further transformed, using Eqs. (9)3 and (12), as follows:
∑

𝛽
𝑔𝛼𝛽geom𝛾̇

𝛽
1-2 = (𝐅∗𝐍𝛼 ⋅C∗+𝐒∗

T
𝐍𝛼) ⋅𝐅∗(𝐅̇p

1− 𝐅̇p
2)

−1
𝐅p = 𝜦𝛼 ⋅𝐅∗(𝐅̇p

1− 𝐅̇p
2) . (54)

rom Eqs. (46)2 and (7)1 we have the kinematic relationship

̇ ⊗ 𝐧 = 𝐅̇1 − 𝐅̇2 = 𝐅∗(𝐅̇p
1 − 𝐅̇p

2) + (𝐅̇∗
1 − 𝐅̇∗

2)𝐅
p , (55)

hose substitution into Eq. (54) yields
∑

𝛽
𝑔𝛼𝛽geom𝛾̇

𝛽
1-2 = −𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p +𝜦𝛼 ⋅ (𝐛̇⊗ 𝐧) . (56)
7

In turn, from the statical compatibility condition (46)1 we have
∑

𝛽
𝜦𝛽𝐧𝛾̇𝛽1-2 = 𝐐e

n𝐛̇ . (57)

n substituting the expressions (56) and (57) into the formula (51) after
umming over 𝛽, we obtain
∑

𝛽
𝑔𝛼𝛽band𝛾̇

𝛽
1-2 =

∑

𝛽
ℎ𝛼𝛽 𝛾̇𝛽1-2 −𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p +𝜦𝛼 ⋅ (𝐛̇⊗𝐧)− (𝜦𝛼𝐧) ⋅ 𝐛̇ . (58)

he last two terms cancel each other, and we arrive at the useful
elationship
∑

𝛽∈
𝑔𝛼𝛽band𝛾̇

𝛽
1-2 =

∑

𝛽∈
ℎ𝛼𝛽 𝛾̇𝛽1-2 −𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p ∀𝛼 ∈  . (59)

The particular case of orthogonality of the tensors in the last term
including 𝐅̇∗

1 = 𝐅̇∗
2) is of special interest, since then

∑

𝛽∈
𝑔𝛼𝛽band𝛾̇

𝛽
1-2 =

∑

𝛽∈
ℎ𝛼𝛽 𝛾̇𝛽1-2 if 𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p = 0 . (60)

hen, from equality (47) we obtain

̇𝛼
1 − ̇𝑓 𝛼2 = −

∑

𝛽∈
ℎ𝛼𝛽 (𝛾̇𝛽1 − 𝛾̇𝛽2 ) if 𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p = 0 (61)

nd, if inequality (49) holds, also

𝛾̇𝛼1-2
∑

𝛽∈
ℎ𝛼𝛽 𝛾̇𝛽1-2 = 𝛾̇𝛼1-2

∑

𝛽∈
𝑔𝛼𝛽band𝛾̇

𝛽
1-2 ≤ 0 if 𝜦𝛼 ⋅ (𝐅̇∗

1 − 𝐅̇∗
2)𝐅

p = 0 . (62)

his is true ∀𝛼 ∈  in the special case of 𝐅̇∗
1 = 𝐅̇∗

2, and then, in analogy
o condition (50), we arrive at the following property of the hardening
oduli matrix

det ℎ ≤ 0 for some  ⊆  , ℎ = (ℎ𝛼𝛽 ) with 𝛼, 𝛽 ∈  , (63)

rovided non-negative slip-rates 𝛾̇𝛼1 , 𝛾̇
𝛼
2 satisfy the inequality (48) along

ith equality (𝛾̇𝛼1 − 𝛾̇𝛼2 ) = (𝛾̇𝛼1-2) ≠ (0).
For 𝐅̇∗

1 = 𝐅̇∗
2 to be met for two distinct bands, the following equation

∑

𝛽∈
𝐍𝛽 𝛾̇𝛽1-2 =

−1
𝐅∗𝐛̇⊗

−T
𝐅p𝐧 (64)

ust have a solution (𝛾̇𝛼1-2) ≠ (0). This equation results from the
inematic relationships (52) and (55). Note that this is only a necessary
ondition, since the consistency conditions (5) in the bands are not
uaranteed, so the associated banding mode (40) is virtual in this sense.

On using Eq. (46) to eliminate vector 𝐛̇ from Eq. (64), we arrive at
he equation

e
n𝐅

∗
∑

𝛼∈
𝐍𝛼 𝛾̇𝛼1-2 =

∑

𝛼∈
𝛾̇𝛼1-2𝜦

𝛼𝐧⊗
−T
𝐅p𝐧 , (65)

nd finally, at
∑

𝛼∈
𝐙𝛼 𝛾̇𝛼1-2 = 𝟎 , 𝐙𝛼 = 𝐐e

n𝐅
∗𝐍𝛼 −𝜦𝛼𝐧⊗

−T
𝐅p𝐧 , (66)

or consistency with 𝐅̇∗
1 = 𝐅̇∗

2.
Once a non-zero vector (𝛾̇𝛼1-2) is found that satisfies Eq. (66), the

ssociated vector 𝐛̇ can be determined from Eq. (57) so that all the
bove equations from (52) onwards are satisfied. In Eq. (66), 𝛾̇𝛼1-2 are
he only unknowns for a given 𝐧, and all other quantities are known in
given state from constitutive assumptions.

Hence, we have proven the following statement.

roposition 2. Given a homogeneous state and the constitutive assump-
ions used above, let
(i) (𝛾̇𝛼1-2) = (𝛾̇𝛼1 − 𝛾̇𝛼2 ) ≠ (0) be a solution to Eq. (66) for a given 𝐧.

hen,
(ii) there exists a virtual deformation banding mode, which satisfies the

ompatibility conditions (40) across the band interfaces, such that
∑

𝛽∈
𝑔𝛼𝛽band𝛾̇

𝛽
1-2 =

∑

𝛽∈
ℎ𝛼𝛽 𝛾̇𝛽1-2 ∀𝛼 ∈  = {𝛼 ∈  ∶ 𝛾̇𝛼1 > 0 or 𝛾̇𝛼2 > 0}.
(67)
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Table 1
Notation of slip systems, directions and planes in fcc crystals.
𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 𝑐1 𝑐2 𝑐3 𝑑1 𝑑2 𝑑3

[01̄1] [101̄] [1̄10] [011] [1̄01̄] [11̄0] [01̄1] [1̄01̄] [110] [011] [101̄] [1̄1̄0]
(111) (1̄1̄1) (1̄11) (11̄1)

This new result is stronger than that proven as Proposition 3
n Petryk and Kursa (2013). In view of conditional inequality (62),
he derived equality (67) highlights the fundamental role played by
ff-diagonal (latent- or cross-hardening) moduli ℎ𝛼𝛽 in forming defor-

mation bands in single crystals, at least in the special case 𝐅̇∗
1 = 𝐅̇∗

2.
This is even more clearly visible from the property (63) obtained as a
consequence if inequality (48) holds.

If inequality (48) holds for a non-singular matrix 𝑔band then inequal-
ity (49) must be strict for some 𝛼, since (𝛾̇𝛼1-2) ≠ (0). The strict inequality
carries over to the sum over 𝛼 ∈ . It can be shown (Petryk and Kursa,
2013, Proposition 2) that the resulting inequality implies the existence
of virtual banding modes which are energetically preferable to uniform
straining. Since the value of 𝛥2𝑤(𝛥𝛾𝛼 , 𝛥𝐅) expressed by Eq. (23) to
second-order with respect to 𝛥𝑡 is not affected by a skew part of the
slip-system interaction matrix, the proof can run on similar lines as
before and is therefore omitted here. It can be seen that far reaching
conclusions can be drawn from the very existence of a non-zero solution
to Eq. (66).

Directions of vectors (𝛾̇𝛼1 − 𝛾̇𝛼2 ) and 𝐛̇ found by solving Eq. (64) or
Eq. (66) for various 𝐧 can be taken as good initial guesses in numeri-
cal calculations of energetically optimal deformation banding modes.
These vectors need to be normalized beforehand because they can
only be determined from these equations up to an arbitrary multiplier.
Selected normalized solutions to Eq. (64) or Eq. (66) were found helpful
in choosing the starting points in the calculations reported below,
aimed at solving numerically the minimization problem (38).

5. Numerical examples

5.1. Material properties

Non-symmetric slip-system hardening matrix (ℎ𝛼𝛽 ) is specified as
follows (Bronkhorst et al., 1992)

ℎ𝛼𝛽 =
(

𝜒𝛼𝛽 + 𝑞
(

1 − 𝜒𝛼𝛽
))

ℎ𝛽 , (68)

where the latent-to-self hardening ratio 𝑞 and coefficients 𝜒𝛼𝛽 de-
fine latent hardening of the slip systems. Function ℎ𝛽 describes the
saturation-type hardening in the form

ℎ𝛽 = ℎ0

(

1 −
𝜏𝛽cr
𝜏s

)𝑎

for 𝜏𝛽cr ≤ 𝜏s . (69)

ote that generally ℎ𝛼𝛽 ≠ ℎ𝛽𝛼 , unless 𝜏𝛼cr = 𝜏𝛽cr along with 𝜒𝛼𝛽 = 𝜒𝛽𝛼 .
Specific material parameters, (𝑞, 𝜒𝛼𝛽 , ℎ0, 𝜏s, 𝑎) and elastic constants

dopted in the calculations for fcc metal crystals, are given below
eparately for Cu and Ni in Sections 5.3 and 5.4, respectively.

Standard notation of slip-systems in fcc crystals is given in Table 1,
ollowing Taylor (1938a).

.2. Selected aspects of the quasi-minimization algorithm

The external control need not be fully kinematic. The partial kine-
atic control is realized by splitting componentwise the deformation

radient tensor into a sum

= 𝐅̂(𝜆) + 𝐅̃ , 𝐅̂(𝜆) controlled , 𝐅̃ free ,

𝐹𝑖𝑗 =

{

𝐹𝑖𝑗 (𝜆) if controlled,
𝐹𝑖𝑗 if free .

(70)
8

ontrolled 𝐹𝑖𝑗 (𝜆) define a deformation program or blocked degrees
f freedom. Complementary components 𝐹𝑖𝑗 of 𝐅̃ are unknown and
etermined incrementally together with incremental slips 𝛥𝛾𝛼 . An ex-
mple of partial kinematic control of 𝐅 is given in Eq. (71), where free
omponents 𝐹𝑖𝑗 correspond to zero external stresses.

The problem of quasi-minimization of incremental energy for the
imulation of deformation banding using QEP, called minimization by
EP for brevity, is defined by the conditions (38) and (39) examined

ointly. For this purpose, 𝛥𝑤𝑖 in the left-hand expression (38) has been
eplaced with the respective incremental energy 𝛥𝜀𝑖; note that Eq. (21)
olds true after minimization by QEP, but not before. The resulting
xpression is minimized with respect to parameters 𝛥𝛾𝛼1 , 𝛥𝛾

𝛼
2 , 𝜂,𝐧, 𝛥𝐛, 𝛥𝐅̃

simultaneously.
In order to study a wide spectrum of banding modes in an initially

homogeneous material (although without guarantee of completeness),
minimization by QEP was started from a series of predetermined orien-
tations of band normal 𝐧. The initial trial orientations 𝐧𝑗 were assumed
on the basis of a fixed list of pairs of angles {𝜙𝑗 , 𝜓𝑗} defining the
vector orientation 𝐧𝑗 = (cos𝜓𝑗 cos𝜙𝑗 , cos𝜓𝑗 sin𝜙𝑗 , sin𝜓𝑗 ). The trial band
interfaces were assumed to be parallel to the following families of
crystallographic planes: four {111}, six {110}, three {100} i twelve
{112}, which makes the 25 initial starting points used to find the
banding mode. The actual orientation of band interfaces found by
incremental work minimization (38) is generally different from the
starting point, but may depend on it.

The next key point was to select trial sets 1, 2 of potentially active
slip systems in the bands, associated with a starting value of vector 𝛥𝐛.
For this purpose, the set of initial band orientations 𝐧𝑗 was first reduced
to those for which Eq. (64) or Eq. (66), transformed to incremental
form, had a non-zero solution (𝛥𝛾𝛼1-2). After determining the trial values
of 𝛥𝛾𝛼1-2, the potentially active slip-systems sets 1 and 2 in the bands
were estimated as 1 = {𝛼 ∶ 𝛥𝛾𝛼1-2 > 0} and 2 = {𝛼 ∶ 𝛥𝛾𝛼1-2 < 0}.
If numbers 𝛥𝛾𝛼1-2 had (except null ones) only positive or only negative
values, identical trial sets were assumed, 1 = 2 = {𝛼 ∶ 𝛥𝛾𝛼1-2 >
0 or 𝛥𝛾𝛼1-2 < 0}.

Initial values of volume fraction 𝜂 was arbitrary assumed as 1∕2.
However, in order to check the influence of this initial value on the
final results of minimization by QEP, calculations were also performed
for 𝜂 = 1∕3 and 𝜂 = 2∕3. The obtained final banding modes were then
the same as for the initial value equal to 1∕2.

5.3. Simple shear test

If a uniform simple shear activates two slip systems and can be
split into two families of single-slip bands, then the deformation band-
ing pattern found previously by incremental energy minimization, cf.
e.g., Ortiz et al. (2000, Figure 2) or Petryk and Kursa (2013, Figure 3),
does not differ from that obtained by minimization by QEP since there
is no skew part of matrix (𝑔𝛼𝛼) for single slip. In a general case, the
skew part of matrix (𝑔𝛼𝛽 ) is non-zero and the results are different.

Numerical simulations of a simple shear test were conducted here
to analyse the actual experimental test presented in Dmitrieva et al.
(2009). Another goal was to compare the results obtained here for
the non-symmetric slip-system interaction matrix with the previous
ones (Petryk and Kursa, 2013), where the matrix was selectively sym-
metrized. The modelling of deformation banding during a simple shear
test was carried out under kinematic control with a prescribed overall
deformation gradient 𝐅̄(𝜆) = 𝐅̂(𝜆) = 𝟏 + 𝜆𝐌 ⊗ 𝐍 defined by vectors
of overall shear direction 𝐌 and overall shear plane normal 𝐍, and a
loading parameter 𝜆. In this case, there are no free components of 𝐅̃.
The shear test is designed so that initially the overall shear direction
𝐌 is collinear with crystallographic lattice direction [121̄] and vector
𝐍 is collinear with plane normal (1̄11). However, the crystallographic
lattice was initially rotated by 5◦ around the crystallographic direc-
tion [1̄01̄], in order to more accurately simulate the experimentally
measured deformation gradient given in Dmitrieva et al. (2009). The
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Table 2
Incipient solutions for deformation banding in a simple shear test in the initial step 𝜆 ∈ (0, 10−3).

Solution Mode 𝛥𝑤̄ [MPa] 𝜂 𝛥𝐛 ∝ 𝐧 1 2

#1 Banding 0.0013647 0.5 [101] (12̄1) {𝑐3, 𝑏1̄} {𝑏3, 𝑐1̄}
#2 Banding 0.0013653 0.5 [2̄12] (101) {𝑏3, 𝑐3} {𝑏1̄, 𝑐1̄}
#3 Banding 0.0013657 0.5 [101] (1̄11) {𝑏3, 𝑐3, 𝑏1̄} {𝑏3, 𝑏1̄, 𝑐1̄}
#4 Banding 0.0013689 0.25 [01̄0] (1̄01) {𝑏3, 𝑏1̄} {𝑐3, 𝑐1̄}
#5 Banding 0.0013728 0.5 [01̄0] (1̄01) {𝑏3, 𝑐3, 𝑏1̄, 𝑐1̄} {𝑐3, 𝑐1̄}
#6 Banding 0.0013738 0.5 [101] (1̄1̄1) {𝑏3, 𝑐3, 𝑐1̄} {𝑐3, 𝑏1̄, 𝑐1̄}
#7 Uniform 0.0013748 None None None {𝑏3, 𝑐3, 𝑏1̄, 𝑐1̄} {𝑏3, 𝑐3, 𝑏1̄, 𝑐1̄}
i
a
d
=
t
c

simulation of the deformation proceeded by increasing the value of
loading parameter 𝜆(𝑡) from 0 to 0.23 with a constant increment 𝛥𝜆 =
𝛥𝑡∕s equal to 10−3.

The material properties for the tested Cu single crystal were adopted
as follows. The latent-to-self hardening ratio was taken 𝑞 = 1.2 for all
lip-systems, also for coplanar slip-system. The non-symmetric harden-
ng moduli ℎ𝛼𝛽 were determined from formula (68) with parameters
𝛼𝛽 = 𝛿𝛼𝛽 , the Kronecker delta. In this work, a different hardening

aw was used to describe the material behaviour than in the previous
ork (Petryk and Kursa, 2013), where the power hardening law was
sed and the moduli matrix (ℎ𝛼𝛽 ) was symmetric. As shown below,

this change in the hardening description did not significantly affect the
results obtained. Saturation-type strain-hardening in the form (69) at
room temperature is assumed here, with the initial yield stress 𝜏0 = 1
MPa, initial hardening parameter ℎ0 = 250 MPa, saturation stress 𝜏s
= 144 MPa and exponent 𝑎 = 2. Constant elastic moduli tensor of the
Saint Venant–Kirchhoff model was adopted, with elastic moduli 𝐶11 =
170 GPa, 𝐶12 = 124 GPa, 𝐶44 = 75 GPa taken after Simmons and Wang
(1971).

Since the latent hardening parameter 𝑞 was assumed to be greater
than 1 from the outset, the deformation banding was found energeti-
cally more favourable than uniform deformation as soon as the plastic
strain range was entered. Using the minimization by QEP with multiple
starting points as specified in Section 5.2, several solutions with crystal
subdivision into bands have been obtained as shown in Table 2. Six
different banding solutions, labelled #1 to #6, have been found, and
all are initially energetically preferable to solution #7 corresponding to
uniform deformation which is given for comparison. Each of the band-
ing solutions corresponds to a different value of the overall incremental
work density 𝛥𝑤̄ in the initial step 𝜆 ∈ (0, 𝛥𝜆), and solution #1 gives
the minimal incremental work at this first step. The incremental work
density 𝛥𝑤̄ in all examples given below has been calculated for constant
step size 𝛥𝜆 = 10−3.

However, starting from deformation 𝜆 = 0.051, it is the solution #3
that corresponds to the minimal level of the incremental work 𝛥𝑤̄, cf.
Fig. 2. Solution #3 is thus selected for a more detailed description.
From the very beginning of plastic flow, the initially homogeneous
crystal splits into two families of deformation bands with equal volume
fraction 𝜂 = 0.5. The calculated normal vector 𝐧 coincides with that of
crystallographic plane (1̄11) and initial vector 𝛥𝐛 is parallel to crystal-
lographic direction [101]. In the analysed process of deformation, the
{𝑐3} slip-system is dominant within one family of bands while {𝑐1̄} is
dominant within the second family. Two secondary slip-systems {𝑏1̄, 𝑏3}
re active in both families of bands. Slip increments 𝛥𝛾𝛼 and increments
𝐛 are computed in each discrete step of the deformation process
y minimization by QEP. Both 𝐧 and 𝜂 remain unchanged during

deformation as soon as banding has been initiated. This simplifying
assumption is adopted throughout Section 5.

In Fig. 3, the solution #3 has been compared with the experimental
result provided by Dmitrieva et al. (2009) for the shear strain 𝜆 = 0.23.
Two families of calculated deformation bands containing active slip-
plane traces have been schematically shown in Fig. 3(a) on the side
plane (101) of the crystal. The traces of the dominant slip planes are
marked in red, and the two traces of the secondary slip in blue, the
same in both families. In addition, the lengths of the red and blue
traces are proportional to the accumulated shears 𝛾𝛼 on the respective
9
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Fig. 2. Comparison of averaged incremental work density 𝛥𝑤̄ for different solutions
with deformation banding, #1 to #6, and for uniform solution #7 during macroscopic
simple shear, for 𝛥𝜆 = 10−3.

slip-systems, which shows the quantitative difference in the shear
increments on the {𝑐} and {𝑏} slip-system planes. The calculated angle
between the bands and the horizontal side plane of the deformed crystal
is 13◦ and is in agreement with the experimentally calculated value
of 12◦. The qualitative comparison of experimental and numerical
results presented in Fig. 3 is quite satisfactory. The current simulation
results are almost the same as in the previous work (Petryk and Kursa,
2013), so in this case, the changes in the hardening law and the
extension of the previous minimization of incremental work to the
current minimization by QEP did not noticeably affect the results.

5.4. Channel-die compression

The next example of deformation banding in the channel-die com-
pression (CDC) is more complex, although the analysis below is limited
to the particular orientation (called cube) of the crystal. For a par-
tial comparison with experiment, we have chosen the experimental
results of a detailed analysis provided by Basson and Driver (2000).
See also Fathallah et al. (2019) and the references therein for more
information about the CDC test.

In order to describe the directions and planes in CDC tests, the
commonly used nomenclature has been adopted. Compression is along
macroscopic direction 𝑋3 called the normal direction (ND), extension
s allowed along direction 𝑋1 called the elongated direction (ED),
nd deformation is constrained in direction 𝑋2 called the transverse
irection (TD) (Fig. 4). For the cube orientation, 𝑋1 = ED = [100], 𝑋2
TD = [010], and 𝑋3 = ND = [001]. If overall macroscopic shears in

his reference frame are negligible then CDC reduces to the plane strain
ompression.

An overall deformation mode in the channel-die compression test,

eglecting the geometric effect of the free ends of the sample, can be
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Fig. 3. Simple shear test: (a) Calculated deformation pattern with two families of deformation bands, and slip-plane traces on the side plane (101) of the crystal. The traces of the
dominant slip planes are marked in red, and the two traces of the secondary slip in blue, with the lengths of the traces proportional to the accumulated shears on the slip-systems.
(b) Deformation bands observed on the side plane of a deformed Cu single crystal, after Dmitrieva et al. (2009). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 4. Schematic view of the channel-die compression test.
simulated by imposing partial constraints on the overall deformation
gradient 𝐅 and Piola stress 𝐒 tensors as follows, cf. Eq. (70),

𝐅 =
⎡

⎢

⎢

⎣

𝐹11 𝐹12 𝐹13
0 1 0
0 0 1 − 𝜆

⎤

⎥

⎥

⎦

, 𝐒 =
⎡

⎢

⎢

⎣

0 0 0
𝑆̃12 𝑆̃22 𝑆̃23
𝑆̃13 𝑆̃32 𝑆̃33

⎤

⎥

⎥

⎦

. (71)

The compression was kinematically controlled by the prescribed com-
ponent 𝐹33 = 1 − 𝜆(𝑡), where loading parameter 𝜆(𝑡) was changed with
a fixed step size 𝛥𝜆 = 10−3 starting with 𝜆 = 0. Simulations for several
tested solutions performed for other step sizes 𝛥𝜆 = 10−4 and 𝛥𝜆 = 10−2

gave approximately the same results. Unknown components 𝐹𝑖𝑗 and 𝑆̃𝑖𝑗
were determined at each deformation step by the minimization by QEP
described above.

Material parameters adopted in the modelling have been set to fit
the first part of the experimental equivalent stress–strain curve up to
0.4 of strain, shown in Figure 3(a) in Basson and Driver (2000) for a
compressed nickel (Ni) single crystal. Comparison of the experimental
and numerical graphs of equivalent stress vs equivalent strain for Ni
is shown here in Fig. 5. Saturation-type hardening in the form (69)
has been adopted along with initial yield stress 𝜏0 = 1MPa, initial
hardening parameter ℎ0 = 500MPa, saturation stress 𝜏s = 144MPa, and
𝑎 = 2. The hardening matrix has now two-parameter form with the
latent hardening parameter 𝑞 = 1 for self-hardening and for coplanar
slip-systems, and 𝑞 = 1.2 for others, which corresponds to 𝜒𝛼𝛽 =
1 for coplanar systems and 0 otherwise. This is somewhat different
10
from the simple-shear modelling assumption in the previous section.
Cubic elastic properties of a Ni single crystal at room temperature are
described by elasticity moduli 𝐶11 = 249 GPa, 𝐶12 = 154 GPa, 𝐶44 = 122
GPa, taken as average values in the rows numbered from 11,065 to
11,070 in Simmons and Wang (1971, page 56). An initial orientation
{100}⟨001⟩ (cube) of a Ni single crystal was taken for the simulation of
the channel-die compression test.

A trial set of potentially active slip-systems, e.g., defined as  =
𝑛 ∪ {𝛼|𝑓 𝛼tr > 𝜖} in the notation of Petryk and Kursa (2022), for the
initial time step 𝛥𝜆 = 10−3 consists of twelve systems  = {𝑎2, 𝑏2, 𝑐2, 𝑑2,
𝑎1̄, 𝑎3̄, 𝑏1̄, 𝑏3̄, 𝑐1̄, 𝑐3̄, 𝑑1̄, 𝑑3̄}. Three groups of potentially active systems
can be distinguished according to their overload level. The most and
equally stressed are four slip-systems {𝑎2, 𝑏2, 𝑐2, 𝑑2}, the next four are
{

𝑎1̄, 𝑏1̄, 𝑐1̄, 𝑑1̄
}

and the next are
{

𝑎3̄, 𝑏3̄, 𝑐3̄, 𝑑3̄
}

. The threshold resolved
shear stress is initially exceeded for these twelve trial systems for
deformation steps 10−2, 10−3, 10−4, while for the smaller step 10−5 this
trial set reduces to the four listed above as the most stressed. As before,
since the latent hardening parameter 𝑞 > 1 from the beginning, the de-
formation banding is found energetically more favourable than uniform
deformation as soon as the plastic strain range has been entered.

5.4.1. Results for constrained 𝐹12 = 0 and 𝛥𝐛 ∝ [1 0 0]
In order to reflect the real experimental conditions of the test, we
suppose first that the friction on the lateral surfaces of the channel
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Fig. 5. Comparison of the experimental and numerical graphs of equivalent stress vs
equivalent strain for a Ni single crystal. The thick black line represents the experimental
curve obtained from the channel-die test by Basson and Driver (2000). The solid
blue curve is for the simulation of uniform deformation with four active slip systems
 = {𝑎2, 𝑏2, 𝑐2, 𝑑2}. The dashed red curve is for a non-uniform solution with two
families of bands with active slip systems 1 = {𝑎2, 𝑏2} and 2 = {𝑐2, 𝑑2}, described
in Section 5.4.1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

prevents overall deformation 𝐹12. Therefore, we take here 𝐹12 = 0
instead of arbitrary 𝐹12, but deformation 𝐹13 ≠ 0 is allowed.

In the first approach used in this subsection, it is assumed that the
unknown vector 𝛥𝐛 has a direction along 𝑋1 (ED), so it corresponds to
direction [1 0 0] of the crystallographic lattice. This direction is the only
one which does not cross the channel boundaries, which motivated its
choice. It has been checked that for the incipient deformation banding
mode (𝐛̇,𝐧) corresponding to ([1 0 0], (0 1 0)), there exists a solution
(𝛾̇𝛼1-2) ≠ (0) to Eq. (64). Under this assumption and using multiple
starting points as specified in Section 5.2, as a result of the simulation
only one type of solution has been found, which corresponds to the
splitting of the crystal into deformation bands with the sets 1 =
{𝑎2, 𝑏2} and 2 = {𝑐2, 𝑑2} of active slip-systems. The initially calcu-
lated volume fraction of the bands is 𝜂 = 0.5 and remains constant in
subsequent deformation steps. The band interface is coplanar with the
crystallographic plane (0 1 0) parallel to the ED-ND plane. In this case,
the deformation proceeds without crystallographic lattice rotation. The
calculated active slip-plane traces on the compression face, Fig. 6(a, b),
are in satisfactory agreement with the experimental pattern shown in
11
Fig. 6(c) after Basson and Driver (2000) for compressive logarithmic
strain 𝜖 = 0.83. The lower band in Fig. 6(a) contains slip-planes traces
of two active slip-systems 1 = {𝑎2, 𝑏2}, while the upper band contains
traces of active slip-systems 2 = {𝑐2, 𝑑2}.

5.4.2. Results for constrained 𝐹12 = 0 and free 𝛥𝐛
In the second approach presented here, the calculations of deforma-

tion banding are still performed for 𝐹12 = 0 but now for unconstrained
direction of vector 𝛥𝐛. In this case, several solutions are available
already in the initial step (0, 𝛥𝜆), see Table 3. All the solutions found
either split the crystal into two families of bands of volume fraction
𝜂 = 0.5 or correspond to uniform deformation.

Due to the symmetry of loading with respect to the crystallographic
lattice, the following alternative and energetically equivalent solutions
to #1a, #2a and #3a were found in the calculations, which are available
but not included in Table 3:

Alternative to #1a: 𝜂 = 0.5, 𝛥𝐛 ∝ [101], 𝐧 = (010), 1 = {𝑏2},
2 = {𝑐2}.

Alternative to #2a: 𝜂 = 0.5, 𝛥𝐛 ∝ [010], 𝐧 = (101), 1 = {𝑏2},
2 = {𝑐2}.

Alternative to #3a: 𝜂 = 0.5, 𝛥𝐛 ∝ [001], 𝐧 = (010), 1 = {𝑏2, 𝑑2},
2 = {𝑎2, 𝑐2}.

The solution labelled #3a coincides with that found in Section 5.4.1
above and illustrated in Fig. 6(a, b). The solutions in Table 3 have
been sorted according to the increasing initial value of 𝛥𝑤̄. Comparison
of the averaged incremental work density 𝛥𝑤̄ (which for constant
step size 𝛥𝜆 reduces to comparison of nominal stress |𝑆33| ≈ 𝛥𝑤̄∕𝛥𝜆)
corresponding to the continuation of these solutions during subsequent
deformation is presented in Fig. 7.

The changes of active slip systems along the deformation paths
initiated by different solutions as in Table 3 are given in Table 4.
For banded solution #3a and for uniform solution #5a, there are no
changes of active slip-systems until the final deformation at 𝜆 = 0.41.
The changes of active slip-systems were detected automatically in the
course of deformation by the incremental minimization by QEP.

The solutions that correspond to the smallest work expenditure at
the initial stage, namely #1a and #2a as it is visible in Table 3, are no
longer energetically preferred at a later stage. Finally, it is the solution
#3a that gives the smallest increase in the deformation work during
deformation, cf. Fig. 7. Recall that solution #3a found for unconstrained
𝛥𝐛 is equivalent to the solution found in Section 5.4.1 assuming 𝛥𝐛 ∝
[1 0 0], illustrated in Fig. 6(a, b).

5.4.3. Results for free 𝐹12 and free 𝛥𝐛
In the third approach, the constraint imposed above on 𝐹12 is

removed, and the solutions for deformation banding during channel-die
compression are calculated by imposing partial constraints on the over-
all deformation gradient 𝐅 and Piola stress 𝐒 in the general form (71).
Fig. 6. Plane strain compression: (a) calculated slip-plane traces of dominant slip-systems, 1 = {𝑎2, 𝑏2} in the lower band and 2 = {𝑐2, 𝑑2} in the upper band, (b) herring-bone
pattern of traces within two families of deformation bands, (c) the observed pattern of slip traces on the compression face for a cube-oriented Ni crystal at compressive strain
𝜖 = 0.83, after Basson and Driver (2000).
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Table 3
Incipient solutions for deformation banding in channel-die compression for 𝐹12 = 0 and free 𝛥𝐛 in the initial step (0, 10−3).

Solution Mode 𝛥𝑤̄ [MPa] 𝜂 𝛥𝐛 ∝ 𝐧 1 2

#1a Banding 0.0038179 0.5 [1̄01] (010) {𝑑2} {𝑎2}
#2a Banding 0.0038180 0.5 [010] (1̄01) {𝑑2} {𝑎2}
#3a Banding 0.0039514 0.5 [100] (010) {𝑎2, 𝑏2} {𝑐2, 𝑑2}
#4a Uniform 0.0039514 None None None {𝑏2, 𝑐2} {𝑏2, 𝑐2}
#5a Uniform 0.0040178 None None None {𝑎2, 𝑏2, 𝑐2, 𝑑2} {𝑎2, 𝑏2, 𝑐2, 𝑑2}

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Table 4
Changes of active slip-systems in the bands up to final deformation 𝜆 = 0.41
during channel-die compression with 𝐹12 = 0 and free 𝛥𝐛, for banded solutions
#1a, #2a and uniform solution #4a, initiated as in Table 3. For solutions #3a
and #5a there were no further changes of active slip-systems.

Solution #1a with banding

𝜆 1 2

0.001 {𝑑2} {𝑎2}
0.354 {𝑑2, 𝑑1̄} {𝑎2, 𝑎1̄}

Solution #2a with banding

𝜆 1 2

0.001 {𝑑2} {𝑎2}
0.002 {𝑏2, 𝑑2} {𝑎2, 𝑐2}
0.013 {𝑏2, 𝑑2, 𝑑3̄} {𝑎2, 𝑐2, 𝑎3̄}
0.093 {𝑎2, 𝑏2, 𝑑2} {𝑎2, 𝑐2, 𝑑2}
0.220 {𝑎2, 𝑏2, 𝑑2, 𝑏3̄} {𝑎2, 𝑐2, 𝑑2, 𝑎3̄}
0.259 {𝑏2, 𝑑2, 𝑏3̄} {𝑎2, 𝑐2, 𝑎3̄}

Solution #4a – uniform

𝜆 

0.001 {𝑏2, 𝑐2}
0.354 {𝑏2, 𝑐2, 𝑏1̄, 𝑐1̄}

Fig. 7. Comparison of averaged incremental work density 𝛥𝑤̄ for banded solutions
#1a to #3a and for uniform solutions #4a and #5a (numbered as in Table 3) during
channel-die compression for 𝐹12 = 0 and free 𝛥𝐛, for 𝛥𝜆 = 10−3.

Unknown increment 𝛥𝐛 is here also unconstrained. This type of analysis
can be interpreted as the search for secondary banding modes within
the primary bands defined by solution #3a above. This is because each
band interface of orientation 𝐧 = (010) in solution #3a is parallel to
the lateral boundaries of the channel die and is subject to the same
boundary conditions in the absence of friction.

A number of different solutions collected in Table 5 are available is
this case in the initial deformation step. Similarly as before, because
of the symmetry of loading with respect to the crystallographic lat-
tice, there are alternative and energetically equivalent solutions to the
solutions #1b to #4b which are not included in Table 5:

Alternative to #1b: 𝜂 = 0.5, 𝛥𝐛 ∝ [010], 𝐧 = (001), 1 = {𝑑2},
2 = {𝑐2}.

Alternative to #2b: 𝜂 = 0.5, 𝛥𝐛 ∝ [1̄01̄], 𝐧 = (01̄0), 1 = {𝑏2},
 = {𝑐2}.
12

2 u
Table 5
Incipient solutions for deformation banding in channel-die compression with free 𝐹12
and free 𝛥𝐛.

Solution Mode 𝛥𝑤̄ [MPa] 𝜂 𝛥𝐛 ∝ 𝐧 1 2

#1b Banding 0.0038157 0.5 [010] (001̄) {𝑎2} {𝑏2}
#2b Banding 0.0038179 0.5 [101̄] (01̄0) {𝑑2} {𝑎2}
#3b Banding 0.0038180 0.5 [01̄0] (1̄01̄) {𝑏2} {𝑐2}
#4b Banding 0.0038184 0.5 [001] (010) {𝑏2} {𝑎2}
#5b Uniform 0.0039514 None None None {𝑏2, 𝑐2} {𝑏2, 𝑐2}
#6b Banding 0.0039517 0.5 [01̄0] (100) {𝑎2, 𝑑2} {𝑎2, 𝑏2}

Table 6
Changes of active slip-systems in the bands up to final deformation 𝜆 = 0.41
during channel-die compression with free 𝐹12 and free 𝛥𝐛, for banded solutions
#1b, #3b and #4b initiated as in Table 5.

Solution #1b with banding

𝜆 1 2

0.001 {𝑎2} {𝑏2}
0.027 {𝑎2, 𝑎3̄} {𝑏2, 𝑏3̄}
0.098 {𝑎2, 𝑏3̄} {𝑏2, 𝑎3̄}
0.192 {𝑎2, 𝑐3̄} {𝑏2, 𝑑3̄}

Solution #3b with banding

𝜆 1 2

0.001 {𝑏2} {𝑐2}
0.002 {𝑏2} {𝑎2, 𝑐2}
0.013 {𝑏2, 𝑏3̄} {𝑎2, 𝑐2, 𝑐3̄}
0.061 {𝑏2, 𝑏3̄, 𝑑3̄} {𝑎2, 𝑏2, 𝑐2, 𝑐3̄}
0.117 {𝑏2, 𝑎3̄} {𝑎2, 𝑏2, 𝑐2}
0.353 {𝑏2, 𝑎3̄, 𝑑3̄} {𝑎2, 𝑏2, 𝑐2, 𝑐3̄}
0.368 {𝑏2, 𝑑3̄} {𝑎2, 𝑐2, 𝑐3̄}

Solution #4b with banding

𝜆 1 2

0.001 {𝑏2} {𝑎2}
0.006 {𝑏2, 𝑏1̄} {𝑎2, 𝑎1̄}
0.01 {𝑏2, 𝑎3̄, 𝑏1̄, 𝑑3̄} {𝑎2, 𝑎1̄, 𝑐3̄}

Alternative to #3b: 𝜂 = 0.5, 𝛥𝐛 ∝ [010], 𝐧 = (1̄01), 1 = {𝑑2},
2 = {𝑎2}.

Alternative to #4b: 𝜂 = 0.5, 𝛥𝐛 ∝ [001̄], 𝐧 = (010), 1 = {𝑐2},
2 = {𝑑2}.

As before, the incipient solutions in Table 5 have been sorted
ccording to the increasing initial value of 𝛥𝑤̄. Comparison of the
veraged incremental work density 𝛥𝑤̄ during subsequent deformation
s presented in Fig. 8. The solution #3b is energetically preferred at a
ater stage of deformation, it finally gives the smallest increase in the
eformation work, cf. Fig. 8.

The changes of active slip systems along the deformation paths ini-
iated by three solutions from Table 5 are given in Table 6. The banded
olution #2b shown in Table 5 is the same as solution #1a in Table 3,
nd uniform solution #5b shown in Table 5 is the same as solution #4a
n Table 3. The changes of active slip systems in these two solutions
re the same as in Table 4. Note that no solution corresponding to #3a
ppears in Table 5, probably because this solution in the initial step no
onger represents a minimum when the previous constraint 𝐹12 = 0 has
een relaxed.

.4.4. Discussion
Geometrically exact analysis of deformation banding during the

hannel-die compression (CDC) of a cube-oriented fcc single crystal
urned out to be quite complex. A number of different solutions have
een calculated, the experimental validation or invalidation of which
s not an easy task. Nevertheless, the proposed method of simulating
eformation bands by quasi-minimization of the incremental energy
sing QEP (minimization by QEP), defined by the conditions (38) and
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Fig. 8. Comparison of averaged incremental work density 𝛥𝑤̄ in deformation bands
initiated by solutions #1b to #4b and #6b in Table 5, and for uniform deformation #5b,
during channel-die compression with free 𝐹12 and free 𝛥𝐛, for 𝛥𝜆 = 10−3.

(39), has provided an effective tool for a thorough analysis of the
different deformation banding modes.

The multiplicity of solutions shown in Tables 3 and 5 is qualitatively
similar to experimental results, where differently oriented bands of
deformation can be seen (Basson and Driver, 2000). A kind of difficulty
in the modelling is in choosing the solution that best describes the
experiment. Selected solutions in Sections 5.4.2 and 5.4.3, labelled
as #3a and #3b, initially do not give the smallest increase in energy.
Only at a later stage of deformation, cf. Figs. 7 and 8, they give the
smallest work increments among other solutions. In agreement with
experimental observations in Basson and Driver (2000), cf. Fig. 6, it
can be concluded that the solution #3a correctly describes the forma-
tion of primary deformation bands. The immediate splitting of each
primary band into secondary bands is predicted by solution #1b and its
equivalent alternative. Additionally, several solutions given in Tables 3
and 5 offer other possibilities of the description of secondary bands
with single slip. Comparing the solutions for CDC test in the previous
subsections, it can be seen that the obtained solutions, both initial and
final, are strongly influenced by the assumed boundary conditions and
unknown direction 𝛥𝐛.

Another difficulty in the modelling of CDC comes from the friction
on the channel boundaries that can occur in an experimental test.
In order to take friction into consideration at least indirectly in the
numerical simulations, we have imposed extra conditions by zeroing
selected degrees of freedom, i.e., the deformation gradient component
𝐹12 = 0. This assumption has had a significant impact on the obtained
solutions, since in the case of modelling where component 𝐹12 is free,
the minimization by QEP gives other possible solutions, cf. Table 5.

In all cases examined, the deformation banding was found ener-
getically more favourable than uniform deformation as soon as the
plastic strain range was entered. This is because the latent hardening
parameter 𝑞 was assumed from the beginning to be greater than 1,
which opened the possibility that the key matrix 𝑔band would be in-
definite and the banding modes would be energetically favoured over
uniform straining, see Section 4.4. This is in contrast to the experimen-
tal observations by Basson and Driver (2000), where the deformation
bands were observed at a later stage of the deformation and not from
the very beginning. To reconcile different observations, the commonly
accepted assumption that the value of the latent-to-self-hardening ratio
is constant in the plastic range may be reconsidered in further work.

̄
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In view of small differences in the calculates values of 𝛥𝑤 for different
solutions, it cannot be ruled out that other factors neglected here (like
interfacial energy) may prevent early banding, which can be included
in future studies.

6. Conclusion

The incremental work criterion (38) for the onset of deformation
banding has been combined with the quasi-extremal energy principle
(29) for determining the active slip systems and slip increments in
the bands in a single crystal with a non-symmetric slip-system interac-
tion matrix. For the first time, the non-potential incremental problem
of deformation banding has been addressed by energy minimization
in full accordance with the classical constitutive framework of rate-
independent crystal plasticity in its general form, established by Hill
and Rice (1972). The theoretical analysis revealed the intuitively ex-
pected but usually not mathematically explicit role of latent hardening
in deformation pattern formation, at least in the particular case when
the conditional inequality (62) is satisfied. The common assumption
that the latent hardening parameter 𝑞 has a constant value greater than
one in the entire range of plastic deformation turned out to be too
strong to explain deformation banding only after the initial period of
uniform plastic strain.

In the numerical examples presented in Section 5, more than one
local (quasi-)minimum of the total energy expression was found, which
corresponds to multiple solutions to the incremental problem of de-
formation band formation. The solution corresponding to the initially
lowest energy increment is not necessarily the most physically signifi-
cant, so that it is a non-trivial task to solve the deformation banding
problem in a satisfactory manner. By considering work expenditure
in a longer interval of the external strain parameter, some features
of the deformation band geometry were correctly captured. Further
work in this direction is needed, as without good predictions of the
phenomenon of deformation banding observed for decades, a model of
crystal plasticity can hardly be regarded as experimentally validated.
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