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Analytical solutions for bounds of overall properties are derived for single-
phase polycrystalline materials of random texture, composed of grains with arbi-
trary anisotropy and described by the linear constitutive law. Self-consistent es-
timates are found for these materials and they are studied in more details when
anisotropic grains are volumetrically isotropic. Reduction of the above solutions
for incompressible materials or materials with constraint modes of deformation is
also derived. Existence and uniqueness of the obtained solutions are discussed. In
order to obtain the solutions, simultaneously the spectral and harmonic decompo-
sition of fourth order Hooke’s tensor are used. Utility of the obtained results is
demonstrated on the examples of metals and alloys of high specific strength and
stiffness.
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1. Introduction

Assessment of overall properties of heterogenous materials on the basis
of a knowledge of its microstructure and local properties is the central problem
of contemporary micromechanics which has its practical and theoretical aspects.
This problem attracts researchers since the fifties of the previous century. Many
important results and developments have been obtained and proposed since then
(see monographs [6, 15, 19, 22]).

This paper concerns the special class of heterogeneous materials which are
the polycrystalline aggregates. Analytical solutions for upper and lower bounds,
corresponding to the uniform strain and uniform stress assumptions, respectively,
are derived for single-phase polycrystals. The aggregate of random texture is as-
sumed leading to the isotropic overall behaviour. Mechanical behaviour of grains
is arbitrarily anisotropic and described by linear constitutive law, relating strain
and stress measure encompassing, for example, linear elastic but also linear vis-
cous materials. More rigorous bounds, resulting from the theorems of minimum
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potential energy and of minimum complementary energy, have been proposed
by Hashin and Shtrickman [10, 11] and provided for different crystal sym-
metries, i.e. [3, 23, 25, 34] (see also literature cited there). They are not studied
in this paper, however the developed procedure seems to be promising also for
deriving these bounds. It could be also applied for the analysis of the bounds
formulated and extensively discussed by Pham, in construction of which irreg-
ular and random nature of polycrystalline microgeometry is taken into account
in asymptotic sense (see i.e. [26]).

In the self-consistent scheme, a single crystal is viewed as a spherical or ellip-
soidal inclusion embedded in an infinite medium of unknown properties. For the
theoretical formulations concerning self-consistent method one is referred to the
classical papers [12] or [35]. In what follows, self-consistent estimates are found
for a crystal of general anisotropy and of a spherical shape. Special attention is
paid to these materials in which anisotropic grains are volumetrically isotropic.
Reductions of the above estimates for incompressible materials or materials with
constraint modes of deformation are also derived. The last case concerns i.e. met-
als or alloys of high specific strength and stiffness such as magnesium or titanium
alloys and intermetallics. The utility of the obtained results is presented on the
examples of these materials. Existence and uniqueness of the obtained solutions
are discussed.

Some of the results obtained are already known in the literature. Upper and
lower bounds in a concise form have been provided in [33]. Quartic equation for
self-consistent estimate of an overall shear modulus for cubic crystals have been
derived already by Hershey in 1954 (independently in [18]) and then reduced to
the cubic one e.g. in [12, 18, 35]. Hexagonal crystals have been studied in [14].
In [27] the influence of grain morphology on the self-consistent estimates for
overall properties of such crystals has been discussed. For hexagonal, trigonal
and tetragonal crystals implicit equations for these estimates, depending on the
local stiffness tensor components, were provided in different forms in [24, 25]
and [3].

The originality of a paper lies mainly in the method applied. In order to
obtain the solutions, simultaneously the spectral and harmonic decompositions
of fourth-order Hooke’s tensor are used. Thanks to that, the important feature
of the derived solutions is that they are expressed by means of invariants of lo-
cal stiffness (compliance) tensors. To the author’s best knowledge, the presented
analysis concerning incompressible crystals and crystals with constraint defor-
mation modes is also new. Below, the spectral and harmonic decompositions of
Hooke’s tensor are recalled in a nutshell, mainly in order to introduce the re-
quired notation. More details concerning the spectral theorem one may find in
[5, 8, 28]. The harmonic decomposition is presented in [9, 29–31]. The Reader is
referred to these publications for more details.
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1.1. Spectral decomposition

Hooke’s tensor is the fourth-order tensor with the following symmetries with
respect to the permutation of indices:

(1.1) Tijkl = Tjikl = Tijlk = Tklij .

Since in the same time Hooke’s tensor is the symmetric second-order tensor in
a 6-dimensional Euclidean space, the spectral theorem can be applied to such
a tensor:

(1.2) T =
M∑

K=1

TKPK

where TK are M ≤ 6 mutually different eigenvalues and PK are orthogonal pro-
jectors into the corresponding subspace of eigentensors. Orthogonal projectors
fulfil the conditions

PKPL =

{
PK if K = L

O if K 6= L

M∑

K=1

PK = I

where I is the fourth-order symmetrized identity tensor. If TK is an eigenvalue
of multiplicity m(K) then the corresponding projector may be specified in the
form

PK =
m(K)∑

i=1

ωi ⊗ ωi

where {ωi}, i = 1, . . . , m(K) constitute a basis in the corresponding mK-di-
mensional eigen-subspace of second-order tensors. It should be stressed that
decomposition (1.2) is unique.

The symmetry group of T is the product of symmetry groups of projec-
tors PK . More on that issue one finds for example in [5, 16, 28].

1.2. Harmonic decomposition

Any Hooke’s tensor can be also uniquely decomposed into five pairwise or-
thogonal parts (belonging to five pairwise orthogonal subspaces)

(1.3) T = hP IP + hDID︸ ︷︷ ︸
the isotropic part

+ Ad1 + Ad2 +H︸ ︷︷ ︸
the anisotropic part

,

where the first two parts are isotropic and specified by second-order identity
tensor I and fourth-order identity tensor I:

IP =
1
3
I⊗ I, ID = I− 1

3
I⊗ I,
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and two scalars hP and hD. Second two parts are specified by two second-order
deviators φ and ρ, namely

Ad1 = I⊗ φ + φ⊗ I,(1.4)

Ad2 =
1
2

[I⊗ ρ + ρ⊗ I]T (23)+T (24) − 2
3

[I⊗ ρ + ρ⊗ I] ,(1.5)

where
(AT (23)+T (24))ijkl = (A)ikjl + (A)ilkj

and H is totally symmetric and traceless.
This decomposition allows for the following one-to-one correspondence:

T←→ (hP , hD, φ, ρ, H) .

Scalars are calculated as follows:

hP =
1
3
I · T · I, hD =

1
5
(TrT− hP ), hP =

1
3
Tiikk, TrT = Tikik,

while second-order deviators are calculated with use of the so-called Novozhilov’s
deviators µD and νD:

φ =
3
7
µD, ρ =

2
7
(νD − 2µD)

where µD and νD are deviators of the following tensors:

µ = T · I, ν = TT (23) · I, µij = Tijkk, νij = Tikjk.

The symmetry group of the tensor T is the product of symmetry groups of
the tensors φ, ρ and H. The decomposition (1.3) is based on the presentations
of [29, 31]. Different definitions of Ad1 and Ad2 have been utilized in [9].

2. Problem

Assume a single-phase polycrystal with components (i.e. grains) of arbitrary
anisotropy with the same properties although of axes of symmetry rotated with
respect to each other. Moreover, let the orientations φc of these components
be randomly distributed within the considered representative volume element.
It means that macroscopically polycrystalline material can be treated as an
isotropic one.

Locally the constitutive relation between the stress tensor σ and strain tensor
(or strain rate tensor) ε is linear, that is,

(2.1) ε =Mc · σ, σ = Lc · ε, Lc = (Mc)−1
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where Lc and Mc are stiffness and compliance tensors, respectively. Macroscopic
relations for the averaged fields E = <ε> and Σ = <σ> are assumed to be
linear as well, namely

E =M ·Σ, Σ = L ·E, L = M−1
.

Moreover, all the introduced fourth-order tensors have the symmetries with re-
spect to the permutation of indices of Hooke’s tensor. Note that major symmetry
of the constitutive tensor originates in the assumption of existence of a strain
potential.

In view of the above assumptions for the local stiffness and compliance ten-
sors, the spectral decomposition (1.2) can be applied

Lc(φc) =
M∑

K=1

hKPK(φc),(2.2)

Mc(φc) =
M∑

K=1

1
hK
PK(φc),(2.3)

where φc denotes orientation of local axes with respect to some macroscopic
frame specified by three Euler angles. Moreover,

PK(φc) = Q(φc) ? PK(0)

and Q(φc) ? (·) denotes the rotation operation for a n-th order tensor, Q(φc) is
the second-order orthogonal tensor and PK(0) is the projector in the case when
the local and macroscopic frames coincide.

Now, for each of projectors PK the harmonic decomposition of a fourth-order
tensor (1.3) can be applied

(2.4) PK(φc) = η
(K)
P IP + η

(K)
D ID + A(K)

1 (φc) + A(K)
2 (φc) +H(K)(φc)

where specifically

η
(K)
P =

1
3
I · PK(φc) · I =

1
3
I · PK(0) · I,

η
(K)
D =

1
5
(m(K) − η

(K)
P ),

A(K)
1 (φc) = A(K)

1 (µ(K)
D (φc)),

A(K)
2 (φc) = A(K)

2 (ν(K)
D (φc))
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and m(K) is the multiplicity of the corresponding modulus hK . One should note
the following identities:

(2.5)
M∑

K=1

PK = I⇒
M∑

K=1

η
(K)
P = 1,

M∑

K=1

η
(K)
D = 1,

M∑

K=1

m(K) = 6,

where 0 ≤ η
(K)
P ≤ 1, 0 ≤ η

(K)
D ≤ 1 and

M∑

K=1

A(K)
1 = O

(
M∑

K=1

µ
(K)
D = 0

)
,

M∑

K=1

A(K)
2 = O

(
M∑

K=1

ν
(K)
D = 0

)
,

M∑

K=1

H(K) = O.

The following identities are also important in the outlined analysis. Let h be
any second-order deviator and H any fourth-order, fully symmetric and traceless
tensor. Specifying the corresponding rotated tensors as

h(φc) = Q(φc) ? h, H(φc) = Q(φc) ?H

one can prove that

〈h(φc)〉Q = 0, 〈H(φc)〉Q = O,

where 〈·〉Q denotes an average over the whole orientation space. If the orienta-
tion is specified by three Euler angles φc = {ϕ1, ψ, ϕ2} then this averaging is
performed according to the following formula:

〈·〉Q =
1

8π2

2π∫

0

π∫

0

2π∫

0

( · ) sinψdϕ1dψdϕ2.

Interesting and important subgroup of the considered materials are the ma-
terials for which I is the eigenstate of Lc andMc. Materials with such a property
are called volumetrically isotropic since its response to a hydrostatic stress state
is the change of volume without the change of shape, similarly to the case of
isotropic materials. Let us denote the Kelvin bulk modulus of Lc by hP ; then
spectral decompositions (2.2)–(2.3) for the considered subclass of materials take
the form

Lc(φc) = hP IP +
M∑

K=2

hKPK(φc),(2.6)

Mc(φc) =
1

hP
IP +

M∑

K=2

1
hK
PK(φc),(2.7)
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where

PK(φc) = η
(K)
D ID + A(K)

2 (φc) +H(K)(φc),
M∑

K=2

PK(φc) = ID

and specifically

η
(K)
D =

1
5
m(K),

M∑

K=2

m(K) = 5, A(K)
2 (φc) = A(K)

2 (ν(K)
D (φc)).

Since macroscopically the material is isotropic, its stiffness and compliance
tensors have the form

L = h̄P IP + h̄DID, M =
1

h̄P
IP +

1
h̄D
ID

where h̄P = 3K is the overall Kelvin bulk modulus while h̄D = 2µ = 2G is the
overall Kelvin shear modulus. In what follows we use notation the bulk modu-
lus and the shear modulus for these quantities, but one should note the slight
difference with respect to K and G which are usually called by these names1).
Above formulae are in the same time spectral and harmonic decompositions of
macroscopic constitutive tensors.

In the next sections we derive the upper and lower bounds for h̄P and h̄D as
well as their self-consistent estimates.

3. Upper and lower bounds

The simplest upper bound for averaged properties of polycrystal is obtained
by taking

(3.1) ε = E

everywhere in the polycrystal [35]. Such upper bound is called Voight bound for
elastic materials or Taylor bound for rigid-plastic or viscoplastic materials. By
averaging Eq. (2.1)2 and applying hypothesis (3.1) one obtains

(3.2) L = 〈Lc(φc)〉, M = L−1 = 〈Lc(φc)〉−1.

1)Kelvin bulk and shear modulus are related with macroscopic Young modulus E and Poisson
ratio ν according to the known relations

E =
3h̄P h̄D

h̄P + h̄D

, ν =
h̄P − 2h̄D

2(h̄P + h̄D)
.



482 K. Kowalczyk-Gajewska

Introducing decompositions (2.2) and (2.4) into (3.2) one finds

〈Lc(φc)〉 =

〈
M∑

K=1

hKPK(φc)

〉

=

〈
M∑

K=1

hK

(
η

(K)
P IP + η

(K)
D ID + A(K)

1 (φc) + A(K)
2 (φc) +H(K)(φc)

)〉

=

(
M∑

K=1

hKη
(K)
P

)
IP +

(
M∑

K=1

hKη
(K)
D

)
ID

+
M∑

K=1

hK

〈
A(K)

1 (φc)
〉

+
M∑

K=1

hK

〈
A(K)

2 (φc)
〉

+
M∑

K=1

hK

〈
H(K)(φc)

〉

︸ ︷︷ ︸
=O

=

(
M∑

K=1

hKη
(K)
P

)
IP +

(
M∑

K=1

hKη
(K)
D

)
ID

+
M∑

K=1

hKA
(K)
1

(〈
µ

(K)
D (φc)

〉

︸ ︷︷ ︸
=0

)
+

M∑

K=1

hKA
(K)
2

(〈
ν

(K)
D (φc)

〉

︸ ︷︷ ︸
=0

)
,

so finally

LUP = 〈Lc(φc)〉 =

(
M∑

K=1

hKη
(K)
P

)
IP +

(
M∑

K=1

hKη
(K)
D

)
ID

and

(3.3) h̄UP
P =

M∑

K=1

hKη
(K)
P , h̄UP

D =
M∑

K=1

hKη
(K)
D .

It can be shown that 1/3h̄UP
P is equal to the average bulk modulus of polycrystal

(see [15]). In the case of volumetrically isotropic materials, these formulae reduce
to

(3.4) h̄UP∗
P = hP , h̄UP∗

D =
1
5

M∑

K=2

hKm(K)

so the macroscopic bulk modulus is equal to the local one.
The simplest lower bound for averaged properties of polycrystal is obtained

by taking

(3.5) σ = Σ
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everywhere in the polycrystal. Such lower bound is called Reuss bound for elastic
materials or Sachs bound for rigid-plastic or viscoplastic materials. Averaging
(2.1)1 and applying hypothesis (3.5) one obtains

(3.6) M = 〈Mc(φc)〉 , L =M−1 = 〈Mc(φc)〉−1 .

Performing similar calculations as for the upper bound solution one arrives at

MLO = 〈Mc(φc)〉 =

(
M∑

K=1

η
(K)
P

hK

)
IP +

(
M∑

K=1

η
(K)
D

hK

)
ID

and

(3.7) h̄LO
P =

(
M∑

K=1

η
(K)
P

hK

)−1

, h̄LO
D =

(
M∑

K=1

η
(K)
D

hK

)−1

.

It can be shown that 3h̄LO
P is equal to the inverse of an average compressibility

modulus (see [15]). In the case of the volumetrically isotropic materials, the
above formulae reduce to

(3.8) h̄LO∗
P = hP , h̄LO∗

D = 5

(
M∑

K=2

m(K)

hK

)−1

,

so again the macroscopic bulk modulus is equal to the local one. Since upper
and lower bounds for bulk modulus coincide, it is the exact value.

One should note that the upper bound and lower bound solutions depend only
on local Kelvin moduli hK , their multiplicity and M−1 independent values η

(K)
P ,

so maximum 11 independent function of 21 components of local stiffness tensor.
All these functions are invariants of local elasticity tensor [4, 17]. Specific formula
for {h̄UP/LO

P , h̄
UP/LO
D } for local symmetry groups covered by fourth-order tensor

are collected in Table 1 (compare spectral decompositions of Hooke’s tensor
for different symmetry groups provided in [16]). It should be underlined that
analytical formulas for lower and upper bounds specified by assumptions (3.1)
and (3.5) for arbitrary anisotropic crystal are known in the literature [15, 33].
Their derivation is presented here in order to specify them in terms of invariants
of Lc resultling from spectral and harmonic decompositions applied subsequently
to the tensor Lc as well as in order to present the procedure, some part of which
is common for the derivation of self-consistent estimates and can be applied also
for the derivation of Hashin–Strikman bounds.
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4. Self-consistent estimates

Self-consistent estimate of an overall behaviour of polycrystal relays on Es-
helby’s solution for the ellipsoidal inclusion embedded in the infinite medium.
Here a single grain is considered as an inclusion while the medium has aver-
aged properties of a polycrystal. Following Hill’s formulation of a self-consistent
procedure [12], one finds the following localization equation for local strain

ε = Ac ·E, Ac = (Lc + L∗)−1(L+ L∗), 〈Ac〉 = I

where Ac is the localization tensor and L∗ is the Hill tensor which depends on
the shape of inclusion and the averaged properties L. Furthermore, it is shown
that

(4.1) L = 〈LcAc〉 ,

which is an implicit equation since Ac depends on L. In the considered case
we assume that grains have the same spherical shape and that macroscopic
properties are isotropic, therefore the Hill tensor is specified as

(4.2) L∗ = h∗P IP + h∗DID,

where

(4.3) h∗P = 2h̄D, h∗D = h̄D
3h̄P + 4h̄D

2(h̄P + 3h̄D)
.

Instead of (4.1), for derivation of L an equivalent equation is used, namely

(4.4)
〈
(L− Lc)Ac

〉
= O.

Introducing (4.2) and (2.2) into Ac one notices that the inversion present in
this formula is not straightforward unless all PK(φc) do not commute with IP .
All PK(φc) commute with IP if the material is volumetrically isotropic. Let us
first consider this class of materials.

4.1. Volumetrically isotropic crystals

Introducing formulae (2.6) into (4.4), the localization tensor is specified as

Ac(φc) =
h̄P + h∗P
hc

P + h∗P
IP +

M∑

K=2

h̄D + h∗D
hK + h∗D

PK(φc)
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and

(L− Lc(φc))Ac(φc) =
(h̄P −hc

P )(h̄P +h∗P )
hc

P + h∗P︸ ︷︷ ︸
αP

IP +
M∑

K=2

(h̄D−hK)(h̄D +h∗D)
hK + h∗D︸ ︷︷ ︸

αK

PK(φc)

= αP IP +
M∑

K=2

αK

(
m(K)

5
ID + A(K)

2 (φc) +H(K)(φc)
)

.

Performing averaging over the whole orientation space we are left with

〈
(L− Lc(φc))Ac(φc)

〉
= αP IP +

1
5

M∑

K=2

αKm(K)ID,

hence the self-consistent estimates for h̄P and h̄D are obtained from the set of
two equations

αP =
(h̄P − hP )(h̄P + h∗P )

hP + h∗P
= 0,

M∑

K=2

αKm(K) = (h̄D + h∗D)
M∑

K=2

(h̄D − hK)m(K)

hK + h∗D
= 0.(4.5)

In view of positive definiteness of the local and macroscopic constitutive tensors,
the first equation gives

(4.6) h̄P = hP

what confirms the result of previous subsection. Introducing (4.3) into the second
equation one can reduce it to the polynomial equation of odd degree 2M − 3 of
the form

(4.7)
M∑

K=2

(h̄D − hK)m(K)
M∏

L=2 (L6=K)

wL(hL, h̄P , h̄D) = 0,

where

(4.8) wL(hL, h̄P , h̄D) = 4h̄2
D + 3(h̄P + 2hL)h̄D + 2hLh̄P .

Equation (4.7) serves to obtain h̄D. We look for h̄D among positive real roots
of this polynomial. It is important to note that the solution depends only on
the values of local Kelvin moduli and their multiplicity, so the invariants of
local elasticity tensor. Moreover, it should be stressed that knowledge of the
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multiplicity of Kelvin moduli is not necessary – formally one can solve this
equation as a 9-degree one setting all m(K) = 1 and assuming that all hK are
different:

(4.9)
9∑

k=0

αkh̄
k
D = 0.

One can show that coefficients αk depend then on invariant hP and other invari-
ants Jk of deviatoric part of elasticity tensor of the form, which are independent
of ordering of the local Kelvin moduli (see Appendix). Analysis of coefficients αk,
presented in more detail in the Appendix, leads to the conclusion that polyno-
mial (4.9) has always a single positive real root. Consequently, the admissible
solution exists and is unique.

4.2. Anisotropic crystals

Now let us consider anisotropic crystals which are not volumetrically isotropic.
To this end let us rewrite (2.2)–(2.3) as follows:

Lc(φc) =
N∑

K=1

hKPK(φc)

︸ ︷︷ ︸
eLc(φc)

+
M∑

K=N+1

hKPK(φc),

Mc(φc) =
N∑

K=1

1
hK
PK(φc)

︸ ︷︷ ︸
eMc(φc)

+
M∑

K=N+1

1
hK
PK(φc),

where projectors PK(φc) for K = N + 1, . . . , M into deviatoric eigen-subspaces
commute with IP while PK(φc) for K = 1, . . . , N do not. Note that

N∑

K=1

PK(φc) = P̃(φc) = IP + P̃D(φc),

where P̃(φc) and P̃D(φc) fulfil PP = P, so these fourth-order tensors are projec-
tors. Both commute with IP and

L̃c(φc) = P̃(φc)Lc(φc).

Consequently it is found

(L− Lc)Ac = (L̃− L̃c)Ãc

︸ ︷︷ ︸
eR(φc)

+
M∑

K=N+1

(h̄D − hK)(h̄D + h∗D)
hK + h∗D︸ ︷︷ ︸

αK

PK(φc)
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where

Ãc(φc) = (L̃c(φc) + L̃∗(φc))−1(L̃(φc) + L̃∗(φc)),(4.10)

L̃∗(φc) = P̃(φc)L∗ = h∗P IP + h∗DP̃D(φc),(4.11)

L̃(φc) = P̃(φc)L = h̄P IP + h̄DP̃D(φc).(4.12)

Harmonic decompositions of projectors PK , (K = N + 1, . . . , M) and of R̃(φc),

R̃(φc) = α̃P IP + α̃DID + Ãd1(φc) + Ãd2(φc) + H̃(φc),

are now performed. After averaging over the whole orientation space, two scalar
equations which correspond to (4.5) are obtained:

α̃P = 0,(4.13)

α̃D +
M∑

K=N+1

αKm(K) = 0.(4.14)

Let us specify the above equations for the materials in which N = 2 and
corresponding h1 and h2 are of multiplicity one. In such a case there exists
a uniquely defined (within the sign) deviatoric second-order tensor d(φc) of a unit
norm such that

P̃D(φc) = d(φc)⊗ d(φc), PK(φc) · d = 0, K = N + 1, . . . ,M

and

L̃c(φc) = Lc
11IP + Lc

22P̃D(φc) +
1√
3
Lc

12 (I⊗ d(φc) + d(φc)⊗ I) .

One can show that quantities Lc
11, Lc

22 and (Lc
12)

2 are invariants of the local
elasticity tensor since they are specified as follows:

Lc
11 =

1
3
I · Lc(φc) · I = h1η

(1)
P + h2η

(2)
P > 0,(4.15)

Lc
22 = d · Lc(φc) · d = h1 + h2 − Lc

11 > 0,(4.16)

(Lc
12)

2 = Lc
11L

c
22 − h1h2 > 0.(4.17)

It can be easily checked that Lc
11 provides the Voight-type upper bound (3.3)

for an overall bulk modulus. Introducing the above formulae into (4.10)–(4.12),
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after some algebra it is found that

α̃P =
(h̄P + h∗P )((Lc

12)
2 + (h̄P − Lc

11)(h
∗
D + Lc

22))
(h∗P + Lc

11)(h
∗
D + Lc

22)− (Lc
12)2

,

α̃D =
(h̄D + h∗D)((Lc

12)
2 + (h∗P + Lc

11)(h̄D − Lc
22))

(h∗P + Lc
11)(h

∗
D + Lc

22)− (Lc
12)2

and Eqs. (4.13)–(4.14) are equivalent to

(Lc
12)

2 + (h̄P − Lc
11)(h

∗
D + Lc

22) = 0,(4.18)

(Lc
12)

2 + (h∗P + Lc
11)(h̄D − Lc

22)
(h∗P + Lc

11)(h
∗
D + Lc

22)− (Lc
12)2

+
M∑

K=3

(h̄D − hK)m(K)

hK + h∗D
= 0.(4.19)

Due to relations (4.3), contrary to volumetrically isotropic materials, h̄P cannot
be calculated independently of h̄D.

The class of materials considered above is not artificial. All materials of
transversal (hexagonal), trigonal and tetragonal symmetry belong to the con-
sidered group. For these materials deviatoric tensor d is specified as

d = ± 1√
6
(I− 3m⊗m),

where m is the unit vector coaxial with the main axis of symmetry. Formulas for
self-consistent estimates for these classes of single crystal anisotropy have been
provided in [3] in the form of implicit equations which are equivalent to (4.18)
and (4.19). In [3], the quantity denoted as GV

eff is introduced which is called
“uniaxial shear energy” per unit volume for an applied unit shear strain. It is
easily verified that 2GV

eff = Lc
22.

5. Materials with constraints

5.1. Incompressible materials

In [16] it was shown that incompressible materials can be viewed as a special
case of the volumetrically isotropic materials for which the bulk modulus is
infinite

hP →∞.

Solutions for upper and lower bounds as well as the self-consistent estimate
presented in previous sections indicate that macroscopic bulk modulus is equal
to the local one; therefore we also have

h̄P →∞.
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Upper and lower bounds for an overall shear modulus h̄D have not changed and
are specified by Eqs. (3.4)2 and (3.8)2.

As far as a self-consistent estimate for the macroscopic shear modulus is
concerned, calculating the limit values for h∗P and h∗D one obtains

lim
h̄P→∞

hP ∗ = 2h̄D, lim
h̄P→∞

hD∗ =
3
2
h̄D,

so Eq. (4.5) reduces to

(5.1) 5h̄D

M∑

K=2

(h̄D − hK)m(K)

2hK + 3h̄D
= 0,

M∑

K=2

m(K) ≤ 5

which, due to the assumptions hK > 0 and h̄D > 0, is equivalent to the following
polynomial equation of M − 1 degree:

(5.2)
M∑

K=2

(h̄D − hK)m(K)
M∏

L=2 (L 6=K)

(2hK + 3h̄D) = 0.

One can prove that this polynomial has always exactly one real root which is
positive. Consequently, the solution exists and is unique. Eq. (5.2), similarly like
for volumetrically isotropic materials, can be formulated with use of Jk invariants
(see Appendix, Eq. (A.7)).

5.2. Materials with restricted deformation modes

It was shown in [16] that the subspace of restricted deformation modes is the
eigenspace of the corresponding constitutive fourth-order tensor. The dimension
of this subspace is m∗ where m∗ is also the multiplicity of the infinite Kelvin
modulus h∗ →∞. Spectral decompositions (2.2)–(2.3) have the form

Lc(φc) = h∗P∗(φc) +
M∑

K=2

hKPK(φc),(5.3)

Mc(φc) =
1
h∗︸︷︷︸
→0

P∗(φc) +
M∑

K=2

1
hK
PK(φc) =

M∑

K=2

1
hK
PK(φc).(5.4)

Formulae for an upper bound for macroscopic bulk and shear moduli are
rewritten as

(5.5) h̄UP
P = h∗η∗P +

M∑

K=2

hKη
(K)
P , h̄UP

D = h∗η∗D +
M∑

K=2

hKη
(K)
D .
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It is seen that h̄UP
P is finite only when η∗P = 0 (it means that the space P∗ is the

subspace of deviatoric tensors), while the modulus h̄UP
D is finite when η∗D = 0

which is equivalent to η∗P = m∗. Apparently, both situations cannot take place
simultaneously and h̄UP

D is finite only when m∗ = η∗P = 1. It is the case when
the material is incompressible.

Formulae for lower bounds are rewritten as

h̄LO
P =

(
η∗P
h∗︸︷︷︸
→0

+
M∑

K=2

η
(K)
P

hK

)−1

=

(
M∑

K=2

η
(K)
P

hK

)−1

,(5.6)

h̄LO
D =

(
η∗D
h∗︸︷︷︸
→0

+
M∑

K=2

η
(K)
D

hK

)−1

=

(
M∑

K=2

η
(K)
D

hK

)−1

(5.7)

and both are finite until there exists at least one K for which hK is finite and
simultaneously

η
(K)
D 6= 0 and η

(K)
D 6= 0.

If additional restrictions have been imposed on the incompressible materials,
as far as an upper bound is concerned both macroscopic modulae are infinite so
there is no upper bound, while there exists a lower bound for an overall shear
modulus as long as some modes of deformation are not restricted.

Let us pass to self-consistent estimates for volumetrically isotropic materials
with constraint deformation modes. We begin with the situation when the space
of constraint deformation is the subspace of the deviatoric second-order tensors.
As previously, m∗ denotes the dimension of this subspace and at the same time,
the multiplicity of the corresponding Kelvin modulus h∗. Consequently, the esti-
mate (4.6) for the overall bulk modulus is still valid. Introducing (5.3), Eq. (4.7)
can be rewritten as follows:

(h̄D − h∗)m∗

2h∗(hP + 3h̄D) + h̄D(3hP + 4h̄D)
+

M∑

K=3

(h̄D − hK)m(K)

wK(hK , hP , h̄D)
= 0.

Taking the limit for h∗ →∞ we are left with

−m∗

2(hP + 3h̄D)
+

M∑

K=3

(h̄D − hK)m(K)

wK(hK , hP , h̄D)
= 0

which, under assumptions of h̄D > 0 and hK > 0, is equivalent to the polynomial
equation of degree 2(M − 2):
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(5.8)
M∑

K=3

2(h̄D − hK)(hP + 3h̄D)m(K)
M∏

L=3 (L 6=K)

wL(hL, h̄P , h̄D)

−m∗
M∏

K=3

wK(hK , h̄P , h̄D) = 0.

Analysis of this polynomial leads to the conclusion that it has at least one positive
root as long as m∗ ≤ 2. In other words, a finite self-consistent estimate for the
overall shear modulus exists as long as the dimension of a space of constraint
deviatoric deformation modes is less than three.

Now, let us consider incompressible materials in which additionally some
subspace of deviatoric deformation modes is constraint. As it was already shown,
the overall bulk modulus is infinite in this case. Let us rewrite Eq. (5.1) as follows:

5h̄D
(h̄D − h∗)m∗

2h∗ + 3h̄D
+ 5h̄D

M∑

K=3

(h̄D − hK)m(K)

2hK + 3h̄D
= 0,

M∑

K=3

m(K) ≤ 4

where as previously m∗ denotes the dimension of the constraint subspace of
deviatoric deformation modes (due to incompressibility, total dimension of the
space of constraint deformation modes is m∗ + 1). Now we take a limit of this
equation for h∗ →∞ and find the counterpart of polynomial equation (5.2)

(5.9)
M∑

K=3

2(h̄D − hK)m(K)
∏

L=3 (L 6=K)

(2hL + 3h̄D)−m∗ ∏

K=3

(2hK + 3h̄D) = 0

which is of degree M − 2. Positive solution for the above polynomial equation
exists and is unique only if m∗ = 1. In other words, in the case of incompressible
materials the self-consistent estimate for the overall shear modulus is finite only
when the subspace of restricted deviatoric modes is one-dimensional.

5.3. Examples

In order to illustrate the utility of the obtained general results of this section
we specify the solution for the selected incompressible linear viscous materials.
For metals, usually the viscoplastic regularization is used for the description
of their inelastic deformation taking place by crystallographic slip on N slip
systems. The number and geometry of slip systems depend on the geometry
of crystallographic lattice of a single crystal. The local constitutive relation is
formulated as a power law in the form

(5.10) ε̇vp = v0

N∑

r=1

(
τ r

τ r
c

)n

Pr,
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where v0 is a reference slip rate, τ r, τ r
c are the resolved shear on the slip system

r and the corresponding critical shear stress, where

τ r = σ ·Pr, Pr =
1
2
(mr ⊗ nr + nr ⊗mr).

Two unit vectors mr and nr define the slip system denoting the slip direction
and plane normal to the slip, respectively. Clearly, material described by (5.10)
is incompressible. When n = 1, the linear relation is obtained

(5.11) ε̇vp = Mv · σ, Mvp = v0

N∑

r=1

1
τ r
c

Pr ⊗Pr.

Below, the solutions are derived for bounds and self-consistent estimate of over-
all viscous shear modulus h̄D for fcc polycrystals, γ-TiAl polycrystal of near-
gamma microstructure and hcp Mg polycrystals of random texture, assuming
n = 1. Note that usually n > 1 is identified for these materials. Then a sin-
gle crystal is described by a non-linear constitutive law. Consequently, solutions
for bounds and self-consistent estimates require an appropriate linearization of
a problem and depend on the loading scheme. Estimates are found numerically
by discretization of the orientation space, see e.g. [13, 21] or [20]. In these calcu-
lations, knowledge of the analytical solutions for the limit case n = 1 is beneficial
from the point of view of verification of the applied numerical procedures as well
as it provides good initial approximation of a solution.

5.3.1. Fcc polycrystals. Single crystal of a fcc unit cell has 12 slip systems
{111} < 110 > of the same type (τ r

c = τc). One finds

Mvp =
v0

τc

(
1
h2
P2 +

1
h3
P3

)
, h2 =

1
2
, h3 =

3
2
,

where h2 is of multiplicity 2 and h3 of multiplicity 3, and P2 and P3 are speci-
fied as for cubic symmetry [16]. Using formulas (3.4), (3.8) and (A.8) one finds
immediately

h̄LO
D =

5
6

[
τc

v0

]
, h̄SC

D = 1
[

τc

v0

]
, h̄UP

D =
11
10

[
τc

v0

]
.

Equivalent solution was obtained in [13].

5.3.2. γ-TiAl intermetallic. Titanium aluminide of near-gamma microstructure
can be modelled as a polycrystal composed of spherical grains. Single crystal
has a fcc-like unit cell with 12 possible slip systems but they are subdivided
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into two groups: 4 ordinary dislocations {111} < 110] and 8 super-dislocations
{111} < 101] [2]. Denoting ρ = τ sup

c

τord
c

one finds

Mvp =
v0

τord
c

(
1
h2
P2 +

1
h3
P3 +

1
h4
P4 +

1
h5
P5

)
,

Projectors PK are specified as for volumetrically isotropic material of tetragonal
symmetry (see [16]) and

h2 =
ρ

2
, h3 =

3ρ

2 + 4ρ
, h4 =

3ρ

2
, h5 =

3ρ

1 + ρ
.

where h5 is of multiplicity 2. Using formulae (3.4) and (3.8) one finds upper and
lower bounds

(5.12) h̄LO
D =

5ρ

4 + 2ρ

[
τord
c

v0

]
, h̄UP

D =
1
5
ρ

(
2 +

6
1 + ρ

+
3

2 + 4ρ

)[
τord
c

v0

]

while the self-consistent estimate is the single positive real root of the following
polynomial equation of degree 4:

3h̄4
D +

ρ(7 + 8ρ)
2(1 + 2ρ)

h̄3
D −

ρ2(7 + 8ρ)
(1 + ρ)(1 + 2ρ)

h̄2
D −

3ρ3(7 + 3ρ)
2(1 + ρ)(1 + 2ρ)

h̄D

− 3ρ4

(1 + ρ)(1 + 2ρ)
= 0.

Figure 1 presents the solution of the above equation for different values of ρ
together with the corresponding upper and lower bounds specified by (5.12). It is
observed in experiments [2] that super-dislocations are more difficult to initiate
than ordinary dislocations, therefore ρ > 1 is physically meaningful.

0 2 4 6 8 10

0

1

2

3

4

5

Ρ

hD
@Τ

c
or

dD

LO

UP

SC

Fig. 1. Dependence of bounds and self-consistent estimate of an overall viscous stiffness of
TiAl random polycrystal on ρ = τ sup

c /τord
c .

Now, let us look at the limit situation when ρ −→ ∞ which means that the
inelastic deformation is possible only by ordinary dislocations. In this case, the
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subspace of deviatoric strain-rate tensors which are possible to realize by this
reduced set of slip systems is three-dimensional. Taking the limit values of hk

one obtains
h2 = h4 −→∞, h3 =

3
4
, h5 = 3,

therefore the multiplicity of the infinite deviatoric Kelvin moduli is two. Accord-
ing to the analysis performed in the preceding subsection, a finite self-consistent
estimate does not exist in such a case. The limited number of easy slip systems
is the main source of poor ductility of titanium aluminides which inhibits its
industrial use in spite of its high specific strength and stiffness. It should be
noted that the lack of easy slip systems is partially balanced by the activation of
a twinning mechanism which can be described as pseudo-slip (see [7]). However,
twin systems cannot be directly included in the presented analysis as far as,
due to their uni-directionality, they introduce non-linearity into the constitutive
relation even for n = 1.

5.3.3. hcp Mg polycrystals. Other materials of high specific strength and stiffness
but of limited ductility are the Mg alloys. The Mg single crystal of a hcp lattice
structure has hexagonal symmetry. Usually four groups of slip systems are re-
ported for magnesium [1, 32]: 3 basal (0001)<1120>, 3 prismatic {1100}<1120>,
6 pyramidal <a> {1101}<1120> and 6 pyramidal <c+a> {1122}<1123>. Only
basal slip systems are considered to be the easy ones, however, the subspace of
deviatoric strain-rate states which are possible to take place by this reduced set
of slip systems is two-dimensional. Addition of prismatic or pyramidal <a> slip
systems (or both of them) makes this subspace four-dimensional. Only the set
of pyramidal <c+a> slip systems covers the whole deviatoric space. Again, due
to the reasons explained above, twinning mechanism is not considered.

Let us denote

ρ1 =
τprism
c

τbasal
c

, ρ2 =
τpyram<a>
c

τbasal
c

, ρ3 =
τpyram<c+a>
c

τbasal
c

.

If all 18 slip systems can be initiated, using (5.11) one obtains local viscous
compliance tensor in the form

(5.13) Mvp =
9d2

(1 + d2)2ρ3︸ ︷︷ ︸
1/h2

P2 +
3
4

(
1
ρ1

+
8d2

(3 + 4d2)ρ2
+

2d2

(1 + d2)2ρ3

)

︸ ︷︷ ︸
1/h3

P3

+
(

3
4

+
9

(6 + 8d2)ρ2
+

3(1− d2)2

2(1 + d2)2ρ3

)

︸ ︷︷ ︸
1/h4

P4,
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where d is the c/a ratio describing lattice geometry (see [15] for its definition)
while projectors PK are specified as for a volumetrically isotropic material of
transversal isotropy (see [16]). In the case of Mg crystal, lattice geometry pa-
rameter d is equal to 1.624 [15]. Identifying hK , K = 2, 3, 4 as indicated by
(5.13), where h2 is of multiplicity one and h3, h4 of multiplicity 2, one easily
obtains lower and upper bounds using Eq. (3.4)2 and Eq. (3.8)2 as well as the
self-consistent estimate from cubic equation (A.9).
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Fig. 2. Bounds and self-consistent estimate of an overall viscous shear modulus of a hcp Mg
random polycrystal for ρ1 = ρ2.

It is interesting to analyse some special cases of the above solutions. First, let
us assume that ρ1 = ρ2, then the solutions concerning bounds and self-consistent
estimate depend on two parameters ρ1 and ρ3. They are presented in Fig. 2. Two
limit situations can be considered: ρ3 →∞ and ρ1 = ρ2 →∞ corresponding to
blocking pyramidal <c + a> or prismatic+pyramidal <a> sets of slip systems,
respectively. For the first case, local Kelvin moduli are

ρ3 →∞⇒ h2 →∞, h3 =
4(3 + 4d2)
9(1 + 4d2)

ρ1, h4 =
4(3 + 4d2)ρ1

3(6 + (3 + 4d2)ρ1)

and since the infinite local modulus h2 is of multiplicity one, a finite self-con-
sistent estimate can be found from the quadratic equation with one positive
root

15h̄2
D − 3f(ρ1)(3 + ρ1)h̄D − 8ρ1f(ρ1) = 0,

where

f(ρ1) =
40(3 + 4d2)2ρ1

27(1 + 4d2)(6 + (3 + 4d2)ρ1)
.

The corresponding upper bound is infinite while the lower bound is:

h̄LO
D =

10ρ1

3(3 + ρ1)
.
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Resulting values are presented in Fig. 3a. In the second case the local Kelvin
moduli are

ρ1 = ρ2 →∞ ⇒ h2 =
(1 + d2)2

9d2
ρ3, h3 =

2(1 + d2)2

3d2
ρ3,

h4 =
4(1 + d2)2ρ3

3(2(1− d2)2 + (1 + d2)2ρ3)
,

so all of them are finite and bounds and a self-consistent estimate can be found
using formulae (3.4), (3.8) and the cubic Eq. (A.9). Results are presented in
Fig. 3b.

a) b)

Fig. 3. Bounds and self-consistent estimate of an overall viscous shear modulus of a hcp Mg
random polycrystal for a) ρ3 →∞ (pyramidal <c + a> slip systems are blocked)

b) ρ1 = ρ2 →∞ (prismatic and pyramidal <a> slip systems are blocked).

Finally, it is easy to see that if all slip systems except the easy ones are blocked
(that is ρ1 →∞, ρ2 →∞ and ρ3 →∞), then only the local Kelvin modulus h4

is finite, therefore a finite self-consistent estimate of h̄D does not exist.
Let us add that finite self-consistent estimates can be also found for the

cases when both the prismatic and pyramidal <c + a> slip systems are blocked
(ρ1 →∞ and ρ3 →∞) or when both the pyramidal <a> and pyramidal <c+a>
slip systems are blocked (ρ2 →∞ and ρ3 →∞).

Self-consistent estimates for the single crystal with different groups of slip
systems blocked are compared in Fig. 4. Surprisingly, although pyramidal <c+a>
slip systems are sufficient to realize any deviatoric strain-rate state, the self-
consistent estimate for h̄D in the case when only basal and pyramidal <c + a>
slip systems can operate is higher than for the case, when pyramidal <c + a>
slip systems are blocked while other groups of slip system can be activated with
the same level of the corresponding critical shear stresses. It means that in the
first case, the polycrystal is more stiff than in the latter one. Variation of a self-
consistent estimate and a lower bound for this case when ρ1 6= ρ2 is presented
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Fig. 4. Comparison of self-consistent estimates of an overall viscous shear modulus of a Mg
random polycrystal for different active sets of slip systems.

in Fig. 5. Moreover, one can also observe that activation of the pyramidal <a>
slip systems is more beneficial, from the point of view of polycrystal ductility,
than activation of the prismatic slip systems.
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Fig. 5. Lower bounds and a self-consistent estimate of an overall viscous stiffness of a hcp
Mg random polycrystal for ρ1 6= ρ2 and pyramidal <c + a> slip systems blocked.

6. Summary

Using the spectral and harmonic decompositions of Hooke’s tensors, the
bounds and self-consistent estimates have been derived for random polycrystals
composed of elements of arbitrary anisotropy. For the wide class of anisotropic
crystals, solutions have been provided in the form of polynomial equations with
coefficients depending on the invariants of a local stiffness tensor. Incompress-
ible materials as well as materials with constraint deformation modes have been
considered. It was demonstrated that the existence of a finite self-consistent es-



Bounds and self-consistent estimates of overall properties . . . 499

timate for an overall shear modulus depends on the dimension of a subspace of
constrained deviatoric deformation. Utility of the analysis has been demonstrated
on the examples of metals and alloys of high specific strength and stiffness.
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Appendix

The crystal bulk modulus hP and the following functions of deviatoric Kelvin
moduli

J1 = h2 + h3 + h4 + h5 + h6 > 0,

J2 = h2h3 + h2h4 + . . . + h5h6 > 0,

J3 = h2h3h4 + h2h3h5 + . . . + h4h5h6 > 0,

J4 = h2h3h4h5 + h2h3h4h6 + . . . + h3h4h5h6 > 0,

J5 = h2h3h4h5h6 > 0

are invariants of a local L for the volumetrically isotropic material, which are
independent of ordering of hK and can be calculated without performing the
spectral decomposition. The coefficients αk of the polynomial equation (4.9) for
a self-consistent estimate of an overall shear modulus h̄D are specified with use
of the above invariants as follows:

α0 = −16J5h
4
P < 0,

α1 = −h3
P (192J5 + 16J4hP ) < 0,

α2 = −h2
P

(
864J5 + 160J4hP + 12J3h

2
P

)
< 0,

α3 = −hP

(
1728J5 + 576J4hP + 88J3h

2
P

)
< 0,

α4 = − (
1296J5 + 864J4hP + 204J3h

2
P − 36J2h

3
P − 27J1h

4
P

)
,

α5 = − (
432J4 + 144J3hP − 204J2h

2
P − 216J1h

3
P − 81h4

P

)
,

α6 = 352J2hP + 576J1h
2
P + 432h3

P > 0,

α7 = 192J2 + 640J1hP + 864h2
P > 0,

α8 = 256J1 + 768hP > 0,

α9 = 256.
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Analysis of αk indicates that the polynomial (4.9) has at least one and no more
than three positive real roots. Three positive roots are obtained if simultaneously

(A.1) α4 > 0 and α5 < 0.

Now, we prove that both inequalities cannot be true at the same time which
ensures that Eq. (4.9) has a unique positive solution.

To this end, note that α4 and α5 are linear functions of JK and 4th-order
polynomial functions of hP . Domains of admissible arguments of these functions
are defined as JK > 0 and hP > 0. Let us consider α4 and α5 as linear functions
of J1. Condition (A.1)2 can be then rewritten as

(A.2) 27h4
P J1 < 54J4hP + 18J3h

2
P − 51/2J2h

3
P − 81/8h5

P .

There exists such J1 ∈ (0, J (0)
1 ) for which the above inequality is true only if

(A.3) 51/2J2h
3
P < 54J4hP + 18J3h

2
P − 81/8h5

P .

Otherwise the condition (A.1) cannot be fulfilled. Inequality (A.1)1 is specified as

(A.4) 27h4
P J1 > 1296J5 + 864J4hP + 204J3h

2
P − 36J2h

3
P .

Combining (A.2) and (A.4) it is obtained that

51/2J2h
3
P > 17/7(1296J5 + 810J4hP + 186J3h

2
P + 81/8h5

P ).

Now, combining the above inequality with (A.3) we arrive at an inequality

22032J5 + 13392J4hP + 3036J3h
2
P + 243h5

P < 0

which apparently cannot be true for any positive JK and hP , therefore we
have proved that condition (A.1) cannot be fulfilled for any combination of JK

and hP . Consequently, the polynomial equation (4.9) has always a unique positive
solution.

The form (4.7) of the polynomial equation is simplified as compared to (4.9),
as far as it takes into account information about the multiplicity of Kelvin moduli
what enables one to lower the degree of a polynomial. Now, we specify the
polynomial equation for M = 3 with mK = {2, 3} and M = 4 with mK =
{1, 2, 2}, which cases correspond, for example, to cubic symmetry and hexagonal
symmetry (transversal isotropy) of single crystal, respectively. In the first case,
polynomial equation (4.7) takes the form of the third-order equation

(A.5) 4h̄3
D + h̄2

D (3hP + 2h2)− h̄D (6h2 + hP ) h3 − 2h2h3hP = 0.
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It corresponds to the equation for an overall shear modulus of cubic crystals
found by Kröner [18] (see also [12, 35]), specified in terms of components of
local stiffness tensor. In the second case (4.7) is the 5-th order equation of the
form

(A.6) − 4h2h3h4h
2
P − 2(12h2h3h4 + (h2h3 + h2h4 + 2h3h4)hP )hP h̄D

− (36h2h3h4 + (6h2h3 + 6h2h4 + 16h3h4)hP − 3h2h
2
P )h̄2

D

− (12h3h4 − (16h2 + 6h3 + 6h4)hP − 9h2
P )h̄3

D

+ (16h2 + 8h3 + 8h4 + 24hP )h̄4
D + 16h̄5

D = 0.

Equation for a self-consistent estimate of an overall shear modulus for in-
compressible material can also be expressed in terms of invariants Jk, assuming
m(K) = 1 for all deviatoric Kelvin moduli hK , K = 2, . . . , 6. It has the following
form:

(A.7) 81h̄5
D + 27J1h̄

4
D − 12J3h̄

2
D − 16J4h̄D − 16J5 = 0.

This equations has a single positive real root.
Let us specify Eq. (5.2) for incompressible crystals of cubic symmetry and of

hexagonal symmetry. In the first case we have to do with two deviatoric Kelvin
moduli h2 and h3 of multiplicity 2 and 3, respectively. Polynomial equation (5.2)
reduces to the quadratic one with one positive root

(A.8) 3h̄2
D − h3h̄D − 2h2h3 = 0 ⇒ h̄D =

h3

6

(
1 +

√
1 + 24

h2

h3

)
.

In the second case there are three deviatoric moduli: h2 of multiplicity 1, h3 and
h4 of multiplicity 2 (hexagonal symmetry from the point of view of the form of
L is equivalent to the transversal isotropy). Polynomial equation is now cubic

(A.9) 9h̄3
D + 3h2h̄

2
D − 2(h2h3 + h2h4 + 2h3h4)h̄D − 4h2h3h4 = 0

and the exact, though complicated, formula can be provided for the single posi-
tive root using the known procedure for solving cubic equations.
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