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A B S T R A C T

This study addresses multi-view Terrestrial Laser Scanning Point Cloud data registration methods. Multiple
rigid point cloud data registration is mandatory for aligning all scans into a common reference frame and it
is still considered a challenge looking from a large-scale surveys point of view. The goal of this work is to
support the development of cutting-edge registration methods in geoscience and mobile robotics domains. This
work evaluates 3 data sets of total 20 scenes available in the literature. This paper provides a novel open-
source framework for multi-view Terrestrial Laser Scanning Point Cloud data registration benchmarks. The
goal was to verify experimentally which registration variant can improve the open-source data looking from
the quantitative and qualitative points of view. In particular, the following scanners provided measurement
data: Z+F TLS Imager 5006i, Z+F TLS Imager 5010C, Leica ScanStation C5, Leica ScanStation C10, Leica
P40 and Riegl VZ-400. The benchmark shows an impact of the metric e.g. point to point, point to projection
onto a plane, plane to plane etc..., rotation matrix parameterization (Tait–Bryan, quaternion, Rodrigues) and
other implementation variations (e.g. multi-view Normal Distributions Transform, Pose Graph SLAM approach)
onto the multi-view data registration accuracy and performance. An open-source project is created and it can
be used for improving existing data sets reported in the literature, it is the added value of the presented
research. The combination of metrics, rotation matrix parameterization and optimization algorithms creates
hundreds of possible approaches. It is shown that chosen metric is a dominant factor in data registration.
The rotation parameterization and other degrees of freedom of proposed variants are rather negligible
compared with chosen metric. Most of the proposed approaches improve registered reference data provided
by other researchers. Only for 2 from 20 scenes it was not possible to provide significant improvement.
The largest improvements are evident for large-scale scenes. The project is available and maintained at
https://github.com/MapsHD/HDMapping.
. Introduction

Multi-view TLS (Terrestrial Laser Scanner) data registration is es-
ential for many applications and domains such as geoscience, mobile
obotics and computer vision. It provides aligned point clouds. A gap
etween these domains is evident since geo-science claims having
lready mature technology for providing accurate TLS. Mobile robotics
s rather focused on the high performance of real-time data registration
ystems than offline calculations. Many researchers from the mobile
obotics domain [1] claim high accuracy of delivered maps, thus it was
prerequisite for conduced research closing the gap between those do-
ains. Terrestrial Laser Scanning data is widely disseminated by many

endors and organizations [2,3]. An interesting data set [4] relates with
D woody structure of large tropical trees. Recent work on large-scale
LS registration [5] and forest terrestrial point clouds [6] shows still the
reat interest in this topic since many challenges are still evident such
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as large-scale problems and scanning non-urban environments. For this
purpose proposed novel open-source framework provides all necessary
tools for conducting large-scale multi-view TLS benchmarks.

This paper shows the novel complementary open-source frame-
work that was not yet proposed nor elaborated on in the literature.
This paper organizes state-of-the-art multi-view TLS data registration
knowledge and extends it by the novel implementation of multi-view
Normal Distributions Transform using regular grid decomposition and
multi-threading for efficient calculations. Also, it provides a possibil-
ity to incorporate a general and adaptive robust loss function [7]
for all multi-view registration variants. Thus, it is considered as a
contribution of this work. It is evident that an alternative solution
could be the K-means algorithm utilized to divide all data points
into different clusters [8]. But, the proposed approach is based on
lightweight implementation without a need of incorporating additional
vailable online 24 June 2023
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Fig. 1. The overview of the complementary multi-view TLS data registration benchmark. The combination of metrics, rotation matrix parameterization and optimization algorithms
create hundreds of possible approaches for multi-view TLS (Terrestrial Laser Scanner) data registration.
programming libraries. The framework provides metrics such as point-
to-point, point-to-projection onto a plane, and plane to plane etc...,
thus the sum of the distances between basic geometric primitives
(or their parameterized form) is minimized. Moreover, it is shown
that it is possible to express SO(3) using Euler, Tait–Bryan, quater-
nion or Rodrigues’ rotation formula, thus it provides for the first
time in literature the possibility of observing the potential impact on
the data registration. The optimization can be performed locally or
globally using the weighted nonlinear least squares method, Gauss–
Newton, Levenberg–Marquardt algorithms including robust variants
and based on probabilistic approaches e.g. Normal Distributions Trans-
form, Generalized Iterative Closest Point and Pose Graph Simultaneous
Localization and Mapping. The combination of metrics, rotation matrix
parameterization and optimization algorithms create hundreds of possi-
ble variants that are shown in Fig. 1. Thus, it is the most complementary
open-source multi-view TLS data registration framework [9]. The goal
of the conducted benchmark was to improve data provided by [10–
12]. We consider a scenario when data are initially registered. For this
reason, application with large initial errors and small overlap between
scan [13] is rather out of the scope of this research. The results of this
research can improve many applications such as accurate documenta-
tion in cultural heritage [14], environmental management [15], TLS
performance evaluation [16], geology [17], forest measuring and mod-
eling [18], forensics [19,20], mountain terrain mapping [21], space
exploration [22] and protection systems [23]. It is possible to enumer-
ate numerous other applications since TLS is with us for more than a
decade. Numerous algorithms appeared [24], thus many researchers
provide mature complementary surveys such as [25]. Providing reg-
istered reference data sets is a concern for many researchers [26] to
conduct their research [27]. It is more and more popular in mobile
robotics to provide accurate reference data for evaluation mapping
capabilities [28]. For these purposes, this paper proposes a novel com-
plementary open-source TLS data registration framework. It provides
software tools for improving TLS data provided by other researchers. In
that sense, this paper extends the state of the art by novel benchmark
tools.

The importance of the work can be summarized as follows:

• it aggregates relevant multi-view TLS data registration methods
in a common framework,

• the implementation does not require sophisticated programming
skills, thus larger audience can benefit from this study,

• this work shows how to improve state-of-the-art data sets consid-
ered by other researchers as ground truth,
2

• it shows that the significant impact is related to metric (e.g. point
to point, point to projection ...),

• this work shows that large-scale surveys are still a challenge, thus
future work should consider scalable implementation.

The novelty of the paper is a complementary multi-view TLS data
registration benchmark. This paper introduces a novel multi-view nor-
mal distributions transform algorithm with all necessary variations of
rotation matrix parameterization. Most variants of lidar metrics (point
to point, point to plane, plane to plane etc...) are incorporated into
this benchmark. The quantitative and qualitative benchmark of a such
complementary set of TLS data registration variants was not elaborated
in the literature. The motivation behind this research was, on one
hand, to provide an objective tool for TLS benchmark, on the other
hand, to provide a tool for improving state-of-the-art data sets. The
contribution of the paper is an evaluation based on 20 open-source
datasets from 3 independent research sources. The following scanners
provided data: Z+F TLS Imager 5006i, Z+F TLS Imager 5010C, Leica
ScanStation C5, Leica ScanStation C10, Leica P40 and Riegl VZ-400.
Such complementary and large-scale benchmark was not yet elaborated
on in the literature. The novelty of the work can be summarized as
follows:

• it introduces a scalable solution for large-scale surveys based on
novel multi-view normal distributions transform algorithm,

• it provides relevant metrics for point cloud data registration,
• it elaborates on most significant data registration variants includ-

ing different rotation matrix parameterization,
• this work was evaluated based on state-of-the-art data sets incor-

porating relevant TLS,
• the results are supported by 2000 experiments that can be easily

reproduced by provided open-source implementation,
• this open-source implementation can be used for accurate refer-

ence data creation.

The paper is organized as follows: Section 2 encapsulates all nec-
essary methods to build all TLS data registration algorithms. Section 3
shows the result of 2000 experiments performed on publicly available
datasets and demonstrates the fact that in most cases proposed algo-
rithms improve state of the art. Data sets are composed of challenging
indoor and outdoor scenarios. The justification of the results is based on
quantitative and qualitative measures widely used in literature. These
datasets are widely used by other researchers as ground truth, therefore
the impact of this research will improve the overall state of the art. The
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Fig. 2. Three publicly available data sets are incorporated into the benchmark. First row: ETH [11], second row: RESSO [10], third and fourth rows: WHU_TLS [12].
main contribution of this research is an open-source project available
and maintained at https://github.com/MapsHD/HDMapping capable of
improving existing open-source large-scale data sets. Such wide scope
TLS data registration implementation extends state of the art and has
research and didactic potential. Section 4 summarizes the research.

2. Methodology

2.1. Manipulation of basic geometric primitives in 3D space

We consider points and planes as the basic primitives in this paper.
Obviously, it is possible to extend this in future be a set of e.g. lines.
To build an optimization system it is necessary to manipulate these
geometric primitives in 3D space. For this reason we introduce WORLD
to TLS [𝑹, 𝒕]𝑊→𝑇𝐿𝑆 and TLS to WORLD [𝑹, 𝒕]𝑊←𝑇𝐿𝑆 transformation
matrices. These are 4 × 4 matrices ∈ SE(3), where 𝑹 is rotation matrix
∈ SO(3) and 𝒕 ∈ R3 is a translation vector and an Eq. (1) shows an
important relationship,
[

𝑹𝑊←𝑇𝐿𝑆 𝒕𝑊←𝑇𝐿𝑆

𝟎1×3 1

]

=

[

𝑹𝑊→𝑇𝐿𝑆 𝒕𝑊→𝑇𝐿𝑆

𝟎1×3 1

]−1

=

[

𝑹⊺
𝑊→𝑇𝐿𝑆 −𝑹⊺

𝑊→𝑇𝐿𝑆 𝒕𝑊→𝑇𝐿𝑆

𝟎1×3 1

]

(1)

where ’⊺’ is an operator of a transposed matrix. This relationship
will play an important role within the fusion of our basic geomet-
ric primitives with the observation equations known from Computer
Vision e.g. pinhole camera model re-projection error in Bundle Adjust-
ment [29]. This information fusion is an interesting future research
direction, for this reason, its impact on point cloud data registration
is investigated in this paper.

The coordinates of the 3D point in Euclidean space are give as 𝑷 𝑙 =
[𝑥𝑙, 𝑦𝑙, 𝑧𝑙 , 1]⊺. Eq. (2) shows how to transform this point into a global
reference frame as point 𝑷 𝑔 = [𝑥𝑔 , 𝑦𝑔 , 𝑧𝑔 , 1]⊺. This is a fundamental
concept to building an Iterative Closest Point algorithm [31].

𝑷 𝑔 = [𝑹, 𝒕]𝑊←𝑇𝐿𝑆𝑷 𝑙 (2)

The plane in 3D space is represented uniquely by four parameters
[𝑎, 𝑏, 𝑐, 𝑑], where [𝑎, 𝑏, 𝑐] is a unit vector orthogonal to the plane and
3

𝑑 is the distance from the origin. Eq. (3) shows how to transform plane
expressed in local reference frame as [𝑎𝑙 , 𝑏𝑙 , 𝑐𝑙 , 𝑑𝑙] to obtain parameters
[𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔 , 𝑑𝑔] expressed in a global reference frame.
[

𝑎𝑔 𝑏𝑔 𝑐𝑔 𝑑𝑔
]

=
[

𝑎𝑙 𝑏𝑙 𝑐𝑙 𝑑𝑙
]

[

𝑹⊺
𝑊←𝑇𝐿𝑆 −𝑹⊺

𝑊←𝑇𝐿𝑆 𝒕𝑊←𝑇𝐿𝑆

𝟎1×3 1

]

(3)

Eqs. (2), (3) are fundamental concepts of transforming basic primitives
in 3D space. The last important concept is the source point 𝑷 𝑠𝑟𝑐,𝑔 to
plane [𝑎, 𝑏, 𝑐, 𝑑] projection resulting 𝑷 𝑝𝑟𝑜𝑗,𝑔 given by Eq. (4),

𝑷 𝑝𝑟𝑜𝑗,𝑔 =
⎡

⎢

⎢

⎣

𝑥𝑠𝑟𝑐,𝑔

𝑦𝑠𝑟𝑐,𝑔

𝑧𝑠𝑟𝑐,𝑔

⎤

⎥

⎥

⎦

−
([

𝑥𝑠𝑟𝑐,𝑔 𝑦𝑠𝑟𝑐,𝑔 𝑧𝑠𝑟𝑐,𝑔 1
]

⋅
[

𝑎𝑔 𝑏𝑔 𝑐𝑔 𝑑𝑔
])

⎡

⎢

⎢

⎣

𝑎𝑔

𝑏𝑔

𝑐𝑔

⎤

⎥

⎥

⎦

(4)

where (⋅) is a dot product. Having in mind previously described con-
cepts of basic geometric primitives manipulation in 3D space it is
possible to build point-to-point, point-to-projection and plane-to-plane
metrics. Plenty of other metrics exist and they will be discussed in
Section 2.2.

2.2. Observation equations

An observation Eq. (5) relates a target value 𝑦𝑖, a model function
𝜳 [𝜷](𝒙𝑖) and its residual 𝑟𝑖. Minimizing a difference between the target
value and the model function allows defining the optimization problem
as (6) that is described in detail in Section 2.4.

𝑟𝑖
⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

= 𝑦𝑖
⏟⏟⏟

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

− 𝜳 [𝜷](𝒙𝑖)
⏟⏞⏟⏞⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

(5)

𝜷∗ = min
𝜷

𝐶
∑

𝑖=1

(

𝑦𝑖 − 𝜳 [𝜷]
(

𝒙𝑖
))2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

(6)

where, 𝜷 is the vector of 𝑛 adjustable parameters by the optimization
process resulting 𝜷∗ and 𝒙 is the vector of input variables of the model
function.

https://github.com/MapsHD/HDMapping
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Fig. 3. ETH data set [11], scene: arch. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that this data set is difficult to improve.
Table 1
Barron’s adaptive robust loss function [7], 𝜌(𝑟, 𝛼, 𝑐), 𝛶 (𝑟) - influence function, 𝑤(𝑟) - weight and reproduced loss function, (*) singularity.
Condition 𝜌(𝑟) 𝛶 (𝑟) 𝑤(𝑟) Reproduced

loss function

𝛼 = −∞∗ 1 − 𝑒−
1
2
( 𝑟
𝑐
)2 𝑟

𝑐2
𝑒−

1
2
( 𝑟
𝑐
)2 1

𝑐2
𝑒−

1
2
( 𝑟
𝑐
)2 Welsch

𝛼 = −2
2
(

𝑟
𝑐

)2

(

𝑟
𝑐

)2
+4

𝑟
𝑐2

(
(

𝑟
𝑐

)2

4
+ 1

)−2
1
𝑐2

(
(

𝑟
𝑐

)2

4
+ 1

)−2

Geman-McClure

𝛼 = 0∗ log
(

1
2

(

𝑟
𝑐

)2
+ 1

)

2𝑟
𝑟2+2𝑐2

2
𝑟2+2𝑐2

Cauchy

𝛼 = 1
√

1 +
(

𝑟
𝑐

)2
− 1 𝑟

𝑐2

(

(

𝑟
𝑐

)2
+ 1

)− 1
2 1

𝑐2

(

(

𝑟
𝑐

)2
+ 1

)− 1
2

𝐿1 − 𝐿2

𝛼 = 2∗ 1
2

(

𝑟
𝑐

)2 𝑟
𝑐2

1
𝑐2

𝐿2

otherwise |𝛼−2|
𝛼

(

(

( 𝑟
𝑐
)2

|𝛼−2|

)
𝛼
2

− 1

)

𝑟
𝑐2

(
(

𝑟
𝑐

)2

|𝛼−2|
+ 1

)

(

𝛼
2
−1

)

1
𝑐2

(
(

𝑟
𝑐

)2

|𝛼−2|
+ 1

)

(

𝛼
2
−1

)

generic
4
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Table 2
The characteristics of conducted data sets ETH [11], RESSO [10] and WHU_TLS [12]. ’Name’ is an unique identification of the data set, ’Source’ indicates the publication with
data set description, ’Scanner’ indicates TLS type, ’Registration’ indicates the method used for obtaining reference data, ’Nr of scans’ denotes number of TLS stations, ’Nr of points’
denotes summarized number of points for current data set, ’Nr of points after down-sampling’ gives number of remaining points after down-sampling procedure, ’Dimensions (m)’
describes scanned scene boundaries in meters, ’Environment organization’ classifies scenes into structured or unstructured and give information concerning vegetation or other
movable obstacles, ’Environment location’ classifies scenes into indoor and outdoor, ’Overlap min (%)’ denotes the minimum overlap between two scans, ’Overlap max (%)’ denotes
the maximum overlap between scans.

Name Source Scanner Registration Nr of scans Nr of points Nr of points after Dimensions (m) Environment Environment
down-sampling organization locations

exp1_arch [11] Z+F TLS Imager 5006i ICP 5 137.114.356 2.678.325 x: 143, y: 165, z: 111 Structured (+vegetation) Outdoor
exp2_courtyard [11] Z+F TLS Imager 5006i ICP 8 108.348.634 2.737.986 x: 162, y: 147, z: 47 Unstructured Outdoor
exp3_facade [11] Z+F TLS Imager 5006i ICP 7 138.587.422 427.405 x: 54, y: 76, z: 21 Structured (+vegetation) Outdoor
exp4_ office [11] Z+F TLS Imager 5006i ICP 5 53.605.691 257.462 x: 20, y: 21, z: 25 Structured Indoor
exp5_trees [11] Z+F TLS Imager 5006i ICP 6 121.489.966 2.822.654 x:121, y: 122, z: 47 Unstructured (vegetation) Outdoor
exp6_figure_7a [10] Leica ScanStation C10 ICP 12 6.416.789 4.987.983 x: 321, y: 299, z: 115 Structured (+vegetation) Outdoor
exp7_figure_7b [10] Leica ScanStation C10 ICP 6 1.346.690 1.332.962 x: 426, y: 427, z: 176 Structured (+vegetation) Indoor-Outdoor
exp8_figure_7c [10] Leica ScanStation C10 ICP 5 618.007 607.113 x: 240, y: 339, z: 22 Structured Outdoor
exp9_figure_7d [10] Leica ScanStation C10 ICP 3 712.220 589.245 x: 334, y: 245, z: 151 Structured (+vegetation) Outdoor
exp10_figure_7e [10] Leica ScanStation C10 ICP 26 4.192.172 3.808.582 x: 549, y: 563, z: 84 Structured(+vegetation) Outdoor
exp11_1-SubwayStation [12] Z+F TLS Imager 5010C [30] 6 237.573.133 654.433 x: 558, y: 270, z: 12 Structured Indoor
exp12_10-UndergroundExcavation [12] VZ-400 [30] 12 311.349.879 9.081.757 x: 270, y: 309, z: 71 Unstructured Indoor
exp13_11-Tunnel [12] VZ-400 [30] 6 157.018.478 1.255.305 x: 483, y: 308, z: 76 Structured Indoor
exp14_2-HighSpeedRailway [12] VZ-400 [30] 8 49.863.303 4.288.896 x: 1095, y: 1193, z: 166 Structured (+moving cranes) Outdoor
exp15_3-Mountain [12] Leica ScanStation C5 [30] 6 19.612.517 4.010.368 x: 349, y: 340, z: 162 Unstructured Outdoor
exp16_5-Park [12] VZ-400 [30] 32 160.242.854 22.835.776 x: 886, y: 835, z: 166 Structured(+vegetation) Outdoor
exp17_6-Campus [12] VZ-400 [30] 10 109.045.594 15.510.827 x: 799, y: 862, z: 219 Structured(+vegetation) Outdoor
exp18_7-Residence [12] Leica P40 [30] 7 43.700.787 5.008.914 x: 482, y: 500, z: 102 Structured(+vegetation) Outdoor (high buildings)
exp19_8-RiverBank [12] VZ-400 [30] 7 93.108.323 12.909.827 x: 694, y: 554, z: 166 Structured(+vegetation) Outdoor (water)
exp20_9-HeritageBuilding [12] VZ-400 [30] 9 238.156.561 14.786.624 x: 646, y: 500, z: 163 Structured(+vegetation) Outdoor
Fig. 4. ETH data set [11], scene: courtyard. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
5
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Table 3
Results for ETH dataset [11].

id method GN LM W ← TLS W →TLS TB Q R leftJ rightJ arch 𝑅𝑀𝑆𝑥𝑦 courtyard 𝑅𝑀𝑆𝑥𝑦 facade 𝑅𝑀𝑆𝑥𝑦 office 𝑅𝑀𝑆𝑥𝑦 trees 𝑅𝑀𝑆𝑥𝑦

- initial[11] 0.011186 0.031796 0.006555 0.007657 0.026556
0 p2p ✓ ✓ ✓ 0.011272 0.023478 0.003345 0.007108 0.023778
1 p2p ✓ ✓ ✓ 0.011283 0.023479 0.003350 0.007136 0.023782
2 p2p ✓ ✓ ✓ 0.011269 0.023479 0.003344 0.007109 0.023778
3 p2p ✓ ✓ ✓ 0.011272 0.023479 0.003345 0.007108 0.023778
4 p2p ✓ ✓ ✓ 0.011422 0.023479 0.003349 0.007178 0.023786
5 p2p ✓ ✓ ✓ 0.011269 0.023479 0.003344 0.007109 0.023778
6 p2p ✓ ✓ ✓ 0.011272 0.023479 0.003345 0.007108 0.023778
7 p2p ✓ ✓ ✓ 0.011283 0.023479 0.003350 0.007136 0.023782
8 p2p ✓ ✓ ✓ 0.011269 0.023479 0.003344 0.007109 0.023778
9 p2p ✓ ✓ ✓ 0.011272 0.023479 0.003345 0.007108 0.023778
10 p2p ✓ ✓ ✓ 0.011422 0.023479 0.003349 0.007178 0.023786
11 p2p ✓ ✓ ✓ 0.011269 0.023479 0.003344 0.007109 0.023778
12 p2p ✓ ✓ ✓ ✓ 0.011116 0.021706 0.003567 0.007326 0.023643

13 p2p ✓ ✓ ✓ ✓ 0.011203 0.021853 0.003590 0.007122 0.023698
14 ndt ✓ ✓ ✓ 0.011519 0.016503 0.003555 0.007657 0.023922
15 ndt ✓ ✓ ✓ 0.011473 1.626930 0.003670 0.007645 0.023915
16 ndt ✓ ✓ ✓ 0.011512 0.016504 0.003552 0.007623 0.023919
17 ndt ✓ ✓ ✓ 0.011518 0.016502 0.003555 0.007657 0.023921
18 ndt ✓ ✓ ✓ 0.011479 2.271770 0.003566 0.007683 0.023897
19 ndt ✓ ✓ ✓ 0.011511 0.016504 0.003552 0.007623 0.023919
20 ndt ✓ ✓ ✓ 0.011519 0.016503 0.003555 0.007646 0.023922
21 ndt ✓ ✓ ✓ 0.011476 1.669740 0.003670 0.007655 0.023915
22 ndt ✓ ✓ ✓ 0.011513 0.016504 0.003552 0.007616 0.023919
23 ndt ✓ ✓ ✓ 0.011519 0.016502 0.003555 0.007657 0.023921
24 ndt ✓ ✓ ✓ 0.011479 2.724490 0.003566 0.007674 0.023897
25 ndt ✓ ✓ ✓ 0.011511 0.016504 0.003552 0.007617 0.023919
26 ndt ✓ ✓ ✓ ✓ 0.011515 0.016514 0.003599 0.008061 0.023914
27 ndt ✓ ✓ ✓ ✓ 0.011515 0.016514 0.003599 0.008061 0.023914
28 ndt ✓ ✓ ✓ ✓ 0.011512 0.016504 0.003552 0.007625 0.023919
29 ndt ✓ ✓ ✓ ✓ 0.011511 0.016504 0.003552 0.007623 0.023919
30 p2proj ✓ ✓ ✓ 0.011613 0.016540 0.002516 0.007356 0.023309
31 p2proj ✓ ✓ ✓ 0.012098 0.016542 0.002664 0.007180 0.023352
32 p2proj ✓ ✓ ✓ 0.012030 0.016801 0.002601 0.007425 0.023083
33 p2proj ✓ ✓ ✓ 0.011915 0.016590 0.002537 0.007661 0.023334
34 p2proj ✓ ✓ ✓ 0.012157 0.016704 0.002455 0.007430 0.023216
35 p2proj ✓ ✓ ✓ 0.012095 0.016626 0.002596 0.007116 0.023174
36 p2proj ✓ ✓ ✓ 0.012112 0.016567 0.002508 0.007143 0.023274
37 p2proj ✓ ✓ ✓ 0.011637 0.016602 0.002424 0.007342 0.023289
38 p2proj ✓ ✓ ✓ 0.012046 0.016504 0.002460 0.007214 0.023243
39 p2proj ✓ ✓ ✓ 0.011913 0.016523 0.002495 0.007197 0.023398
40 p2proj ✓ ✓ ✓ 0.011983 0.016571 0.002499 0.007223 0.023218
41 p2proj ✓ ✓ ✓ 0.011787 0.016574 0.002531 0.007279 0.023241
42 p2proj ✓ ✓ ✓ ✓ 0.011156 0.022832 0.003363 0.007022 0.023584
43 p2proj ✓ ✓ ✓ ✓ 0.011158 0.023105 0.003337 0.007496 0.023498
44 p2proj ✓ ✓ ✓ ✓ 0.011288 0.022592 0.003249 0.007169 0.023689
45 p2proj ✓ ✓ ✓ ✓ 0.011521 0.023268 0.003323 0.007094 0.023716
46 p2pl ✓ ✓ ✓ 0.011894 0.016566 0.002517 0.007245 0.023301
47 p2pl ✓ ✓ ✓ 0.012316 0.016621 0.002500 0.007649 0.023289
48 p2pl ✓ ✓ ✓ 0.011751 0.016537 0.002527 0.007054 0.023248
49 p2pl ✓ ✓ ✓ 0.011982 0.016557 0.002566 0.007484 0.023172
50 p2pl ✓ ✓ ✓ 0.012134 0.016590 0.002452 0.007300 0.023273
51 p2pl ✓ ✓ ✓ 0.011989 0.016685 0.002453 0.007095 0.023046
52 p2pl ✓ ✓ ✓ 0.011854 0.016567 0.002487 0.007628 0.023276
53 p2pl ✓ ✓ ✓ 0.012061 0.016598 0.002484 0.007185 0.023250
54 p2pl ✓ ✓ ✓ 0.012067 0.016628 0.002502 0.007441 0.023269
55 p2pl ✓ ✓ ✓ 0.011793 0.016620 0.002442 0.007432 0.023220
56 p2pl ✓ ✓ ✓ 0.012270 0.016649 0.002497 0.007331 0.023263
57 p2pl ✓ ✓ ✓ 0.012187 0.016600 0.002574 0.007164 0.023252
58 dp2pl ✓ ✓ ✓ 0.011877 0.016441 0.002439 0.007141 0.023307
59 dp2pl ✓ ✓ ✓ 0.011892 0.016577 0.002393 0.007425 0.023089
60 dp2pl ✓ ✓ ✓ 0.012142 0.016642 0.002515 0.007086 0.023313
61 dp2pl ✓ ✓ ✓ 0.011878 0.016530 0.002467 0.007212 0.023238
62 dp2pl ✓ ✓ ✓ 0.012030 0.016641 0.002544 0.007392 0.023121
63 dp2pl ✓ ✓ ✓ 0.011856 0.016564 0.002522 0.007495 0.023210
64 dp2pl ✓ ✓ ✓ 0.011797 0.016581 0.002408 0.007762 0.023255
65 dp2pl ✓ ✓ ✓ 0.012031 0.016592 0.002383 0.007024 0.023391

66 dp2pl ✓ ✓ ✓ 0.011724 0.016521 0.002511 0.007402 0.023239
67 dp2pl ✓ ✓ ✓ 0.011761 0.016580 0.002488 0.007409 0.023206
68 dp2pl ✓ ✓ ✓ 0.012161 0.016490 0.002522 0.007208 0.023246
69 dp2pl ✓ ✓ ✓ 0.011664 0.016566 0.002448 0.007118 0.023270
70 pl2pl ✓ ✓ ✓ 0.060680 0.267633 0.025003 0.037953 0.131051
71 pl2pl ✓ ✓ ✓ 0.094475 0.281467 0.027158 0.024108 0.194567
72 pl2pl ✓ ✓ ✓ 0.101896 0.218077 0.036335 0.034041 0.166269
73 pl2pl ✓ ✓ ✓ 0.068895 0.308047 0.025806 0.045773 0.152414
74 pl2pl ✓ ✓ ✓ 0.062238 0.283095 0.026838 0.039157 0.163441
75 pl2pl ✓ ✓ ✓ 0.077554 0.234948 0.028862 0.039278 0.137703
76 pl2pl ✓ ✓ ✓ 0.083122 0.239665 0.022746 0.054528 0.110537
77 pl2pl ✓ ✓ ✓ 0.135797 0.291295 0.020539 0.042264 0.200097
78 pl2pl ✓ ✓ ✓ 0.077085 0.251072 0.022074 0.048644 0.140942
79 pl2pl ✓ ✓ ✓ 0.075692 0.254073 0.025667 0.038568 0.128421
80 pl2pl ✓ ✓ ✓ 0.070831 0.246029 0.021881 0.034479 0.098260
81 pl2pl ✓ ✓ ✓ 0.144215 0.242653 0.020809 0.032035 0.110849
82 pgslam(ndt) ✓ ✓ ✓ 0.011512 0.019973 0.004639 0.009282 0.024781
83 pgslam(p2p) ✓ ✓ ✓ 0.011976 0.024218 0.004442 0.007177 0.023983
84 pgslam(p2proj) ✓ ✓ ✓ 0.013214 0.017919 0.003740 0.007645 0.024090
85 pgslam(p2pl) ✓ ✓ ✓ 0.013165 0.019874 0.003454 0.007674 0.024233
86 pgslam(dp2pl) ✓ ✓ ✓ 0.013144 0.017546 0.003451 0.007674 0.023677
87 pgslam(pl2pl) ✓ ✓ ✓ 0.418844 0.140561 0.031086 0.029753 0.438444
88 pgslam(ndt, left-J) ✓ ✓ ✓ ✓ 0.011721 0.019911 0.004450 0.009359 0.024517
89 pgslam(ndt, right-J) ✓ ✓ ✓ ✓ 0.011527 0.019964 0.004652 0.009270 0.024797
90 pgslam(p2p, left-J) ✓ ✓ ✓ ✓ 0.012148 0.022227 0.004916 0.007659 0.023223
91 pgslam(p2p, right-J) ✓ ✓ ✓ ✓ 0.011701 0.022411 0.005136 0.007183 0.023928
92 pgslam(p2proj, left-J) ✓ ✓ ✓ ✓ 0.012551 0.026863 0.004412 0.007364 0.022992

93 pgslam(p2proj, right-J) ✓ ✓ ✓ ✓ 0.011916 0.025033 0.003715 0.007337 0.023953
94 pgslam(ndt, pcl) ✓ ✓ ✓ 0.082232 0.020760 0.011473 0.014862 0.054945
95 pgslam(icp, pcl) ✓ ✓ ✓ 0.013413 0.019929 0.003259 0.007091 0.024220
96 pgslam(ndt, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.030720 0.026071 0.007008 0.010001 0.041788
97 pgslam(icp, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.013443 0.019926 0.003276 0.007091 0.024221
98 pgslam(ndt, pcl, manif) ✓ ✓ ✓ ✓ 0.032996 0.023742 0.007299 0.008524 0.034447
99 pgslam(icp, pcl, manif) ✓ ✓ ✓ ✓ 0.012644 0.020485 0.002767 0.006965 0.023551
6
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Fig. 5. ETH data set [11], scene: facade. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
2.2.1. Point to point
Point to point observation equation incorporates model function

given by (7),

𝜳 [𝑹,𝒕]𝑊←𝑇𝐿𝑆
(𝑹𝑊←𝑇𝐿𝑆 , 𝒕𝑊←𝑇𝐿𝑆 ,𝑷 𝑙 ,𝑷 𝑛𝑛,𝑔) = [𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷

𝑙 − 𝑷 𝑛𝑛,𝑔 (7)

where 𝑷 𝑛𝑛,𝑔 is a nearest neighbor to 𝑷 𝑙 expressed in global reference
frame as [𝑥𝑛𝑛,𝑔 , 𝑦𝑛𝑛,𝑔 , 𝑧𝑛𝑛,𝑔]⊺. Thus, point to point observation equation
is given in form of (8),
[

𝜹3×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝟎3×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

− ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷
𝑙 − 𝑷 𝑛𝑛,𝑔)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(8)

where target value (our expectation) is [𝟎3×1] interpreted as no dif-
ference between coordinates of nearest neighbors. This difference is
denoted as residuals [𝜹3×1].

2.2.2. Point to projection
Point to projection observation equation incorporates 𝑷 𝑝𝑟𝑜𝑗,𝑔 from

Eq. (4) as replacement of nearest neighbor 𝑷 𝑛𝑛,𝑔 from (8), thus it
7

become (9).
[

𝜹3×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝟎3×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

− ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷
𝑙 − 𝑷 𝑝𝑟𝑜𝑗,𝑔)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(9)

2.2.3. Point to plane
The condition that point 𝑷 𝑔 = [𝑥𝑔 , 𝑦𝑔 , 𝑧𝑔]⊺ lies on the plane [𝑎𝑔 , 𝑏𝑔 ,

𝑐𝑔 , 𝑑𝑔] is using also point 𝑷 𝑝𝑙,𝑔 = [𝑥𝑝𝑙,𝑔 , 𝑦𝑝𝑙,𝑔 , 𝑧𝑝𝑙,𝑔]⊺ ≠ 𝑷 𝑔 belonging to
this plane and it is expressed as (10). It means that vector [𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔]⊺

and [𝑷 𝑔 − 𝑷 𝑝𝑙,𝑔] are orthogonal.
[

𝑎𝑔 𝑏𝑔 𝑐𝑔
] [

𝑷 𝑔 − 𝑷 𝑝𝑙,𝑔] = 0 (10)

Thus, assuming 𝑷 𝑔 = [𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷
𝑙 model function is expressed as

(11).

𝜳 [𝑹,𝒕]𝑊←𝑇𝐿𝑆
(𝑹𝑊←𝑇𝐿𝑆 , 𝒕𝑊←𝑇𝐿𝑆 ,𝑷 𝑙 , 𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔 ,𝑷 𝑝𝑙,𝑔)

=
[

𝑎𝑔 𝑏𝑔 𝑐𝑔
] [

[𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷
𝑙 − 𝑷 𝑝𝑙,𝑔] (11)

Point to plane observation equation is given as (12) with the target
value [𝟎1×1] corresponding to the geometrical orthogonality condition.
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Fig. 6. ETH data set [11], scene: office. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
[

𝜹1×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

=
[

𝟎1×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

−
[

𝑎𝑔 𝑏𝑔 𝑐𝑔
] [

[𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆𝑷
𝑙 − 𝑷 𝑝𝑙,𝑔]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(12)

2.2.4. Distance point to plane
Distance of point 𝑷 𝑙 = [𝑥𝑙, 𝑦𝑙, 𝑧𝑙 , 1]⊺ to plane [𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔 , 𝑑𝑔] is straight

forward (13) and it is considered as model function. Thus, the distance
point to plane observation equation is given in (14).

𝜳 [𝑹,𝒕]𝑊←𝑇𝐿𝑆
(𝑹𝑊←𝑇𝐿𝑆 , 𝒕𝑊←𝑇𝐿𝑆 ,𝑷 𝑙 , 𝑎𝑔 , 𝑏𝑔 , 𝑐𝑔 , 𝑑𝑔)

=
[

𝑎 𝑏 𝑐 𝑑
]

⎡

⎢

⎢

⎢

⎢

𝑥𝑔

𝑦𝑔

𝑧𝑔

⎤

⎥

⎥

⎥

⎥

8

⎣

1
⎦

=
[

𝑎 𝑏 𝑐 𝑑
]

([𝑹, 𝒕]4×4𝑊←𝑇𝐿𝑆

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑙

𝑦𝑙

𝑧𝑙

1

⎤

⎥

⎥

⎥

⎥

⎦

) (13)

[

𝜹1×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

=
[

𝟎1×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

−
[

𝑎 𝑏 𝑐 𝑑
]

([𝑹, 𝒕]4×4𝑊←𝑇𝐿𝑆

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑙

𝑦𝑙

𝑧𝑙

1

⎤

⎥

⎥

⎥

⎥

⎦

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(14)

2.2.5. Plane to plane
Plane to plane observation equation produces four residuals. It

adopts Eq. (3) and corresponding nearest plane [𝑎𝑛𝑛,𝑔 , 𝑏𝑛𝑛,𝑔 , 𝑐𝑛𝑛,𝑔 , 𝑑𝑛𝑛,𝑔]⊺
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Fig. 7. ETH data set [11], scene: trees. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that this data set is slightly improved.
expressed in global frame to form model function as (15). Thus, plane
to plane observation equation is given in (16).

𝜳 [𝑹,𝒕]𝑊←𝑇𝐿𝑆
(𝑹𝑊←𝑇𝐿𝑆 , 𝒕𝑊←𝑇𝐿𝑆 , 𝑎

𝑔 , 𝑏𝑔 , 𝑐𝑔 , 𝑑𝑔 , 𝑎𝑛𝑛,𝑔 , 𝑏𝑛𝑛,𝑔 , 𝑐𝑛𝑛,𝑔 , 𝑑𝑛𝑛,𝑔)

=
[

𝑎𝑙 𝑏𝑙 𝑐𝑙 𝑑𝑙
]

[

𝑹⊺
𝑊←𝑇𝐿𝑆 −𝑹⊺

𝑊←𝑇𝐿𝑆 𝒕𝑊←𝑇𝐿𝑆
𝟎1×3 1

]

−

⎡

⎢

⎢

⎢

⎢

⎣

𝑎𝑛𝑛,𝑔

𝑏𝑛𝑛,𝑔

𝑐𝑛𝑛,𝑔

𝑑𝑛𝑛,𝑔

⎤

⎥

⎥

⎥

⎥

⎦

(15)

[

𝜹4×1
]

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝟎4×1
]

⏟⏟⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

− (
[

𝑎𝑙 𝑏𝑙 𝑐𝑙 𝑑𝑙
]

[

𝑹⊺
𝑊←𝑇𝐿𝑆 −𝑹⊺

𝑊←𝑇𝐿𝑆 𝒕𝑊←𝑇𝐿𝑆

𝟎1×3 1

]

⎡

⎢

⎢

⎢

⎢

⎣

𝑎𝑛𝑛,𝑔

𝑏𝑛𝑛,𝑔

𝑐𝑛𝑛,𝑔

𝑑𝑛𝑛,𝑔

⎤

⎥

⎥

⎥

⎥

⎦

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(16)
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2.3. Constraints

This section elaborates on crucial constraints looking at building
an optimization system. To keep the orthonormality of the rotation
matrix expressed as quaternion the norm of the quaternion observation
equation is added for each optimized pose. The fixed optimized param-
eter enables maintaining values of the chosen state vectors during the
optimization process. Finally, the relative pose observation equation
enables building Pose Graph SLAM [32,33] an alternative approach for
multi-view point cloud data registration.

2.3.1. Norm of the quaternion
This constraint maintains the norm of unit quaternion 𝑞(𝑞0, 𝑞1, 𝑞2, 𝑞3).

The condition
√

𝑞20 + 𝑞21 + 𝑞22 + 𝑞23 = 1 results an observation Eq. (17)

𝛿
⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

= 1
⏟⏟⏟

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

−
√

𝑞20 + 𝑞21 + 𝑞22 + 𝑞23
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(17)

where 𝛿 is residual, 1 is target value and
√

𝑞20 + 𝑞21 + 𝑞22 + 𝑞23 is model
function.
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Fig. 8. RESSO data set [10], scene: figure7a. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
2.3.2. Fixed optimized parameter
This constraint maintains the value of the optimized parameter.

Thus, the desired behavior is that it will not change during the opti-
mization process. Typically, the first pose in Pose Graph SLAM is set to
be fixed. In this case, the result of the model function equals target value,
therefore residual suppose to be 0. Eq. (18) shows the fixed optimized
parameter observation equation.

𝛿
⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

= 𝛽𝑡𝑎𝑟𝑔𝑒𝑡
⏟⏟⏟

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

− 𝜳 [𝛽]
⏟⏟⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛽 = 0 (18)

It can be seen that model function is expressed as 𝜳 [𝛽] = 𝛽, the target
value 𝛽𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛽.

2.3.3. Relative pose
This constraint is a fundamental concept of Pose Graph SLAM. It

allows modeling the relations between measurements and observations
in form of a graph [34], where nodes are related with poses end edges
that relate the difference between measures and observations. Relative
pose [𝑹, 𝒕] from pose [𝑹, 𝒕] to pose [𝑹, 𝒕] is
10

𝑊←𝑇𝐿𝑆,12 𝑊←𝑇𝐿𝑆,1 𝑊←𝑇𝐿𝑆,2
expressed in Eq. (19).

[𝑹, 𝒕]𝑊←𝑇𝐿𝑆,12 = [𝑹, 𝒕]−1𝑊←𝑇𝐿𝑆,1[𝑹, 𝒕]𝑊←𝑇𝐿𝑆,2 = [𝑹, 𝒕]𝑊→𝑇𝐿𝑆,1[𝑹, 𝒕]𝑊←𝑇𝐿𝑆,2

(19)

To construct a relative pose observation equation it is necessary to
introduce function 𝛽 = 𝑚2𝑣([𝑹, 𝒕]𝑊←𝑇𝐿𝑆,12) that retrieves parametric
form of rotation matrix (Tait–Bryan angles, quaternion, Rodrigues etc.).
The relative pose observation equation is given in (20).
[

𝜹
]𝑁×1

⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

=
[

𝜷𝑡𝑎𝑟𝑔𝑒𝑡]𝑁×1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

−𝑚2𝑣[𝜷]([𝑹, 𝒕]12)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(20)

2.4. Optimization problem formulation

Multi-view TLS data registration can defined in general as (21).

𝜷∗ = min
𝐾
∑

𝐶𝐾
∑

(

𝒚𝑘𝑖 − 𝜳 𝑘
[𝜷]

(

𝒙𝑘𝑖
)

)2
(21)
𝜷
𝑘=1 𝑖=1
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Fig. 9. RESSO data set [10], scene: figure7b. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
It contains 𝐾 observation equation blocks. Each block contains 𝐶𝐾

instances of observation equations that are considered the same type.
It is the core concept for building modern SLAM and BA systems.
Obviously, it can be extended to weighted non-linear least squares by
adding weights for each observation equation. Thus, it will be possible
to construct robust optimization and probabilistic approach to the given
data registration problem. It will be discussed in the following sections.

2.4.1. Rotation matrix parameterization
Rigid transformation in SO(3) can be expressed in parametric form

as Tait–Bryan angles, Rodrigues and quaternions. Other parametric
forms exist [35], but they are not considered in this research since Tait–
Bryan angles, Rodrigues and quaternions sufficiently cover the desired
scope of the investigation. Starting from the basic concept, in three-
dimensional space rotations via each axis are given as rotation 𝜔 via 𝑥
axis (22), 𝜑 via (23) and 𝜅 via 𝑧 axis (24).

𝐑𝑥(𝜔) =
⎡

⎢

⎢

1 0 0
0 cos(𝜔) − sin(𝜔)

⎤

⎥

⎥

(22)
11

⎣0 sin(𝜔) cos(𝜔) ⎦
𝐑𝑦(𝜑) =
⎡

⎢

⎢

⎣

cos(𝜑) 0 sin(𝜑)
0 1 0

− sin(𝜑) 0 cos(𝜑)

⎤

⎥

⎥

⎦

(23)

𝐑𝑧(𝜅) =
⎡

⎢

⎢

⎣

cos(𝜅) − sin(𝜅) 0
sin(𝜅) cos(𝜅) 0
0 0 1

⎤

⎥

⎥

⎦

(24)

There are two different conventions for the definition of the rotation
axes — proper Euler angles (𝑹𝑧−𝑹𝑥−𝑹𝑧, 𝑹𝑥−𝑹𝑦−𝑹𝑥, 𝑹𝑦−𝑹𝑧−𝑹𝑦,
𝑹𝑧 − 𝑹𝑦 − 𝑹𝑧, 𝑹𝑥 − 𝑹𝑧 − 𝑹𝑥, 𝑹𝑦 − 𝑹𝑥 − 𝑹𝑦) and Tait–Bryan angles
(𝑹𝑥−𝑹𝑦−𝑹𝑧, 𝑹𝑦−𝑹𝑧−𝑹𝑥, 𝑹𝑧−𝑹𝑥−𝑹𝑦, 𝑹𝑥−𝑹𝑧−𝑹𝑦, 𝑹𝑧−𝑹𝑦−𝑹𝑥,
𝑹𝑦−𝑹𝑥−𝑹𝑧). For the convenience, in this research the rotation in SE(3)
is calculated in arbitrary chosen Tait–Bryan convention (𝑹𝑥 −𝑹𝑦 −𝑹𝑧)
- Eq. (25),

𝑹(𝜔,𝜑, 𝜅)

= 𝐑𝑥(𝜔)𝑹𝑦(𝜑)𝑹𝑧(𝜅)

=
⎡

⎢

⎢

𝑐(𝜑)𝑐(𝜅) −𝑐(𝜑)𝑠(𝜅) 𝑠(𝜑)
𝑐(𝜔)𝑠(𝜅) + 𝑠(𝜔)𝑠(𝜑)𝑐(𝜅) 𝑐(𝜔)𝑐(𝜅) − 𝑠(𝜔)𝑠(𝜑)𝑠(𝜅) −𝑠(𝜔)𝑐(𝜑)

⎤

⎥

⎥

(25)
⎣𝑠(𝜔)𝑠(𝜅) − 𝑐(𝜔)𝑠(𝜑)𝑐(𝜅) 𝑠(𝜔)𝑐(𝜅) + 𝑐(𝜔)𝑠(𝜑)𝑠(𝜅) 𝑐(𝜔)𝑐(𝜑) ⎦
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Table 4
Results for RESSO dataset [10] (metadata same as Table 3).

id method GN LM W ← TLS W → TLS TB Q R leftJ rightJ figure_7a 𝑅𝑀𝑆𝑥𝑦 figure_7b 𝑅𝑀𝑆𝑥𝑦 figure_7c 𝑅𝑀𝑆𝑥𝑦 figure_7d 𝑅𝑀𝑆𝑥𝑦 figure_7e 𝑅𝑀𝑆𝑥𝑦

- initial[10] 0.011429 0.090880 0.170620 0.133107 0.036096
0 p2p ✓ ✓ ✓ 0.011109 0.079024 0.140534 0.066331 0.018775
1 p2p ✓ ✓ ✓ 0.011109 0.079355 0.140512 0.066397 0.018775
2 p2p ✓ ✓ ✓ 0.011109 0.079012 0.140536 0.066315 0.018775
3 p2p ✓ ✓ ✓ 0.011109 0.078995 0.140532 0.066332 0.018774
4 p2p ✓ ✓ ✓ 0.011109 0.081286 0.140529 0.066360 0.018774
5 p2p ✓ ✓ ✓ 0.011109 0.079013 0.140537 0.066315 0.018774
6 p2p ✓ ✓ ✓ 0.011109 0.079010 0.140550 0.066331 0.018774
7 p2p ✓ ✓ ✓ 0.011109 0.079371 0.140532 0.066396 0.018775
8 p2p ✓ ✓ ✓ 0.011109 0.079030 0.140555 0.066315 0.018775
9 p2p ✓ ✓ ✓ 0.011109 0.079016 0.140549 0.066332 0.018775
10 p2p ✓ ✓ ✓ 0.011109 0.081297 0.140552 0.066359 0.018774
11 p2p ✓ ✓ ✓ 0.011109 0.079034 0.140552 0.066315 0.018775
12 p2p ✓ ✓ ✓ ✓ 0.011053 0.092132 0.141210 0.071493 0.021004
13 p2p ✓ ✓ ✓ ✓ 0.011053 0.078608 0.148733 0.071114 0.021004
14 ndt ✓ ✓ ✓ 0.027014 0.078699 0.154395 0.025414 0.013981
15 ndt ✓ ✓ ✓ 0.011429 0.079491 0.152893 0.025617 0.036096
16 ndt ✓ ✓ ✓ 0.027057 0.078701 0.154407 0.025408 0.013980
17 ndt ✓ ✓ ✓ 0.027019 0.078700 0.154387 0.025410 0.013982
18 ndt ✓ ✓ ✓ 0.011429 0.081143 0.156877 0.025665 0.036096
19 ndt ✓ ✓ ✓ 0.027060 0.078704 0.154404 0.025410 0.013982
20 ndt ✓ ✓ ✓ 0.027014 0.078699 0.154395 0.025414 0.013981
21 ndt ✓ ✓ ✓ 0.020709 0.079491 0.152893 0.025617 0.291522
22 ndt ✓ ✓ ✓ 0.027057 0.078701 0.154407 0.025408 0.013980
23 ndt ✓ ✓ ✓ 0.027019 0.078700 0.154387 0.025410 0.013982
24 ndt ✓ ✓ ✓ 0.349635 0.081143 0.156877 0.025665 1.092360
25 ndt ✓ ✓ ✓ 0.027060 0.078704 0.154404 0.025410 0.013982
26 ndt ✓ ✓ ✓ ✓ 0.027061 0.089817 0.146466 0.025298 0.013980
27 ndt ✓ ✓ ✓ ✓ 0.027061 0.089817 0.146466 0.025298 0.013980
28 ndt ✓ ✓ ✓ ✓ 0.027057 0.078701 0.154408 0.025410 0.013980
29 ndt ✓ ✓ ✓ ✓ 0.027057 0.078701 0.154408 0.025410 0.013980
30 p2proj ✓ ✓ ✓ 0.008490 0.084682 0.024816 0.029461 0.012430
31 p2proj ✓ ✓ ✓ 0.008541 0.082795 0.032877 0.028536 0.012587
32 p2proj ✓ ✓ ✓ 0.008591 0.078343 0.023955 0.029307 0.012538
33 p2proj ✓ ✓ ✓ 0.008517 0.082824 0.021893 0.029610 0.012949
34 p2proj ✓ ✓ ✓ 0.008574 0.081435 0.032784 0.029534 0.012638
35 p2proj ✓ ✓ ✓ 0.008593 0.082198 0.045799 0.029714 0.012552
36 p2proj ✓ ✓ ✓ 0.008713 0.082619 0.022990 0.029472 0.013396
37 p2proj ✓ ✓ ✓ 0.008616 0.084302 0.037296 0.029500 0.012965
38 p2proj ✓ ✓ ✓ 0.008526 0.075386 0.036042 0.030082 0.012719
39 p2proj ✓ ✓ ✓ 0.008636 0.086762 0.022204 0.030906 0.013243
40 p2proj ✓ ✓ ✓ 0.008567 0.084623 0.025707 0.028836 0.012650
41 p2proj ✓ ✓ ✓ 0.008697 0.083844 0.049979 0.029514 0.012988
42 p2proj ✓ ✓ ✓ ✓ 0.011334 0.089465 0.127239 0.065282 0.019326
43 p2proj ✓ ✓ ✓ ✓ 0.011534 0.088581 0.113642 0.069273 0.020503
44 p2proj ✓ ✓ ✓ ✓ 0.011024 0.077941 0.138302 0.067019 0.018381
45 p2proj ✓ ✓ ✓ ✓ 0.010944 0.076473 0.131910 0.062212 0.018984
46 p2pl ✓ ✓ ✓ 0.008610 0.077315 0.026148 0.028365 0.012698
47 p2pl ✓ ✓ ✓ 0.008561 0.085208 0.020604 0.029270 0.012372
48 p2pl ✓ ✓ ✓ 0.008526 0.073994 0.035310 0.029248 0.012741
49 p2pl ✓ ✓ ✓ 0.008631 0.082937 0.027449 0.029004 0.013072
50 p2pl ✓ ✓ ✓ 0.008601 0.086256 0.023143 0.029360 0.012786
51 p2pl ✓ ✓ ✓ 0.008629 0.078331 0.033725 0.030311 0.013782
52 p2pl ✓ ✓ ✓ 0.008556 0.083137 0.038652 0.029500 0.013524
53 p2pl ✓ ✓ ✓ 0.008505 0.081469 0.028390 0.029805 0.012805
54 p2pl ✓ ✓ ✓ 0.008485 0.083601 0.031952 0.028889 0.013479
55 p2pl ✓ ✓ ✓ 0.008471 0.077153 0.025139 0.029435 0.012733
56 p2pl ✓ ✓ ✓ 0.008685 0.085326 0.019757 0.028962 0.013822
57 p2pl ✓ ✓ ✓ 0.008605 0.077734 0.048600 0.028810 0.013868
58 dp2pl ✓ ✓ ✓ 0.008566 0.081414 0.020634 0.038029 0.013293
59 dp2pl ✓ ✓ ✓ 0.008437 0.079694 0.028336 0.028433 0.012014
60 dp2pl ✓ ✓ ✓ 0.008705 0.088979 0.023282 0.029705 0.013101
61 dp2pl ✓ ✓ ✓ 0.008579 0.080925 0.022040 0.028854 0.012894
62 dp2pl ✓ ✓ ✓ 0.008661 0.087688 0.024448 0.030398 0.012824
63 dp2pl ✓ ✓ ✓ 0.008395 0.088059 0.041486 0.029087 0.012835
64 dp2pl ✓ ✓ ✓ 0.008478 0.082682 0.025512 0.029252 0.013225
65 dp2pl ✓ ✓ ✓ 0.008577 0.087818 0.030653 0.029495 0.012986
66 dp2pl ✓ ✓ ✓ 0.008541 0.083242 0.025511 0.029093 0.013077
67 dp2pl ✓ ✓ ✓ 0.008539 0.082135 0.021247 0.030504 0.012795
68 dp2pl ✓ ✓ ✓ 0.008601 0.080424 0.022611 0.029841 0.012206
69 dp2pl ✓ ✓ ✓ 0.008770 0.091940 0.036806 0.028990 0.014256
70 pl2pl ✓ ✓ ✓ 0.144612 0.191285 0.177589 0.054713 0.147304
71 pl2pl ✓ ✓ ✓ 0.169572 0.496605 0.196923 0.051981 0.170194
72 pl2pl ✓ ✓ ✓ 0.252915 0.089252 0.195637 0.043675 0.145499
73 pl2pl ✓ ✓ ✓ 0.203364 0.133687 0.517107 0.033052 0.170671
74 pl2pl ✓ ✓ ✓ 0.275695 0.122292 0.223111 0.054307 0.168820
75 pl2pl ✓ ✓ ✓ 0.166145 0.136023 0.554722 0.041359 0.169672
76 pl2pl ✓ ✓ ✓ 0.230890 0.140300 0.276533 0.030141 0.185919
77 pl2pl ✓ ✓ ✓ 0.320611 0.162178 0.296625 0.034018 0.171135
78 pl2pl ✓ ✓ ✓ 0.198834 0.566884 0.172114 0.041508 0.160257
79 pl2pl ✓ ✓ ✓ 0.140805 0.072470 0.219767 0.034635 0.149668
80 pl2pl ✓ ✓ ✓ 0.266258 0.159803 0.429262 0.049411 0.176938
81 pl2pl ✓ ✓ ✓ 0.337681 0.115091 0.200154 0.045993 0.130892
82 pgslam(ndt) ✓ ✓ ✓ 0.011111 0.146640 0.158999 0.042810 0.068246
83 pgslam(p2p) ✓ ✓ ✓ 0.011055 0.090930 0.161610 0.075313 0.014806
84 pgslam(p2proj) ✓ ✓ ✓ 0.008555 0.090930 0.196165 0.027112 0.010442
85 pgslam(p2pl) ✓ ✓ ✓ 0.008699 0.090930 0.077243 0.133107 0.011044
86 pgslam(dp2pl) ✓ ✓ ✓ 0.008711 0.117926 0.077243 0.027112 0.012822
87 pgslam(pl2pl) ✓ ✓ ✓ 0.240892 6.095710 0.193490 0.052295 0.328777
88 pgslam(ndt, left-J) ✓ ✓ ✓ ✓ 0.011115 0.090930 0.163082 0.058518 0.042098
89 pgslam(ndt, right-J) ✓ ✓ ✓ ✓ 0.011113 0.089485 0.159017 0.133107 0.038955
90 pgslam(p2p, left-J) ✓ ✓ ✓ ✓ 0.011022 0.090930 0.189442 0.063202 0.016216
91 pgslam(p2p, right-J) ✓ ✓ ✓ ✓ 0.011022 0.090930 0.159586 0.082208 0.016213
92 pgslam(p2proj, left-J) ✓ ✓ ✓ ✓ 0.011049 0.079522 0.194578 0.057464 0.015828
93 pgslam(p2proj, right-J) ✓ ✓ ✓ ✓ 0.011065 0.100603 0.160289 0.074350 0.015915
94 pgslam(ndt, pcl) ✓ ✓ ✓ 0.019839 0.255118 0.021699 0.026901 0.027467
95 pgslam(icp, pcl) ✓ ✓ ✓ 0.022456 0.090926 0.162882 0.040063 0.016054
96 pgslam(ndt, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.021451 0.145534 0.027262 0.039054 0.023876
97 pgslam(icp, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.011041 0.102743 0.162815 0.040074 0.010739
98 pgslam(ndt, pcl, manif) ✓ ✓ ✓ ✓ 0.011429 0.084757 0.023669 0.047259 0.024350
99 pgslam(icp, pcl, manif) ✓ ✓ ✓ ✓ 0.011198 0.101128 0.223186 0.032286 0.010513
12
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Fig. 10. RESSO data set [10], scene: figure7c. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much improved.
where 𝑠 is sin and 𝑐 is cos functions.
Euler–Rodrigues formula [36,37] is given in Eq. (26). It presents a

way for constructing a rotation matrix using a rotation angle 𝜃 around
the axis 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)[38,39].

𝑹 = cos 𝜃𝐈 + sin 𝜃 [𝒖]× + (1 − cos 𝜃) 𝒖𝒖⊺ (26)

where:

[𝒖]× =
⎡

⎢

⎢

⎣

0 −𝑢𝑧 𝑢𝑦
𝑢𝑧 0 −𝑢𝑥
−𝑢𝑦 𝑢𝑥 0

⎤

⎥

⎥

⎦

(27)

is the cross product (skew-symmetric) matrix. For the Rodrigues param-
eters (𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝜃) the rotation matrix 𝑹 ∈ SO(3) is given in Eq. (28)

𝑹 =
⎡

⎢

⎢

⎣

𝑢2𝑥 (1 − 𝑐𝜃) + 𝑐𝜃 𝑢𝑥𝑢𝑦 (1 − 𝑐𝜃) − 𝑢𝑧𝑠𝜃 𝑢𝑥𝑢𝑧 (1 − 𝑐𝜃) + 𝑢𝑦𝑠𝜃
𝑢𝑥𝑢𝑦 (1 − 𝑐𝜃) + 𝑢𝑧𝑠𝜃 𝑢2𝑦 (1 − 𝑐𝜃) + 𝑐𝜃 −𝑢𝑥𝑠𝜃 + 𝑢𝑦𝑢𝑧 (1 − 𝑐𝜃)
𝑢𝑥𝑢𝑧 (1 − 𝑐𝜃) − 𝑢𝑦𝑠𝜃 𝑢𝑥𝑠𝜃 + 𝑢𝑦𝑢𝑧 (1 − 𝑐𝜃) 𝑢2𝑧 (1 − 𝑐𝜃) + 𝑐𝜃

⎤

⎥

⎥

⎦

(28)
13
where 𝑠𝜃 is sin(𝜃) and 𝑐𝜃 is cos(𝜃) function. Furthermore, the rotation
vector 𝒔 = 𝜃𝒖 is compact representation. Eq. (29) shows how to retrieve
𝜃 from 𝒔 or 𝑹.

𝜃 = ‖𝒔‖ = arccos
(

Tr(𝑹) − 1
2

)

(29)

Consequently, it can be done based on Eq. (30).

𝐮 = 𝒔
𝜃
= 𝒔

‖𝒔‖
(30)

Finally, compact representation of the 𝑹 ∈ SO(3) for the Rodrigues
parameters (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) is given in (31) (see Box I).

The third rotation matrix parameterization considered in this paper
is based on unit quaternions. The quaternion is given in (32) that
satisfies (33).

𝒒 = 𝑞 + 𝑖𝑞 + 𝑗𝑞 + 𝑘𝑞 (32)
0 1 2 3



Measurement 219 (2023) 113199J. Będkowski
Fig. 11. RESSO data set [10], scene: figure7d. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much improved.
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑠2𝑥
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+ cos

(√

𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧
) 𝑠𝑥𝑠𝑦

(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
−

𝑠𝑧 sin
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧

𝑠𝑥𝑠𝑧
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+

𝑠𝑦 sin
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
𝑠𝑥𝑠𝑦

(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+

𝑠𝑧 sin
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧

𝑠2𝑦
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+ cos

(√

𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧
)

−
𝑠𝑥 sin

(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+

𝑠𝑦𝑠𝑧
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧

𝑠𝑥𝑠𝑧
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
−

𝑠𝑦 sin
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧

𝑠𝑥 sin
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
)

√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+

𝑠𝑦𝑠𝑧
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧

𝑠2𝑧
(

1.0−cos
(√

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
))

𝑠2𝑥+𝑠2𝑦+𝑠2𝑧
+ cos

(√

𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(31)

Box I.
14
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Fig. 12. RESSO data set [10], scene: figure7e. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much improved.
𝑖2 = 𝑗2 = 𝑘2 = −1
𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖
𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗

(33)

A geometrical interpretation of an unit quaternion 𝒒(𝑞0, 𝑞1, 𝑞2, 𝑞3), ‖𝒒‖ =
1 which represents a general rotation is given in Eq. (34).

𝑞0 = cos(𝜔∕2)

𝑞1 = 𝑋 sin(𝜔∕2)

𝑞2 = 𝑌 sin(𝜔∕2)

𝑞3 = 𝑍 sin(𝜔∕2)

(34)

Where (X, Y, Z) is the unit length axis of rotation in 3D space and 𝜔
is the angle of the unit rotation about the axis in radians. For the unit
quaternion 𝒒(𝑞 , 𝑞 , 𝑞 , 𝑞 ), ‖𝒒‖ = 1 the rotation matrix 𝑹 ∈ SO(3) is
15

0 1 2 3
given:

𝑹 =
⎡

⎢

⎢

⎣

1 − 2𝑞22 − 2𝑞23 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2
2𝑞1𝑞2 − 2𝑞0𝑞3 1 − 2𝑞21 − 2𝑞23 2𝑞2𝑞3 + 2𝑞0𝑞1
2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 1 − 2𝑞21 − 2𝑞22

⎤

⎥

⎥

⎦

(35)

An example of the application of quaternions is the SLERP method [40]
that interpolates a point movement along an arc given by Eq. (36). For
𝑡 = 0, the interpolation is the starting point of the arc as 𝒒0. For 𝑡 = 1
it is the ending point of the arc as 𝒒1.

SLERP(𝒒0, 𝒒1, 𝑡) = (𝒒1𝒒−10 )𝑡𝒒0 (36)

2.4.2. Weighted non-linear least squares optimization
We start by rearranging Eq. (21) to form (37) by concatenating all

residual blocks into sum square errors for the clarity of further notation.

𝑆𝑆𝑅 =
𝐶
∑

𝑖=1
𝑟2𝑖 =

𝐶
∑

𝑖=1

(

𝑦𝑖 − 𝜳 [𝜷](𝒙𝑖)
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(37)
𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
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Fig. 13. WHU_TLS data set [12], scene: 1-SubwayStation. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that this data set is not
improved.
The model function 𝜳 [𝜷](𝒙𝑖) contains n parameters of 𝜷, thus there are
𝑛 gradient Eqs. (38) derived from (37).

𝜕𝑆𝑆𝑅
𝜕𝛽𝑗

= 2
𝐶
∑

𝑖=1

𝜕𝑟𝑖
𝜕𝛽𝑗

𝑟𝑖 = −2
𝐶
∑

𝑖=1

𝜕𝜳 [𝜷](𝒙𝑖)
𝜕𝛽𝑗

𝑟𝑖 = 0 (𝑗 = 1,… , 𝑛) (38)

Such a system can be solved in some cases by so-called closed form so-
lution [41,42], thus the solution is obtained in a single step, otherwise
it has to be solved using an iterative approach by solving Eq. (39),
𝜳
𝑱 ⊺

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝛥𝒚 (39)

where
𝜳
𝑱 is the Jacobian of the model function 𝜳 . Extending Eq. (37)

by weights 𝑤 provides a mechanism to control the impact of each
observation equation into the optimization process and it is formulated
as (40).

𝑆𝑆𝑅 =
𝐶
∑

𝑖=1
𝑤𝑖𝑟

2
𝑖 (40)

The optimal solution that minimizing 𝑆𝑆𝑅 can be found with solving
formula (41),
𝜳
𝑱 ⊺𝑾

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝑾 𝛥𝒚 (41)
16
where 𝑾 is a diagonal weight matrix, thus it is easy to provide the
independent impact for each observation equation. Once we introduce
rotation matrix 𝑹 that provides a correlation mechanism to 𝑾 the final
Weighted non-linear Least Squares Optimization is formulated as (42).

𝜳
𝑱 ⊺𝑹𝑾𝑹⊺

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝑹𝑾𝑹⊺𝛥𝒚

𝑹𝑾𝑹⊺=𝜴
⇒

𝜳
𝑱 ⊺𝜴

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝜴𝛥𝒚

𝜴=𝜮−1

⇒

𝜳
𝑱 ⊺𝜮−1

𝜳
𝑱𝛥𝜷 =

𝜳
𝑱 ⊺𝜮−1𝛥𝒚

(42)

where 𝜴 = 𝑹𝑾𝑹⊺ is the information matrix and 𝜮 = 𝜴−1 is the
covariance matrix.

2.4.3. Solvers
In this research, we consider Gauss–Newton and Levenberg–

Marquardt optimization methods. For observation Eq. (5) the Gauss–
Newton method is expressed as (43),

𝜷𝑘+1 = 𝜷𝑘 +

(

𝜳
𝑱 ⊺

𝜳
𝑱

)−1 𝜳
𝑱 ⊺𝒓(𝜷𝑘) (43)



Measurement 219 (2023) 113199J. Będkowski
Fig. 14. WHU_TLS data set [12], scene: 10-UndergroundExcavation. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that it is
difficult to justify if it is improved.
where 𝜷𝑘+1 is an updated vector state of the optimization step.
Levenberg–Marquardt optimization method introduces a damping fac-
tor 𝜆 to Eq. (43) resulting (44).

𝜷𝑘+1 = 𝜷𝑘 +

(

𝛹
𝑱 ⊺

𝛹
𝑱 + 𝜆𝑰

)−1 𝛹
𝑱 ⊺𝒓(𝜷𝑘) (44)

It can be deduced that a large value of damping factor 𝜆 results
fix optimization parameter observation equation discussed in 2.3.2.
Generally, the smaller value of 𝜆 results in optimization behavior more
similar to the Gauss–Newton method. Larger values of 𝜆 prevent large
optimization steps, thus the accuracy of the final data registration can
be significantly better.

2.4.4. Robust least squares
Robust Least Square are capable reducing negative impact of the

outliers using so-called M-estimator [43]. It can be done by adding
small weight to such observation equation as in Eq. (40). Unfortunately,
17
the choice of the best M-estimator for a given problem is not straight-
forward. Prominent candidates are Huber, Cauchy, Geman-McClure
or Welsch functions [44]. An alternative approach called Barron’s
adaptive robust loss function was introduced in [7]. An investigation
in relation to the LiDAR data registration and BA is shown in [45].
Barron’s adaptive robust loss function is given in Eq. (45)

𝜌(𝑟, 𝛼, 𝑐) =
|𝛼 − 2|

𝛼

⎛

⎜

⎜

⎝

(

( 𝑟𝑐 )
2

|𝛼 − 2|

)

𝛼
2

− 1
⎞

⎟

⎟

⎠

(45)

where 𝛼 ∈ R is a shape parameter that controls the robustness of the
loss and 𝑐 > 0 is a scale parameter that controls the size of the loss
quadratic bowl near 𝑟 = 0. Setting 𝛼 = −2 the 𝜌(𝑟, 𝛼, 𝑐) becomes the
𝐺𝑒𝑚𝑎𝑛 −𝑀𝑐𝐶𝑙𝑢𝑟𝑒 loss function (46).

𝜌(𝑟,−2, 𝑐) =
2
(

𝑟
𝑐

)2

(

𝑟
)2

+ 4
(46)
𝑐
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Fig. 15. WHU_TLS data set [12], scene: 11-Tunnel. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is improved.
For 𝛼 = 0 the 𝜌(𝑟, 𝛼, 𝑐) is undefined and it approaches 𝐶𝑎𝑢𝑐ℎ𝑦 loss in
the limit as shown in Eq. (47).

lim
𝛼→0

𝜌(𝑟, 𝛼, 𝑐) = log
(

1
2

( 𝑟
𝑐

)2
+ 1

)

(47)

Similarly for 𝛼 = 2 the 𝜌(𝑟, 𝛼, 𝑐) is undefined and it approaches 𝐿2 loss
in the limit as shown in Eq. (48).

lim
𝛼→2

𝜌(𝑟, 𝛼, 𝑐) = 1
2

( 𝑟
𝑐

)2
(48)

For 𝛼 = 1 the loss function 𝜌(𝑟, 𝛼, 𝑐) becomes the 𝐿1 − 𝐿2 loss function
(49).

𝜌(𝑟, 1, 𝑐) =
√

1 +
( 𝑟
𝑐

)2
− 1 (49)

For 𝛼 approaching the negative infinity the 𝜌(𝑟, 𝛼, 𝑐) becomes the
𝑊 𝑒𝑙𝑠𝑐ℎ loss function (50).

lim
𝛼→−∞

𝜌(𝑟, 𝛼, 𝑐) = 1 − 𝑒−
1
2 (

𝑟
𝑐 )

2
(50)

Finally, the 𝜌(𝑟, 𝛼, 𝑐) Barron’s loss function with its removable singulari-
ties at 𝛼 = 0, 𝛼 = 2 and its limit at 𝛼 = −∞, the 𝛶 (𝑟) - influence function
and the corresponding 𝑤(𝑟) - weight is given in table 1.

Barron’s loss function in practical application adapts to data set by
optimizing 𝛼 for arbitrary chosen 𝑐 [45]. In such a scenario this robust
approach can efficiently reduce the impact of outliers without the need
for the data set manual inspection.
18
2.4.5. Probabilistic approach

Poses of TLS are described by the random variables 𝒑1∶𝑃 =
{

𝒑1,… ,
𝒑𝑃

}

. During TLS displacements a sequence of the relative poses mea-
surements 𝒖1∶𝑇 =

{

𝒖1,… , 𝒖𝑇
}

and the perception measurements 𝒐1∶𝑂 =
{

𝒐1,… ,𝒐𝑂
}

are acquired. The perception measurements can be done
e.g. with an ICP algorithm that calculates the relative pose between
two overlapping scans. The optimization problem is formulated as the
estimation of the posterior probability of all nodes of the set of poses
𝒑1∶𝑃 and the map 𝒎 of the environment for given all the measurements
and the arbitrarily chosen initial pose 𝒑0 as in Eq. (51).

𝑝( 𝒑1∶𝑃 ,𝒎
⏟⏟⏟

𝒙={𝒙1 ,…,𝒙𝑁}

|𝒐1∶𝑂 , 𝒖1∶𝑇 ,𝒑0
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝒛={𝒛1 ,…,𝒛𝐾}

) (51)

The map 𝒎 is represented as a dense point cloud. A probabilistic
problem definition assumes that 𝒑1∶𝑃 ,𝒎 are state variables of the
stationary system denoted as 𝒙 =

{

𝒙1,… ,𝒙𝑁
}

. The indirect observation
of the system is done by a set of e.g. ICP measurements denoted as
𝒛 =

{

𝒛1,… , 𝒛𝐾
}

. The measurements are affected by noise, therefore 𝒛 is
the multi-dimensional vector of random variables. Normal distribution
 (𝒙;𝝁,𝜮) is characterized by density function of the form (52).

𝑝 (𝒙) = det (2𝜋𝜮)−
1
2 exp

{

−1 (𝒙 − 𝝁)⊺ 𝜮−1 (𝒙 − 𝝁)
}

(52)

2
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Fig. 16. WHU_TLS data set [12], scene: 2-HighSpeedRailway. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that this data set is
slightly improved.
where, 𝝁 is the mean vector, 𝜮 is a covariance matrix and (𝒙 − 𝝁)⊺ 𝜮−1

(𝒙 − 𝝁) denotes the squared Mahalanobis distance. It is impossible to
estimate the state of the system for the given measurements affected
by the noise. To do so, we compute a distribution over the potential
states of the system given these measurements. Thus, the probability
distribution of the state 𝒙, given the measurement 𝒛 is estimated with
(53).

𝑝 (𝒙|𝒛) = 𝑝
(

𝒙1,… ,𝒙𝑁 |𝒛1,… , 𝒛𝐾
)

= 𝑝
(

𝒙1∶𝑁 |𝒛1∶𝐾
)

(53)

Furthermore, from Bayes’ theorem we obtain (54).

𝑝
(

𝒙1∶𝑁 |𝒛1∶𝐾
)

=

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑠
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝
(

𝒛1∶𝐾 |𝒙1∶𝑁
)

𝑝
(

𝒙1∶𝑁
)

𝑝
(

𝒛1∶𝐾
) (54)

Where 𝑝
(

𝒛1∶𝐾 |𝒙1∶𝑁
)

is likelihood of the measurements given the states.
The prior 𝑝

(

𝒙1∶𝑁
)

models the states before the measurements. The
prior is a uniform distribution whose value is a constant 𝑝𝑥. The
𝑝
(

𝒛1∶𝐾
)

does not dependent on the states and it is a constant number
𝑝𝑧. Therefore, Eq. (54) become:

𝑝
(

𝒙1∶𝑁 |𝒛1∶𝐾
)

=
𝑝𝑥 𝑝

(

𝒛1∶𝐾 |𝒙1∶𝑁
)

∝
𝐾
∏

𝑝
(

𝒛𝑘|𝒙1∶𝑁
)

(55)
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𝑝𝑧 𝑘=1
Thus, the distribution over the possible states given the measurements
is proportional to the likelihood of the measurement given the states.
Assuming that the measurements are affected by a zero mean additive
Gaussian noise characterized by an information matrix 𝜴𝑘 = 𝜮−1

𝑘 the
distribution of the measurement 𝒛𝑘 given a state 𝒙 is proportional to
𝑵(𝒛𝑘; �̂�𝑘,𝜴−1

𝑘 ), thus

𝑝
(

𝒛𝑘|𝒙
)

∝ exp
(

−
(

𝒛𝑘 − �̂�𝑘
)⊺ 𝜴𝑘

(

𝒛𝑘 − �̂�𝑘
))

(56)

where �̂�𝑘 = 𝒉𝑘(𝒙) is the prediction of the measurement for given state
𝒙. 𝑝

(

𝒛𝑘|𝒙
)

is commonly known as 𝑠𝑒𝑛𝑠𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 or 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙.
It models the probability of performing the observation 𝒛𝑘 given that
the TLS is at a known location in the map (the state 𝒙 is known). From
(55) and (56) the probabilistic approach can be formulated as finding
𝒙∗ that:

𝒙∗ = max
𝒙

𝐾
∏

𝑘=1
𝑝
(

𝒛𝑘|𝒙1∶𝑁
)

= max
𝒙

𝐾
∏

𝑘=1
exp

(

−
(

𝒛𝑘 − �̂�𝑘
)⊺ 𝜴𝑘

(

𝒛𝑘 − �̂�𝑘
))

(57)

After taking the logarithm and removing the minus Eq. (57) becomes:

𝒙∗ = max
𝒙

𝐾
∑

𝑘=1

(

−
(

𝒛𝑘 − �̂�𝑘
)⊺ 𝜴𝑘

(

𝒛𝑘 − �̂�𝑘
))

= min
𝒙

𝐾
∑

𝑘=1

((

𝒛𝑘 − �̂�𝑘
)⊺ 𝜴𝑘

(

𝒛𝑘 − �̂�𝑘
))

(58)
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Fig. 17. WHU_TLS data set [12], scene: 3-Mountain. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is slightly
improved.
After introducing the error function 𝒆𝑘(𝒙) as a difference between the
observation 𝒛𝑘 and the prediction �̂�𝑘.

𝒆𝑘(𝒙) = 𝒛𝑘 − �̂�𝑘 (59)

final optimization problem is defined as (60).

𝒙∗ = min
𝒙

𝑭 (𝒙) = min
𝒙

𝐾
∑

𝑘=1
𝒆𝑘(𝒙)⊺𝜴𝑘𝒆𝑘(𝒙) (60)

It can be solved as typical Weighted non-linear Least Squares Optimiza-
tion as in Eq. (42) with an assumption of known information matrix 𝜴
modeling the difference between the observation 𝒛𝑘 and the prediction
�̂�𝑘 in a probabilistic fashion.

2.4.6. Point to point left and right Jacobians in Lie algebra
Jacobian from Eq. (42) for point-to-point observation equation dis-

cussed in Section 2.2.1 can be drastically reduced using Lie algebra
theory [46] to the form of left (62) and right Jacobians (62),
[

𝑰 −[𝑹𝒑]×
]3×6 (61)

[ ]3×6 (62)
20

𝑹 −𝑹[𝒑]×
where 𝒑 denotes coordinates of the source point expressed in local
coordinates and [⋅]× denotes the skew-symmetric matrix. The choice
between left and right Jacobians has to be done arbitrarily, thus if we
optimize locally (as most in the mobile robotic community) we use
right Jacobian otherwise we use left Jacobian. It is straightforward to
observe that left Jacobian is identical to analytically retrieved Jacobian
for the translation part 𝒕 of the transformation matrix [𝑹, 𝒕]𝑊←𝑇𝐿𝑆 .
This approach drastically reduces the number of required calculations.
Unfortunately, it introduces lower accuracy for point cloud registration
which will be shown in the experimental part. This issue was not
elaborated on in literature so far.

2.5. Normal distributions transform

Normal Distributions Transform [47] is an alternative technique
to ICP for point cloud data registration and it is available in a well-
known Point Cloud Library [48] open source project. It is limited to
the pairwise matching of two point clouds, thus a contribution of the
proposed research is a novel approach to NDT enabling large-scale
datasets registration using a multi-view method implemented both by
(i) data registration system optimizing all poses simultaneously and (ii)
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Table 5
Results for WHU dataset [12] (metadata same as Table 3).

id method GN LM W ← TLS W → TLS TB Q R leftJ rightJ 1-SubwayStation 10-UndergroundExcavation 11-Tunnel 2-HighSpeedRailway 3-Mountain 5-Park 6-Campus 7-Residence 8-RiverBank 9-HeritageBuilding

- initial[12] 0.004872 0.006922 0.019648 0.026564 0.037906 0.060645 0.065898 0.066544 0.010751 0.011927

0 p2p ✓ ✓ ✓ 0.007254 0.007019 0.018713 0.025222 0.036563 0.040017 0.052178 0.049762 0.009904 0.007235

1 p2p ✓ ✓ ✓ 0.007254 0.007022 0.018712 0.025222 0.036563 0.040018 0.052178 0.049762 0.009904 0.007235

2 p2p ✓ ✓ ✓ 0.007254 0.007023 0.018712 0.025222 0.036563 0.040017 0.052178 0.049762 0.009904 0.007235

3 p2p ✓ ✓ ✓ 0.007254 0.007023 0.018711 0.025222 0.036563 0.040017 0.052178 0.049761 0.009904 0.007235

4 p2p ✓ ✓ ✓ 0.007254 0.007023 0.018711 0.025222 0.036563 0.040017 0.052178 0.049761 0.009904 0.007235

5 p2p ✓ ✓ ✓ 0.007254 0.007023 0.018711 0.025222 0.036563 0.040017 0.052178 0.049761 0.009904 0.007235

6 p2p ✓ ✓ ✓ 0.007253 0.007022 0.018713 0.025222 0.036563 0.040019 0.052178 0.049853 0.009904 0.007235

7 p2p ✓ ✓ ✓ 0.007253 0.007023 0.018712 0.025222 0.036563 0.040019 0.052178 0.049854 0.009904 0.007235

8 p2p ✓ ✓ ✓ 0.007253 0.007023 0.018712 0.025222 0.036563 0.040019 0.052178 0.049854 0.009904 0.007235

9 p2p ✓ ✓ ✓ 0.007253 0.007023 0.018711 0.025222 0.036563 0.040019 0.052178 0.049851 0.009904 0.007235

10 p2p ✓ ✓ ✓ 0.007253 0.007023 0.018712 0.025222 0.036563 0.040019 0.052178 0.049851 0.009904 0.007235

11 p2p ✓ ✓ ✓ 0.007253 0.007023 0.018712 0.025222 0.036563 0.040018 0.052178 0.049851 0.009904 0.007235

12 p2p ✓ ✓ ✓ ✓ 0.007242 0.006945 0.018709 0.025261 0.036708 0.041133 0.053493 0.053077 0.010012 0.007542

13 p2p ✓ ✓ ✓ ✓ 0.007242 0.006944 0.018710 0.025261 0.036708 0.041134 0.053493 0.053075 0.010012 0.007542

14 ndt ✓ ✓ ✓ 0.006489 0.007149 0.093025 0.025179 0.037645 0.019075 0.054346 0.062965 0.009448 0.007982

15 ndt ✓ ✓ ✓ 0.004873 0.006923 0.019648 0.026565 0.037906 0.060646 0.065898 0.066544 0.010751 0.011927

16 ndt ✓ ✓ ✓ 0.006515 0.007152 0.046199 0.025183 0.037647 0.019086 0.054347 0.062963 0.009451 0.007978

17 ndt ✓ ✓ ✓ 0.006491 0.007163 0.149475 0.025178 0.037645 0.019074 0.054346 0.062966 0.009448 0.007983

18 ndt ✓ ✓ ✓ 0.004873 0.006923 0.019648 0.026565 0.037906 0.060646 0.065898 0.066544 0.010751 0.011927

19 ndt ✓ ✓ ✓ 0.006515 0.007167 0.022869 0.025183 0.037647 0.019083 0.054347 0.062966 0.009451 0.007978

20 ndt ✓ ✓ ✓ 0.006489 0.007149 0.091831 0.025179 0.037645 0.019075 0.054346 0.062967 0.009448 0.007982

21 ndt ✓ ✓ ✓ 0.013866 2.936300 0.336437 0.025693 3.288970 3.270860 0.063106 0.064474 0.137244 2.106000

22 ndt ✓ ✓ ✓ 0.006515 0.007152 0.045254 0.025183 0.037647 0.019085 0.054347 0.062967 0.009451 0.007978

23 ndt ✓ ✓ ✓ 0.006491 0.007163 0.147329 0.025178 0.037645 0.019074 0.054346 0.062966 0.009448 0.007983

24 ndt ✓ ✓ ✓ 0.020200 2.228980 0.819134 0.742909 2.892310 3.862080 1.428450 0.064469 0.301800 2.106170

25 ndt ✓ ✓ ✓ 0.006515 0.007167 0.025458 0.025183 0.037647 0.019083 0.054347 0.062966 0.009451 0.007978

26 ndt ✓ ✓ ✓ ✓ 0.006516 0.007188 0.043858 0.025183 0.037647 0.019083 0.054347 0.062965 0.009451 0.007978

27 ndt ✓ ✓ ✓ ✓ 0.006516 0.007187 0.043743 0.025183 0.037647 0.019082 0.054347 0.062966 0.009451 0.007978

28 ndt ✓ ✓ ✓ ✓ 0.006515 0.007152 0.045998 0.025183 0.037647 0.019086 0.054347 0.062967 0.009451 0.007978

29 ndt ✓ ✓ ✓ ✓ 0.006515 0.007152 0.045265 0.025183 0.037647 0.019086 0.054347 0.062967 0.009451 0.007978

30 p2proj ✓ ✓ ✓ 0.005364 0.007393 0.018298 0.025686 0.037154 0.022436 0.034215 0.009878 0.009386 0.006825

31 p2proj ✓ ✓ ✓ 0.005732 0.007786 0.017600 0.023900 0.037242 0.021461 0.031372 0.010143 0.009370 0.006254

32 p2proj ✓ ✓ ✓ 0.005664 0.007525 0.017338 0.025096 0.037545 0.020891 0.028685 0.011139 0.009542 0.006172

33 p2proj ✓ ✓ ✓ 0.006557 0.007671 0.016778 0.025542 0.037813 0.020923 0.032388 0.009206 0.009578 0.006033

34 p2proj ✓ ✓ ✓ 0.005670 0.007735 0.016806 0.024883 0.037601 0.021809 0.033493 0.010625 0.009887 0.005816

35 p2proj ✓ ✓ ✓ 0.005732 0.007689 0.020891 0.025366 0.037428 0.023427 0.032420 0.010400 0.009683 0.006196

36 p2proj ✓ ✓ ✓ 0.005620 0.007721 0.015324 0.024790 0.036725 0.022203 0.030350 0.009856 0.009400 0.005971

37 p2proj ✓ ✓ ✓ 0.006168 0.007640 0.020163 0.025053 0.037225 0.020665 0.032774 0.010834 0.009319 0.006469

38 p2proj ✓ ✓ ✓ 0.005971 0.007531 0.018464 0.024944 0.037681 0.022166 0.033450 0.009624 0.009662 0.005888

39 p2proj ✓ ✓ ✓ 0.005965 0.007642 0.015726 0.025643 0.038000 0.020410 0.032959 0.009519 0.009585 0.006176

40 p2proj ✓ ✓ ✓ 0.005705 0.007679 0.017498 0.024789 0.037748 0.024841 0.029538 0.010887 0.009578 0.006497

41 p2proj ✓ ✓ ✓ 0.005681 0.008085 0.018620 0.025111 0.037738 0.020250 0.029986 0.009825 0.009579 0.006271

42 p2proj ✓ ✓ ✓ ✓ 0.007218 0.007091 0.019452 0.025289 0.036619 0.040745 0.052588 0.050370 0.009915 0.007164

43 p2proj ✓ ✓ ✓ ✓ 0.007145 0.007823 0.018521 0.025038 0.036240 0.040285 0.052471 0.052020 0.009766 0.007302

44 p2proj ✓ ✓ ✓ ✓ 0.007368 0.007788 0.018674 0.024878 0.036979 0.041614 0.052254 0.051453 0.009997 0.007050

45 p2proj ✓ ✓ ✓ ✓ 0.007842 0.007009 0.018407 0.024981 0.037447 0.041263 0.052491 0.036192 0.009916 0.007210

46 p2pl ✓ ✓ ✓ 0.005495 0.007643 0.016368 0.025499 0.038179 0.020762 0.031929 0.009185 0.009554 0.006284

47 p2pl ✓ ✓ ✓ 0.005705 0.007814 0.016858 0.024880 0.037586 0.022377 0.029249 0.009491 0.010068 0.006244

48 p2pl ✓ ✓ ✓ 0.005494 0.007853 0.017729 0.024827 0.037995 0.022467 0.029367 0.010117 0.009584 0.005784

49 p2pl ✓ ✓ ✓ 0.005854 0.007474 0.018209 0.024856 0.037830 0.021966 0.032552 0.010149 0.009542 0.005842

50 p2pl ✓ ✓ ✓ 0.005816 0.007813 0.016793 0.025448 0.037412 0.020251 0.033120 0.009930 0.010036 0.005677

51 p2pl ✓ ✓ ✓ 0.005029 0.007557 0.019850 0.024957 0.037500 0.022031 0.035257 0.010363 0.009445 0.006082

52 p2pl ✓ ✓ ✓ 0.005575 0.007761 0.016517 0.024896 0.037861 0.020773 0.031623 0.010407 0.009651 0.005763

53 p2pl ✓ ✓ ✓ 0.006092 0.007770 0.019224 0.024504 0.037554 0.019887 0.032762 0.010876 0.009688 0.006284

54 p2pl ✓ ✓ ✓ 0.005613 0.007661 0.018794 0.024870 0.038273 0.023268 0.031161 0.010041 0.009401 0.006035

55 p2pl ✓ ✓ ✓ 0.005949 0.007518 0.016693 0.025583 0.037151 0.022035 0.032013 0.009840 0.009541 0.006394

56 p2pl ✓ ✓ ✓ 0.005991 0.007413 0.017601 0.024525 0.037926 0.020119 0.030501 0.010235 0.009770 0.005961

57 p2pl ✓ ✓ ✓ 0.006085 0.007566 0.016989 0.024930 0.038187 0.021075 0.029169 0.009618 0.009488 0.005776

58 dp2pl ✓ ✓ ✓ 0.005590 0.007768 0.017420 0.024619 0.037542 0.021842 0.034712 0.009321 0.009417 0.006245

59 dp2pl ✓ ✓ ✓ 0.005647 0.007536 0.017773 0.024569 0.037429 0.020720 0.031515 0.009255 0.009599 0.006221

60 dp2pl ✓ ✓ ✓ 0.005736 0.007816 0.018336 0.024701 0.037934 0.022583 0.029394 0.009797 0.009566 0.006109

61 dp2pl ✓ ✓ ✓ 0.005898 0.007452 0.018323 0.024905 0.037121 0.022071 0.032087 0.009369 0.009553 0.005969

62 dp2pl ✓ ✓ ✓ 0.005727 0.007697 0.018969 0.024835 0.039337 0.020916 0.033408 0.009516 0.009421 0.005853

63 dp2pl ✓ ✓ ✓ 0.005435 0.007599 0.017489 0.024535 0.037218 0.023904 0.030789 0.010810 0.009539 0.005610

64 dp2pl ✓ ✓ ✓ 0.005430 0.007522 0.017317 0.024596 0.037669 0.021570 0.032514 0.009264 0.009761 0.005880

65 dp2pl ✓ ✓ ✓ 0.006126 0.007785 0.018930 0.024473 0.037376 0.020387 0.031642 0.009717 0.009629 0.006222

66 dp2pl ✓ ✓ ✓ 0.005793 0.007778 0.018371 0.025085 0.037267 0.022013 0.033756 0.010536 0.009433 0.006339

67 dp2pl ✓ ✓ ✓ 0.005541 0.007559 0.017941 0.025760 0.037941 0.021834 0.033200 0.009573 0.009766 0.006228

68 dp2pl ✓ ✓ ✓ 0.006124 0.007677 0.018178 0.024597 0.038503 0.021439 0.032693 0.009787 0.009886 0.006264

69 dp2pl ✓ ✓ ✓ 0.005880 0.007591 0.018912 0.025686 0.037679 0.021164 0.032451 0.010016 0.009556 0.005944

70 pl2pl ✓ ✓ ✓ 0.038084 0.821131 0.731518 0.841434 1.188160 0.259967 0.233275 0.353297 0.577785 0.095774

71 pl2pl ✓ ✓ ✓ 0.126949 1.382720 2.920050 1.159370 1.205060 0.281119 0.326554 30.414900 0.470178 0.108995

72 pl2pl ✓ ✓ ✓ 0.048356 5.898750 1.046420 0.556596 0.905365 0.139597 0.332312 0.483662 0.504652 0.088373

73 pl2pl ✓ ✓ ✓ 0.033716 1.355810 0.660329 0.411051 1.569620 0.228070 0.157052 0.545376 0.590531 0.083949

74 pl2pl ✓ ✓ ✓ 0.039576 2.682710 0.520756 0.732706 0.631501 0.221493 0.184822 1.353890 0.930525 0.086568

75 pl2pl ✓ ✓ ✓ 0.062516 1.133540 0.563656 0.728894 failure 0.201277 0.159906 0.522184 0.582346 0.114169

76 pl2pl ✓ ✓ ✓ 0.040424 1.017110 4.496860 0.629658 2.091090 0.264072 0.141320 0.779983 0.621403 0.115250

77 pl2pl ✓ ✓ ✓ 0.022890 1.859610 2.478900 0.266861 0.828823 0.227546 0.216731 0.494020 0.584247 0.082855

78 pl2pl ✓ ✓ ✓ 0.108108 1.317460 5.250300 0.620177 1.076750 0.209272 0.182869 0.339580 0.529837 0.091802

79 pl2pl ✓ ✓ ✓ 0.089963 1.287350 0.694254 0.218081 1.358920 0.232178 0.175796 0.344242 0.584814 0.069141

80 pl2pl ✓ ✓ ✓ 0.057583 1.508330 1.324110 1.747990 1.060200 0.190222 0.219271 0.365754 0.797830 0.117689

81 pl2pl ✓ ✓ ✓ 0.037530 2.075200 2.683140 1.099220 0.981518 0.190410 0.205613 0.387148 0.663376 0.093042

82 pgslam(ndt) ✓ ✓ ✓ 0.005734 failure 0.141487 0.025997 0.036760 0.039573 0.065898 0.066544 0.009504 0.007320

83 pgslam(p2p) ✓ ✓ ✓ 0.007203 0.006923 0.020117 0.025049 0.035665 0.037463 0.065898 0.066544 0.009622 0.006588

84 pgslam(p2proj) ✓ ✓ ✓ 0.006383 0.006923 0.019568 0.025289 0.037007 0.016561 0.065898 0.066544 0.010360 0.005152

85 pgslam(p2pl) ✓ ✓ ✓ 0.006482 failure 0.019693 0.025301 0.037474 0.019672 0.065898 0.066544 0.010362 0.005221

86 pgslam(dp2pl) ✓ ✓ ✓ 0.006368 0.006923 0.019693 0.025248 0.036982 0.015661 0.065898 0.066544 0.010226 0.005143

87 pgslam(pl2pl) ✓ ✓ ✓ 0.076314 0.006923 1.284440 0.312282 2.093590 0.178237 0.130777 0.066544 0.486067 0.095490

88 pgslam(ndt, left-J) ✓ ✓ ✓ ✓ 0.005714 0.006923 0.256255 0.026000 0.036766 0.039572 0.065898 0.066544 0.009503 0.007322

89 pgslam(ndt, right-J) ✓ ✓ ✓ ✓ 0.005714 0.006923 0.682496 0.025999 0.036766 0.039572 0.065898 0.066544 0.009503 0.007322

90 pgslam(p2p, left-J) ✓ ✓ ✓ ✓ 0.007197 0.006923 0.020071 0.025063 0.035947 0.038302 0.065898 0.066544 0.009720 0.006987

91 pgslam(p2p, right-J) ✓ ✓ ✓ ✓ 0.007196 0.006923 0.020070 0.025063 0.035947 0.038298 0.065898 0.066544 0.009720 0.006987

92 pgslam(p2proj, left-J) ✓ ✓ ✓ ✓ 0.007024 0.006923 0.019977 0.025862 0.035607 0.040195 0.065898 0.066544 0.009735 0.006713

93 pgslam(p2proj, right-J) ✓ ✓ ✓ ✓ 0.007034 0.006923 0.019704 0.025322 0.035756 0.039319 0.065898 0.066544 0.009759 0.006960

94 pgslam(ndt, pcl) ✓ ✓ ✓ 0.027079 0.006927 0.050230 0.077493 0.036825 0.060648 0.065919 0.066551 0.051459 0.008153

95 pgslam(icp, pcl) ✓ ✓ ✓ 0.009673 0.006930 0.028057 0.036526 0.037275 0.027275 0.065890 0.066542 0.019635 0.007461

96 pgslam(ndt, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.015978 0.006923 0.036396 0.080154 0.038657 0.042461 0.027059 0.066544 0.034244 0.008372

97 pgslam(icp, pcl, GTSAM) ✓ ✓ ✓ ✓ 0.009553 0.006923 0.023153 0.025363 0.036194 0.025298 0.047268 0.066544 0.010367 0.004268

98 pgslam(ndt, pcl, manif) ✓ ✓ ✓ ✓ 0.015985 0.006923 0.019648 0.080152 0.038795 0.030899 0.065898 0.066544 0.034248 0.008405

99 pgslam(icp, pcl, manif) ✓ ✓ ✓ ✓ 0.009565 0.006923 0.019648 0.025392 0.036161 0.023749 0.065898 0.066544 0.010751 0.004329
𝜮

pose graph SLAM. The key element of the NDT is the representation of
the data as a set of normal distributions organized in the regular grid
over 3D space. These distributions describe the probability of finding a
3D point at a certain position. The advantage of the method is that it
gives a smooth representation of the point cloud, with continuous first
and second-order derivatives. Thus, standard optimization techniques
described in this paper can be applied. Another advantage of NDT over
ICP is its much less computational complexity since the consumptive
nearest neighborhood search procedure is not needed. The 3D space
decomposition into the regular grid introduces some minor artefacts,
but in a presented experiment it is a negligibly small disadvantage.
For each bucket from a regular grid containing a sufficient number of
measured points NDT calculates the mean given by Eq. (63) and the
covariance given by Eq. (64).

𝝁 = 1
𝑚
∑

𝑷 𝑔
𝑘 (63)
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𝑚 𝑘=1
= 1
𝑚 − 1

𝑚
∑

𝑘=1
(𝑷 𝑔

𝑘 − 𝝁)(𝑷 𝑔
𝑘 − 𝝁)⊺ (64)

The likelihood of having measured point 𝑷 𝑔
𝑚 is given by Eq. (65).

𝑝(𝑷 𝑔
𝑚) =

1

(2𝛱)
1
2
√

|𝜮|

exp

(

−
(𝑷 𝑔

𝑚 − 𝝁)⊺𝜮−1(𝑷 𝑔
𝑚 − 𝝁)

2

)

(65)

Each 𝑝(𝑷 𝑔
𝑚) can be seen as an approximation of the local surface within

the range of the bucket. It describes the position 𝝁 of the surface as well
as its orientation and smoothness given by 𝜮. Let 𝜳 ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 ,𝑷

𝑙
𝑚)

will be a transformation function of the local measurement point
[𝑷 𝑙

𝑚, 1]
⊺ via pose [𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 expressed as (66).

𝜳 ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 ,𝑷
𝑙
𝑚) = 𝑷 𝑔

𝑚 = [𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆

[

𝑷 𝑙
𝑚
]

(66)

1
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Fig. 18. WHU_TLS data set [12], scene: 5-Park. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much improved.
Moreover, it is great example of the large scale survey challenge.
Thus, the NDT optimization problem is defined as the maximization of
the likelihood function given in Eq. (67).

[𝑹, 𝒕]3×4,∗𝑊←𝑇𝐿𝑆 = max
[𝑹,𝒕]𝑊←𝑇𝐿𝑆

𝑁
∏

𝑘=1
𝑝(𝜳 ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 ,𝑷

𝑙
𝑚)) (67)

Furthermore, the optimization problem is equivalent to the minimiza-
tion of the negative log-likelihood given in Eq. (68).

[𝑹, 𝒕]3×4,∗𝑊←𝑇𝐿𝑆 = min
[𝑹,𝒕]3×4𝑊←𝑇𝐿𝑆

−
𝑁
∑

𝑘=1
log

(

𝑝(𝜳 ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 ,𝑷
𝑙
𝑚))

)

(68)

The proposed NDT implementation is using already discussed point-
to-point observation equation. The target value is [0, 0, 0]⊺ and the
model function is 𝜳 ([𝑹, 𝒕]3×4𝑊←𝑇𝐿𝑆 ,𝑷

𝑙
𝑚) − 𝝁. The information matrix 𝜴

is calculated as an inverse of the covariance matrix from Eq. (64).
An extension to a multi pose optimization problem is straightforward
forward and it is advised to study an open-source project supporting
this paper.
22
3. Experiments

Experiments include a benchmark of 100 variations of multi-view
TLS data registrations. It is available and maintained as an open-source
project [9]. All quantitative measures obtained with a representative
subset of the possible multi-view TLS data registration approaches are
collected in Tables 3–5 as 𝑅𝑀𝑆𝑥𝑦 (Eq. (69) [11]).

𝑅𝑀𝑆𝑥𝑦 =
√

1
𝐶

∑

𝑖∈𝐶𝑠 ,𝑗∈𝐶𝑡

(𝑝𝑖 − 𝑞𝑖)2, 𝑝 ∈ 𝑆, 𝑞 ∈ 𝑇 (69)

Eq. (69) conducts all point pairs for all POIs (Point of Interest) and it is
denoted as (source S: 𝑝, target T: 𝑞), a sum of this pairs is C. It uses only
𝑥 and 𝑦 coordinates. Three publicly available data sets are incorporated
ETH [11], RESSO [10] and WHU_TLS [12] (see Fig. 2 and Table 2).
ETH and RESSO data sets provide registered data obtained with ICP.
Data registration for WHU_TLS is calculated with method from [49].
The goal of the presented benchmark is to conduct data registration for
all of those data sets and provide quantitative and qualitative measures
based on the following steps:
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Fig. 19. WHU_TLS data set [12], scene: 6-Campus. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much
improved. Moreover, it is another example of the large scale survey challenge.
• for each scan the down-sampling is performed with a grid of
10 cm × 10 cm × 10 cm cells resulting remained single point per
cell,

• assign 10 POIs, being virtual corners or easily identified points in
the point cloud intersection (manual step),

• performs automatic multi-view TLS data registration with chosen
100 variants,

• choose the best performing method (minimal 𝑅𝑀𝑆𝑥𝑦),
• generate intersections for all POIs for qualitative comparison,
• compute 𝑅𝑀𝑆𝑥𝑦 for each POI for quantitative comparison,
• performs a subjective investigation and adds to final remarks.

Quantitative and qualitative results are organized into three
sub-sections related to different reference data sources. The calculations
for methods 1–93 were conducted by a laptop with AMD Ryzen 7
5800H CPU 3.20 GHz, 64 GB RAM. The calculations for methods
94–99 were conducted by a laptop with Intel Core i7-7700HQ CPU
2.80 GHz, 32 GB RAM. The parameters for all methods are set as
equal as it was possible e.g. the number of iterations, search radius and
other initial parameters are the same. The first step (down-sampling)
is mandatory for incorporating state-of-the-art computers for large-
scale experiments. Future work will be related to the full resolution
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of data. It will require more technical work being out of the paper’s
scope. The tool for the manual selection of control points is designed
to minimize ambiguity. Thus, manually generated intersections for all
POIs are as precise as it was possible. Moreover, a similar approach is
evident in literature [11] and it does not affect the general outcome
of this research. The most important insight from this is that in most
cases proposed framework improves state-of-the-art registered data. It
is considered a major contribution of this paper.

3.1. ETH data set

This data set is composed of five scenes: arch, courtyard, facade,
office and trees [11]. Table 3 shows that only arch scene (Fig. 3) is
difficult to refine where only 3% of conducted methods perform better
than provided reference registration. Columns in Tables 3, 4, 5 describe
following metadata

• ‘id’ is identification number of the registration method, the initial
values of 𝑅𝑀𝑆𝑥𝑦 for reference method are given in first raw,

• ‘GN’ is Gauss–Newton,
• ‘LM’ is Levenberg–Marquardt,
• ‘𝑊 ← 𝑇𝐿𝑆’ is frame of Terrestrial Laser Scanner to frame World,
• ‘𝑊 → 𝑇𝐿𝑆’ is frame World to frame of Terrestrial Laser Scanner,
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Fig. 20. WHU_TLS data set [12], scene: 7-Residence. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that this data set is much
improved. Moreover, it is another example of the large scale survey challenge.
• ‘TB’ is Tait–Bryan angles,
• ‘Q’ is quaternion,
• ‘R’ is Rodrigues,
• ‘𝑙𝑒𝑓 𝑡 − 𝐽 ’ is Lie algebra left Jacobian,
• ‘𝑟𝑖𝑔ℎ𝑡 − 𝐽 ’ is Lie algebra right Jacobian.
• ...𝑅𝑀𝑆𝑥𝑦 denote errors.

Column ‘method’ contains following variants: ‘p2p’ is point to point,
‘ndt’ is Normal Distributions Transform, ‘p2proj’ is point to projection
onto plane, ‘p2pl’ is point to plane using dot product, ‘dp2pl’ is distance
point to plane, ‘pl2pl’ is plane to plane, ‘pgslam’ is pose graph SLAM,
‘pcl’ is Point Cloud Library [48], ‘icp’ is Iterative Closest Point [48],
‘GTSAM’ is pose graph SLAM [50], ‘manif’ is Lie algebra implemen-
tation [51,52]. Blue cells are winning methods, bold: 𝑅𝑀𝑆𝑥𝑦 smaller
than reference means improved state of the art. For scene courtyard
(Fig. 4) 83% of conducted methods perform better. For scenes facade
(Fig. 5) and trees (Fig. 7) 84% of conducted methods perform better.
For scene office (Fig. 6) 69% of conducted methods perform better. It
can be observed that plane-to-plane metric provides poor results.

Fig. 3 shows the benchmark conducted on manually registered 𝑎𝑟𝑐ℎ
data set [11]. It can be seen that only three variants can slightly im-
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prove reference data registration. This experiment shows only the fact
that proposed methods are fair enough compared with the reference.

Fig. 4 shows an improvement of data set 𝑐𝑜𝑢𝑟𝑡𝑦𝑎𝑟𝑑 from initial
𝑅𝑀𝑆𝑥𝑦 = 0.031 down to 𝑅𝑀𝑆𝑥𝑦 = 0.016. Twice better registration is
evident for distance point to plane metric. It can be seen that the metric
is dominant factor from all of the registration variants. Important ob-
servation is that ndt, point to projection onto plane and point to plane
using dot product variants provide comparable improvements. It can
be justified that all of these registration variants are based on the same
principle. It means that each source point is exactly measurement TLS
point, target information is constructed from the neighboring points. In
such scenario, where there is not so much planar shapes, all observation
equations relying on this principle perform similar. It can be seen that
performs not as efficient as other metrics since the data down sampling
occurs.

Fig. 5 shows great improvement of data set 𝑓𝑎𝑐𝑎𝑑𝑒. All registration
variants improve such scenario with plenty planar shapes.

Fig. 6 shows small improvement of data set 𝑜𝑓𝑓𝑖𝑐𝑒. Most of the
indoor open source datasets are well registered since they are rather
small and easy to register with state of the art techniques.

Fig. 7 shows small improvement of data set 𝑡𝑟𝑒𝑒𝑠. This scenario
is challenging since there are plenty of noisy data. This data set is
difficult to analyze quantitatively without additional source of ground
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Fig. 21. WHU_TLS data set [12], scene: 8-RiverBank. Comparison between reference data ’initial’ and best performing method ‘result’. It can be seen that it is difficult to justify
if we observe an improvement. It means that the reference data is well registered.
truth data. The benchmark shows that proposed variants of the data
registration slightly improve reference one.

3.2. RESSO data set

This data set is composed of five scenes: figure_7a, figure_7b, fig-
ure_7c, figure_7d and figure_7e [10], where the reference data regis-
tration was obtained with combination of automatic approaches and
manual registration. For scene figure_7a (Fig. 8) 58% of conducted
methods perform better. It can be observed that Normal Distributions
Transform and plane to plane methods provide poor results. For scene
figure_7b (Fig. 9) 76% of conducted methods perform better. In fig-
ure_7c (Fig. 10) 84%, figure_7d (Fig. 11) 98% and in figure_7e (Fig. 12)
81% of conducted methods perform better. It can be observed that for
almost all scenes (excluding figure_7d) plane to plane methods provide
poor results.

Fig. 8 shows small improvement of the reference registration. An
important observation is the fact that the result of ndt is rather poor.
One we look closer to data set, plenty of vegetation is evident. Thus,
the combination of planar shapes and noisy data is challenging for this
metric.

Fig. 9 shows a very small improvement in the reference registration.
On one hand, this particular case demonstrates only that the proposed
set of variants is sufficient. On the other hand, this case demonstrates
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the stability of the results. It can be considered empirical evidence that
the proposed framework is reliable.

Figs. 10–12 show great improvement in the reference registration
by all data registration variants. It can be considered empirical evi-
dence that the proposed framework is reliable. For this reason, this
benchmark can be used for data registration validation.

3.3. WHU_𝑇𝐿𝑆 data set

This data set is composed of ten scenes: 1-SubwayStation,
10-UndergroundExcavation, 11-Tunnel, 2-HighSpeedRailway,

3-Mountain, 5-Park, 6-Campus, 7-Residence, 8-RiverBank,
9-HeritageBuilding [12]. It is a very interesting data set since for two
scenes 1-SubwayStation and

10-UndergroundExcavation there is no better result than refer-
ence registration. Other results are as follows: 11-Tunnel: 52%, 2-
HighSpeedRailway: 80%, 3-Mountain: 74%, 5-Park: 83%, 6-Campus:
70%, 7-Residence:69%, 8-RiverBank: 78%, 9-HeritageBuilding: 83% of
methods refine reference data. It can be observed as in previous trials
that the plane-to-plane methods perform worse. Surprisingly, Normal
Distributions Transform methods fail for 11-Tunnel scene.

Figs. 13, 14, 16, 17 and 21 show grate example of accurate data
registration provided by [12]. No variant in the proposed benchmark
can provide evident improvement of this data set according to cho-
sen quantitative measure. The difference in 𝑅𝑀𝑆 are rather small,
𝑥𝑦
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Fig. 22. WHU_TLS data set [12], scene: 9-HeritageBuilding. Comparison between reference data ‘initial’ and best performing method ‘result’. It can be seen that this data set is
much improved. Moreover, it is another example of the large scale survey challenge.
therefore at this stage of research, it is difficult to justify more than the
statement that the proposed benchmark does not affect the consistency
of these data.

Figs. 15, 18, 19, 20 and 22 show great improvements. Once we take
a closer look at these particular data sets, we can see that long tunnels
and large-scale complex data registration scenarios are still challenging
for researchers. Fortunately, this fully automatic framework can refine
this particular data sets by almost all registration variants.

The major outcome of this benchmark is that the recommended reg-
istration variant is ndt since its performance is most promising. Some
issues should be addressed in future, especially removing noisy data
(vegetation). Only ndt can reach scalability, therefore it can address
large-scale scenarios.

4. Conclusion

Multi-view TLS (Terrestrial Laser Scanner) data registration is es-
sential for many applications and domains such as geoscience, mo-
bile robotics and computer vision. Many researchers from the mobile
26
robotics domain claim high accuracy of delivered maps, thus it was
a prerequisite for conduced research closing the gap between those
domains. This paper verified the optimization criterion that relays
on the metric e.g. point to point, point to projection onto a plane,
plane to plane etc..., thus the sum of the distances between basic
geometric primitives (or their parameterized form) is minimized. It
was shown that it is possible to express SO(3) using Euler, Tait–Bryan,
quaternion or Rodrigues’ rotation formula and its impact on the data
registration accuracy. The optimization can be performed locally or
globally using the weighted nonlinear least squares method, Gauss–
Newton, Levenberg–Marquardt algorithms including robust variants
and based on probabilistic approaches e.g. Normal Distributions Trans-
form, Generalized Iterative Closest Point and Pose Graph Simultaneous
Localization and Mapping, but the impact into accuracy is rather neg-
ligible in considered scenarios. The combination of metrics, rotation
matrix parameterization and optimization algorithms creates hundreds
of possible approaches. It was shown that chosen metric is a dominant
factor in data registration. An open-source project is created and it is
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used for improving open-source data. The main claim is that most of
the proposed approaches improve registered reference data provided
by other researchers.

First and the same time most important insight from conducted
research is the fact that only for 2 from 20 scenes the proposed set
of 100 multi-view TLS data registration variants is not capable of
providing better results than reported registered reference data. The
second fact is that the largest improvements are evident for large-scale
scenes, which shows future research direction. The third fact is that 7
scenes can be improved by already existing open-source software, thus
this benchmark is pushing the state of the art forward and it is an added
value for the research community.

The final statement after this benchmark is that the recommended
data registration variant is multi-view Normal Distributions Transform.
It is scalable and reliable. The rotation parameterization and other
degrees of freedom of proposed variants are rather negligible compared
with chosen metric. This information is the main contribution of this
paper. This framework and benchmark are available and maintained at
https://github.com/MapsHD/HDMapping.
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