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When modelling discontinuities (interfaces) using the finite element method, the standard approach is to use a 
conforming finite-element mesh in which the mesh matches the interfaces. However, this natural approach can 
prove cumbersome if the geometry is complex, in particular in 3D. In this work, we develop an efficient technique 
for a non-conforming finite-element treatment of weak discontinuities by using laminated microstructures. The 
approach is inspired by the so-called composite voxel technique that has been developed for FFT-based spectral 
solvers in computational homogenization. The idea behind the method is rather simple. Each finite element that 
is cut by an interface is treated as a simple laminate with the volume fraction of the phases and the lamination 
orientation determined in terms of the actual geometrical arrangement of the interface within the element. The 
approach is illustrated by several computational examples relevant to the micromechanics of heterogeneous 
materials. Elastic and elastic-plastic materials at small and finite strain are considered in the examples. The 
performance of the proposed method is compared to two alternative, simple methods showing that the new 
approach is in most cases superior to them while maintaining the simplicity.
1. Introduction

Solving partial differential equations on complex geometries plays 
a dominant role in many problems of interest in computational solid 
mechanics. Analytical solutions that consider possible geometrical het-
erogeneities are not available in most cases. Computational approaches 
are thus indispensable, the finite element method (FEM) being the most 
general, most powerful and most popular computational tool for nu-
merical simulations in various areas of engineering.

Historically, FEM relies on geometry-dependent computational grids 
(body-fitted or conforming meshing). This is a natural and preferred 
approach, as it is characterized by optimal accuracy. However, due to 
the complexity of investigated geometries, especially internal hetero-
geneities, a fine conforming discretisation can be quite hard to use. One 
reason is the limited computational cost that can be afforded. Although 
algorithms for finite element meshing in 2D are quite efficient and well-
established, the mesh generation for 3D problems still remains a rather 
cumbersome and time-consuming task. This problem is particularly 
pronounced when discretising geometries that contain discontinuities 
or objects (details) with diverse characteristic lengths. Secondly, some 
additional manual input is often needed or use of specialized mesh gen-
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eration software. Thirdly, for 3D models, especially large-scale ones, 
unstructured meshes, which are necessarily needed to represent com-
plex geometries, may lead to additional difficulties associated with the 
assembly and solution of the respective finite-element equations. And 
finally, even if the previous obstacles can be somehow overcome, ad-
ditional effort may be needed during post-processing. Overall, mesh 
generation may become the most time-consuming process in the pre-
processing step of numerical modelling, and dealing with conforming 
meshes for complex geometries may significantly increase the compu-
tational expense.

A possible approach to evade the mesh generation problem is to use 
a non-conforming mesh. In general, the respective methods use a struc-
tured mesh or a simple unstructured mesh generated in the domain 
defined by the external boundary of the modelled geometry. Generating 
such a mesh is then a straightforward process. However, the internal de-
tails of the geometry must somehow be treated, and several approaches 
have been developed for that purpose, as discussed below.

The focus of this work is on weak discontinuities, i.e., on the situation 
in which the primal variable (e.g., the displacement field) is continu-
ous at the interface and discontinuous are its derivatives and related 
quantities (e.g., strains and stresses) when the material properties (e.g., 
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elastic moduli) suffer discontinuity at the interface. This is in contrast 
to strong discontinuities, such as cracks, when the primal variable may 
be discontinuous at the interface (of possibly unknown and evolving 
shape). Actually, several methods have been primarily developed for 
strong discontinuities and have then been adapted to weak discontinu-
ities.

This is, for instance, the case of the extended finite element method 
(X-FEM) initially developed for modelling crack propagation indepen-
dent of the underlying finite-element mesh [1,2], see also two methods 
that are closely related to X-FEM, namely CutFEM [3] and phantom 
node method (PNM) [4], and are sometimes considered just versions of 
X-FEM. It has been subsequently shown that X-FEM can be successfully 
used also for modelling complex internal geometries (weak discontinu-
ities) of the geometry independent of the finite-element mesh [5–7]. 
With increasing popularity of the isogeometric analysis (IGA) [8], the 
X-FEM approach has been also combined with IGA [9,10], including 
XIGA for weak discontinuities and multimaterial problems [11,12].

In X-FEM, the inner surfaces (e.g., material interfaces, cracks) are 
defined implicitly using level set functions [13]. Enrichment func-
tions are then employed to modify the finite-element approximation 
of the displacement field such that the discontinuity is represented on 
a non-matching mesh. As a result, the optimal convergence rate can 
be achieved. The beneficial features of X-FEM come at the cost that 
additional global degrees of freedom are introduced (those associated 
with the enrichment shape functions). Moreover, integration must be 
performed accurately on the elements cut by an interface and, for this 
purpose, the elements are triangulated such that the subdomains match 
the interfaces. This becomes even more complex when more than one 
interface passes through an element, which is not so improbable, for 
instance, in the case of small inclusions or multi-material problems. 
Overall, implementation of X-FEM is not straightforward, particularly 
in 3D, and cannot be performed solely at the element level.

Additional deformation modes, in a sense similar to the enrichment 
functions of X-FEM, are also introduced in the immersed interface FEM 
(IIFEM) [14,15] and in the augmented finite element method (AFEM) 
[16,17]. The difference is that, unlike in X-FEM, the enrichment func-
tions are not continuous at the inter-element boundaries, which implies 
that the optimal convergence rate cannot be achieved. To improve con-
vergence, the inter-element compatibility is enforced in a version of 
IIFEM [18], which then bears some similarity to X-FEM. In the in-
compatible case, the additional degrees of freedom associated with the 
additional deformation modes can be condensed at the element level, 
hence no additional global degrees of freedom are introduced.

Common to the approaches discussed above is the “small cut-cell” 
problem that may appear when a small part of the element is cut by an 
interface. This may lead to a large condition number of the algebraic 
system to be solved and may deteriorate numerical stability of the re-
sulting algorithms, thus additional stabilization techniques are needed.

A different approach is adopted in the shifted interface method 
(SIM) [19,20] in which the interface is shifted to a nearby inter-element 
boundary. At the same time, to compensate for the error introduced by 
shifting the interface, the interface jump (compatibility) conditions are 
applied at the surrogate interface in a modified form resulting from the 
Taylor expansion of the original jump conditions. As a result, the opti-
mal convergence rate can be achieved [19].

In this work, we develop a simple method for improved treatment 
of weak discontinuities in non-conforming FEM discretization. The in-
spiration comes from recent developments in the FFT-based methods 
in computational homogenization. In this class of approaches [21], a 
periodic unit cell is discretized into a regular array of voxels, hence 
complex-shaped interfaces cannot be represented exactly. In order to 
increase the accuracy of FFT-based homogenization, the idea of com-

posite voxels has been introduced in [22], see also [23] for a related 
approach in the context of FEM, and was the first attempt to use a ho-
mogenization technique to prescribe effective mechanical properties to 
2

the voxel that contains an interface between two phases. This idea was 
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further developed by considering the composite voxel to be represented 
by a laminated microstructure and characterized by the corresponding 
effective properties [24,25]. It has been shown that these laminate vox-
els significantly improve the accuracy of the method as compared to 
the composite voxels employing simple Voigt and Reuss bounds [25]. 
Lamination-based composite voxels have also been found effective in 
reducing spurious oscillations [24], the so-called Gibbs oscillations that 
occur at the locations of high contrast in material properties and are 
characteristic for FFT-based schemes. Further related developments in 
the context of FFT-based homogenization include the extension to in-
elastic problems [26,27] and to the finite-strain framework [28,29].

In this work, the idea of laminate-based composite voxels is applied 
in the context of the finite element method. In short, each element that 
is cut by an interface is treated as a laminate composed of the two 
phases with the volume fraction and lamination orientation determined 
by the actual geometry of the interface within the element, see Sec-
tion 3. The method, which we call the laminated element technique 
(LET), does not introduce any additional global degrees of freedom and 
can be implemented solely at the element level. Direct application of 
LET and simple laminates is limited to the case of maximum one inter-
face contained within each element, thus, for instance, triple junctions 
are not allowed. Possible generalizations are briefly commented at the 
end of Section 3. The performance of the method is examined through 
several numerical experiments, see Section 4.

As illustrated by the numerical examples, in terms of accuracy, the 
proposed method cannot compete, and is not aimed to compete, with 
more sophisticated methods, such as X-FEM, which can achieve the op-
timal convergence rate typical for conforming-mesh FEM. However, the 
beneficial features of LET, as compared to X-FEM, are its simplicity and 
the ease of implementation. At the same time, it delivers an improved 
accuracy, as compared to two simple non-conforming mesh approaches 
examined as a reference. Compared to those simple approaches and also 
to the standard conforming-mesh approach, LET is associated with ad-
ditional data storage and with extra computational cost related to the 
more complex constitutive description of laminates. However, this only 
concerns the laminated elements (those cut by interfaces) which con-
stitute only a small fraction of all elements, and this fraction decreases 
with increasing mesh density.

2. Preliminaries

2.1. Compatibility conditions at a bonded interface

Consider a body occupying, in the reference configuration, domain 
Ω that is divided into two subdomains Ω1 and Ω2 (Ω =Ω1∪Ω2, Ω1∩Ω2 =
∅) with homogeneous material properties within subdomains Ω1 and 
Ω2. The interface separating Ω1 and Ω2 is assumed to be smooth and is 
denoted by Σ with 𝑵 denoting the unit normal outward to Ω1.

Deformation of the body is described by the deformation mapping 𝝋
such that 𝒙 = 𝝋(𝑿) =𝑿 + 𝒖(𝑿) where 𝑿 and 𝒙 denote the position of a 
material point in the reference and current configuration, respectively, 
and 𝒖 is the displacement field. The deformation mapping is assumed 
to be continuously differentiable in Ω1 and in Ω2 and continuous on 
Σ. The deformation gradient 𝑭 = ∇𝝋 can thus be defined in Ω1 and in 
Ω2, while continuity of 𝝋 implies the following kinematic compatibility 
condition on Σ, e.g. [30],

𝑭 2 − 𝑭 1 = 𝒄⊗𝑵 , (1)

where 𝑭 1 and 𝑭 2 are the two limiting values of the deformation gra-
dient at the interface Σ, 𝒄 is a vector, ∇ denotes the gradient in the 
reference configuration, and ⊗ denotes the dyadic product. The inter-
face Σ is thus a surface of weak discontinuity at which the displacement 
is continuous, but the deformation gradient 𝑭 (and thus also the stress) 
may suffer discontinuity due to the jump in the material properties at Σ.

The equilibrium equation, ∇ ⋅ 𝑷 T = 𝟎 (𝑃𝑖𝑗,𝑗 = 0), is formulated in 

Ω1 and in Ω2 in terms of the Piola (first Piola–Kirchhoff) stress tensor 
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𝑷 = 𝐽𝝈𝑭−T, where 𝝈 is the Cauchy stress tensor, and 𝐽 = det 𝑭 . At the 
interface, equilibrium requires that the traction vector is continuous,

(𝑷 2 − 𝑷 1)𝑵 = 𝟎, (2)

which can be written also in the current configuration, (𝝈2 − 𝝈1)𝒏 = 𝟎, 
where 𝒏 is the normal to the interface in the current configuration.

In the small-strain (geometrically linear) framework, the compati-
bility conditions, Eqs. (1) and (2), take the following form,

𝜺2 − 𝜺1 =
1
2
(𝒄⊗ 𝒏+ 𝒏⊗ 𝒄), (𝝈2 − 𝝈1)𝒏 = 𝟎, (3)

where 𝜺 is the usual infinitesimal strain tensor (the symmetric part of 
the displacement gradient), and no distinction is made between the cur-
rent and reference configurations, hence 𝒏 =𝑵 .

2.2. Simple laminate

A simple laminate is a microstructure composed of layers of two 
phases (materials) separated by parallel planar interfaces. Under the 
usual assumption of separation of scales, strains and stresses are homo-
geneous within each individual layer and are identical in all layers of 
the same phase. The microstructure is then fully characterized by the 
volume fractions of the phases, 𝜂1 = 1 − 𝜂 and 𝜂2 = 𝜂, where 0 ≤ 𝜂 ≤ 1, 
and by the interface normal 𝑵 , all referred to the reference configura-
tion.

Since the strains and stresses are piecewise homogeneous, the 
macroscopic deformation gradient �̄� and the macroscopic Piola stress �̄�
are obtained as simple weighted averages of the respective local quan-
tities,

�̄� = {𝑭 } = (1 − 𝜂)𝑭 1 + 𝜂𝑭 2, �̄� = {𝑷 } = (1 − 𝜂)𝑷 1 + 𝜂𝑷 2, (4)

where {□} denotes the average over the representative volume element 
in the reference configuration. Here, 𝑭 𝑖 and 𝑷 𝑖 denote the local quan-
tities within the individual phases.

The compatibility conditions, Eqs. (1) and (2), and the averag-
ing rules, Eq. (4), complemented by the local constitutive laws of the 
phases, are sufficient to determine the macroscopic constitutive law re-
lating the macroscopic quantities, �̄� and �̄� . This is illustrated below 
for the case of hyperelastic constituents. The general case of elastic-
plastic phases is discussed in Appendix A, where the corresponding 
computational scheme is presented including the structure of the nested 
iterative-subiterative scheme and its linearization.

A hyperelastic material model is fully defined by specifying the elas-
tic strain energy function. Denoting by 𝑊𝑖 =𝑊𝑖(𝑭 𝑖) the elastic strain 
energy of phase 𝑖, the corresponding Piola stress 𝑷 𝑖 is obtained as

𝑷 𝑖 =
𝜕𝑊𝑖(𝑭 𝑖)
𝜕𝑭 𝑖

. (5)

While the requirement of objectivity implies that 𝑊𝑖 is in fact a func-
tion of the right Cauchy–Green tensor 𝑪 𝑖 = 𝑭 T

𝑖
𝑭 𝑖, it is convenient here 

to keep the deformation gradient 𝑭 𝑖 as the argument of 𝑊𝑖. Since the 
constituent phases are hyperelastic, the laminate is also a hyperelastic 
material. Its behaviour is thus governed by the corresponding (macro-
scopic) elastic strain energy function that depends on the macroscopic 
deformation gradient �̄� , as discussed below.

Using the kinematic compatibility condition (1) and the averaging 
rule (4)1, the local deformation gradients 𝑭 𝑖 can be expressed in terms 
of the macroscopic deformation gradient �̄� and (yet unknown) jump 
vector 𝒄,

𝑭 1 = �̄� − 𝜂𝒄⊗𝑵 , 𝑭 2 = �̄� + (1 − 𝜂)𝒄⊗𝑵 . (6)

The macroscopic elastic strain energy �̄� = {𝑊 } is thus also a function 
of �̄� and 𝒄,
3

�̄� (�̄� ,𝒄) = (1 − 𝜂)𝑊1(𝑭 1) + 𝜂𝑊2(𝑭 2). (7)
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Fig. 1. Laminated element technique (LET): the element that is cut by an in-
terface is treated as a simple laminate with the volume fraction and lamination 
orientation specified by the actual geometry of the interface within the element. 
𝑵 is the unit normal to the interface.

The unknown vector 𝒄 can now be determined from the compat-
ibility condition (2). The local deformation gradients 𝑭 𝑖 specified by 
Eq. (6) are kinematically admissible since this representation satisfies 
the kinematic compatibility condition (1) and the averaging rule (4)1
by construction. Accordingly, the local equilibrium of the laminate, ex-
pressed by the compatibility condition (2), corresponds to the minimum 
of the macroscopic elastic strain energy with respect to 𝒄 (at prescribed 
�̄� ). Indeed, the condition of stationarity of �̄� gives

𝟎 = 𝜕�̄�

𝜕𝒄
= (1 − 𝜂)

𝜕𝑊1
𝜕𝑭 1

𝜕𝑭 1
𝜕𝒄

+ 𝜂
𝜕𝑊2
𝜕𝑭 2

𝜕𝑭 2
𝜕𝒄

= 𝜂(1 − 𝜂)(𝑷 2 − 𝑷 1)𝑵 , (8)

which is equivalent to Eq. (2) in the non-trivial case of 0 < 𝜂 < 1.
Eq. (2) is a nonlinear equation to be solved for the unknown vec-

tor 𝒄, for instance, using the Newton method. The solution of Eq. (2)
depends (implicitly) on �̄� so that we have 𝒄 = 𝒄(�̄� ). The macroscopic 
elastic strain energy can thus be written as a function of �̄� only,

�̄� ∗(�̄� ) = �̄� (�̄� ,𝒄(�̄� )), (9)

such that �̄� ∗ indeed governs the macroscopic response of the laminate,

�̄� = 𝜕�̄� ∗

𝜕�̄�
. (10)

To prove Eq. (10), we observe that

𝜕�̄� ∗

𝜕�̄�
= 𝜕�̄�

𝜕�̄�
+ 𝜕�̄�

𝜕𝒄

𝜕𝒄

𝜕�̄�
= (1 − 𝜂)

𝜕𝑊1
𝜕𝑭 1

𝜕𝑭 1

𝜕�̄�
+ 𝜂

𝜕𝑊2
𝜕𝑭 2

𝜕𝑭 2

𝜕�̄�

= (1 − 𝜂)𝑷 1 + 𝜂𝑷 2 = �̄� , (11)

where 𝜕�̄� ∕𝜕𝒄 = 𝟎 in view of Eq. (8). Computation of the tangent moduli 
tensor is not discussed here since it is discussed in Appendix A in a more 
general setting.

In the case of linear elastic phases, the laminate is also a linear elas-
tic material fully characterized by a fourth-order tensor of overall elastic 
moduli. Closed-form formulae for the overall moduli can be found in 
[31].

3. Laminated element technique

The main idea of the laminated element technique (LET) is rather 
simple: the finite element that is cut by an interface is treated as a 
simple laminate composed of the two phases involved, see Fig. 1. No 
treatment is applied to the elements that fully belong to one phase. 
In each laminated element, the volume fraction of the phases and the 
lamination orientation are determined according to the actual geometry 
of the interface within the element, as described in detail below.

In the continuum setting, the geometry is defined by the level-set 
function 𝜙 defined over the whole domain Ω,

𝜙 ∶ Ω ⊂ℝ𝑛 →ℝ, (12)

such that 𝜙 < 0 corresponds to phase 1, 𝜙 > 0 corresponds to phase 2, 
and the interface Σ separating the two phases is represented by the zero 
level set,
Σ = {𝑿 ∈Ω ⊂ℝ𝑛 ∣ 𝜙 (𝑿) = 0} , (13)
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Fig. 2. Discretization approaches employed in this work: (a) conforming mesh, (b) element-level assignment (ELA), (c) Gauss-point-level assignment (GPLA), and 
(d) laminated element technique (LET). In ELA (resp. GPLA), the whole element (resp. Gauss point) belongs to a single phase that is determined by the value of the 
level-set function in the element centre (resp. at the Gauss point).
where 𝑛 = 2, 3 is the space dimension. It is desirable that the level-set 
function 𝜙 be smooth and (approximately) proportional to the signed 
distance from the interface in the nearest neighbourhood of interface 
(within the range of one finite element) so that the interface is correctly 
approximated by the zero level set of the finite-element approximation 
𝜙ℎ of the level-set function 𝜙,

𝜙ℎ =
∑
𝑖

𝑁𝑖𝜙𝑖, (14)

where 𝑁𝑖 are the usual finite-element basis functions and 𝜙𝑖 are the 
nodal values. While the actual level-set function 𝜙 may be available in 
some cases, in the following we only use its finite-element approxima-
tion 𝜙ℎ. This is a more general approach that is applicable also when 
the analytical description is not available, for instance, when 𝜙ℎ results 
from a solution of an independent problem (e.g., microstructure evolu-
tion, shape/topology optimization, etc.).

As mentioned in the previous section, a simple laminate is uniquely 
defined by two quantities, namely the volume fraction 𝜂 (𝜂1 = 1 −𝜂, 𝜂2 =
𝜂) and the unit vector 𝑵 normal to the interfaces separating the phases 
(in the reference configuration). These two quantities are determined 
locally within each laminated element in terms of the level-set function 
𝜙ℎ and are assumed constant within each element.

There is some ambiguity concerning determination of the volume 
fraction. Exact integration of the volume (or area in 2D) is not possible 
in the general case and is not needed considering the approximation 
introduced by LET anyway. In this work, we only consider four-node 
quadrilateral elements in 2D and eight-node hexahedral elements in 
3D, and we use the following formula for the volume fraction 𝜂𝑒 = 𝜂𝑒2 in 
the 𝑒-th element,

𝜂𝑒 =
∑𝑛n
𝑖=1⟨𝜙𝑒𝑖 ⟩∑𝑛n
𝑖=1 |𝜙𝑒

𝑖
| , (15)

where 𝜙𝑒
𝑖

are the nodal values of the level-set function 𝜙 in the element, 
𝑛n is the number of nodes in the element, and ⟨□⟩ = 1

2 (□ + |□|) denotes 
the Macaulay brackets.

In 2D, if the considered element is a rectangle and the interface is 
a straight line cutting two opposite edges of the rectangle, then for-
mula (15) gives an exact value of the volume fraction. Likewise, in 3D, 
formula (15) is exact for a planar interface cutting four parallel edges of 
an element of the shape of a rectangular cuboid. Otherwise, in partic-
ular, when the edges are cut differently, formula (15) is approximate. 
For a non-planar interface, the error decreases with mesh refinement 
since then the interface effectively tends to be more planar. We have 
made some efforts to generalize formula (15) to improve its accuracy 
for elements of arbitrary, non-rectangular shape, for instance, by includ-
ing the usual quadrature weights at the element nodes, but the simple 
formula (15) has been found more accurate. Note that, for a planar 
interface in 2D, the volume fraction can be computed in closed form 
using the general formula for the area of a polygon in terms of the co-
4

ordinates of the vertices. However, this formula does not generalize to 
the 3D case. The general and simple formula (15) is thus adopted in this 
work, while clearly this part of the model can be replaced by another 
suitable formulation.

The unit normal vector 𝑵𝑒 is calculated as the normalized gradient 
of the level-set function 𝜙ℎ at the element centre 𝑿𝑒

0,

𝑵𝑒 =
∇𝜙ℎ(𝑿𝑒

0)‖∇𝜙ℎ(𝑿𝑒
0)‖ . (16)

Again, other options are here possible, including, for instance, deter-
mination of the normal individually at each Gauss integration point. 
According to our preliminary studies, such modifications have a minor 
effect on the results, and in this work we adopt the simple approach 
described above.

Knowing the volume fraction and the interface normal, the overall 
constitutive response of the laminate can be readily obtained by apply-
ing the micro-to-macro transition, as described in Section 2.2.

The above construction, Eqs. (15) and (16), is applicable when the 
element is cut by one interface only. The approach can be generalized to 
the case of more interfaces (and more phases) by introducing additional 
level-set functions, each corresponding to one interface. A higher-rank 
laminate can then be considered with the micro-macro transition ap-
plied in a hierarchical manner or, if there are only two phases, a simple 
laminate can be considered with the volume fraction equal to the total 
volume fraction of the phases within the element and with the lami-
nation orientation obtained by averaging those corresponding to each 
interface. The latter approach is employed in the example considered in 
Section 4.4.

4. Illustrative examples

Performance of LET is examined in this section through several nu-
merical examples. In all examples, we use a regular quadrilateral (2D) 
or hexahedral (3D) mesh. In all cases, the results are compared to those 
obtained using two simple non-conforming mesh approaches that will 
be referred to as ELA (element-level assignment) and GPLA (Gauss-
point-level assignment), see Fig. 2. Whenever applicable a conforming 
mesh is also used.

As illustrated in Fig. 2(b), in ELA, the whole element is assigned to 
one of the phases, and this approach, sometimes called digital-image-
based FEM or voxel-based FEM, is commonly used for segmented 2D 
and 3D images of the microstructure or for rasterized representation of 
the microstructure, e.g. [32–34]. In GPLA, Fig. 2(c), individual integra-
tion (Gauss) points are assigned to one of the phases according to the 
position of the integration point, possibly combined with an increased 
number of integration points, e.g. [7,17]. In the context of voids and 
free boundaries, this latter approach is closely related to the finite cell 
method [35].

Finite-element implementation and computations have been per-

formed using the AceGen/AceFEM system [36,37], see also Appendix A.



Computers and Structures 291 (2024) 107209J. Dobrzański, K. Wojtacki and S. Stupkiewicz

Fig. 3. Elastic inclusion problem: (a) scheme of the problem; (b) computational domain with a regular (non-conforming) mesh of quadrilateral elements (16 × 16
elements, ℎ = 0.125). The interface Σ is approximated by the zero level set, 𝜙ℎ = 0. The arrows in panel (b) represent the nodal forces applied to the boundary nodes, 
which are calculated from the traction resulting from the analytical solution.

Fig. 4. Elastic inclusion problem: rate of convergence in energy norm for (a) soft inclusion (𝐸2∕𝐸1 = 10) and (b) hard inclusion (𝐸2∕𝐸1 = 0.005). The results obtained 
for a matching mesh of four-node quadrilateral elements are labelled ‘MMsh’. The results for X-FEM are taken from [7], and those for A-FEM from [17].
4.1. Elastic inclusion

In this section, a 2D elastic inclusion problem in the small-strain 
framework is considered. The problem is adopted from [5,7]. Fig. 3(a) 
shows a body that consists of two domains, Ω1 (inclusion) and Ω2, 
with the elastic constants (𝐸1, 𝜈1) and (𝐸2, 𝜈2) that are constant within 
each domain and suffer discontinuity at the (bonded) interface Σ. The 
radius of the inclusion and the outer radius are denoted by 𝑎 and 𝑏, 
respectively. The loading is applied by prescribing the radial displace-
ment 𝑢𝑟 = 𝑢∗𝑟 and zero circumferential displacement 𝑢𝜃 = 0 at the outer 
boundary Γ. This problem admits an analytical solution that can be 
found in [5].

In the computational model, a square-shaped domain with the inclu-
sion in the centre is considered, which is discretized into a regular mesh 
of isoparametric four-node elements. The dimensions of the computa-
tional domain are 𝐿 ×𝐿, where 𝐿 = 2, while the parameters specifying 
the reference problem are adopted as 𝑎 = 0.4 and 𝑏 = 2. To ensure equiv-
alence with the model described above, the traction resulting from the 
analytical solution is applied on the boundary of the computational do-
main. Additionally, appropriate displacement boundary conditions are 
imposed to prevent rigid-body motion.

To examine the performance of LET, the problem is solved for sev-
eral mesh densities with the element size ℎ varying between ℎ = 1 (very 
coarse mesh with 2 × 2 elements) and ℎ ≈ 0.001 (2048 × 2048 elements). 
The elastic constants are adopted as 𝐸1 = 1, 𝜈1 = 0.25, 𝐸2 = 10, and 
𝜈2 = 0.3 (‘soft inclusion’ case) and as 𝐸1 = 200, 𝜈1 = 0.25, 𝐸2 = 1, and 
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𝜈2 = 0.3 (‘hard inclusion’ case). Convergence of the error is shown in 
Fig. 4. The error is here defined as the relative error in energy norm, as 
in [7,17],

𝑒𝐸 = 1(∫Ω 2𝑊 (𝜺exact ) dΩ
)1∕2 ‖‖‖𝒖ℎ − 𝒖exact‖‖‖𝐸(Ω)

=

( ∫Ω𝑊 (𝜺ℎ − 𝜺exact ) dΩ
∫Ω𝑊 (𝜺exact ) dΩ

)1∕2

, (17)

where 𝑊 is the elastic strain energy density function, 𝒖exact and 𝜺exact

are the exact displacement and strain obtained from the analytical solu-
tion, and 𝒖ℎ and 𝜺ℎ are the displacement and strain resulting from the 
computational model. The integrals are evaluated by applying the 2 × 2
Gauss quadrature. Note that, in the case of LET, the local strains in each 
phase are known at the Gauss points of the laminated elements, and the 
respective local strains are used to evaluate the error.

Fig. 4 shows the results obtained for LET, and for comparison, for 
ELA and GPLA, the two simple non-conforming mesh approaches that 
will be used as a reference in all subsequent examples. Fig. 4 includes 
also the results obtained for a matching mesh as well as the results taken 
from the literature for exactly the same problem, specifically, for X-FEM 
[7] (available only for the soft inclusion case) and for A-FEM [17]. It 
follows from Fig. 4 that the convergence rate of LET, ELA, GPLA, and A-
FEM is similar, approximately equal to 0.5, but the error is the lowest for 
LET (in the hard inclusion case, the error of LET and A-FEM is similar). 
Since these methods employ a non-conforming approximation of the 

displacement field, the optimal convergence rate of 1, characteristic for 
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Fig. 5. Elastic inclusion problem: rate of convergence in 𝐿2 norm for (a) soft inclusion (𝐸2∕𝐸1 = 10) and (b) hard inclusion (𝐸2∕𝐸1 = 0.005).
Fig. 6. Elastic inclusion problem: relative error in energy norm as a function of 
the Young’s moduli contrast 𝐸2∕𝐸1 .

a matching mesh and also for X-FEM, cannot be achieved. This is also 
illustrated in Fig. 5 where the error in 𝐿2 norm (𝑒𝐿2

= ‖𝒖ℎ−𝒖exact‖𝐿2(Ω)) 
is shown. In this norm, the convergence rate is approximately equal to 1 
for LET, ELA and GPLA, while it is equal to 2 for a matching mesh, as 
expected. It is stressed here that LET is not aimed to compete with more 
sophisticated methods, like X-FEM, in terms of accuracy. The advantage 
of LET is its simplicity and ease of implementation, and, at the same 
time, improved accuracy, as compared to ELA and GPLA.

Fig. 6 shows the relative error in energy norm as a function of the 
Young’s moduli contrast 𝐸2∕𝐸1 evaluated for 𝐸1 = 1 and 𝜈1 = 𝜈2 = 0.25, 
and for the element size ℎ = 0.004 (500 ×500 elements). Again, the error 
is the lowest for LET, and the difference with respect to ELA and GPLA 
increases with increasing contrast, particularly in the case of hard in-
clusion (𝐸2∕𝐸1 < 1).

The results reported so far concern the overall error. However, in 
some situations, the local error can also be important, for instance, the 
artificial stress concentrations resulting from the non-conforming repre-
sentation of interfaces. To illustrate the respective performance of LET, 
ELA and GPLA, Fig. 7 presents the difference between the exact local 
stresses and those predicted by the three methods for the soft-inclusion 
problem and for a representative mesh density (128 × 128 elements). 
Specifically, the equivalent (von Mises) stress 𝜎eq is considered and the 
difference is normalized by the maximum stress in the analytical so-
lution, 𝜎exacteq,max. Note that the colour scale in Fig. 7 corresponds to the 
range of values between 0 and 0.01, while the respective maximum 
values are significantly higher and are provided below each figure. In 
LET, in the laminated elements, the local stresses in each phase are con-
sidered (marked as ‘micro’) as well as the overall stress of the laminate 
(marked as ‘macro’). It follows that LET performs much better than ELA 
and GPLA in representing the local stresses in each phase (the maxi-
mum difference is 0.131 in the case of LET-micro as compared to 0.898 
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for ELA and 1.395 for GPLA). In the case of the overall stress in LET, 
the maximum difference (0.754 for LET-macro) is only slightly smaller 
than in the case of ELA and GPLA.

4.2. Compatible eigenstrain at a planar interface

In this section we investigate the behaviour of LET for a 2D problem 
of elasticity with eigenstrain in the small-strain framework. Two elastic 
domains are separated by a planar interface inclined at an angle 𝛼 to 
the horizontal axis, see Fig. 8(a). Each domain is homogeneous and 
is characterized by elastic constants 𝐸𝑖 and 𝜈𝑖 and by a homogeneous 
eigenstrain 𝜺0

𝑖
so that the elastic strain energy is a function of the elastic 

strain, 𝑊𝑖 =𝑊𝑖(𝜺e), 𝜺e = 𝜺− 𝜺0
𝑖
.

The eigenstrains in both phases are assumed compatible so that

Δ𝜺 = 𝜺02 − 𝜺01 =
1
2
(𝒂⊗ 𝒏+ 𝒏⊗ 𝒂) , (18)

where 𝒏 is a unit normal to the interface, 𝒂 is a prescribed vector, and 
to fix attention we assume that 𝜺01 = 𝟎. Accordingly, in the continuum 
setting, the total elastic strain energy vanishes,

∫
Ω

𝑊 (𝜺− 𝜺0) dΩ = 0. (19)

For a non-conforming finite-element mesh, the local incompatibilities 
introduced by the discretization are accommodated by elastic strains 
which are localized along the interface and vanish far from the interface 
in view of the overall compatibility of the eigenstrains, cf. Eq. (18). 
This is illustrated in Fig. 8(c) which shows the normalized elastic strain 
energy density, 𝑊 ∕(𝑎2𝐸∗), for a representative case of 𝛼 = 𝜋∕9 and 𝛽 =
𝜋∕2 (a coarse mesh is used for illustration purposes). It can be seen that 
the elastic strain energy is visibly lower in case of LET than in case of 
ELA and GPLA.

The corresponding total strain energy can be used as a measure of 
the error. The normalized error in energy norm is thus defined as

𝑒𝐸 = 1(
𝑎2𝐸∗𝐿

)1∕2 ‖‖‖𝒖ℎ − 𝒖exact‖‖‖𝐸(Ω) = ⎛⎜⎜⎝ 1
𝑎2𝐸∗𝐿 ∫

Ω

𝑊 (𝜺ℎ − 𝜺0) dΩ
⎞⎟⎟⎠
1∕2

,

(20)

where the error is normalized by the interface length 𝐿 and also by 
𝑎 = ‖𝒂‖ and 𝐸∗ =

√
𝐸1𝐸2 so that the error does not depend on 𝑎 and 

depends on 𝐸1 and 𝐸2 only through their ratio, the contrast 𝐸2∕𝐸1.
The analysis is performed for a wide range of Young’s moduli con-

trasts 𝐸2∕𝐸1 ∈ (0.001, 1000) with 𝜈1 = 𝜈2 = 0.25 and for two values of the 
angle 𝛽 between vectors 𝒂 and 𝒏, namely 𝛽 = 0 and 𝛽 = 𝜋∕2. The actual 
computations are carried out for 𝐸1𝐸2 = 1 and 𝑎 = 1. Dimensions of the 
rectangular domain are 𝑤 = 10 and ℎ = 15, and the domain is discretized 
into a regular mesh of 101 ×151 elements (element size ℎ ≈ 0.1). An odd 

number of elements is adopted in each direction and the interface passes 
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Fig. 7. Elastic inclusion problem: the difference between the exact local equivalent stress and that predicted by LET, ELA and GPLA normalized by the maximum 
stress 𝜎exacteq,max (soft inclusion, 128 × 128 elements, one quarter of the domain is shown).

Fig. 8. Eigenstrain problem: (a) scheme of the problem; (b) computational domain with a coarse (non-conforming) mesh of 11 × 17 quadrilateral elements for a 
sample interface orientation 𝛼 = 𝜋∕9 (the actual computations are carried out for a fine mesh of 101 × 151 elements); (c) deformed coarse mesh with a colour map of 
the normalized elastic strain energy density, 𝑊 ∕(𝑎2𝐸∗), for 𝛽 = 𝜋∕2 (displacements are scaled for better visibility).

Fig. 9. Normalized error in energy norm for 𝛽 = 0 as a function of: (a) the interface orientation angle 𝛼 and (b) the Young’s moduli contrast 𝐸 ∕𝐸 .
through the centre of the domain so that, for all orientation angles, the 
mesh is non-conforming (also for 𝛼 = 0 and 𝜋∕2). The boundaries are 
free, only the rigid body motion is prevented by enforcing adequate 
boundary conditions.

Representative results are shown in Fig. 9 for 𝛽 = 0 and in Fig. 10
for 𝛽 = 𝜋∕2. Intermediate values of 𝛽 are not considered since the cor-
responding solutions can be obtained by the superposition of those for 
𝛽 = 0 and 𝛽 = 𝜋∕2 (even if the error, as a nonlinear function of the solu-
tion, cannot be obtained by superposition).

Figs. 9(a) and 10(a) show the dependence of the error on the inter-
face orientation angle 𝛼. As expected, the individual diagrams exhibit 
symmetry with respect to 𝛼 = 𝜋∕4. Likewise, the diagrams in Figs. 9(b) 
and 10(b), which depict the dependence on the contrast 𝐸2∕𝐸1 exhibit 
7

symmetry with respect to 𝐸2∕𝐸1 = 1 (recall that 𝜈1 = 𝜈2 and 𝐸1𝐸2 = 1). 
2 1

It is also seen that, for LET and ELA, the error vanishes for 𝛼 = 0 and 
𝜋∕2, i.e., when the interface is parallel to element edges.

Figs. 9 and 10 show that in most cases the error is the lowest for 
LET. However, for 𝛽 = 𝜋∕2, when the eigenstrain jump is a shear strain, 
LET performs better than ELA and GPLA only for moderate contrasts, 
see Fig. 10(b).

4.3. Elastic inclusion with varying radius

One of the advantages of LET over ELA and GPLA is its ability to 
adapt to continuous changes in the position of the interface within a 
single finite element. In LET, if the position of the interface is varied in 
a continuous manner, the volume fractions of the phases and the ori-
entation of the interface also change in a continuous manner, whereas 

in ELA and GPLA these changes are taken into account in a step-wise 
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Fig. 10. Normalized error in energy norm for 𝛽 = 𝜋∕2 as a function of: (a) the interface orientation angle 𝛼 and (b) the Young’s moduli contrast 𝐸2∕𝐸1.

Fig. 11. Periodic unit cell with a spherical elastic inclusion of the diameter that varies between 𝐷∕𝐿 = 0.6 (a) and 𝐷∕𝐿 = 0.9 (b). A fixed regular finite-element mesh 
(20 × 20 × 20 elements) is used.

Fig. 12. (a) Dependence of the directional Young’s modulus, 𝐸100 , on the inclusion diameter 𝐷. The inset shows the results computed with a finer step so that the 
jumps are clearly visible for both ELA and GPLA. (b) Dependence of the derivative of the directional Young’s modulus, 𝜕𝐸 ∕𝜕𝐷, on the inclusion diameter 𝐷.
manner (volume fraction) or not at all (orientation of the interface). 
This effect is illustrated here by considering a 3D cubic cell of dimen-
sion 𝐿 with a central inclusion of varying diameter 𝐷.

Both phases are linear elastic with the properties specified as 𝐸1 =
10, 𝜈1 = 0.3 (inclusion) and 𝐸2 = 1, 𝜈2 = 0.2 (matrix). The inclusion di-
ameter is varied between 𝐷∕𝐿 = 0.6 and 𝐷∕𝐿 = 0.9, and a regular mesh 
of 20 × 20 × 20 elements is used, see Fig. 11. Periodic boundary condi-
tions are enforced and the overall elastic moduli tensor is determined 
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in a standard manner by subjecting the unit cell to 6 linearly indepen-
100

dent macroscopic strains (actually 3 are sufficient due to symmetry). 
The overall elastic moduli tensor is then determined in terms of the re-
sulting overall stress tensors. Below, the results are reported in terms of 
the directional Young’s modulus 𝐸100 = (𝑆1111)−1, where 𝑆𝑖𝑗𝑘𝑙 denotes 
the components of the elastic compliance tensor.

Fig. 12(a) shows the dependence of 𝐸100 on the inclusion diameter. 
The mesh is here rather coarse, hence the predictions of the three meth-
ods (LET, ELA, GPLA) differ visibly. However, the important difference 

is that the dependence is smooth in the case of LET, while in the case 
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Fig. 13. Periodic woven-cell problem: (a) geometry, (b) finite-element mesh (40 × 40 × 20 elements).
of ELA and GPLA the overall properties change in a step-wise manner, 
see the inset in Fig. 12(a). Here, the overall moduli (e.g., 𝐸100) exhibit 
a jump whenever the element (for ELA) or Gauss point (for GPLA) is 
assigned to a different phase when the interface position is changed. 
Clearly, LET is free of such artifacts, and the overall moduli depend on 
the inclusion diameter in a continuous fashion.

For completeness, the derivative of the dependence of 𝐸100 on 𝐷, 
as predicted by LET, is shown Fig. 12(b). The derivative is here com-
puted using the finite difference scheme in terms of two subsequent 
data points. The small irregularities that can be seen in Fig. 12(b) result 
from the error introduced by LET. It follows that the response is contin-
uous and its derivative is meaningful, which suggests that LET can be 
considered as a candidate for treating moving interface problems, such 
as microstructure evolution or shape optimization.

4.4. Hyperelastic woven microstructure

In this example, unlike the previous ones, the internal geometry 
is more complex, and for this reason the real advantage of LET over 
conforming-mesh discretization can be appreciated. The model consists 
of a 3D periodic cell of the dimensions 𝐿 ×𝐿 ×𝐻 = 2 × 2 × 0.7, in which 
four interlaced fibres are immersed in the matrix, Fig. 13.

For a coarse mesh, it may happen that one element is cut by two in-
terfaces. Accordingly, as commented in Section 3, a separate level-set 
function is introduced for each fibre. If an element is cut by two inter-
faces, so that it contains portions of the matrix and two fibres, the total 
volume fraction of the fibres is simply taken as the sum of the volume 
fractions of the individual fibres and the lamination orientation is deter-
mined by averaging those determined individually for each interface.

The geometry of the fibres aligned with the 𝑥2-axis is defined by the 
centreline (±𝑥01, 𝑥2, ∓𝑥

0
3(𝑥2)) parameterized by 𝑥2 and by the elliptical 

cross-section (in the (𝑥1, 𝑥3)-plane) specified by the following inequality√√√√√(
𝑥1 ± 𝑥01
𝑎

)2

+

(
𝑥3 ± 𝑥03(𝑥2)

𝑏

)2

− 1 ⩽ 0, (21)

where 𝑎 = 0.35 and 𝑏 = 0.11 are the semi-major and semi-minor axes 
of the ellipse, 𝑥01 = 𝐿∕4 defines the offset between the fibres in the 𝑥1-
direction, function 𝑥03(𝑦) is specified as

𝑥03(𝑥2) =𝐴
(
9
8
sin

(
2𝜋𝑥2
𝐿

)
+ 1

8
sin

(
6𝜋𝑥2
𝐿

))
, (22)

and 𝐴 = 0.2 is the amplitude of the function 𝑥03(𝑥2). The origin of the 
coordinate system is located at the centre of the unit cell. The geometry 
of the fibres aligned with the 𝑥1-axis is defined analogously.

The finite-deformation framework is employed, and both the matrix 
and the fibres are assumed to be hyperelastic, characterized by a com-
pressible neo-Hookean strain energy function. The elastic properties are 
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specified as 𝐸1 = 100 (fibres), 𝐸2 = 1 (matrix), and 𝜈1 = 𝜈2 = 0.45.
Periodic boundary conditions are imposed and loading is applied 
by prescribing the overall deformation gradient �̄� . Three deformation 
modes are considered, namely isochoric tension and two cases of simple 
shear. The isochoric tension along the 𝑥1-axis is specified by

�̄� = (1 + 𝜖)𝒆1 ⊗ 𝒆1 +
1√
1 + 𝜖

(
𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3

)
, (23)

where 𝜖 denotes the elongation, and 𝒆𝑖 are the orthonormal basis vec-
tors. The simple shear is specified by

�̄� = 𝑰 + 𝛾 𝒔⊗ 𝒏, (24)

with 𝒔 = 𝒆1 and 𝒏 = 𝒆2 (case #1) and 𝒔 = 1√
2
(𝒆1 + 𝒆2) and 𝒏 = 1√

2
(𝒆2 − 𝒆1)

(case #2).
In the convergence studies reported below, a family of regular 

meshes of hexahedral elements is used with 10 to 40 elements along 
the 𝑥1- and 𝑥2-directions (element size ℎ varies between 0.2 and 0.05) 
and with 5 to 20 elements in the 𝑥3-direction, respectively. As a ref-
erence, the results obtained for a fine mesh of 80 × 80 × 40 elements 
(ℎ = 0.025) are used, and both LET and ELA are employed for this pur-
pose (the two methods give very similar results; for ELA, in the simple 
shear case #2, the solution could not be achieved at the maximum load 
due to convergence problems). The F-bar formulation is employed to 
avoid volumetric locking effects [38]. Fig. 14 illustrates the three de-
formation modes for the mesh of 40 × 40 × 20 elements.

The overall stress–strain response predicted using the 20 × 20 × 10
mesh is shown in Fig. 15. In the case of isochoric tension, the �̄�11 compo-
nent of the overall Cauchy stress �̄� is shown as a function of the overall 
elongation 𝜖, Fig. 15(a). In the case of simple shear, the shear stress 
𝜏 = 𝒔 ⋅ �̄� ⋅ 𝒏 is shown as a function of the overall shear 𝛾 , Fig. 15(b,c). 
Results obtained for a four times finer mesh are included in Fig. 15 as a 
reference.

In Fig. 15, the mesh is relatively coarse, hence the visible differ-
ences between the three methods (LET, ELA, GPLA). In all cases, GPLA 
delivers the stiffest response, with the largest error with respect to the 
reference results. The remaining two methods (LET and ELA) deliver 
similar results that agree well with the reference ones, except for simple-
shear case #1, where the LET results are visibly stiffer. Accordingly, for 
this specific mesh density (ℎ = 0.1), ELA seems to perform the best. 
However, this conclusion does not apply to other mesh densities, as il-
lustrated below.

Fig. 16 shows the overall stress at the maximum strain as a function 
of the mesh size ℎ. It follows that predictions of LET are stable (i.e., 
reasonably close to the reference solution) over the entire range of mesh 
densities studied. Likewise, GPLA delivers stable results, although with 
a significantly higher error. On the other hand, ELA performs badly for 
coarser meshes, which is associated with a poor representation of the 

internal geometry by ELA.
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Fig. 14. Woven cell: deformed configuration for (a) isochoric tension (𝜖 = 0.8), (b) simple shear (case #1, 𝛾 = 0.7), and (c) simple shear (case #2, 𝛾 = 0.7). Colour 
maps show the elastic strain energy density 𝑊 .

Fig. 15. Woven cell: overall stress–strain response for (a) isochoric tension, (b) simple shear (case #1), and (c) simple shear (case #2). The results correspond to the 
mesh of 20 × 20 × 10 elements (element size ℎ = 0.1). As a reference, the LET and ELA results obtained for a fine mesh (80 × 80 × 40 elements, ℎ = 0.025) are used.

Fig. 16. Woven cell: convergence of the overall stress (at the maximum strain, see Fig. 15) with element size ℎ for (a) isochoric tension, (b) simple shear (case #1), 
and (c) simple shear (case #2). As a reference, the LET and ELA results obtained for a fine mesh (80 × 80 × 40 elements, ℎ = 0.025) are used.
4.5. Elasto-plastic composite

In this example, we consider a 2D periodic unit cell with a circular 
inclusion. Both phases are elastic-plastic and plane-strain conditions are 
assumed. In the continuum setting, the position of the inclusion within 
the unit cell is arbitrary in view of periodicity, and it does not affect the 
overall response. This is not the case in the discrete setting when the 
position of the inclusion with respect to the finite-element mesh is an 
additional geometric feature that may affect the response, as revealed 
by our preliminary studies. Accordingly, in this section we examine this 
effect in detail. Specifically, the overall response under simple shear is 
studied for 100 randomly selected positions of the inclusion and for a 
family of regular meshes of 𝑁 × 𝑁 elements with 𝑁 = 2, 4, 8, … , 256. 
Below, for each method considered (LET, ELA, GPLA), the responses 
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obtained for a given mesh density are averaged and compared to the 
reference (“exact”) solution obtained using a high-resolution conform-
ing mesh involving over 3 million elements. The standard deviation is 
also examined as an indicator of the sensitivity of the response to the 
position of the inclusion.

The geometric and material parameters adopted in this example are 
the following. The dimensions of the unit cell are 𝐿 × 𝐿 with 𝐿 = 2, 
and the inclusion radius is 𝑅 = 0.6. The finite-deformation framework 
is adopted and both phases are governed by the finite-strain 𝐽2 plas-
ticity model with linear isotropic hardening, see Appendix A for more 
details. The yield stress 𝜎y is thus specified by 𝜎y(𝛼) = 𝜎0y +𝐾𝛼, where 
𝛼 denotes the accumulated plastic strain. The elastic properties of the 
matrix and inclusion are the same, 𝐸 = 70000, 𝜈 = 0.25, and so is the 
hardening modulus 𝐾 = 2000. The initial yield stress of the inclusion, 
𝜎0y,1 = 70, is lower than that of the matrix, 𝜎0y,2 = 120, which induces an 

inhomogeneous deformation within the unit cell once plastic deforma-
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Fig. 17. Elasto-plastic composite: (a) 16 × 16 mesh with a randomly positioned circular inclusion; (b,c,d) deformed mesh (displacements scaled 20 times) with the 
distribution of the shear component 𝜎12 of the Cauchy stress tensor for 16 × 16 (b), 64 × 64 (c) and 256 × 256 (d) mesh.

Fig. 18. Elasto-plastic composite: overall stress–strain (�̄�12–𝛾) response obtained for the 4 × 4 mesh (element size ℎ = 0.5) and for LET (a), ELA (b) and GPLA (c). 
In each case, the average over 100 random inclusion positions is indicated by a solid line and the corresponding shaded area indicates the spread (±3 standard 
deviations).

Fig. 19. Elasto-plastic composite: dependence of the average overall stress on the element size ℎ for (a) simple shear (shown is the shear stress at 𝛾 = 0.004) and (b) 
isochoric tension (shown is the tensile stress at the elongation of 0.004). The error bars indicate the spread (±3 standard deviations).
tion occurs. The computations have been carried out using a sufficiently 
small time step in order to accurately represent the overall response. Ad-
ditional computations (not reported here) have been carried out using 
a large time step to examine the robustness and convergence proper-
ties of the computational scheme for elasto-plastic laminates described 
in Appendix A. The results show that the robustness and convergence 
of LET are essentially the same as those of ELA and GPLA.

The unit cell is loaded in simple shear by prescribing the overall 
deformation gradient �̄� according to Eq. (24) with 𝒔 = 𝒆1 and 𝒏 = 𝒆2. 
The initial stage of deformation is considered with the overall shear 
𝛾 increasing from 0 to 0.004 so that the details of the elastic-to-plastic 
transition are revealed. A sample finite-element mesh with the inclusion 
at a sample position within the unit cell is shown in Fig. 17(a), and the 
deformation mode along with the shear component 𝜎12 of the Cauchy 
11

stress tensor is shown in Fig. 17(b-d) for three selected mesh densities.
Fig. 18 shows the overall stress–strain response (�̄�12 component of 
the overall Cauchy stress as a function of the overall shear 𝛾) for a 
coarse mesh of 4 × 4 elements. Here, the average response is compared 
to the reference solution and, moreover, the shaded area represents the 
spread of the individual responses corresponding to the randomly po-
sitioned inclusions (the width of the shaded area is set equal to ±3
standard deviations). Since the mesh is here coarse (4 × 4 elements), 
visible differences with respect to the reference solution are apparent. 
It can be seen that LET delivers the most accurate results in terms of 
both the average and the spread. The accuracy is visibly worse in the 
case of ELA and significantly worse in the case of GPLA.

Convergence of the results with mesh refinement is illustrated in 
Fig. 19. This figure, in addition to simple shear, includes also the re-
sults corresponding to isochoric tension (i.e., pure shear). In the case 

of LET and ELA, the averaged stress converges quickly to the reference 
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value, LET converging somewhat faster. However, in the case of LET, 
the spread vanishes significantly faster than in the case of ELA. Consis-
tent with the other results, the accuracy of GPLA is the worse.

Note that in the case of ELA, the results obtained for the coarsest 
mesh considered (2 × 2 elements, ℎ = 1) exhibit no spread, see Fig. 19. 
This is because in this case all elements are assigned to the matrix phase 
regardless of the position of the inclusion (and the unit cell is thus ho-
mogeneous).

5. Conclusion

A simple approach has been developed for an improved treatment of 
weak discontinuities for a non-conforming spatial discretization within 
the finite element method. The use of a non-conforming finite-element 
mesh has several advantages over the conforming one, in particular, in 
3D and for complex geometries, but comes at the cost of loss of accuracy 
caused by an inexact representation of the geometry of the phases. The 
proposed approach is thus aimed at improving the accuracy while main-
taining the simplicity such that implementation is carried out solely at 
the element level and no additional global degrees of freedom are in-
troduced.

In the proposed laminated element technique (LET), each finite el-
ement that is cut by an interface is treated as a laminate of the two 
involved phases with the volume fractions of the phases equal to their 
volume fractions within the element and with the lamination orienta-
tion specified by the orientation of the interface. No treatment is applied 
to the remaining elements, i.e., those that are not cut by an interface. 
The approach is inspired by the composite voxel technique in FFT-based 
homogenization [24–29].

The approach is general in the sense that each phase may be gov-
erned by an arbitrary material model. The constitutive behaviour of 
each laminated element results from the closed-form, exact micro-to-
macro transition relations for simple laminates. For nonlinear mate-
rial behaviour (e.g., plasticity, finite deformations), a set of nonlinear 
equations must be solved at each Gauss point. This makes the effec-
tive constitutive model within the laminated elements somewhat more 
complex, but an efficient computational implementation is possible, in-
cluding consistent linearization, as illustrated in the case of finite-strain 
plasticity.

Several numerical examples have been studied and the proposed 
approach has been shown to be, in most cases, superior in terms of 
accuracy to two alternative methods in which the whole element or in-
dividual Gauss points are assigned to a specific phase. However, the 
rate of convergence with mesh refinement is not improved, unlike in 
more sophisticated approaches, such as X-FEM. On the other hand, it 
is an important feature of the proposed approach that the response is 
a continuous function of the position of the interface, which opens a 
possibility of its application in various problems involving moving in-
terfaces.
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Appendix A. Incremental computational scheme for an 
elastic-plastic simple laminate

In this appendix, we discuss the case of a simple laminate composed 
of two elastic-plastic materials. As discussed below, the corresponding 
computational model involves a nested iterative-subiterative Newton 
scheme. In the inner iterative loops, nonlinear incremental equations 
of plasticity are solved, thus yielding the local incremental response 
(stress) of each phase as a function of the respective local strain (de-
formation gradient). In the outer iterative loop, the jump vector 𝒄, see 
Eq. (6), is found by solving the traction continuity equation (2). In gen-
eral terms, the algorithm is the same as that used in [27] in the context 
of the composite voxel technique in FFT-based homogenization. Apart 
from the finite-deformation setting used here, the main difference is that 
the procedure described below includes the consistent linearization of 
the overall incremental response of the elastic-plastic laminate, which 
is missing in [27] as it is not needed in the usual FFT-based schemes. 
Exact consistent linearization is crucial in implicit FEM so that the New-
ton method can be effectively used on the structural level. In this work, 
the exact linearization is achieved by using the automatic differentia-
tion (AD) technique that is available in AceGen [36,37], and below we 
use the compact AD-based notation introduced in [36].

The incremental constitutive equations of finite-strain plasticity are 
rather standard [39], and the details are omitted here. The specific AD-
based formulation of elastoplasticity which is adopted here follows that 
developed in [36], see also [37,40]. On the other hand, the treatment 
of the laminated microstructure is based on that developed in [41] for 
the incremental Mori–Tanaka scheme (with due differences). The cor-
responding AD-based formulation is provided below in the form of a 
pseudocode with only short comments, while for the details the reader 
is referred to [41].

The AD-based notation employed in the pseudocodes below uses 
a special notation to denote the computational derivative, i.e., the 
derivative evaluated by AD. The computational derivative is denoted 
by 𝛿𝑓∕𝛿𝐚, where 𝑓 is a function defined by an algorithm (or computer 
program) in terms of independent variables collected in vector 𝐚. The 
actual dependencies present in the algorithm can be overridden or mod-
ified by introducing the so-called AD exceptions that are denoted by a 
vertical bar following the derivative with additional specifications in 
the subscript. The details can be found in [36,37].

Adopting the finite-strain framework, the elastic strain energy of 
phase 𝑖 is expressed as a function of the deformation gradient 𝑭 𝑖 = 𝑭 𝑛+1

𝑖

and the vector 𝐡𝑖 = 𝐡𝑛+1
𝑖

of internal (history) variables at the current 
time step 𝑡 = 𝑡𝑛+1,

𝑊𝑖 =𝑊𝑖(𝑭 𝑖,𝐡𝑖), (A.1)

and the Piola stress 𝑷 𝑖 = 𝑷 𝑛+1
𝑖

is thus given by

𝑷 𝑖 =
𝜕𝑊𝑖(𝑭 𝑖,𝐡𝑖)

𝜕𝑭 𝑖

. (A.2)

Here and below, the superscript 𝑛 + 1 denoting the quantities at 𝑡𝑛+1 is 
omitted to make the notation more compact. Time-discrete evolution 
of the internal variables 𝐡𝑖 is governed by a set of nonlinear equations 
written symbolically in the residual form as

𝐐𝑖(𝑭 𝑖,𝐡𝑖,𝐡𝑛𝑖 ) = 𝟎, (A.3)

where 𝐡𝑛
𝑖

denotes the known internal variables at the previous time 
step 𝑡 = 𝑡𝑛. In computational plasticity, the incremental equations of 
elastoplasticity are usually solved using the return-mapping algorithm, 
which leads to the state update algorithm that is outlined in Algorithm 1
using the AD-based notation. In this algorithm, the local problem (A.3)
is solved iteratively using the Newton method, and the derivative of 
the implicit dependence of the solution 𝐡𝑖 on 𝑭 𝑖 (denoted by 𝐆𝑖 in 
Algorithm 1) is computed in the standard manner [36,42],

𝜕𝐡𝑖 = −
(
𝜕𝐐𝑖

)−1
𝜕𝐐𝑖

. (A.4)

𝜕𝑭 𝑖 𝜕𝐡𝑖 𝜕𝑭 𝑖
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Algorithm 1 StateUpdate[ ]: state update algorithm for phase 𝑖.
input: 𝑭 𝑖 , 𝐡𝑛𝑖
𝜙trial
𝑖

← 𝜙𝑖(𝑭 𝑖 , 𝐡𝑛𝑖 )
if 𝜙trial

𝑖
< 0 then

𝐡𝑖 ← 𝐡𝑛
𝑖

𝐆𝑖 ← 𝟎
else

𝐡𝑖 ← 𝐡𝑛
𝑖

repeat

𝐀𝑖 ←
𝛿𝐐𝑖

(
𝑭 𝑖 ,𝐡𝑖 ,𝐡𝑛𝑖

)
𝛿𝐡𝑖

⊳ tangent matrix, 𝐀𝑖 =
𝜕𝐐𝑖

𝜕𝐡𝑖
Δ𝐡𝑖 ← −𝐀−1

𝑖
𝐐𝑖

𝐡𝑖 ← 𝐡𝑖 +Δ𝐡𝑖
until ‖Δ𝐡𝑖‖ ≤ 𝑡𝑜𝑙
𝐆𝑖 ← −𝐀−1

𝑖

𝛿𝐐𝑖

𝛿𝑭 𝑖

|||||𝐡𝑖=const ⊳ 𝐆𝑖 =
𝜕𝐡𝑖
𝜕𝑭 𝑖

end if

𝐡𝑖 ← 𝐡𝑖
|||| D𝐡𝑖
D𝑭 𝑖

=𝐆𝑖

⊳ introduce the implicit dependence of 𝐡𝑖 on 𝑭 𝑖

𝑷 𝑖 ←
𝛿𝑊𝑖(𝑭 𝑖 ,𝐡𝑖)

𝛿𝑭 𝑖

|||||𝐡𝑖=const ⊳ AD exception ensures that 𝑷 𝑖 is computed correctly

return: 𝐡𝑖 , 𝑷 𝑖 , 𝐆𝑖

The specific constitutive functions of the finite-strain 𝐽2 plasticity 
model used in this work, see Section 4.5, are summarized in Box 1, 
see the formulation I-C-C-b in Box 1 in [40]. Box 1 provides also the 
corresponding definitions of the vector of internal variables 𝐡𝑖 and of 
the local residual 𝐐𝑖. For brevity, the subscript 𝑖 is omitted in Box 1.

Box 1: Constitutive equations of finite-strain 𝐽2 plasticity with isotropic 
hardening. Phase index 𝑖 is omitted for brevity.

Given: 𝑭 ,𝑪−1
p,𝑛 , 𝛾𝑛 Find: 𝑪−1

p , 𝛾

𝒃e = 𝑭𝑪−1
p 𝑭 T

𝐼1 = tr 𝒃e , 𝐼3 = det 𝒃e
𝑊 = 1

2
𝜇
(
𝐼1 − 3 − log𝐼3

)
+ 1

4
𝜆
(
𝐼3 − 1 − log𝐼3

)
𝝉 = 2𝒃e

𝜕𝑊

𝜕𝒃e
⊳ automation: 𝝉 ← 2𝒃e

𝛿𝑊e

𝛿𝒃e
𝝉 ′ = 𝝉 − 1

3
(tr 𝝉)𝑰

𝜙 =
√

3
2
𝝉 ′ ⋅ 𝝉 ′ − 𝜎y(𝛾)

𝒏 = 𝜕𝜙

𝜕𝝉
⊳ automation: 𝒏←

𝛿𝜙

𝛿𝝉

 = 𝑭𝑪−1
p − exp

(
−2

(
𝛾 − 𝛾𝑛

)
𝒏
)
𝑭𝑪−1

p,𝑛

𝐡 =
{
𝐶−1
p,11 − 1, 𝐶−1

p,22 − 1, 𝐶−1
p,33 − 1, 𝐶−1

p,23 , 𝐶
−1
p,13 , 𝐶

−1
p,12 , 𝛾

}
𝐐 =

{11 ,22 ,33 ,23 ,13 ,12 , 𝜙
}

Consider now a simple laminate in which both phases are governed 
by an elastic-plastic material model. Expressing the local deformation 
gradients in terms of �̄� and 𝒄, as in Eq. (6), the macroscopic elastic 
strain energy �̄� = ⟨𝑊 ⟩ reads

�̄� (�̄� ,𝒄,𝐡1,𝐡2) = (1 − 𝜂)𝑊1(𝑭 1,𝐡1) + 𝜂𝑊2(𝑭 2,𝐡2), (A.5)

and the macroscopic stress is obtained as

�̄� =
𝜕�̄� (�̄� ,𝒄,𝐡1,𝐡2)

𝜕�̄�
= (1 − 𝜂)

𝜕𝑊1
𝜕𝑭 1

𝜕𝑭 1

𝜕�̄�
+ 𝜂

𝜕𝑊2
𝜕𝑭 2

𝜕𝑭 2

𝜕�̄�
= (1 − 𝜂)𝑷 1 + 𝜂𝑷 2.

(A.6)

The unknown vector 𝒄 is obtained by solving, using the Newton 
method, the compatibility condition (2) written here in the residual 
form as

𝐑(�̄� ,𝒄,𝐡1,𝐡2) = (𝑷 2 − 𝑷 1)𝑵 = 𝟎, (A.7)

where the internal variables 𝐡𝑖 depend on 𝒄 through 𝑭 𝑖, thus 𝐡𝑖 =
13

𝐡𝑖(𝑭 𝑖(�̄� , 𝒄)), and this dependence must be taken into account when the 
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residual 𝐑 is linearized. The complete computational scheme is sum-
marized in Algorithm 2, which includes consistent linearization of the 
nested iterative-subiterative scheme. In particular, once the implicit de-
pendencies are correctly identified and introduced into the code, the 
consistent overall tangent (denoted as �̄�alg in Algorithm 2) is obtained 
as the computational derivative 𝛿�̄� ∕𝛿�̄� .

Algorithm 2 AD-based formulation of the incremental scheme for an 
elasto-plastic two-phase composite.

input: �̄� , 𝒄𝑛 , 𝐡𝑛1 , 𝐡𝑛2
𝒄 ← 𝒄𝑛

repeat

𝑭 1 ← �̄� − 𝜂𝒄⊗𝑵

𝑭 2 ← �̄� + (1 − 𝜂)𝒄⊗𝑵

{𝐡1 , 𝑷 1 , 𝐆1} ← 𝚂𝚝𝚊𝚝𝚎𝚄𝚙𝚍𝚊𝚝𝚎
[
𝑭 1 ,𝐡𝑛1

]
{𝐡2 , 𝑷 2 , 𝐆2} ← 𝚂𝚝𝚊𝚝𝚎𝚄𝚙𝚍𝚊𝚝𝚎

[
𝑭 2 ,𝐡𝑛2

]
𝐑 ← (

𝑷 2 − 𝑷 1
)
𝑵

𝐁 ← 𝛿𝐑
𝛿𝒄

⊳ tangent matrix, 𝐁 = 𝜕𝐑
𝜕𝒄

Δ𝒄 ← −𝐁−1𝐑
𝒄 ← 𝒄 +Δ𝒄

until ‖Δ𝒄‖ ≤ 𝑡𝑜𝑙
𝒄 ← 𝒄

|||| D𝒄
D�̄�

=−𝐁−1 𝛿𝐑
𝛿�̄�

|||𝒄=const
𝑭 1 ← �̄� − 𝜂𝒄⊗𝑵

𝑭 2 ← �̄� + (1 − 𝜂)𝒄⊗𝑵

𝐡1 ← 𝐡1
|||| D𝐡1
D𝑭 1

=𝐆1

⊳ introduce the implicit dependence of 𝐡1 on 𝑭 1

𝐡2 ← 𝐡2
|||| D𝐡2
D𝑭 2

=𝐆2

⊳ introduce the implicit dependence of 𝐡2 on 𝑭 2

�̄� ← (1 − 𝜂)𝑊1(𝑭 1 , 𝐡1) + 𝜂𝑊2(𝑭 2 , 𝐡2)

�̄� ←
𝛿�̄�

𝛿�̄�

|||||𝒄=const,𝐡1=const,𝐡2=const ⊳ AD exception ensures that �̄� is computed correctly

�̄�alg ←
𝛿�̄�

𝛿�̄�

return: 𝒄, �̄� , �̄�alg , 𝐡1 , 𝐡2

In practice, the iterative Newton scheme in Algorithm 2 is enhanced 
by a line search technique which significantly improves the robustness 
of the computational scheme. In fact, the robustness of the resulting 
scheme (convergence of the Newton method, maximum allowable time 
increment, etc.) does not differ from the respective performance of the 
classical (homogeneous) plasticity algorithms, see also [41,43] where 
a similar robustness is reported for the micromechanical Mori–Tanaka 
scheme developed for elasto-plastic and elasto-viscoplastic composites. 
The related details are omitted here.
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