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Simple Summary: Cells continually sense and receive signals from the environment and respond
accordingly. Due to biological noise, however, the response is not always as expected. Such a response
can induce a different cell fate and may disrupt some cellular functions. In the presence of noise,
cells may either mistakenly perceive non-existent signals and act accordingly, or may ignore the
actual signals and do nothing. We label these two as false alarm and signal miss events, respectively.
In this paper, we consider an important signaling system with one input and two outputs to show
how the likelihood of false alarm and signal miss events can be computed, using the experimentally
measured joint response of the two outputs of the signaling system. The two system outputs are the
nuclear factor κB (NFκB) and the activating transcription factor-2 (ATF-2), whereas the system input
is the tumor necrosis factor (TNF). These molecules are highly involved in essential processes such
as cell survival, cell death, and viral replication. The introduced methodology and the measured
false alarm and miss probabilities using experimental data can model complex cellular decision-
making processes and provide insight into how they may contribute to the development of some
pathological conditions.

Abstract: A cell constantly receives signals and takes different fates accordingly. Given the uncertainty
rendered by signal transduction noise, a cell may incorrectly perceive these signals. It may mistakenly
behave as if there is a signal, although there is none, or may miss the presence of a signal that actually
exists. In this paper, we consider a signaling system with two outputs, and introduce and develop
methods to model and compute key cell decision-making parameters based on the two outputs and
in response to the input signal. In the considered system, the tumor necrosis factor (TNF) regulates
the two transcription factors, the nuclear factor κB (NFκB) and the activating transcription factor-2
(ATF-2). These two system outputs are involved in important physiological functions such as cell
death and survival, viral replication, and pathological conditions, such as autoimmune diseases and
different types of cancer. Using the introduced methods, we compute and show what the decision
thresholds are, based on the single-cell measured concentration levels of NFκB and ATF-2. We also
define and compute the decision error probabilities, i.e., false alarm and miss probabilities, based
on the concentration levels of the two outputs. By considering the joint response of the two outputs
of the signaling system, one can learn more about complex cellular decision-making processes, the
corresponding decision error rates, and their possible involvement in the development of some
pathological conditions.

Keywords: cell decision making; decision theory; molecular signaling systems; signal transduction
noise; cellular decision error probabilities

Biology 2023, 12, 1461. https://doi.org/10.3390/biology12121461 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12121461
https://doi.org/10.3390/biology12121461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-2224-8854
https://orcid.org/0000-0002-3488-2561
https://orcid.org/0000-0001-6262-1222
https://orcid.org/0000-0002-5694-6888
https://doi.org/10.3390/biology12121461
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12121461?type=check_update&version=1


Biology 2023, 12, 1461 2 of 12

1. Introduction

A cell has to recognize and respond to environmental variations and changes and
biological noise [1–3]. Cell fate can change based on the strength or concentration level
of extracellular stimuli or input signals. Signal transduction noise can disturb the input
signals such that the cell becomes unable to correctly sense the precise concentration of
different input signals and subsequently cannot appropriately respond [4–7]. Cellular deci-
sion making has been extensively studied from various angles [7–12]. Due to the random
nature of signal transduction noise, a cellular decision is probabilistic to some extent [5,7].
To quantify and characterize the cell decision-making processes while incorporating their
probabilistic nature, we consider a statistical signal processing approach [13]. This method
is built on decision theory and statistical signal processing concepts to obtain optimal deci-
sion thresholds and erroneous cell decision probabilities using single-cell data [13]. Such a
framework aims to measure the ability of the system to correctly decide on an input signal.
This quantitative and probabilistic approach can also be used to characterize stochastic
signaling mechanisms and phenotype induction in the context of genetic diseases [14]. One
may also expand this approach to study intercellular processes together with intracellular
molecular networks [15].

In this paper, we consider a two-output signaling system (Figure 1) in which the tumor
necrosis factor (TNF) regulates the two transcription factors, the nuclear factor κB (NFκB)
and the activating transcription factor-2 (ATF-2) [5]. TNF can mediate anti-apoptotic and
pro-apoptotic signals, and may also trigger necroptosis as a form of pro-inflammatory cell
death [16,17]. Moreover, TNF, a key antiviral cytokine, can significantly damage healthy
tissues [18,19]. It has also been shown that it can regulate a speed–accuracy tradeoff in the
context of cell death decisions [20]. NFκB, as the nuclear effector of a signaling pathway,
can respond to many environmental triggers across various cell types [21,22]. Furthermore,
TNF activates NFκB, leading to its nuclear translocation. It has been shown that NFκB, an
essential gene regulator, can respond to various doses of TNF, and its activation may prevent
a cell from apoptosis [22–24]. NFκB is highly involved in a wide range of pathological and
physiological processes, such as inflammation, adaptive immune responses, innate immune
responses, secondary lymphoid organ development, autoimmune diseases, and various
types of cancer [25–27]. The A20 (Figure 1) mediates negative inhibitory feedback on the
system input [5,28]. Due to this negative feedback, NFκB level may experience a reduction.
With regard to the other system output, ATF-2, we note that TNF is able to activate the
c-Jun N-terminal kinase (JNK) pathway and stimulate phosphorylated ATF-2 [5]. The
ATF/CREB family has important physiological functions and represents a large group of
basic-region leucine zipper (bZIP) transcription factors (TFs) [29]. ATFs act as heterodimers
or homodimers with different bZIP transcription factors. The family includes ATF-1, ATF-2,
ATF-3, ATF-4, ATF-5, ATF-6, and ATF-7, whose abilities are diversely associated with the
cellular processes that they regulate [29].
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In this paper, we aim to show how the statistical decision-making framework devel-
oped for signaling systems that have only one output [13] can be extended to systems with
two or more outputs. More specifically, in the TNF system (Figure 1), we compute and show
what the decision thresholds are when measurements of the concentration levels of the
two outputs, NFκB and ATF-2, are considered. We also define and compute decision error
probabilities based on the two-output measurements and compare them with single-output
decisions. By considering the joint response from the two outputs of the system, we intend
to take one further step toward understanding cell decision-making processes and the
associated decision error probabilities.

The rest of this paper is organized as follows. First, detailed explanations of the
computational and analysis methods are discussed. Then, the single-cell experimental data
of the TNF—NFκB/ATF-2 signaling system are introduced. Afterward, the two-output
system data and the associated decision threshold boundaries are computed and presented
in graphical form, followed by presenting and discussing various computed decision error
probability results. At the end, some concluding results are presented.

2. Materials and Methods

In this paper, cellular decision making in the TNF—NFκB/ATF-2 signaling system is
considered as the following hypothesis testing problem:{

H0 : TNF level is low,
H1 : TNF level is high.

(1)

A cell may make each of these two mistakes due to signal transduction noise: deciding
that TNF is high at the input of the system while it is actually low—declaring H1 while
H0 is true—or deciding that TNF is low although, in fact, it is high—declaring H0 when
H1 is true. These are false alarm and miss incorrect decisions, respectively, with the
following probabilities:

PFA = P(deciding H1 |H 0),
PM = P(deciding H0 |H 1).

(2)

Additionally, the overall error probability PE of making decisions is a weighted summation
of PFA and PM:

PE = P(H0)PFA + P(H1)PM, (3)

where P(H0) and P(H1) represent the prior probabilities of the hypotheses H0 and H1,
respectively.

The optimal decision-making approach minimizes PE [30,31]. To understand how such
decisions are made, suppose z is the N-element vector of observed variables or data (in our
case, we have N = 2, and the components of z represent NFκB and ATF-2). Let p(z|H0) and
p(z|H1) be the conditional probability density functions (PDFs) of z under the hypotheses
H0 and H1, respectively. The optimal decision rule is derived from the maximum likelihood
principle [31], which chooses the hypothesis with the highest likelihood of occurrence
as the best—optimal—decision. More specifically, the optimal decision rule compares
the conditional likelihood ratio L(z) = p(z|H1)/p(z|H0) with the likelihood threshold of
γ = P(H0)/P(H1) and decides H1 if L(z) > γ, or decides H0 otherwise. In general, L(z) = γ
represents the optimal decision threshold hypersurface, and for N = 2, it represents the
optimal decision threshold curve (DTC).

To evaluate the performance of this optimal decision rule, false alarm and miss proba-
bilities [31] need to be computed using the following N-variate integrals:

PFA =
∫

. . .
∫

p(z|H0) dz,
{z∈ False Alarm Region}

(4)

PM =
∫

. . .
∫

p(z|H1) dz.
{z∈ Miss Region}

(5)
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As discussed later, Gaussian PDFs can represent the data. An N-variate Gaussian PDF
for z under the i-th hypothesis Hi can be written as follows [31,32]:

p(z|Hi) =
1

(2π)N/2
∣∣∣Σi

∣∣∣1/2 exp
[
−1

2
(z− µi)

T
Σ−1

i (z− µi)

]
, i = 0, 1 . (6)

In the above equation, µi and Σi are the mean vector and the covariance matrix of
z under Hi, respectively; |Σ i| and Σ−1

i represent the determinant and the inverse of the
matrix Σi , respectively; and T denotes the transpose operation.

2.1. Using the Likelihood Ratio to Compute the Optimal Decision Thresholds and the Decision
Error Probabilities for the TNF—NFκB/ATF-2 System

To compute the optimal decision thresholds and the decision error probabilities using
the likelihood ratio, first, we present the univariate methods that have simpler equations,
followed by the bivariate methods.

2.1.1. Univariate Decision Analysis

We use the nuclear NFκB and ATF-2 concentrations of thousands of cells that are
exposed to TNF concentrations of 0.013, 0.082, 3.2, and 50 ng/mL after 30 min and 4 h [5].
For the univariate decision analysis, let us define x = ln(Nuclear NFκB), where ln is the
natural logarithm. An examination of the data reveals that a Gaussian PDF can be used to
model the x variable:

p(x|Hi) =
1

(2πσ2
i )

1/2 exp

[
−(x− µi)

2

2σ2
i

]
, i = 0, 1 , (7)

where µi and σ2
i are the mean and the variance under the i-th hypothesis Hi, respectively.

The TNF level under H0 is 0.013 ng/mL, while under H1, it is 0.082, 3.2, or 50 ng/mL.
The optimal likelihood-based decision rule decides H1 if:

L(x) =
p(x|H1)

p(x|H0)
> 1 , (8)

for equi-probable hypotheses. To obtain the optimal decision threshold for x, the following
p(x|H1) = p(x|H0) equation needs to be solved for x:

1

(2πσ2
1 )

1/2 exp

[
−(x− µ1)

2

2σ2
1

]
=

1

(2πσ2
0 )

1/2 exp

[
−(x− µ0)

2

2σ2
0

]
. (9)

After algebraic simplification of Equation (9), the following quadratic equation is obtained:

(σ−2
1 − σ−2

0 )x2 − 2(µ1σ−2
1 − µ0σ−2

0 )x + µ1
2σ−2

1 − µ0
2σ−2

0 + ln(σ2
1 /σ2

0 ) = 0 , (10)

By solving this equation numerically, the optimal decision threshold xth can be computed.
The false alarm and miss probabilities can be computed using the following formu-

las [13]:

PFA =
∫ ∞

xth

p(x|H0) dx = Q
(

xth − µ0

σ0

)
, (11)

PM =
∫ xth

−∞
p(x|H1) dx = Q

(
µ1 − xth

σ1

)
, (12)

where the Q function is defined below:

Q(η) = (2π)−1/2
∫ ∞

η
exp(−u2/2) du . (13)
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By defining y = ln(Nuclear ATF-2), all the above equations and results can be used,
after replacing x in there with y.

2.1.2. Bivariate Decision Analysis

For the bivariate decision analysis, we consider x = ln(Nuclear NFκB) and y = ln(Nuclear
ATF-2), and define the two-element vector z = [x y]T. Upon substituting N = 2 in Equation (6),
the following bivariate PDF can be written for z:

p(z|Hi) =
1

2π|Σi|1/2 exp
[
−1

2
(z− µi)

T
Σ−1

i (z− µi)

]
, i = 0, 1. (14)

Here, µi and Σi are the mean vector and the covariance matrix under the i-th hypothesis Hi,
respectively:

µi =

[
µx,i
µy,i

]
, Σi =

[
σ2

x,i ρiσx,iσy,i
ρiσx,iσy,i σ2

y,i

]
, i = 0, 1 , (15)

where ρi is the correlation coefficient between x and y under the i-th hypothesis Hi.
The optimal likelihood-based decision rule decides H1 if

L(z) =
p(z|H1)

p(z|H0)
> 1 . (16)

To find the optimal DTC in the x-y plane, the following p(z|H1) = p(z|H0) equation needs
to be solved in terms of x and y:

1

2π|Σ1|1/2 exp
[
−1

2
(z− µ1)

T
Σ−1

1 (z− µ1)

]
=

1

2π|Σ0|1/2 exp
[
−1

2
(z− µ0)

T
Σ−1

0 (z− µ0)

]
. (17)

By taking the natural logarithm of both sides of Equation (17) and rearranging some terms,
the following bivariate quadratic equation is obtained:

zT(Σ−1
1 − Σ−1

0 )z− 2(µT
1 Σ−1

1 − µT
0 Σ−1

0 )z + µT
1 Σ−1

1 µ1 − µT
0 Σ−1

0 µ0 + ln (
|Σ1|
|Σ0|

) = 0 . (18)

By solving this equation numerically, the optimal DTC can be computed and graphed in
the x-y plane. For N = 1 and when z includes only the one variable x, Equation (18) reduces
to Equation (10).

The false alarm and miss probabilities can be computed using Equations (4) and (5)
with N = 2, respectively:

PFA =
x

{ (x,y)∈ False Alarm Region}
p(x, y|H0) dx dy, (19)

PM =
x

{(x,y)∈ Miss Region }
p(x, y|H1) dx dy . (20)

The bivariate integrals in Equations (19) and (20) are computed using Monte Carlo integration.

2.2. Using the Discriminant Function to Compute the Decision Error Probabilities for the
TNF—NFκB/ATF-2 System

Here, we explain how to use the discriminant function [33,34] to compute the decision
error probabilities, without computing multivariate integrals. The discriminant function
for the i-th hypothesis Hi is defined as follows:

gi(z) = ln p(z|Hi) + ln P(Hi), i = 0, 1 . (21)
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By substituting Equation (6) together with N = 2 in (21), we obtain

gi(z) = −
1
2
(z− µi)

T
Σ−1

i (z− µi)− ln (2π)− 1
2

ln |Σi|+ ln P(Hi), i = 0, 1 . (22)

The optimal decision rule decides H1 if g1(z) > g0(z).
To compute the false alarm probability PFA using the discriminant functions and the

z data points available under H0, we compare the numerical values of g1(z) and g0(z) for
each z under H0, count the number of times that g1(z) > g0(z), that is, when a false alarm
event occurs, and then divide it by the number of the z data points available under H0. The
miss probability PM is similarly computed.

3. Results and Discussion
3.1. Single Cell Data of the Two-Output TNF—NFκB/ATF-2 System

The data set was obtained from 3T3-immortalized mouse embryonic fibroblasts [5].
Nuclear concentrations of NFκB and ATF-2 were measured using immunocytochemistry
of thousands of mouse fibroblasts exposed to different TNF levels [5]. As explained in
Section 1, decision-making performance and probabilities of the two-output system in
Figure 1—in response to its input TNF signal—are investigated in this paper because
of the high involvement of the NFκB and ATF-2 transcription factors in cell death and
survival processes.

3.2. Graphical Representation of the Two-Output System Data and the Decision Thresholds

To characterize and measure the decision probabilities of whether the TNF level is
low or high, based upon the nuclear concentrations of NFκB and ATF-2, four TNF levels of
0.013, 0.082, 3.2, and 50 ng/mL are arbitrarily chosen, where the first is considered to be low
TNF, and the last three are considered to be high TNF concentrations. Extension to deciding
on more than two input signal levels, for instance, three input signal levels, is possible.
Figure 2 presents some important two-output graphics of cell responses after 30 min of TNF
exposure. More specifically, panels Figure 2A–C show the scatter plots of nuclear NFκB and
ATF-2, where the high TNF level is 0.082, 3.2, or 50 ng/mL, respectively, compared to the
fixed low TNF level of 0.013 ng/mL. The associated bivariate Gaussian probability density
functions (PDFs) for nuclear NFκB and ATF-2 (see Section 2) are shown in the last row
of Figure 2. Finally, panels Figure 2D–F depict the top-view heatmaps of these bivariate
Gaussian PDFs, along with the corresponding optimal decision threshold curves (DTCs).
An optimal DTC is a curve that divides the two-dimensional parameter space, here, the
NFκB/ATF-2 plane, such that the decision error probability—defined later in Equation
(3)—is minimized. Each optimal DTC is graphed by solving a quadratic equation obtained
from the maximum likelihood decision-making principle (see Section 2). As an example, we
see the optimal DTC in Figure 2D that divides the NFκB/ATF-2 plane such that the region
on its left corresponds to the low TNF decision, and the region on its right relates to the
high TNF decision. Details of how an optimal DTC is computed are provided in Section 2.
Given the overlap between the two heatmap clusters, the decision error probability, based
on the optimal DTC, is 0.245. As one can expect, as the high TNF level increases to 3.2 and
50 ng/mL (see Figure 2E,F), the two heatmap clusters become separated, and the decision
error probability decreases to 0.05 and 0.03, respectively. These and other decision error
probabilities for various scenarios are later computed and examined in Section 3.3.
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Figure 2. Cell responses after 30 min of TNF exposure. (A–C) Scatter plots of nuclear NFκB and
ATF-2 when high TNF level is 0.082, 3.2, or 50 ng/mL, respectively. (D–F) Top-view heatmaps of
bivariate Gaussian probability density functions (PDFs) for NFκB and ATF-2, when high TNF = 0.082,
3.2, or 50 ng/mL, respectively, together with the corresponding optimal decision threshold curves
(DTCs) in white. (G–I) Bivariate Gaussian PDFs for NFκB and ATF-2 when high TNF = 0.082, 3.2, or
50 ng/mL, respectively (the (D–F) panels are top-view heatmaps of these bivariate Gaussian PDFs).
In all cases, low TNF = 0.013 ng/mL.

The two-output graphics of cell responses, after 4 h of exposure to different levels of
TNF, are shown in Figure 3. We observe more overlap between the two heatmap clusters,
compared to Figure 2. This can be perhaps explained by noting that the inhibitory feedback
of A20 becomes active over time, which results in reductions in nuclear NFκB and ATF-2
concentrations. The associated changes in the decision error probabilities are computed
and examined in Section 3.3.
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3.3. Decision Error Probabilities of the Two-Output System

Information theoretical studies of single-cell data of a TNF signaling system have
demonstrated that a cell can distinguish between low and high TNF concentrations at the
system input [5]. Due to the uncertainty caused by signal transduction noise, two types
of incorrect decisions can be made: deciding that TNF is high while it is actually low, or
deciding that TNF is low while it is actually high. These two are called false alarm and miss
errors, respectively [13]. In what follows, we present (Figure 4) and discuss the computed
false alarm and miss error probabilities, PFA and PM, respectively, using measured nuclear
NFκB and ATF-2 concentrations as the two outputs of the signaling system.

To graphically explain how the PFA and PM error probabilities are computed, we
consider the high TNF level of 0.082 ng/mL in Figure 4 as an example. The computed
0.18 false alarm probability (Figure 4A, 30 min) is obtained by computing the volume under
the low TNF bivariate PDF in Figure 2G that falls on the right-hand-side region of the
DTC graphed in Figure 2D—A curve that divides the NFκB/ATF-2 plane into two separate
decision regions. This is the false alarm region (see Section 2). Moreover, the computed
0.31 miss probability (Figure 4B, 30 min) is obtained by computing the volume under the
high TNF bivariate PDF in Figure 2G that falls on the left-hand-side region of the DTC
graphed in Figure 2D. This is the miss region (see Section 2). Other false alarm and miss
error probabilities in Figure 4 are similarly computed.

We note a monotone decrease in both decision error probabilities at 30 min (Figure 4)
as the TNF signal becomes stronger. This can be attributed to the linear structure of the
pathway in the short term, when the feedback is not active yet. At 4 h, however, we do not
observe a monotone decrease in the decision error probabilities as the TNF signal strength
increases (Figure 4). This is perhaps because of the activation of the A20 feedback that
renders a nonlinear structure for the pathway.
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Figure 4. Decision error probabilities in cells based on measured nuclear NFκB and ATF-2 con-
centrations as the two outputs of the signaling system after 30 min and 4 h of TNF exposure.
(A) Probabilities of false alarm. (B) Probabilities of miss.

Another noteworthy observation is that the PFA and PM error probabilities are higher
at 4 h (Figure 4). The two heatmap clusters exhibit more overlaps at 4 h (Figure 3) compared
to 30 min (Figure 2). This can be associated with the reductions in nuclear NFκB and ATF-2
concentrations at 4 h, caused by the negative A20 feedback.

To investigate how much the importance of each individual system output is, when it
comes to decision making using both outputs, we use the minimum redundancy maximum
relevance (MRMR) algorithm [35] implemented in MATLAB® (9.13.0.2105380 (R2022b)
Update 2), originally developed for feature selection in classification problems. The MRMR
algorithm finds an optimal set of features so that the redundancy in the feature set is
minimized, while its relevance to the response variable is maximized. The algorithm
defines relevance as the mutual information between each feature and the response variable,
and measures redundancy as the mutual information among the features. By defining
the mutual information quotient (MIQ) parameter as the ratio of the relevance over the
redundancy of a feature, the MRMR algorithm ranks the features. It also computes an
importance score for each feature using a recursive approach [36]. In our case of NFκB
and ATF-2, the two outputs of the system, after finding the output with the highest rank,
the algorithm assigns the corresponding relevance value as the importance score for the
highest-ranked output. The importance score of the second-ranked output is the importance
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score of the first-ranked output multiplied by the ratio of the first-ranked output’s MIQ
over the second-ranked output’s MIQ. Further details are provided in [36].

Now, we compute the importance scores for NFκB and ATF-2 (Table 1) to quantify
their importance in terms of their ability to render a decision on the status of the input
TNF signal. Given the lower scores of ATF-2, one may say that ATF-2 possibly plays a
smaller role in the decision making. This is confirmed by computing and comparing the
univariate decision error probabilities with the bivariate probabilities. For example, for the
high TNF level of 0.082 ng/mL and 30 min data, we have the univariate miss probabilities
of PM(NFκB) = 0.32 and PM(ATF-2) = 0.44, and the bivariate miss probability of PM(NFκB
& ATF-2) = 0.31. We note that the bivariate probability is closer to the univariate probability
rendered by NFκB only. For the same high TNF level and 4 h data, we observe the same
pattern—the univariate miss probabilities are PM(NFκB) = 0.41 and PM(ATF-2) = 0.47, while
the bivariate miss probability is PM(NFκB & ATF-2) = 0.42. A similar behavior is observed
for the false alarm probabilities.

Table 1. Importance scores of NFκB and ATF-2 for decision making in cells after 30 min and 4 h of
TNF exposure.

Time High TNF Level (ng/mL)
Importance Score

NFκB ATF-2

30 min
0.082 0.18 0

3.2 0.49 0.15
50 0.57 0.2

4 h
0.082 0.05 0.01

3.2 0.3 0.1
50 0.24 0.07

4. Conclusions

In this paper, we introduce and develop a set of statistical signal processing and
decision-theoretic methods and metrics for modeling and measurement of decision-making
errors in a TNF signaling system that regulates the two important transcription factors
NFκB and ATF-2. As a useful and informative visual tool, first, optimal decision threshold
curves (DTCs) are computed and graphed in the two-dimensional NFκB/ATF-2 plane
(Figure 2D–F and Figure 3D–F), where an optimal DTC is a curve that divides the two-
dimensional output space such that the error probability of making decisions on the TNF
signal level is minimized.

Second, using measured nuclear NFκB and ATF-2 concentrations, false alarm (PFA)
and miss (PM) error probabilities are computed. Here, PFA is the error probability of
deciding that TNF is high while it is indeed low, whereas PM is the error probability of
deciding that TNF is low, even though it is actually high. We observe a monotone decrease
in both decision error rates in 30 min vs. the TNF signal level (Figure 4), perhaps because of
the linear structure of the pathway in the short term. At 4 h, however, a monotone decrease
in the decision error probabilities is not observed (Figure 4), possibly due to the activation
of the A20 feedback that induces a nonlinear structure for the pathway. We also notice that
PFA and PM increase from 30 min to 4 h (Figure 4A,B, respectively). This can be because of
the reductions in the nuclear NFκB and ATF-2 concentrations in 4 h—due to the negative
A20 feedback—that make the two heatmap clusters get closer to each other and overlap
further (Figure 3), compared to the 30 min heatmap clusters’ overlap (Figure 2).

Third, we look at each system output alone to understand their relative individual
importance in providing decisions on the status of the input TNF signal, compared to
the decisions made using both outputs together. We observe that ATF-2 plays a smaller
role compared to NFκB. This behavior of one output being less important than the other,
however, may be specific to the signaling system studied here, and may not necessarily
hold true for other signaling systems.
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In conclusion, the developed statistical signal processing and decision-theoretic metrics
and methods can quantify complex cellular decision-making processes and behaviors. The
introduced metrics and methods can be applied to other and larger signaling systems that
have several inputs, such as ligands or second messengers, and outputs, such as multiple
transcription factors. More specifically, if the measured concentration levels of N molecules
are available, then one can use the equations presented in Section 2 to compute the false
alarm and miss error probabilities for cellular decisions. In this paper, the case of N = 2, a
two-output system, is studied. This allowed us to compute and graph the optimal decision
threshold curves in a two-dimensional plane to gain some useful insight. For N = 3, a three-
output system, such graphical insight can still be obtained by computing and graphing
the optimal decision threshold surfaces in a three-dimensional space using the equations
presented in Section 2. If the number of output molecules of interest is greater than 3,
N > 3, the cellular decision error probabilities can still be computed using the equations in
Section 2. A direct visual inspection of the decision boundaries, however, is not feasible. In
such scenarios, we can nevertheless look at the decision threshold curves for various pairs
of molecules.
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