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Abstract—If a malignant tumor is detected, the patient is
often given neoadjuvant chemotherapy (NAC) before surgery.
The effectiveness of NAC is estimated using tumor size changes.
However, such a method is not always reliable, so other
techniques are being investigated. The paper shows how to
assess the response of different tumor areas to therapy based
on the analysis of scattered ultrasound signals. Understanding
the local response of the tumor can help to evaluate the
effectiveness of therapy. The study used a set of raw ultrasound
data from 48 tumors undergoing NAC. Ultrasound scanner was
used to collect RF data before the start of NAC and after
each drug administration. After therapy, tumors were resected
and histopathologically evaluated. The percentage of residual
malignant cells (RMC) in cach lesion was estimated and used
for assessing the NAC effectiveness. The set of tumors was
divided into a training and a test sets. In the training set each
tumor Region of Interest (ROI) was divided into small square
pieces — patches, and labelled as responding or non-responding
basing on RMC of the tumor. Then 357 statistical and texture
features were estimated from each patch. The support vector
machines binary classifier (SVM) was trained on data collected
after the 3" drug administration. The efficiency of the classifier
using a different number of features in the range from 2 to 100
has been tested. The classifier was then used to determine
the probability of high RMC of tumor patches from the test
set. In this way, parametric images of tumors were obtained,
showing the spatial distribution of the probability of a given
area being unresponsive to treatment. The ’patch approach’
allows the use of a very large set of predictors without the risk
of overfitting — although the number of tumors in the set was
not very large, the number of patches obtained from them was.
Spatial distribution of non-responsiveness probability can be a
base for detection of non-responding tumors. A simple predictor
based on 70" percentile of probability of non-responsiveness
after the 3! dose resulted in a classification with an area under
the ROC curve of 0.92, indicating potential for identifying non-
responding tumors.

Index Terms—breast cancer, chemotherapy monitoring,
quantitative ultrasound

I. Introduction

Neoadjuvant chemotherapy (NAC) of a breast cancer
is a therapy given before surgical removal of the tumor.
The primary goal of this approach is to reduce the size of
the tumor, which facilitates the surgical operation and
increases the chances of breast conservation. Typically
NAC consists of several courses of drug administered
at regular time intervals. Monitoring the effectiveness
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of NAC is an important issue. Early detection of non-
reponsive tumors (i.e. those resistant to NAC), would
enable quick adjustment of treatment by changing the
drug or help expedite the decision to discontinue therapy
and performing surgery. In case of non-responsive tumors,
delaying surgery raises the risk of metastasis. Currently,
evaluation is based on changes in tumor size, and it is often
assessed using ultrasound (US) imaging [1]. However, this
method is not always optimal. Efforts are being made
to improve the assessment of NAC performance by using
the physical and statistical parameters obtained from
ultrasound images — methods referred to as quantitative
ultrasound (QUS) — to characterize tumor tissue [2]-[4].

This study tested an approach in which tumor Region
of Interest (ROI) on US image is divided into small
square fragments — patches. Patches were assigned into
‘responding’ and ’'non-responding’ categories based on
histopathological examination of the tumor, and then the
classifier was trained. The general aim was to develop a
method for imaging the local tumor response to therapy.
The nature of this response, e.g. whether the response
is uniform throughout the tumor or whether there are
‘resistant’ foci, seems to be an interesting direction of
research towards better monitoring of tumor changes
during NAC.

II. Methods
A. Data acquisition

US data were collected from 48 breast cancers under-
going NAC. All patients provided an informed consent
to participate in the study. This study was approved
by the FEthical Committee at the Maria Sklodowska-
Curie Memorial Cancer Centre and Institute of Oncology,
Warsaw, Poland.

US data were collected before each subsequent course of
the chemotherapy. The number of courses for each patient
was not equal and depended on physician’s decision,
however in general the number of courses was more than
3. Scanning was performed by an experienced radiologist
following the guidelines of the American College of Radiol-
ogy (BI-RADS lexicon) [5] and the standards of the Polish
Ultrasound Society [6]. Raw radio-frequency (RF) data
were collected using Ultrasonix® SonixTOUCH scanner
(Ultrasonix Medical Corporation, Canada) equipped with



the L14-5/38 linear probe. Sampling frequency was equal
to 40 MHz. Each tumor was scanned in four planes: radial,
radial+45°, anti-radial and anti-radial+45°. All processing
was carried out in the Matlab® R2021a environment.
After the treatment each tumor was surgically removed
and then histopathologically assessed by an experienced
pathologist. The Assesment included, among others, the
percentage of the remaining malignant cells (RMC). This
parameter was used in the study as the indicator of tumor
response to the therapy. RMC values ranged from 0 to
100, where 0 means that no viable cancer cells were found
in the observed tumor tissue fragments, while 100 means
that the examined fragments were completely occupied by
living tumor cells. In this study tumors were arbitrarily
classified as non-responding when the RMC was higher or
equal to 70.

B. Data processing

Each RF image acquired after third NAC course was
pre-processed to B-mode by computing the amplitude
envelope using Hilbert transform and applying the decibel
compression. The masks defining the region of interest
(ROI) — area corresponding to a tumor location — was
marked by the same radiologist who performed the US
examination. The tumor dataset was divided into 5 folds
and processed in k-fold manner [7] — each fold defined
the division of the tumor dataset into the training and
test sets. A collection of square fragments — patches — was
extracted from each tumor ROI in the training and test
sets. The patch size was 2x2 mm, and patches overlapped
with a step equal to 0.5 mm. Each patch in the training and
test set was assigned an RMC value equal to that of the
tumor from which the patch was derived. The numbers of
patches are given in table I. Each patch was processed by

TABLE 1
Patches numbers in subsequent folds

fold# | resp# non-resp# resp# | non-resp#

16039 9324 6784
7288 3884
4289 3867
9268 5171
2810 3117

a set of parameter estimators. The output of all estimators
processing a single patch forms a vector (an observation)
with 357 elements (features). Estimators will be described
in the next subsection. The binary label was assigned to
each observation basing on the patch RMC — 1 for RMC
higher or equal to 70, 0 otherwise. Then the number of
features was reduced by ranking features using Chi-2 test
and taking the first n most important. The n in range from
2 to 100 were tested in the study. Then binary classifier
was trained on the training observations. In this study
the supported vector machines (SVM) classifier was used
[7]. The imbalanced training set problem was addressed

by modifying cost matrix to reflect the proportions of
responding and non-responding patches. The classifier was
then tested on the observations derived from the test
patches. The performance of the classifier was evaluated
using area under the ROC curve (AUC) [8].

In the next step, the classifier was used to create
parametric images of tumors from the test set. These
images show spatial distributions of the probability that
given patch comes from ’'non-responding region’ of a
tumor. These 'probability images’ were the base for tumor
classification to 'responding’ or 'non-responding’ class. In
this study, the 70 percentile from probability distribution
was estimated and used as a score for ROC calculation.
The performance of this tumor classifier was also evaluated
using AUC.

C. Estimators

The set of estimators consisted of 14 statistical and
textural groups of estimators. Large number of estimators
was taken from BUSAT toolbox [9], however they were
re-implemented to allow using the GPU functionality of
Matlab® R2021a. Specifically following estimators were
used: auto-correlation, auto-covariance [10], complexity
curve features [11], fractal features [12], Laws energy fea-
tures [13], and Gray-Level Co-ocurrence Matrix (GLCM)
parameters [14]. Additionally the set of estimators con-
tained the Nakagami [15] and k-homodyned [16] distribu-
tion parameters, mean, standard deviation, entropy [17],
and statistical moments from 2 to 4. The Nakagami and k-
homodyned estimators were used on amplitude data with
no decibel compression. The texture GLCM parameters
were estimated separately vertically and horizontally, and
for 6 different pixel offsets, corresponding to distance
0.075, 0.15, 0.3, 0.45, 0.6 and 0.75 mm. The summary
of used estimators is given in table II.

TABLE IT
Estimators and number of output features

estimator features# | estimator features#

mean 1 k-homodyned 2
std 1 autocorrelation 1

224 moment 1 autocovariance 35
3'd moment 1 complex curvature 5
40 1oment 2 Laws energy 70
entropy 1 fractal features 8

Nakagami 2 texture GLCM parameters 228

II1. Results

The example of probability images for responding and
non-responding tumors are presented in Fig.1 and Fig.2.

The changes of classification performance — both for
patches and probability images — with increasing number
of features are shown in Fig.3.
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Fig. 1. (a) Bmode image with marked tumor and (b) the spatial
distribution of the probability of a poor response to therapy in
responding (RMC = 0%) tumor after 3'4 NAC.

IV. Disscussion

The presented tumors are characterized by different
probability distributions. The image of the responding
tumor (Fig.1(b)) shows a large, compact dark area on
the right side of the tumor, while the image of the non-
responding tumor (Fig.2(b)) shows the low-probability
areas much smaller and diffuse. This suggests that the
analysis of the texture of probability distributions may
carry additional information, the use of which may im-
prove the operation of the tumor classifier.

The plots presenting the efficiency of the method
depending on the adopted number of features show that an
unlimited increase in the number of features is not justified
(Fig.3). Based on the trend of AUC vs. number of features
relationship (Fig.3(b)), it seems that the tumor classifier
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Fig. 2. (a) Bmode image with marked tumor and (b) the spatial
distribution of the probability of a poor response to therapy in non-
responding (RMC = 100%) tumor after 3'4 NAC.

performance reaches its optimum around 20 to 30 features.
When using 20 features the tumor classifier performance
is characterized by AUC equal 0.92. Further increasing the
number of features does not increase the performance. In
addition, this relationship is non-monotonic, i.e. adding
some features may degrade performance. This suggests
that the feature selection method used was not optimal.
However, one should remember about a fairly wide error
channel, which makes it impossible to draw more firm
conclusions.

In this work, we used a brute-force approach i.e.
predictors were automatically selected from a large set
of potential features. The method used to select relevant
features was simple and quick, but probably non-optimal.
In addition, the patch classification method (SVM) was
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Fig. 3. AUC changes with increasing number of features used for
classification of (a) patches and (b) tumors. The errorband is marked
in gray.

chosen arbitrarily - it is possible that other methods work
better. Finally, the tumor classifier (percentile based) was
very simple, however this work is about showing the
proof of concept. We expect texture analysis of probability
images to provide much more information compared to a
simple percentile.

V. Conclusions

The subject of the study is the method of estimating the
local tumor response to neoadjuvant chemotherapy. The
paper presents the results of the SVM classifier trained
on a set of small US image patches of a tumor. Thanks
to this approach, it was possible to use a very large set
of predictors without the risk of overfitting, and to obtain
probability distributions showing where a given tumor
does not respond to therapy. Spatial distribution of non-
responsiveness probability can be a base for detection of
non-responding tumors, and can be used as a tool for
monitoring the effectiveness of therapy.
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