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Abstract: Mathematical modeling of signaling pathways and regulatory networks has been support-
ing experimental research for some time now. Sensitivity analysis, aimed at finding model parameters
whose changes yield significantly altered cellular responses, is an important part of modeling work.
However, sensitivity methods are often directly transplanted from analysis of technical systems, and
thus, they may not serve the purposes of analysis of biological systems. This paper presents a novel
sensitivity analysis method that is particularly suited to the task of searching for potential molecular
drug targets in signaling pathways. Using two sample models of pathways, p53/Mdm2 regulatory
module and IFN-b-induced JAK/STAT signaling pathway, we show that the method leads to biolog-
ically relevant conclusions, identifying processes suitable for targeted pharmacological inhibition,
represented by the reduction of kinetic parameter values. That, in turn, facilitates subsequent search
for active drug components.

Keywords: bioinformatics; chemotherapy; sensitivity analysis; molecular drug targets; systems
biology

1. Introduction
Computational models of dynamics of intracellular processes have been extensively

used in recent years as a support tool in unveiling the structure of regulatory networks [1,2],
crosstalk between signaling pathways [3,4], analysis of therapeutic drug effects [5–7] or in
studies focused on general properties of such systems [8–10]. They facilitate preliminary
testing of biological hypotheses and provide insights into systems that, for various reasons,
cannot be explored experimentally.

For several years, sensitivity analysis have become an ubiquitous tool in the analysis
of the mathematical models. In general, sensitivity analysis allows to study the impact of
model inputs on its outputs. This work focuses only on examining the impact of model
parameters changes on its response. Various techniques have been developed, from local
approaches with sensitivity functions [11,12] or sloppy/stiff analysis [13–15], to global,
variance-based methods [16]. Though some of the papers utilized sensitivity analysis in
the context of potential drug targets [17], the methods employed there did not take into
account the relation between drug action and kinetic parameters changes. The desired
therapeutic actions may consist of either increasing or decreasing the kinetic rates of the
processes that are targeted. In mathematical models, this would be reflected in increasing
or decreasing corresponding parameters, respectively.

In this paper, we present a novel method of sensitivity analysis that is specifically
tailored to the goal of finding potential molecular drug targets. It is based on the analysis
of models, given in the form of ordinary differential equations, describing dynamics of
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responses of a signaling pathway of interest. It allows to study the drug-induced changes in
model responses by introducing changes in parameter values, representing effects of drug
action. Furthermore, the method makes it possible to tackle the problem of heterogeneity
of cellular responses to a drug in a cell population [18,19], using a particular parameter
randomization procedure, tailored to the model application.

The proposed method belongs to the family of one-at-a-time (OAT) sensitivity meth-
ods, which are based on changing a single model parameter while retaining nominal values
of remaining parameters. In general, such approaches are not recommended for nonlinear
models or those with interactions between inputs [20]. However, it should be emphasized
that the purpose of this work is not to investigate model sensitivity in general, but to utilize
sensitivity analysis methods for a precisely defined aim—in the search for potential molec-
ular drug targets. The idea is to find a single parameter whose change significantly alters a
single intracellular process. In mathematical models describing biochemical reactions, each
parameter is related to a single biochemical process, or the sequence of processes simplified
to a single-step process, and reflect the kinetic properties of the molecules (e.g., enzymes)
involved in this process [21]. The creation of a parameter ranking facilitates finding a
process, the alteration of which, e.g., by drug actions, will lead to significant changes in
cellular responses to a given stimuli [12]. Assuming that parameters are independent from
each other and that the drug selectively binds to a single target molecule (and thus, altering
the kinetic rate of the process in which the molecule participates), it is the OAT approach
that should be used.

The highest-ranking parameters lead to the processes that should be targeted in order
to make the highest impact on the system responses. The subsequent identification of
molecules involved in these processes provides information about potential molecular
drug targets. This, in turn, could be the preliminary step before a particular active drug
molecule is searched for, using the methods reviewed in, e.g., [22]. On the other hand, the
proposed approach might be considered as complementary to network-based methods,
also reviewed in [22].

2. Results
In order to check the feasibility of the proposed method, two models of different

signaling pathways were analyzed: a p53/Mdm2 signaling pathway and an IFN-b-induced
JAK/STAT signaling pathway. They represent different dynamical properties (the time
responses of the p53 model are oscillatory, whereas in the IFN-b-induced JAK/STAT
model the time responses are aperiodic) and different complexities (the p53 model contains
much fewer variables than the second one, but its nonlinearities are more complex). The
detailed equations and nominal parameters are not listed in this paper, as they have been
implemented exactly in the form described in the literature.

The results obtained using the described method were compared with the results of a
classic, local sensitivity analysis using the sensitivity functions with parameter rankings
based on the area under the curve of the sensitivity function [12,23].

2.1. p53 Regulatory Module
The first example involves the regulatory module controlling the level of tumor pro-

tein p53 in a cell. p53, often called the Guardian of the Genome [24], is involved in many
intracellular processes, among which the most important is cell cycle arrest, expression of
DNA repair proteins and induction of cell apoptosis in response to moderate and strong
stress signals [25–27]. The activation of the p53 signaling pathway occurs in response to
environmental stress factors that cause DNA damage or mutations (e.g., ionizing radia-
tion [28]). p53 protein dysfunctions are of great importance in cancer progression. It has
been shown that about half of the cancer types have mutations in the p53 gene (TP53),
while in many others, malfunctions of other proteins involved in the p53 signaling pathway
are observed [29]. Therefore, a search for a potential drug target might be based on the
primary goal of inducing a high level of p53 in cells, ultimately leading to their death [19].
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Moreover, the results of the sensitivity analysis can be related to the existing research on
anticancer drugs targeting the p53 system [30,31].

We chose a relatively simple model of the p53 signaling pathway [32] described by
12 differential equations and 43 parameters (see the Supplementary Materials for the
equations). The model describes the negative feedback loop between p53 protein and its
inhibitor—the murine double minute 2 (Mdm2) protein, as well as positive feedback loop,
in which p53 via phosphatase and tensin homolog deleted on chromosome ten (PTEN),
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and Protein kinase B (Akt) inhibits its
own Mdm2 inhibitor. The interactions occurring in this model are shown in the diagram
(Figure 1). The level of phosphorylated p53 (p53PN) protein has been chosen as the variable,
whose sensitivity to the parameter changes represents the sensitivity of the whole system.

Figure 1. Schematic diagram of the p53 signaling pathway model [32]. The model involves two-
compartmental kinetics of p53 protein, its primary inhibitor Mdm2, phosphatase PTEN, phos-
phatidylinositol 3-phosphate (PIP3) and Akt kinase and is activated by IR radiation, which leads to
DNA damage (DNADAM). The N index stands for nuclear concentrations and P for phosphorylated
molecules. Solid lines represent direct interactions in the model, such as production, degradation
(deg) or state change (e.g., phosphorylated/nonphosphorylated) of selected molecules. Dashed lines
represent indirect interactions, such as the catalysis of reactions or regulation of gene expression.

Out of the 38 parameters in the model, 3 describe constants such as the Michaelis
Menten coefficients or saturation constants and were assumed to take the nominal values
and not considered in sensitivity analysis of them (h0, NSAT, dDAM). The sensitivity
ranking for the remaining 35 parameters is presented in the lower panel of Figure 2 and
compared with one of the standard rankings based on sensitivity functions in the upper
panel of Figure 2. Parameter names corresponding to the numbers in the ranking are
presented in Table 1.
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Figure 2. Parameter rankings for the p53 model: based on sensitivity functions (upper panel) and
based on the method proposed in this paper (lower panel). The horizontal (X) axis represents the
consecutive model parameters, whose names have been replaced by numbers for better readability.
The parameter annotation associated with these numbers is given in Table 1. The red line in the lower
panel corresponds to the A index value representing no influence of parameter change on the model
response. Points located above this line represent parameters whose change (as described in the
algorithm details) amplify the model response, while those below represent the parameters whose
change lead to suppression of the model response.

Table 1. List of parameters appearing in the p53 signaling pathway model [32].

No. Par. Description No. Par. Description

1 a6 Max DNA damage rate 19 d0
Mdm2 spontaneous deg. rate
(all Mdm2 forms)

2 q3
Coefficient governing apoptotic
factor synthesis 20 d1

DSB-induced Mdm2 deg. rate
(all Mdm2 forms)

3 d9
Apoptotic factors degradation
rate 21 d2 PTEN degradation rate

4 p1
Max synthesis rate of apoptotic
factor 22 d3

Spontaneous p53n degradation
rate

5 a0
Spontaneous p53n phosphoryla-
tion rate 23 d4

Mdm2pn-induced p53n degrada-
tion rate

6 a1
DSB-induced p53n phosphory-
lation rate 24 d5

Spontaneous p53pn degradation
rate

7 a2 PIP activation rate 25 d6
Mdm2pn-induced p53pn degra-
dation rate

8 a3 AKT activation rate 26 d7 Mdm2t degradation rate
9 a4 Mdm2 phosphorylation rate 27 d8 PTENt degradation rate

10 c0
PIPp dephosphorylation rate
(by PTEN) 28 i0 Mdm2p nuclear import

11 c1 AKTp inactivation rate 29 e0 Mdm2pn nuclear export

12 c2 Mdm2p dephosphorylation rate 30 AKTtot
Total number of Akt molecules
(AKT+AKTp)

13 c3
Spontaneous p53pn dephospho-
rylation rate 31 PIPtot

Total number of PIP molecules
(PIP+PIPp)

14 p0 p53n production rate 32 drep DNA repair rate

15 s0 Mdm2 transcription rate 33 q0
Spontaneous activation of
Mdm2 and PTEN genes

16 s1 PTEN transcription rate 34 q1
p53pn-depended activation of
Mdm2 and PTEN genes

17 t0 Mdm2 translation rate 35 q2
Mdm2 and PTEN genes inacti-
vation rate

18 t1 PTEN translation rate

Assuming the apoptosis-promoting character of the potential drug for which the
molecular targets would be searched for, the parameters of interest should be located above
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the 100 threshold line, as indicated in the closing paragraph of the Materials and Methods
section. Then, their increase would lead to prolonged elevated levels of nuclear p53.

The ranking, shown in Figure 2 (bottom panel) apparently indicates different parame-
ters than those drawn from a sensitivity functions-based one (Figure 2 (upper panel)). It
suggests that the system response would be affected most efficiently by decreasing one of
the parameters represented by the following numbers: 7, 8, 9, 15, 17, 21, 27, 28, 30 and 31.
For all these parameters, we observe similar, high values of the A index (Figure 2 (bottom
panel)). Having checked their meaning (Table 1), we found that parameters 7, 8, 21, 27, 30
and 31 are associated with processes related to proteins PTEN, PIP3 and AKT, which are
also involved in regulation of other intracellular processes, not associated directly with
apoptosis (e.g., mTOR or glucagon pathways). Therefore, we decided to leave them out of
further analysis.

Of the remaining four parameters, we chose parameters no. 15 and 17, representing
Mdm2 transcription rate and Mdm2 translation rate (s0 and t0—see Table 1) for further
analysis. To verify the conclusion drawn from the ranking, a simulation was run for
a nominal parameters and mean of the reduced parameter s0 (0.15s0) and t0 (0.15t0),
respectively.

The results show that the time course of the p53 level in a cell would be substantially
altered, following the parameter value reduction (Figure 3), leading to elevated p53 levels
that could, ultimately, result in cell apoptosis. In all simulations, obtained after changing
the top-ranking parameter values, the up-regulation of p53 is persistent and levels of p53
should be sufficient to induce desired cellular response, but in the case of the reduction of
parameters s0 and t0, it is substantially stronger and appears earlier.

Figure 3. Comparison of p53 protein responses in the model with nominal parameters (black line)
and parameters s0, t0 reduced by a = 0.15 (gray dashed lines).

Though the response is shown for a single cell only, the high ranking of the chosen
parameters means that a similar response would be observed in most cells in a population
(Figure 4), due to the structure of the algorithm and the distribution of the reduction factor
a that was used for ranking calculation.

Figure 4. Simulated p53 protein responses in the model with parameter t0 altered by the reduction
factor a. The figure shows 100 randomly selected p53 protein responses (gray lines) and average p53
protein responses (black line) calculated from 1000 simulations.

Contrary to our method, a ranking based on sensitivity functions suggested that the
drep parameter (DNA repair rate) should be more important than the parameters associated
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with the Mdm2 transcription and translation (s0 and t0). Figure 5 shows that the reduction
of the drep parameter altered the p53 protein response; however, a substantially higher level
of p53 was obtained after reducing parameters s0 or t0.

Figure 5. Comparison of p53 protein responses in the model with nominal parameters (black line)
and parameter drep reduced by a = 0.15 (gray dashed line).

Moreover, some parameters, e.g., d2, d4 and d6, are low-ranked in the sensitivity
function-based ranking (see the upper panel in Figure 2), and as such, would not be
considered for further investigations, if that method was applied. However, Figure 6 clearly
shows that these parameters should be ranked higher. This example demonstrates that
classical sensitivity analysis methods based on sensitivity functions are not suitable for
searching for molecular targets for new drugs.

Figure 6. Comparison of p53 protein responses in the model with nominal parameters (black line)
and parameters d2, d4 and d6, reduced by a = 0.15 (gray dashed line).

2.2. IFN-b-Induced JAK/STAT Signaling Pathway
As the second example, the model of Interferon-b (IFN-b) induced Janus kinase/signal

transducer and activator of transcription (JAK/STAT) signaling pathway has been con-
sidered. It plays a critical role in the pro-inflammatory immune responses to viral infec-
tions [33,34]. The IFN-b cytokine is used in treatment of many diseases, including multiple
sclerosis and cancer (see, e.g., [35–37]), as well as in viral infections [38,39].

The model from [1] has been chosen (Figure 7). Its temporal response, contrary to the
previous example, is not oscillatory. The model contains 27 variables and 50 parameters
(see the Supplementary materials file for the equations). Interferon regulatory factor 1
(IRF1) mRNA concentration has been selected as the variable representing system behavior,
whose sensitivity to parameter changes is analyzed. For a detailed description of equations
and the meaning of parameters, see [1].
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Figure 7. Schematic diagram of the IFN-b-induced JAK/STAT signaling pathway model. PHYactive
and PHYinactive represent unknown active and inactive phosphatases, respectively, hypothesized in
the model [1].

Two parameters of the model were omitted in the sensitivity analysis: ks1_phos_sat
and ks2_phos_sat. They represent saturation constants and, as such, would not provide
information about a prospective molecular drug target. The resulting parameter rankings
are shown in Figure 8. Parameter names corresponding to the numbers on the ranking can
be read from Table 2.

Figure 8. Parameter rankings for IFN-b-induced JAK/STAT signaling pathway model: based on
sensitivity functions (top panel) and based on the method proposed in this paper (bottom panel). The
horizontal (X) axis represents consecutive model parameters, whose names have been replaced by
numbers for better readability. The parameter annotation associated with these numbers is given in
Table 2. The red line in the lower panel corresponds to the A index value representing no influence
of parameter changes on the model response. Points located above this line represent parameters
whose change (as described in the algorithm details) amplify the model response, while those below
represent the parameters whose change lead to the suppression of the model response.
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Table 2. List of parameters appearing in the IFN-b-induced JAK/STAT signaling pathway model [1].

No. Par. Description No. Par. Description

1 kv
cytoplasmic/nuclear
volume ratio 25 ks1i1deg

[STAT1|IRF1] degradation
rate

2 vi1t IRF1 transcription rate 26 ks1s1
[STAT1p|STAT1p] complex
creation rate

3 vs1t STAT1 transcription rate 27 ks1s2
[STAT1p|STAT2p] complex
creation rate

4 vl2t LMP2 transcription rate 28 kphys1s1
[PHY|STAT1p|STAT1p]
complex creation rate

5 vt1t TAP1 transcription rate 29 ks1i1
nuc. [IRF1|STAT1] com-
plex creation rate

6 ktransl translation rate 30 kactivation PHY activation

7 T time constant for inertial el-
ements 31 kinacti1 IRF1 inactivation rate

8 ks1deg STAT1 degradation rate 32 ks1tprod
STAT1 constitutive mRNA
production rate

9 ks1pdeg STAT1p degradation rate 33 ks2tprod
STAT2 constitutive mRNA
production rate

10 ks2deg STAT2 degradation rate 34 kl2tprod
LMP2 constitutive mRNA
production rate

11 ks2pdeg STAT2p degradation rate 35 kt1tprod
TAP1 constitutive mRNA
production rate

12 ki1deg IRF1active degradation rate 36 es1 STAT1 nuclear export

13 ki1_indeg
IRF1inactive degradation
rate 37 is1 STAT1 nuclear import

14 ks1t_deg
STAT1 transcript degrada-
tion rate 38 es2 STAT2 nuclear export

15 ks2t_deg
STAT2 transcript degrada-
tion rate 39 is2 STAT2 nuclear import

16 ki1t_deg
IRF1 transcript degrada-
tion rate 40 is1s1

[STAT1p|STAT1p] nuclear
import

17 kl2t_deg
LMP2 transcript degrada-
tion rate 41 is1s2

[STAT1p|STAT2p] nuclear
import

18 kt1t_deg
TAP1 transcript degrada-
tion rate 42 ii1 IRF1active nuclear import

19 kinv_s1s1
cyt. [STAT1p|STAT1p] dis-
sociation rate 43 ei1 IRF1active nuclear export

20 kinv_s1s1_n
nuc. [STAT1p|STAT1p] dis-
sociation rate 44 ei1_in IRF1inactive nuclear export

21 kinv_s1s2
cyt. [STAT1p|STAT2p] dis-
sociation rate 45 ks1_phos

STAT1 phosphorylation
rate

22 kinv_s1s2_n
nuc. [STAT1p|STAT2p] dis-
sociation rate 46 ks1_dephc

STAT1p dephosphoryla-
tion rate

23 kinv_phys1s1

nuc.
[STAT1p|STAT1p|PHY]
dissociation rate

47 ks2_phos
STAT2 phosphorylation
rate

24 kinv_s1i1
nuc. [STAT1|IRF1active]
dissociation rate 48 ks2_dephc

STAT2p dephosphoryla-
tion rate

Interestingly, in the case of the IFN-b-induced JAK/STAT signaling pathway, both
rankings indicate the same parameters as the most important for the pathway temporal
response, which may result from a smaller number of nonlinear terms in the IFN-b-induced
JAK/STAT signaling pathway model. However, the method proposed in this paper allows
to discern parameters that inhibit the pathway response from those that amplify it.

If the desired drug action was to amplify the pathway response, in order to strengthen
the immune response, then the ranking suggests that any of the parameters below the red
threshold line in Figure 8 (bottom panel) should be considered for further analysis. The
meaning of the mentioned parameters can be found in Table 2. Of these, parameters 23, 28
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and 30 correspond to processes involving a hypothetical pathway-activated phosphatase
(PHY), suggested in [1] and as such could not be used in drug search, unless it is identified
in experimental research. The parameters 22 and 47 are related to processes involving the
STAT2 protein, which is important for other processes of immune response, and changing
them would amplify these, in turn. Therefore, we focused on parameter 16 (ki1t_deg in the
original model), which is the degradation rate constant of the IRF1 mRNA. The result of
decreasing its value is shown in Figure 9 with a dotted line.

Figure 9. Comparison of IRF1 mRNA responses in the model with nominal parameters (solid black
line) and parameters reduced by a factor of a = 0.15 (gray dashed and dotted lines).

If the desired drug action was to inhibit the pathway response, e.g., in autoimmune
diseases, p45 (ks1_phos in the original model—STAT1 phosphorylation rate) would be the
parameter of choice, according to the ranking shown in Figure 8. Reduction of its value
would lead to almost complete inhibition of the system response (Figure 9, dashed line).

3. Discussion
In both examples introduced in the preceding section, sensitivity rankings provided

information about important parameters, associated with particular processes to be targeted
by a potential drug. The direct effect of the drug is assumed to be the reduction of kinetic
rates of these processes. Such reduction might be achieved, e.g., by binding of an active
drug component to one of the molecules involved in the given process. With that in mind,
a search for such component might be initiated with molecular dynamics methods.

In the first model, two parameters, t0 and s0, were the most important in the model.
These two parameters are associated with processes leading to Mdm2 protein production
(the former one indirectly, through the production of Mdm2 mRNA). Since the translation
process may be targeted by specifically designed siRNA, the parameter t0, representing the
Mdm2 translation rate, seems to indicate a promising candidate for a molecular drug target.
According to the ranking results, devising siRNA that would target Mdm2 mRNA would
significantly alter system responses, which was already proposed in another in silico study
[40]. There are also other high-ranking parameters, and each of them should be looked
at from biological point of view. For example, the parameters d4 and d6 (no. 23 and 25,
respectively, in Figure 2), representing the Mdm2-induced degradation rates of p53 and
phospho-p53, respectively, might be another parameters of interest. In fact, nutlin, a drug
targeting that Mdm2-induced degradation of p53 has been clinically tested [7,41]. Since
nutlin targets Mdm2 and, thus, affects p53 degradation regardless of p53 form, we have
also checked the impact of simultaneous reduction of d4 and d6, representing nutlin actions
(Figure 10). The corresponding level of p53 induction is lower than the one exhibited by
changing parameters t0 or s0, but still sufficient to induce cell apoptosis.
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Figure 10. Comparison of p53 protein responses in the model with nominal parameters (black line)
and parameters d4 and d6 reduced by a = 0.15.

The ranking obtained in the second example shows that, depending on the desired
drug action, molecular targeting should concentrate on decreasing of either the degradation
rate ki1t_deg of the IRF1 transcript (increasing its half-life) or phosphorylation rate ks1_phos
of STAT1 proteins. In the first case, the aim would be to prolong the cellular response to
the pathway activation through stabilizing IRF1 mRNA. Although at the moment there
are no available means of increasing IRF1 transcript half-life, this might change in the
future, e.g., through the use of microRNAs (miRNAs) and molecules targeted at miRNAs
(antimiRs) [42] or other RNA drugs-oriented methods (reviewed recently in [43]). In the
second case, the decrease of the STAT1 phosphorylation rate would be important for
attenuating inflammatory responses. This is particularly interesting, as it would mean
restoring the SOCS-1-mediated regulatory mechanism [44–46], not present in HeLa cells,
for which the mathematical model of the pathway was developed [1]. Therefore, inhibiting
STAT1 phosphorylation by means of an active drug component which acts in an SOCS-1-like
manner, could prevent prolonged inflammation.

4. Materials and Methods
4.1. The General Class of Models Considered

There are many methods of modeling signaling pathways and regulatory
networks [22,47–49]. The approach presented in this paper assumes that the mathematical
model is given in the form of ordinary differential equations, describing changes in concen-
trations of molecular species involved in the intracellular processes under investigation.

In general, these equations may be written as follows:

dX
dt

= F(X, P, u) (1)

where X = [X1 . . . Xi . . . Xn]T , P = [p1 . . . pi . . . pk]
T , with Xi and pi de-

noting concentration or number of molecules of type i and model parameters, respectively.
The vector u, which is a control vector in systems theory, represents external or internal ex-
citation of the system. It is worth noting that the function F does not have to be continuous
and may contain stochastic switches representing random signaling events [6].

Let the solution of the model (1) be given by:

X = X(Pnom, t, u), (2)

where Pnom denotes the nominal parameter vector. Nominal values of parameters of the
model (1) are estimated basing on the results of biological experiments, in procedures that
provide the best fit to experimental data. The general goal of sensitivity analysis is to find
parameters whose change affects the solution (2) the most. In order to do that, a rank of
each parameter is established, according to the value of the sensitivity index, defined by
the method used in the analysis. For complex systems, building such rankings requires
introduction of some kind of a combined ranking index, as the extent to which each of
the variables xi is affected by a parameters change may vary. However, when the analysis
is focused on regulatory networks or signaling pathways, usually, one variable is chosen
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to be representative of the system, thus simplifying the task. That variable denotes the
concentration of a protein, transcript, protein complex or other key molecule that, e.g.,
defines the fate of the system, such as the p53 protein in the example that is included in
this paper.

4.2. Sensitivity Rankings
The solution of the model (1) is a function of time. Depending on a goal the model has

been developed for, one may consider one of different response characteristics to be the
focal point of the sensitivity analysis. These include, among others, steady state value, time
needed to reach the steady state, the dominant oscillation frequency, frequency spectrum
of the system transient response [50–52] or the transient time response. Though in many
cases, steady state is the preferred system characteristic, in general, it would be unsuitable
for cases when it is the transient response, not the steady state, that is affected by the
parameter change. The simplest example would be a temporary increase of a protein level,
followed by fallback to its initial condition. Similarly, a dominant oscillation frequency
would not be a proper choice for aperiodic systems. Moreover, when the study is focused
on finding potential drug targets, it seems that quantitative changes are more important
than qualitative ones, and therefore, in this paper, we propose to base the sensitivity indices
on the area under the curve (AUC) of the model time response.

Following the assumption given in the Introduction section, in the approach presented
below, one of the state variables is arbitrarily chosen to represent the system output, due to
its importance both in the particular pathway/regulatory module under investigation and
in other cell responses. That simplifies the ranking construction and seems to be acceptable,
at least in the examples that follow.

The difference between the system responses xi obtained for nominal and modified
parameter pj is given by:

Dxi(pj, t) = xi(pj, t)� xi,nom(pnom, t). (3)

The following integral can be used as a measure of the effect of parameter change over
the time horizon T, forming a foundation for the parameter ranking:

Rj =
Z T

0
Dxi(pj, t)dt (4)

Usually, such an integral is calculated of either (Dx)2 or |(Dx)|. However, taking into
account the goal of the analysis, significant parameters should yield a Dx that is of the
same sign over the time horizon T. Therefore, using (4) is acceptable and yields additional
information about the type of the parameter impact—the negative value is related to the
inhibition drug action, whereas a positive value is related to the drug-induced amplification
of the system response.

A molecular drug may either increase or decrease the ratio of a biochemical process in
a pathway of interest. The respective kinetic parameter should be substantially increased or
reduced, correspondingly (by the so-called amplification or reduction factor) and the impact
of such change measured. Since individual cells may be affected to a different degree by
the drug [18,19], the alteration factor should be a random number. That way, heterogeneity
of cellular responses to a drug in a cell population is incorporated into analysis.

The basic algorithm, proposed in this paper involves the following steps:
1. Run the simulation for nominal parameter values pnom, obtaining Xnom(pnom, t), and

select a state variable representing the system output xi,nom(pnom, t).
2. For each parameter pj, generate a large set of its random values

⇥
a · pj,nom

⇤
, where a is

an alteration (amplification/reduction) factor drawn from a chosen distribution with
mean µ equal to the the average drug effect in the population of cells and standard
deviation s representing a heterogeneous response to this drug.

3. For each generated parameter value pj:
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• Run a simulation with randomized parameter pj and remaining parameters at
their nominal values, obtaining xi(pj, t);

• Calculate the difference between the nominal response and the new response,
defined by (3);

• Calculate the sensitivity index:

Sj =

R T
0 Dxi(pj, t)dt

R T
0 xi,nom(pnom, t)dt

(5)

where T is the end time of the simulation.
4. Calculate the mean µ of the index S for each parameter:

Aj = µ(Sj). (6)

5. Create a parameter ranking, where each parameter pj has been assigned the value Aj.
The general idea of the proposed algorithm is illustrated in Figure 11.

Figure 11. A simplified diagram showing the idea behind the algorithms used for sensitivity analysis.

As mentioned in the preceding section, we concentrate on inhibitory drug actions. For
example, when binding to their respective targets, a drug may block the active site that
becomes unavailable for other molecules, and thus, makes the target unavailable for a given
process. By blocking the active sites of selected molecules, it is also possible to indirectly
stimulate the process, e.g., through blocking the inhibitor of that process [7]. The method
shown in the paper is general enough also in the case when stimulation is straightforward,
as is in the case of recombinant proteins [53]. The only difference from the case studies
shown in the Results section would be in the distribution used for sampling a values that
should be the amplification factor.

The inhibitory drug actions are represented in a model by parameter reduction. The
choice of a range, from which the reduction factor a should be sampled is based on the
following assumptions:
• If the potential drug is to be effective, it must substantially reduce the kinetic parameter—by

85% or more in most cells;
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• Some of the cells may be partially or totally resistant to the drug.
The latter assumption would not be satisfied, if a uniform distribution was used for

sampling a, as suggested in [54].
The reduction factor a, representing the drug inhibitory potential, was drawn from the

log-normal distribution with µ = �2.08 and s = 0.61. Log-normal distribution parameters
were chosen to obtain an average value of the factor a equal to 0.15 (85% parameter
reduction). The distribution of the reduction factor a is shown in Figure 12.

Figure 12. The distribution of reduction factor a.

However, drug impact might be brought by an increase of parameter values, instead
of their decrease. This is the case, e.g., in enhancing signal transmission by the drug
retigabine [55,56]. Another example can be found in Michelis–Menten-type kinetics, with
the process kinetic ratio given by kx(t)

km+x(t) , where the drug targeting an enzyme that facilitates
the process would lead to increasing the value of km. Then, the only change in the algorithm
would involve sampling parameter a >> 1 (which would become an amplification, not a
reduction factor) in step 3 of the proposed algorithm. In the case of reducing parameter
values, the sampling described in the preceding paragraph may be considered to be
general, regardless of the process associated with a parameter. However, when increasing
parameters, the choice of a range parameter sampling would have to be determined
separately for each specific case. Expert opinions on the feasible maximum amplification
factor would be needed. Therefore, in the examples shown in the subsequent section, we
constrain ourselves to the examples which consider potential drug-induced reduction of
parameter values only.

Negative S values, resulting from negative Dxi(pj, t), should be interpreted as the
suppression of the model response after changing the parameter, and the minimum S value
may be equal to �1, which represents the complete suppression of the model response (i.e.,
after changing the parameter value, the variable xi, representing the level of i-th molecules,
has the value 0 over the entire simulation). Positive values of S correspond to the elevated
level of the i-th molecules, and the maximum value of S is not limited. Therefore, if it is
the parameter reduction-oriented analysis, it seems reasonable to present the parameters
ranking on a logarithmic scale (with values of A scaled up by adding 1 to avoid negative
arguments in log function). Then, in the rankings presented in this paper, values above 100

correspond to the amplification of the model response, while values below 100 correspond
to the suppression of the model response. In other words, if the goal is to inhibit a signal in
a pathway, parameters much below that threshold are of interest (the lower the value, the
better). Otherwise, if drug action should yield a response amplification, the highest-located
points represent parameters of interest.

Simulations were run in MATLAB R2020b using the ode23tb function.

5. Conclusions
The method of parameter ranking creation that has been introduced in this paper

allows to find parameters most sensitive to targeted inhibition in signaling pathways and
regulatory network models. It can be applied to a model of any pathway, regardless of its
size, complexity and dynamical properties, as long as it is described by ordinary differential
equations. The examples included in this paper prove that the conclusions drawn from the
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rankings are biologically relevant. It should be noted that the method takes into account
heterogeneity in cell populations and allows to find prospective targets even if some cells
ultimately appear to be not responding to treatment. The range of such heterogeneity is
defined by two parameters of the distribution used to sample the reduction factor a in
the model.

The approach presented in the paper may also be used in analysis focused on drugs
amplifying cellular responses as represented by kinetic ratio increase. That, however,
requires expert knowledge of a pathway under consideration at the time of simulations
setup, as only parameters whose increase would be biologically relevant should be tested
in the computational procedures.

Once the most important parameters and the processes they are associated with are
identified, the next step would be to employ bioinformatics algorithms and molecular
modeling [57,58] to find prospective drug components that would bind to the molecules
involved in these processes, thus completing in silico search for a potential drug and
preparing the stage for biological experiments.

Though the methods and examples introduced in this paper are very promising,
one should remember that the models analyzed describe only a selected part of a very
complex system of regulatory networks regulating intracellular processes. Such models are
always based on an assumption that processes not included do not affect significantly the
behavior of the system under investigation (at least, over the time horizon that is used in
the simulation study). Moreover, responses to the given stimuli may be cell-type or tissue-
specific, and a model that provides a good fit to experimental data in one experimental
setup may need to be redesigned for another one. Therefore, in silico findings may not
necessarily apply in biological in vitro or in vivo systems. Additionally, there may be
off-target effects; inhibiting one target may affect other regulatory networks, and while the
proposed approach is useful in search for prospective drug targets, one should be aware of
its limitations, which can be summarized as follows:
• A drug may affect several parameters simultaneously and drive the parameters change

in the same direction [59].
• Results of the analysis depend on the structure of the model and nominal parameter

values. As a consequence, a model with estimated parameters that fits experimental
data is needed, possibly one that takes into account, e.g., mutant proteins and their
effects on the regulatory network.

• It is not necessary that in silico findings will apply in biological in vitro and in vivo
systems.

• Signaling pathway models describe only a small fraction of much larger systems. The
drug may also affect other signaling pathways (unforeseen side effects of drugs)—
bioinformatics analysis is needed and expert knowledge is required to confirm the
biomedical relevance of the findings.
Nevertheless, despite the limitations listed above, the approach proposed in this paper

should facilitate faster advances in search for new molecular drug targets, with its ability
to indicate where to look for the most efficient way of affecting cellular responses.
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