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Abstract
Although the elastic properties of porous materials depend mainly on the volume fraction of pores, the details of pore 
distribution within the material representative volume are also important and may be the subject of optimisation. To study 
their effect, experimental analyses were performed on samples made of a polymer material with a predefined distribution of 
spherical voids, but with various porosities due to different pore sizes. Three types of pore distribution with cubic symmetry 
were considered and the results of experimental analyses were confronted with mean-field estimates and numerical calcula-
tions. The mean-field ‘cluster’ model is used in which the mutual interactions between each of the two pores in the predefined 
volume are considered. As a result, the geometry of pore distribution is reflected in the anisotropic effective properties. The 
samples were produced using a 3D printing technique and tested in the regime of small strain to assess the elastic stiffness. 
The digital image correlation method was used to measure material response under compression. As a reference, the solid 
samples were also 3D printed and tested to evaluate the polymer matrix stiffness. The anisotropy of the elastic response of 
porous samples related to the arrangement of voids was assessed. Young’s moduli measured for the additively manufactured 
samples complied satisfactorily with modelling predictions for low and moderate pore sizes, while only qualitatively for 
larger porosities. Thus, the low-cost additive manufacturing techniques may be considered rather as preliminary tools to 
prototype porous materials and test mean-field approaches, while for the quantitative and detailed model validation, more 
accurate additive printing techniques should be considered. Research paves the way for using these computationally efficient 
models in optimising the microstructure of heterogeneous materials and composites.
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1  Introduction

In view of their microstructure, heterogeneous materials can 
be divided into those with a random but statistically homo-
geneous microstructure and those with a periodic one. In the 
first case, the microstructure can be characterised by a set of 
statistical distribution functions of microstructural param-
eters, e.g. size and shape distributions or various n-point 
correlation functions [1]. Among such materials, there are 

natural (e.g. metal polycrystals) and synthetic (e.g. compos-
ites) materials. However, even for the synthetic materials, 
the microstructure morphology, as described by the men-
tioned parameters, can only be controlled to a limited extent. 
In the second case, the so-called unit cell representing the 
microstructure can be easily defined, as its periodic multi-
plication fills the entire volume of the material. Materials 
with this type of microstructure are mainly synthetic-like 
metamaterials produced by additive manufacturing (AM). 
In this case, an almost full control over the microstructure 
morphology is achieved. Assuming that the link between the 
microstructure features and the effective mechanical proper-
ties is known, this paves the way for the optimal material-
by-design techniques.

Knowledge about homogenised mechanical properties of 
multiphase materials and metamaterials has application in 
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many areas of research. For example, modelling acoustic 
wave propagation in poroelastic media requires the effective 
Young’s modulus and Poisson’s ratio of a material [2]. In 
material science, effective elastic properties are determined; 
e.g. to assess stiffness and strength of bio-scaffolds [3] and 
lightweight load-carrying cellular microstructures such as 
rigid closed-cell polyisocyanurate foams [4].

Various rapid prototyping techniques that utilise the prin-
ciple of additive manufacturing, commonly known as three-
dimensional (3D) printing, have allowed experimental study 
of both closed- and open-porosity systems of a predefined 
form from the mechanical point of view. The issue of uni-
form and irregular porosity present in 3D printed compo-
nents is reviewed in [5], whereas a general characterisation 
of additively manufactured polymers is made in [6]. In [7], 
authors experimentally studied the influence of infill patterns 
on the mechanical properties of 3D printed samples subject 
to uniaxial tensile tests. As expected, several microstructures 
of the same porosity but distinct internal topology evinced 
different effective elastic properties. Highly porous peri-
odic geometries have also been investigated [8–10]. Their 
superior performance for a relatively low weight per volume 
when compared to their bulk counterparts was reported.

Classical mean-field models based on the inclusion-
matrix concept, which exploit the well-known solution 
by Eshelby [11], are able to account only for the average 
ellipsoidal shape of inclusions (here pores) and volume 
fraction effects. Among those well-established methods 
are the Mori–Tanaka (MT) model, the self-consistent (SC) 
and generalised self-consistent schemes, or differential and 
incremental schemes; cf. [12]. More elaborate models allow 
for taking into account the secondary factors influencing the 
effective properties, namely packing and size effects. One 
may mention here the formulations which use the coated 
inclusion concept [13, 14], also applicable to nanocrystal-
line materials [15], the imperfect 2D interface [16] or the 
morphologically representative pattern (MRP) approach, 
proposed in [17], validated in [18], and recently extended in 
[19]. One of the important limitations of the above schemes 
is that the delivered effective properties remain isotropic as 
long as inclusions or pores are spherical and phase proper-
ties are isotropic, no matter how ordered is their distribution 
within the matrix. This limitation is overcome by variational 
approaches developed, e.g., in [20] and used later for elas-
tic–plastic or viscoelastic media in [21] and [22], respec-
tively. The authors apply the phase distribution functions and 
the effective coated inclusion for which the shape of coat-
ing reflects the symmetry of a particle distribution pattern. 
The drawback of these methods is the fact that not all eight 
classes of elastic anisotropy can be described in this way. For 
example, the cubic symmetry is excluded, since the obtained 
effective ellipsoid is reduced to a sphere in this case, and 
thus, the resulting effective stiffness is isotropic [23]. Next 

to the variational approach, analytical solutions for periodic 
particle distributions have been obtained, usually in terms 
of series [24, 25], using the unit cell methodology for the 
selected microstructures [26, 27], and more recently for an 
arbitrary space distribution of particles [28]. While these 
solutions can describe any elastic anisotropy resulting from 
the space distribution of inclusions, the use of an advanced 
mathematical apparatus and special functions is necessary. 
An interesting alternative, which avoids the drawbacks of the 
above-mentioned methods, is the interaction (cluster) model 
based on the approximated solution of the multiple inclusion 
problem in the elastic or thermoelastic infinite matrix, as 
proposed in [29] and [30], respectively. This last approach 
is described in more detail and used as the main mean-field 
method in the present study.

The focus of the present paper is on materials with closed 
porosity produced using AM techniques. The questions we 
try to answer are (i) what is the influence of morphological 
features on the effective properties of porous materials, and 
(ii) how to successfully and efficiently account for this effect 
in the micromechanical mean-field models to predict overall 
elastic properties. The proposed micromechanical solution is 
verified with numerical and experimental results.

The paper consists of four main parts, including this 
introduction. The following section presents the production 
of samples with predefined microstructure morphology by 
3D printing (Sect. 2.1), as well as its experimental iden-
tification in terms of elastic Young’s modulus (Sect. 2.2). 
Section 3 is divided into five subsections. The first one 
reviews the general formulation of the micromechanical 
cluster model and provides its specification as well as the 
parametric study related to porous materials with a cubic 
distribution of spherical pores. Section 3.2 focuses on the 
principles of the unit cell numerical analyses of 3D printed 
materials, intended to provide reference solutions (i.e., the 
results of relevant numerical experiments) for the cluster 
model, namely the material response under hydrostatic 
compression and isochoric tension studied in Sects. 3.3 and 
3.4, respectively, while Sect. 3.5 compares the results of the 
mean-field and numerical analyses with experimental data 
obtained for uniaxial compression. Concluding remarks are 
given in Sect. 4.

2 � Production and testing of porous samples 
with cubic symmetry

2.1 � Geometry, additive manufacturing, and quality 
of porous samples

The research was carried out both experimentally and com-
putationally. Experimental analyses were performed on 
3D printed porous samples with periodic microstructures, 
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for which the required periodic geometries had to be gener-
ated first. The essential parts of these geometries were also 
used for parametric finite-element (FE) analyses. The stud-
ied materials have single porosity meaning that the matrix 
is essentially solid. Moreover, their porosity is closed and 
composed from identical spherical pores which are not con-
nected. Three types of pore distribution based on the well-
known cubic symmetry systems are considered, namely: 
the regular cubic (RC), body-centred cubic (BCC), and 
face-centred cubic (FCC) arrangements of spherical pores. 
Diagonally oriented versions of these pore distributions are 
also used for the investigation of elastic anisotropy, although 
only one of them, namely the diagonally oriented RC system 
was included in the experimental analyses. The reason for 
this choice will become clear once the modelling framework 
and its predictions are presented (see Sect. 3). Representa-
tive unit cells associated with the three cubic systems as well 
as the two orientations are explained below along with how 
these cells are used to 3D print porous samples. The quali-
ties of the samples, and in particular the actual pore shapes 
and sizes, are discussed at the end of this section, while the 
results of experimental analyses are given in Sect. 2.2.

Figure 1(a) shows a representative cubic cell of a periodic 
material with identical spherical inclusions or pores—rep-
resented by coloured spheres—in the RC arrangement. This 
work essentially deals with porous materials, which means 
that the volumes occupied by the spheres are removed yield-
ing a representative unit cell similar to the one used for 
3D printing and FE calculations, as seen further below for 

the RC case in Figs. 3 and 9, respectively. The edge length 
of the cube is Le , so the cubic cell volume is V = L3

e
 , while 

the inclusion or pore diameter is denoted by Dp . For the RC 
arrangement, there is only a single spherical inclusion or 
pore in such a cubic cell—note that in Fig. 1(a), only one-
eighth of each of the eight identical spheres belongs to the 
cube—so the inclusion or pore volume is Vp =

�

6
D3

p
 , while 

the matrix or solid part volume is Vm = V − Vp . The inclu-
sion or void volume fraction, i.e. the porosity in the latter 
case, equals f = Vp∕V =

�

6
(Dp∕Le)

3 , and the matrix or solid 
volume fraction is fm = 1 − f  . Recall that in the BCC 
arrangement, an extra sphere is added in the centre of the 
cube and then Vp =

�

3
D3

p
 and f = �

3
(Dp∕Le)

3 , while three 
complete spheres are added in the FCC arrangement (i.e. 
half a sphere per the cube’s face) which results in Vp =

2�

3
D3

p
 

and f = 2�

3
(Dp∕Le)

3 . Consequently, for the same pore diam-
eter, the porosities for the BCC and FCC cases are, respec-
tively, two and four times greater than for the RC case. Fig-
ure 2 shows how the porosity (and thus, the solid volume 
fraction) changes as the pore diameter increases relative to 
the cell size. The maximum values of closed porosity and 
relative pore size are summarised in the table in this figure. 
Obviously, all these results strongly depend on the pore 
distribution.

The cubic cell can be used for a numerical test of uni-
axial compression or tension (see Sect. 3.5) of such com-
posite or porous materials along any of the cube edges, 
to determine the corresponding Young’s modulus Ēe and 

Fig. 1   Two orientations of the RC arrangement of spherical pores or inclusions: a for the x3-axis along the edge of the cube, and b, c for the x3
-axis along the cube’s diagonal; as well as two corresponding unit cells in the form of: (a, b) a cube, and c a hexagonal prism
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Poisson’s ratio 𝜈̄e . On the other hand, a direct numerical 
or physical test to determine Ēd , i.e. the Young’s modulus 

along the direction parallel to the diagonal of the cube, 
requires a representative cell that allows to realise uniaxial 

Fig. 2   Porosity (i.e. void fraction) and solid volume fraction vs. the pore diameter-to-cell ratio, for three cubic arrangements of spherical pores

Fig. 3   Cubic unit cells and CAD models as well as 3D printed and machined samples with cubic distributions of spherical pores for 
Dp = 1.7 mm (RC, BCC, and FCC) and Dp = 3.5 mm (RC-diag.), or without pores (Solid)
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compression or tension along such a direction, e.g. the 
one determined by the centres of red and orange spheres 
shown in Fig. 1. The length of the diagonal is Ld = Le

√
3 

and this is the largest distance between two pores (inclu-
sions) in the RC arrangement inside the representative 
cell. To place the diagonal connecting two spheres along 
the x3-axis of the system of reference set at the centre of 
the cube, the cube can first be rotated by an angle of �∕4 
around the x1-axis, and then around the x2-axis by an 
angle equal to arccos(

√
2∕3) . The rotated cube is shown in 

Fig. 1(b) where the red sphere is at the top, with its centre 
at x3 = Ld∕2 on the x3-axis, three green spheres are all on 
the same level that is situated below the red sphere, while 
three blue spheres are even lower, i.e. at a certain but the 
same level above the orange ball centred at x3 = −Ld∕2 on 
the x3-axis. When viewed from above, it is easy to see that 
the projections of the centres of green and blue spheres 
on a plane perpendicular to the x3-axis form the corners 
of a regular hexagon, which is the base of a hexagonal 
prism visualised in Fig. 1(c). The edge length of the hex-
agonal base is Lh = Le

√
2∕3 and the height of the prism 

is Ld , since the red and orange spheres are at the centres 
of opposite bases. The volume of the hexagonal prism 
equals 3

√
3

2
L2
h
Ld = 3L3

e
 , which is three times the volume 

of the cubic cell, but it contains three complete spheres 
so obviously the fractions remain unchanged. Moreover, 
when additional spheres—required by the BCC or FCC 
arrangements—are included in the transformation based 
on the rotation around the axes of the centred reference 
system, they reappear in the hexagonal prisms to form 
a consistent unit cell. Note, however, that some of these 
additional spheres originally belong to the adjacent cubic 
cells. In this work, the spheres are voids (i.e. pores), so the 
corresponding porous cubes and hexagonal prisms will be 
provided in Sect. 3.2 for the three cubic arrangements of 
spherical pores. Additionally, the cubic symmetry will be 
used to select smaller yet fully representative fragments 
of these unit cells suitable for FE calculations. The porous 
unit cells were also used to generate geometries for 3D 
printing as described below.

Nearly 20 cylindrical samples of diameter 24 mm and 
height 32 mm were produced for uniaxial compression test-
ing. Three of these samples are solid cylinders (see the left-
most photo in the bottom row of Fig. 3), but the remaining 
ones are porous, with designed periodic systems of closed 
spherical pores. In principle, their individual microstructures 
were constructed from periodic cubic cells with the RC, 
BCC, or FCC arrangements of spherical pores. In addition, 
a diagonally oriented version of the RC system (i.e. ‘RC-
diag.’) was also used to produce samples, as it was expected 
that in this case, the uniaxial compression tests should 
provide Young’s moduli that are clearly different to those 
obtained from the standard compression ‘along the edge’. 

One example for each unit cell—generated for the specified 
nominal pore size—is depicted in the top row of Fig. 3. Basi-
cally, five nominal values of pore diameters were used to cre-
ate geometries used for 3D printing, namely Dp = 1.7,  2.15,  
2.5,  3.1, and 3.5 mm, with the nominal unit cell size of 
4 mm. Note, however, that the BCC and FCC arrangements 
of closed pores do not allow Dp∕Le ratios larger than 

√
3∕2 

and 
√
2∕2 , respectively, see Fig. 2. Therefore, in these cases, 

the largest, or respectively, two largest values were excluded 
from the above set of nominal pore diameters. On the other 
hand, only the two largest diameters were used to produce 
samples with pores arranged in the diagonally oriented RC 
system, as we expected that the elastic properties of samples 
with smaller pores should not differ significantly, regard-
less of whether the same cubic arrangement is diagonally 
oriented or aligned along the edge of the unit cell.

All designs of the cylindrical samples were created in 
FreeCAD [31], an open-source computer-aided design 
(CAD) software, by cutting cylindrical shapes out of three-
dimensional regular arrays of the respective unit cells. For 
each microstructure, the central axis of the cylinder was 
aligned parallel either to the edge of the unit cell cube (the 
RC, BCC, and FCC cases) or to its diagonal (the RC-diag. 
case). About 2 mm larger dimensions of the cylinder diam-
eter and height than the final required values of 24 mm and 
32 mm, respectively, were assumed in the CAD models of 
cylindrical specimens to enable their machining to precise 
external shape and size after the additive manufacturing pro-
cess is completed. The CAD models used to 3D print porous 
samples with the nominal pore diameter Dp = 1.7 mm (the 
RC, BCC, and FCC arrangements) and Dp = 3.5 mm (the 
RC-diag. case) are depicted in Fig. 3 (middle row) along 
with the corresponding manufactured and machined speci-
mens (bottom row).

In addition to the porous cylindrical samples, three solid 
cylinders of the same diameter and height were produced. 
One of these solid samples is shown in Fig. 3. They served 
the purpose of reference specimens for the experimental 
determination of the elastic properties of the 3D-printed 
solid material, and thus the matrix material of the porous 
samples. Similarly to the porous cylinders, the CAD model 
of the solid cylinder has an extra volume around it, which 
is removed at the last fabrication stage by means of conven-
tional subtractive methods such as turning with a lathe. This 
machining allowance is shown as transparent regions in all 
CAD models; see Fig. 3 (middle row).

The samples were additively manufactured using the 
aforementioned CAD models and the fused deposition 
modelling (FDM) technology [32]. This is a rapid proto-
typing method in which a thermoplastic filament is heated 
up to the melting point and extruded layer-by-layer to form 
the desired object. The process is guided by an executive 
code that describes its parameters like movement speeds, 
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temperatures, and current positions of the nozzle with 
respect to the build platform. In this research, the machine 
instruction code was generated by the Ultimaker Cura 4.8.0 
software and run on the FlashForge Creator Pro device oper-
ating in the FDM technology. The acrylonitrile butadiene 
styrene (ABS) polymer material (rigid.ink) was used for 
3D printing at a temperature of 235 °C on a platform kept at 
a constant temperature of 95 °C to guarantee good adhesion 
of the first 3D-printed layer and therefore the whole object. 
The polymer material was pushed through a copper nozzle 
with a 0.4-mm round opening to create individual layers of 
height equal to 0.08 mm. Afterwards, when the manufac-
turing ended and a sample was ready, its lateral, top, and 
bottom sides were machined on a lathe, resulting in high 
accuracy of its outer dimensions and improved cylindrical 
shape. Several final specimens are displayed in Fig. 3 (bot-
tom row). As the thermoplastic filament is simply melted 
during the 3D printing process, its mechanical and geometri-
cal properties remain practically the same over time, since 
a sample is cooled down to room temperature. Selected val-
ues of nominal pore diameters mentioned before guarantee 
manufacturability of a sample in the FDM technology. The 
smallest spherical pore that can be fabricated with sufficient 
quality in the FDM technology should have about 1.5 mm in 
diameter. As concerns the largest pore diameter, one needs 
to subtract at least the minimal manufacturable wall thick-
ness equal to the nozzle size (0.4 mm) from the theoretically 
allowable Dp , to enforce full separation of pores. In both 
cases, it is also necessary to take into account little shrinkage 
(about 0.1 mm for diameters) of the ABS material after fin-
ishing the 3D printing process to eventually get the nominal 
diameter values given above.

No production technology allows to obtain exactly the 
same geometry as in the design. To investigate the quality 
of the obtained microstructures, the manufactured samples 
were examined under a digital microscope before being 

machined on a lathe. The results of measurements of pore 
diameters and distances for two exemplary porous specimens 
with Dp = 2.5 mm are shown in Fig. 4. Despite relatively 
regular spherical pore shapes, especially for the RC and 
BCC samples, the conducted study reveals that the speci-
mens have microstructures with slightly smaller character-
istic dimensions than the values in their respective CAD 
models. Namely, the top-surface pore diameters have about 
2.39 mm on average thus are smaller than 2.5 mm, and the 
average distance between the top-surface pores (i.e. the unit 
cell size) is approximately 3.98 mm, hence subtly smaller 
than 4 mm. This is because the material tends to shrink when 
cooled down to room temperature. On the other hand, the 
real pore diameters in the samples are smaller than nominal 
primarily because they are determined by the outer surfaces 
of individually extruded material paths formed by pushing 
material through a round nozzle tip at certain flow rate. If the 
flow rate is not perfectly matched to the nozzle size and pro-
cess parameters, the paths are typically wider than the nozzle 
orifice or may be discontinuous and insufficient to result in 
a good-quality printout. To ensure no porosity in the sample 
skeleton, a slightly higher than optimal flow rate was used, 
which, combined with the offset between the boundaries of 
the CAD model and the centreline of the nozzle perimeter 
movement equal to its radius and present in the machine 
code, led to an overall diameter reduction of 0.11 mm on 
average in the manufactured object. However, this deviation 
from the nominal value is considered the same for every 
diameter Dp , since the introduced offset depends solely on 
the nozzle radius, and process parameters were not modi-
fied sample-wise. The observed discrepancies were taken 
into account when plotting the measured values of Young’s 
modulus with respect to the relative pore size Dp∕Le (see 
Figs. 13, 14, 15, 16 and 17 in Sect. 3). It is then assumed 
that the actual value of pore diameter in a 3D printed sample 
is 0.11 mm smaller than the nominal value, and the edge of 

Fig. 4   Typical manufacturing tolerances (dimensions in mm) at the top surfaces of two exemplary RC and FCC porous samples with the nomi-
nal pore size Dp = 2.5 mm and Le = 4 mm, before being machined on a lathe
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the cubic cell is 3.98 mm instead of 4 mm. For convenience, 
Table 3 in the next section contains information about the 
nominal and actual, i.e. measured, values of average pore 
diameters for each produced porous sample that was used 
to test the elastic properties.

2.2 � Mechanical properties’ measurements

The effective elastic moduli of cylindrical samples with 
different porosity and pore distributions created using the 
FDM additive manufacturing process were determined dur-
ing compression tests. Before the test, an appropriate part 
of the surface of each sample was covered with graphite and 
small dots of white paint to perform digital image correla-
tion (DIC) analysis. The displacement-controlled tests were 
conducted using the MTS 858 hydraulic testing machine. 
The experimental setup is presented in Fig. 5.

The displacement rate of 0.032 mm/s was used. Tak-
ing into account the sample geometry, this corresponds to 
strain rate equal to 10−3s−1 . The initial force F = 1000 N, 
corresponding to the initial nominal stress of approximately 
2 MPa, was applied to perfectly align the sample and avoid 
undesirable effects resulting from manufacturing imperfec-
tions (surface imperfections, in particular). During deforma-
tion, both the compressive force evolution and a sequence of 
images of the tested sample were recorded simultaneously. 
The images were taken using the pco.edge 5.5 sCMOS cam-
era with picture taking frequency of 30 Hz. Basic camera 
settings are presented in Table 1.

Using the obtained image sequences and the 2D digi-
tal image correlation algorithm, the displacement of points 
lying on the generatrix of the cylindrical samples were 
determined. The detailed description of the used self-imple-
mented DIC algorithm as well as the analysis of its accuracy 
are presented in [33] and [34], respectively. The parameters 
used in the DIC analysis are listed in Table 2.

The so-called ‘virtual extensometer’ was used to deter-
mine the mean strain in the loading direction. The base of 
the ‘virtual extensometer’ was the same for each sample and 
was equal to 27 mm; it was set 2.5 mm from the grips of 
testing machine at each side) to avoid boundary effects, see 
Fig. 6. This base (cf. the red vertical line in Fig. 6 spans 
almost eight unit cells for the microstructures tested along 
the edge direction. In the case of microstructures tested 
along the diagonal direction, such base spans four (‘rotated’) 
unit cells. Such selection of the cylindrical sample size and 
the ‘virtual extensometer’ ensures that the measured val-
ues can be treated as corresponding to the effective material 
properties assessed in the mean-field modelling. The veri-
fication of this, which preceded the sample preparation and 
experiment design, was performed by comparing the results 
of FE simulations of the compression test on the full cylin-
drical sample with the corresponding results for unit cells 
under the boundary conditions as described in Sect. 3.5. 
Moreover, to verify measurement repeatability, three tests 
were performed for every considered microstructure. The 
variability of the obtained values of Young’s modulus were 
negligible for the given sample.

The linear regression of the obtained nominal stress vs. 
engineering strain dependence was performed and the effec-
tive Young’s modulus was determined as the slope of the fit-
ted line as demonstrated in Fig. 7. For the regression model, 
the maximum number of points was used, usually more than 
100 data points, for which the coefficient of determination 
R2 ⩾ 0.999 . Careful observation of the deformation of pores 

Fig. 5   Experimental setup with one of the porous samples inserted in 
between two hydraulic grips with adjustable clamping force

Table 1   Settings of the pco.edge 5.5 sCMOS camera applied during 
experiments

Resolution (pixel) 1080 × 1280

Exposure time (ms) 3
Pixel size ( μm) 25
Binning 2 × 2

Taking frequency (Hz) 30

Table 2   Parameters used for the 
DIC analysis Subset type Circle

Subset radius (pixel) 10
Correlation criterion ZNCC
Interpolation type bicubic
Update of ref. image no update
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and surrounding material confirmed that—within the con-
sidered displacement range—the sample response remains 
linear and local buckling is avoided. Table 3 collects the 
obtained results for all tested geometries. In the table, the 
compression test direction is specified in relation to the 
cubic unit cell of the porous microstructure.

Additionally, the variation of Young’s modulus for differ-
ent samples of the same predefined geometry was checked 
for the solid cylinders as well as for the selected geometries 
of relatively large porosities by performing—in each case—
the compression experiments on three (essentially ‘identi-
cal’) samples. For those cases, the mean value is given in 
Table 3 together with the standard deviation.

Moreover, the anisotropy of elastic properties due to 
the additive manufacturing process was studied on the solid 

cubic samples. Using the procedure presented above, the 
elastic moduli in three orthogonal directions were deter-
mined. It was observed that differences between them did 
not exceed 5% of their mean value. Nevertheless, to mini-
mise the possible influence of the solid matrix anisotropy 
related to 3D printing on the studied impact of pore dis-
tribution, the compression axis coincided with the printing 
direction for all cylindrical samples, for which the results are 
presented in Table 3.

3 � Mean‑field modelling vs. numerical 
homogenisation and measurements

3.1 � Interaction cluster model for porous materials

El Mouden and Molinari [29] proposed a mean-field inter-
action model (also called “a cluster model”) for linear elas-
tic composites. The cluster model was aimed to describe 
interaction effects between heterogeneities. In this way, the 
approach accounts for the spatial distribution of inclusions 
within the material volume, and improves the predictions of 
classical mean-field schemes for high concentrations. Notice 
that porous materials studied in the present research are a 
special case of two-phase materials in which pores are iden-
tified as inclusions.

The original formulation of the cluster scheme assumed 
uniform inclusions of ellipsoidal shape embedded in a uni-
form matrix of different properties. A representative unit 
cell with a spatial design of heterogeneities characterising 
the internal structure of the composite material is assumed, 
which is next reproduced by periodicity to fill the whole 
space. Inclusions can be grouped into N families of sym-
metrically equivalent ones, which, under the uniform strain/
stress or periodic boundary conditions imposed at infinity, 
are supposed to carry the same fields of strain and stress. 
Within the mean-field approach, the problem reduces to 
finding the solution providing the mean strain and stress 
of the representative inclusions. Additively manufactured 

Fig. 6   One of the samples with 
the applied graphite layer for the 
DIC analysis and the position of 
the ’virtual extensometer’

Fig. 7   Evaluation of the effective Young’s modulus based on the lin-
ear regression for a single sample
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microstructures produced within this study are examples 
of a single family case, so all the pores are symmetrically 
equivalent. It is worth mentioning that the interaction model 
was later extended to cover thermoelastic properties [30], 
conductivity [35], viscoplasticity and elastic-viscoplasticity 
[36], as well as elastoplasticity [37].

We shortly recall here the basic equations of the elas-
tic interaction cluster model and specify them for the case 
of porous material. This is a special case of a two-phase 
medium in which the inclusion phase p is made up of a fam-
ily of equivalent spherical pores embedded in the isotropic 
matrix phase m . The volume fraction of pores, i.e. porosity 
is denoted by f. The matrix phase is governed by the lin-
ear elastic law with Cm denoting the fourth-order tensor of 
matrix elastic moduli. Thus, considering the stress �m and 
strain �m averages for the matrix phase, we have1 

For pores �p = 0 and �p denotes average strain of a pore. 
Since single family cases are considered, �p is the same for 
all the pores in the infinite volume. The whole space is filled 
by the porous material, and we denote by � and E the mac-
roscopic strain and stress, respectively, which fulfil relations

(1)�m = Cm ⋅ �m.

(2)E = f �p + (1 − f )�m

and

Using the Green function technique, the solution of the 
boundary value problem is obtained in the form of the Lip-
man–Schwinger–Dyson (LSD) integral equation, see [38]. 
Then, an approximate solution for the average strain in the 
pore �p is derived as

with

where the label I is given to some arbitrarily selected refer-
ence pore. For spherical pores

thus, P0 is the Hill’s polarisation tensor for the isotropic 
matrix material and a spherical domain. The symbol 

∑
J≠I 

represents summation made by considering all other pores 
of the family (an infinite number, theoretically). By sym-
metrical equivalence of all pores, PI

∗
 and �̄ are independent 

of the arbitrary choice of the reference pore I.
The fourth-order tensor �IJ depends on the shape of pores 

and the relative distance between their centres. It is defined 
by the integral

(3)� = (1 − f )�m.

(4)�p = �0 +
(
P
I

∗
◦Cm

)
⋅ �p

(5)P
I

∗
= −�II −

∑
J≠I

�
IJ = P

0 − �̄,

(6)P
0(Cm) = −�II(sphere);

Table 3   Results of 
measurements of the effective 
Young’s modulus for cylindrical 
solid and porous samples 
(average ± standard deviation)

Porosity is given for the actual pore size determined from the samples. The nominal pore size is based on 
the CAD model

Unit cell
type

Compression
direction

Nominal pore
size (mm)

Actual pore
size (mm)

Porosity
(%)

Young’s modulus
(GPa)

Solid – – – 0.0 2.340 ± 0.058
RC Edge 1.7 1.59 3.3 2.098

2.15 2.04 7.1 1.950
2.5 2.39 11.3 1.852 ± 0.073
3.1 2.99 22.2 1.721 ± 0.029
3.5 3.39 32.4 1.103

Diagonal 3.1 2.99 22.2 1.372
3.5 3.39 32.4 0.922

BCC Edge 1.7 1.59 6.7 2.013
2.15 2.04 14.1 1.659
2.5 2.39 22.7 1.428
3.1 2.99 44.4 0.500 ± 0.006

FCC Edge 1.7 1.59 13.4 1.555
2.15 2.04 28.2 1.032
2.5 2.39 45.4 0.562

1  Notation: ⋅ denotes a full contraction of the second-order tensor 
with a fourth order tensor ( Cijkl�kl in components), while ◦ , appear-
ing, e.g. in Eq. (4), is a double contraction of two fourth-order tensors 
( PijklCklmn in components)
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over the domains VI and VJ occupied by pores I and J, 
respectively, where the kernel � is obtained from the Green 
functions related to the elastic stiffness Cm of the reference 
medium. This integral can be calculated analytically for 
two spherical inclusions embedded in an isotropic elastic 
medium, see e.g. [29] or [37]. By introducing the cluster 
concept and using the properties of �IJ tensor, �̄ is calculated 
by taking a finite number of terms in the sum in Eq. (5), 
so we consider interactions between the pores which are 
included in a sphere of radius Rc whose centre coincides 
with the one of the reference pore I, namely

It was demonstrated in [29] that for sufficiently large cluster 
size, the series converges. In [37], the closed-form relations 
for �̄ components were found for the RC, BCC, and FCC 
unit cells of cubic symmetry assuming sufficiently large Rc 
to reach convergence. Due to properties of the �̄ tensor, we 
have: Γ̄1122 = Γ̄1212 = −Γ̄1111∕2 and

where Gm and �m are the shear modulus and Poisson’s ratio 
of the matrix, respectively. The components are found in 
the basis coaxial with unit cell edges (so cubic symmetry 
axes). For convenience, the respective specifications of the 
function Γ̃(f ) are collected in Table 4.

In Eq. (4), �0 is an integration constant that appears in 
the LSD integral equation. By taking the volume average 
of the LSD integral equation, in the case of a porous elas-
tic material, the constant is specified as (cf. [29])

Inserting Eqs. (5) and (10) to Eq. (4), the strain localisation 
equation is found for the average pore strain �p

(7)�
IJ =

1

VI
∫VI

∫VJ

�(r − r
�)dr�dr

(8)�̄ ≃ �̄(Rc) =
∑

J∈C(Rc),J≠I
�
IJ
.

(9)Γ̄1111 = Γ̃(f )
f

Gm(1 − 𝜈m)
,

(10)�0 = E − fP0
◦Cm ⋅ �p.

(11)�p =
(
� −

[
(1 − f )P0 − �̄

]
◦Cm

)−1
⋅ E = Ap ⋅ E,

where the fourth-order tensor Ap is identified as a strain 
localisation tensor for pores and � is the symmetrised fourth-
order identity tensor. Finally, using Eqs. (1)-(3) and (11), the 
effective constitutive law for a porous medium with single 
family of pores can be found, namely

or equivalently

The latter formula demonstrates required symmetry of the 
effective stiffness (note that �̄ is symmetric). This tensor 
has zero isotropic part as defined by the harmonic decom-
position of the fourth-order tensor [39, 40]. It is noticed 
that if �̄ = 0 (i.e., space distribution of spherical pores is 
perfectly isotropic) then the obtained formulas degenerate 
to those valid for the classical MT model [41], so it is justi-
fied to consider the cluster model as one of the MT-derived 
methods. Note that the present configuration, i.e., two-phase 
material and spherical shape of pores, allows us to avoid 
known limitations of the MT scheme [42], which usually 
require additional treatment for more complex material con-
figurations [43].

For the produced porous material, due to the space distribu-
tion of pores, the overall properties exhibit cubic symmetry if 
isotropy of the matrix material (solid) is assumed. The elastic 
stiffness tensor can then be described by three elastic Kelvin 
moduli [44, 45]: one bulk modulus and two shear moduli. 
Notice that the anisotropy degree of cubic symmetry materi-
als is quantified by the Zener anisotropy ratio which can be 
calculated as Ḡd∕Ḡe , and equals to one for isotropy. Using Eq. 
(13), it can be shown that these three material constants are 
specified as

where Km and Gm are the bulk and shear moduli of the 
matrix, while �m is its Poisson’s ratio. Note that the bulk 
modulus obtained by the cluster model is independent of 

(12)� = C̄ ⋅ E with C̄ = Cm − fCmAp,

(13)C̄ = Cm − f
(
C

−1
m

− (1 − f )P0 + �̄
)−1

.

(14)
K̄ =

1

3
(C̄1111 + 2C̄1122)

= Km

(
1 −

3f (1 − 𝜈m)

2 + f − 𝜈m(4 − f )

)
,

(15)
Ḡe =

1

2
(C̄1111 − C̄1122)

= Gm

(
1 −

15f (1 − 𝜈m)

7 + 8f − 5𝜈m(1 + 2f ) + 45f Γ̃(f )

)
,

(16)
Ḡd = C̄1212

= Gm

(
1 −

15f (1 − 𝜈m)

7 + 8f − 5𝜈m(1 + 2f ) − 30f Γ̃(f )

)
,

Table 4   Specification of the function Γ̃(f ) of �̄ tensor (see Eq. (9)) for 
three microstructures considered in the present study

Unit cell type Γ̃(f )

RC 1

4�

(
2.3322 − 2.87075f 2∕3

)
BCC 1

4�

(
−0.7207 + 0.9037f 2∕3

)
FCC 1

4�

(
−0.6411 + 0.6896f 2∕3

)
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the distribution of pores and is the same as for the classical 
Mori–Tanaka scheme. On the other hand, the shear moduli 
Ḡe and Ḡd depend on the space distribution of pores through 
the presence of the Γ̃ function in the respective formulas. 
When the interactions between inclusions are neglected 
(i.e., for Rc = 0 and �̄ = 0 ), then Ḡe = Ḡd and the estimate 
coincides with the Mori–Tanaka solution. The difference in 
the two shear moduli results in the anisotropy of the direc-
tional Young modulus. In particular, extremal values are 
obtained for the tension direction along a unit cell edge and 
along a unit cell diagonal, namely

and Ēe > Ēd when Ḡe > Ḡd , and reversely. The values of 
Young’s moduli Ēe and Ēd for the produced microstructures 
have been determined experimentally. One may also calcu-
late two respective Poisson’s ratios

and check that 𝜈̄e > 𝜈̄d when Ḡe < Ḡd , and reversely.
The logarithm of the Zener parameter as a function of 

porosity for three pore arrangements considered in  this 
work is plotted in Fig. 8 for three values of Poisson’s ratio 
�m : 0, 0.3, or 0.5. It is easy to notice that the anisotropy is 
qualitatively different for the RC arrangement as compared 

(17)Ēe =
9ḠeK̄

Ḡe + 3K̄
, Ēd =

9ḠdK̄

Ḡd + 3K̄
,

(18)𝜈̄e =
Ēe

2Ḡe

− 1, 𝜈̄d =
Ēd

2Ḡd

− 1,

to the BCC and FCC arrangements, and it is substantially 
stronger for RC. Such result is strictly connected with the 
form of the Γ̃(f ) function shown in Table 4: the coefficients 
in the formulae for this function have the opposite sign and 
their magnitudes are about three times larger for RC than for 
BCC or FCC. It can also be seen that the degree of anisot-
ropy increases with the increase of the Poisson’s ratio of the 
matrix material, and for a given porosity and pore distribu-
tion, the greatest anisotropy is obtained when the matrix 
material is incompressible, i.e., for �m = 0.5.

Formulas (12) and specifically (14)-(16) provided by 
the mean-field cluster scheme enable straightforward and 
immediate finding of the effective properties required, e.g., 
in large-scale simulations of structures made of compos-
ites or porous materials. However, their safe use should 
be preceded by model validation. The necessary verifica-
tion of the model will now be performed using numerical 
experiments conducted on unit cells representative for the 
tested materials, as it is usually done for other mean-field 
modelling frameworks. The idea of numerical experiment 
has been developed in [46] and later used on multiple occa-
sions for the validation of the new mean-field proposals, e.g., 
for the affine model of elastic–viscoplastic heterogeneous 
medium [47], for the verification of available linearisation 
procedures proposed to deal with elastic–plastic composites 
[48], for the additive scheme applied to metal matrix com-
posites exhibiting kinematic hardening under cyclic loading 
[49] or for the extension of the MRP scheme for an arbitrary 
shape of inclusions [50]. Note that such virtual experiments 

Fig. 8   The natural logarithm of the Zener parameter Ḡd∕Ḡe as a function of the pore volume fraction f (or the solid fraction fm = 1 − f  ) and the 
Poisson’s ratio of the matrix �m for three pore arrangements of cubic symmetry
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allow full control of the input data such as the properties and 
constitutive behaviour of the solid material and the micro-
structure morphology, so the verification concerns solely the 
micro–macro transition scheme. Finally, some of the cluster 
model estimates will also be compared with the correspond-
ing experimental findings.

3.2 � Representative segments of unit cells 
for numerical experiments

Figure 9 shows three cubic cells that are representative for 
porous materials with identical spherical pores in the RC, 
BCC, and FCC arrangements, respectively. In each case, a 
transparent quasi-isometric view is shown along with a top 
opaque view of the cell. The planes of the cubic symmetry 
group are used to cut out a smaller representative segment, 
i.e. one-sixteenth of the cube marked within the cell and 
copied out of it in Fig. 9. The segments shown outside the 
cubes have FE meshes.

Similarly, the planes of symmetry are also used to select 
smaller yet fully representative segments of the hexagonal 
prisms with cubic arrangements of spherical pores shown 
in Fig. 10. Each segment, i.e. one-sixth of the correspond-
ing porous hexagonal prism, is FE-meshed. Obviously, the 
FE mesh strongly depends on the relative size of identical 
spherical pores, so does the geometry of the porous prisms 
(or cubes) and their representative segments. The particular 
geometries and FE meshes shown in Figs. 9 and 10 are for 
Dp∕Le = 0.55 . However, for example, when the pores in the 
BCC arrangement of fixed size are enlarged, they eventu-
ally remove material around the corners of both hexagonal 

bases of the prism, and then, its top view will differ from 
the top view of the prism with the RC arrangement of pores, 
though these views are identical for the pore size-to-cell 
ratio assumed in Fig. 10.

Each of the segments shown in Figs. 9 and 10 has five flat 
boundary walls denoted by S1 , S2 , ..., S5 . The lateral bounda-
ries S3 , S4 and S5 are formed by the symmetry planes, while 
the top face S1 and bottom face S2 are symmetric boundaries 
for the segments cut from the cubic cells (see Fig. 9), but 
periodic boundaries for the segments cut from the hexagonal 
prisms (see Fig. 10). The remaining boundaries are walls of 
the spherical pores. The FE mesh there is relatively denser 
to accurately represent the curvature of the spheres. The 
boundary conditions applied on the pore walls are always the 
homogeneous Neumann conditions, i.e., zero surface load, 
because the pressure of air saturating the pores is negligible.

For the numerical homogenisation procedure discussed 
below, the following averaging operator ⟨…⟩ = 1

V
∫
V
… dV  

is used to calculate the average of the stresses and strains 
over the entire unit cell. Depending upon the orientation, the 
unit cell is either a cube or a hexagonal prism. It is easy to 
see that ⟨…⟩ = f ⟨…⟩p + fm⟨…⟩m , where ⟨…⟩p = 1

Vp

∫
Vp
… dV  

is the averaging operator over the inclusion subdomain in a 
unit cell, while ⟨…⟩m =

1

Vm

∫
Vm

… dV is the averaging opera-
tor over the matrix. Recall that the inclusions are voids, i.e. 
pores, and it is assumed that the pores do not sustain any 
stresses, i.e. ⟨�ij⟩p = 0 , so the averaged stress can be calcu-
lated for a unit cell of porous material as ⟨�ij⟩ = fm⟨�ij⟩m , i.e. 
by averaging only over the solid subdomain, and in practice, 
due to all symmetries, the averaging takes place over a rep-
resentative segment of a given cell (see FE meshes in Figs. 9 

Fig. 9   Cubic unit cells for materials with spherical pores (quasi-isometric and top views for the RC, BCC, and FCC arrangements of pores) with 
FE-meshed representative segments sliced out by the planes of symmetry
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and 10 ). On the other hand, when the cell deformation is 
considered, the pores inside the cell are deformed as well 
and the average strain ⟨�ij⟩ cannot be calculated solely from 
the deformation of the solid part. One way to circumvent this 
is to mesh and model the pore spaces too, and then treat 
them as very soft inclusions, although this approach would 
not be efficient, and is not necessary nor applied here, 
because in the numerical experiments described below, the 
overall deformation of the cell is fixed (assumed), and thus, 
at least its relevant component 𝜀̄0 is known a priori. In this 
work, all finite-element calculations were performed with 
COMSOL Multiphysics, assuming 𝜀̄0 = −0.001 . The fixed 
deformation is imposed onto a unit cell, or rather onto the 
appropriate representative slice of it, through boundary con-
ditions defining (or blocking) normal displacements un of 
individual flat boundaries S1 , S2 , ..., S5 indicated in Figs. 9 
and 10. These boundary conditions will be specified in the 
following sections for three kinds of numerical homogenisa-
tion experiments: (i)  the hydrostatic compression 
(Sect. 3.3)—to determine K̄ , (ii) the isochoric deformation 
(Sect. 3.4)—to determine Ḡe or Ḡd , and (iii) the uniaxial 
compression (Sect. 3.5)—to determine Ēe or Ēd , In all cal-
culations presented below, the solid Young’s modulus 
Em = 2.3 GPa and Poisson’s ratio �m = 0.35 are assumed. 
These values agree with the results of experiments carried 
out on solid samples and reported in Sect. 2.2, and with the 
data found in the literature [51].

3.3 � Hydrostatic compression

T h e  hy d r o s t a t i c  c o m p r e s s i o n  m e a n s  t h a t 
⟨𝜀11⟩ = ⟨𝜀22⟩ = ⟨𝜀33⟩ = 𝜀̄0 < 0 , and the overall states of 
strains and stresses are

where the sign of the resulting averaged stresses 
⟨�11⟩ = ⟨�22⟩ = ⟨�33⟩ is the same as that of 𝜀̄0 . This 
state of deformation can be realised for the FE-meshed 
segments of the cubic cells shown in Fig.  9, by apply-
ing the following conditions on the normal displace-
ments of their walls: un(S1) = un(S5) = 𝜀̄0∕(Le∕2) and 
un(S2) = un(S3) = un(S4) = 0 . The bulk modulus is deter-
mined as

Note that this formula can also be used to calculate K̄ 
from the numerical hydrostatic compression of the hex-
agonal prism segment (see Fig.  10), which is accom-
plished by applying the following normal displacements 
to the respective faces of the segment: un(S1) = 𝜀̄0∕Ld and 
un(S5) = 𝜀̄0∕(Le∕

√
2) , and un(S2) = un(S3) = un(S4) = 0 . 

Although ⟨�33⟩m in Eq. (20) is calculated from different 

(19)

�⟨𝜀ij⟩
�
=

⎡⎢⎢⎣

𝜀̄0 0 0

0 𝜀̄0 0

0 0 𝜀̄0

⎤⎥⎥⎦
,

�⟨𝜎ij⟩
�
=

⎡⎢⎢⎣

⟨𝜎33⟩ 0 0

0 ⟨𝜎33⟩ 0

0 0 ⟨𝜎33⟩

⎤⎥⎥⎦
,

(20)K̄ =
⟨𝜎33⟩
3⟨𝜀33⟩ =

fm⟨𝜎33⟩m
3 𝜀̄0

.

Fig. 10   Hexagonal prismatic unit cells for materials with spherical pores (quasi-isometric and top views for the RC, BCC, and FCC arrangement 
of pores) with FE-meshed representative segments sliced out by the planes of symmetry
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geometries, so with different FE meshes, the bulk moduli 
are essentially the same.

Figure 11 compares the results of the numerical tests of 
hydrostatic compression performed for materials with iden-
tical spherical pores arranged according to the RC, BCC, 
and FCC systems. The relative size of pores Dp∕Le (with 
Le = 4 mm) changes from zero (solid material) to the respec-
tive maximum value for which the pores are in contact but 
still not yet connected; see max(Dp∕Le) for RC, BCC, and 
FCC in Fig. 2. For numerical calculations, these values are 
slightly lower than the analytical maxima, so that the walls 
between the pores have a finite thickness everywhere. Here, 
the FEM results are in almost perfect agreement with the 
corresponding analytical predictions obtained using the 
mean-filed cluster approach (Cluster). Small discrepancies 
are observed only for the largest possible pore sizes. It has 
been verified that the Mori–Tanaka model (MT) provides 
the same bulk modulus values as the cluster approach, so 
the corresponding results are represented by the same curve 
(i.e. ‘Cluster = MT’). Furthermore, for these two analyti-
cal models, no distinction could also be made between the 
RC, BCC, and FCC curves when plotting the bulk modu-
lus as a function of porosity (disregarding the fact that the 
maximum closed porosity values are different in each case), 
because even in the cluster approach, the bulk modulus is 
independent of the pore distribution and depends solely on 
the porosity value, cf. Eq. (14). On the other hand, the bulk 
modulus curves found by the MRP method are shown for 

each case of pore distribution, since they are different and 
accurate only when the pores are relatively small or medium 
in size. Apparently, this method underestimates the values 
of the bulk modulus for larger pore sizes in a manner similar 
to that observed for Young’s modulus (see Sect. 3.5). Let 
us recall that the general concept of the MRP approach is 
the following: for each spherical inclusion (here a pore), a 
spherical matrix coating is assigned with the thickness speci-
fied by the mean minimum distance between the inclusions. 
The coating is ‘subtracted’ from the total volume fraction 
of the matrix, and the remaining matrix is then treated as a 
spherical inclusion. Next, both the coated inclusion and the 
‘matrix inclusion’ are immersed in the medium of the effec-
tive properties. As a result, predictions of the MRP approach 
always lie between the generalised self-consistent (GSC) 
method and the self-consistent (SC) one. These two limit 
results (GSC or SC) are obtained when all matrix material 
is used to form a coating on one hand or when there is no 
coating, so the inclusions touch each other on the other hand. 
Thus, at variance with the cluster model, we may call the 
MRP approach an SC-derived method. More details on the 
properties of the MRP estimates can be found in [17] or [18].

3.4 � Isochoric deformation

The shear moduli can be determined by numerical iso-
choric deformation tests of the relevant unit cells, i.e. a 

Fig. 11   The bulk moduli of materials with the RC, BCC, or FCC arrangements of spherical pores
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cubic cell for Ḡe , or a hexagonal prism for Ḡd . In such 
a deformation, when the unit cell is compressed (or 
stretched) along the x3-axis, i.e. ⟨𝜀33⟩ = 𝜀̄0 , then it should 
be properly stretched (compressed) along the remaining 
axes, namely ⟨𝜀11⟩ = ⟨𝜀22⟩ = −𝜀̄0∕2 . The overall states of 
strain and stress are in the form

where the average stress ⟨�33⟩ has the same sign as 𝜀̄0 and 
the average stresses ⟨�11⟩ = ⟨�22⟩ have the sign oppo-
site to ⟨�33⟩ . This state of isochoric deformation is real-
ised for the representative segment of a cubic cell (see 
Fig. 9) by imposing the following normal displacements 
on surface S1 : un(S1) = 𝜀̄0∕(Le∕2) , and on surface S5 : 
un(S5) = −(𝜀̄0∕2)∕(Le∕2) . The normal displacements 
on the remaining planes of symmetry are blocked, i.e. 
un(S2) = un(S3) = un(S4) = 0 . The shear modulus associ-
ated with this orientation is calculated from the averaged 
stress ⟨�33⟩ as

(21)

�⟨𝜀ij⟩
�
=

⎡
⎢⎢⎣

−𝜀̄0∕2 0 0

0 − 𝜀̄0∕2 0

0 0 𝜀̄0

⎤
⎥⎥⎦
,

�⟨𝜎ij⟩
�
=

⎡⎢⎢⎣

⟨𝜎22⟩ 0 0

0 ⟨𝜎22⟩ 0

0 0 ⟨𝜎33⟩

⎤
⎥⎥⎦
,

The shear modulus Ḡd is determined in the same way, but 
from the numerical deformation of the hexagonal prism 
segment, namely Ḡd = fm⟨𝜎33⟩m∕(2 𝜀̄0) , where ⟨�33⟩m is the 
averaged stress of the representative segment of a hexagonal 
prism (see Fig. 10), for which the isochoric state of strain 
and stress (21) is accomplished by imposing the following 
normal displacements on surface S1 : un(S1) = 𝜀̄0∕Ld , and on 
surface S5 : un(S5) = −(𝜀̄0∕2)∕

�
Le∕

√
2
�
 , while blocking the 

normal displacements of the bottom surface and symmetry 
planes, i.e. un(S2) = un(S3) = un(S4) = 0.

Figure 12 compares the shear moduli calculated using 
the FEM and cluster approach for three pore arrangements 
(RC, BCC, and FCC) and both orientations. The differ-
ence Ḡe − Ḡd is positive and significant only for materials 
with (larger) pores in the RC arrangement, while nega-
tive and small for the BCC and FCC arrangements. The 
analytical predictions by the cluster method are in general 
accurate when compared to the FEM results, but the accu-
racy is lost for larger pores in the BCC or FCC arrange-
ments, where the discrepancies become comparable to 
the differences between Ḡe and Ḡd . The reason for this 
discrepancy is probably similar to that discussed in the 
case of Young’s modulus predictions (see Sect. 3.5), i.e., 
a locally non-linear buckling-like deformation of very 
thin walls separating large pores. Finally, the results by 

(22)Ḡe =
⟨𝜎33⟩
2⟨𝜀33⟩ =

fm⟨𝜎33⟩m
2 𝜀̄0

.

Fig. 12   The shear moduli of materials with the RC, BCC, or FCC arrangements of spherical pores
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the MRP method are also provided for each pore arrange-
ment. They correctly predict Ḡe for small and medium 
pores in the BCC and FCC arrangements, and Ḡd in the 
RC case. Note that the MRP model delivers isotropic 
overall properties, i.e., Ḡe = Ḡd , albeit different for each 
unit cell geometry, since the thickness of pore coating, 
defined within the method basing on the mean minimum 
distances between the pores, varies between RC, BCC, 
and FCC unit cells. The MRP estimate of the shear modu-
lus is in a better agreement with the smaller of the two 
shear moduli Ḡe and Ḡd obtained for each of the three 
cubic arrangements. The shear modulus is underestimated 
by the MRP method for larger volume fraction of pores 
as compared to the FE calculations, consistently with the 
limitations observed for the self-consistent model, which 
is known to deliver positive stiffness only up to 50% of 
porosity [41].

3.5 � Uniaxial compression or tension

When three independent mechanical constants for materi-
als with cubic symmetry, e.g. Ḡe , Ḡd , and K̄ , are known, all 
alternative material constants can be determined from them; 
in particular, Young’s moduli and Poisson’s ratios can be 
calculated from (17) and (18), respectively. On the other 
hand, the most common mechanical test is uniaxial tension 
or compression, and in this study, such experimental tests 
were performed on all 3D printed solid cylinders and porous 
samples to measure their effective Young’s moduli (see 
Sect. 2.2). Acting consistently, the corresponding virtual 
experiments, i.e., numerical uniaxial compression tests, can 
be used to directly determine Ēe and Ēd , as discussed below.

The state of uniaxial compression or tension along the x3
-axis means that ⟨𝜀33⟩ = 𝜀̄0 , where 𝜀̄0 is the known overall 
shortening (or lengthening) of the material along this direc-
tion, and the overall strain and stress are in the form

The resulting strains ⟨�11⟩ = ⟨�22⟩ have the sign opposite 
to 𝜀̄0 , because the considered arrangements of closed pores 
ensure conventional behaviour of non-auxetic materials. 
Obviously, the resulting averaged stress ⟨�33⟩ has the same 
sign as 𝜀̄0.

To realise the uniaxial deformation of the FE-meshed 
segments of the cubic cells shown in Fig. 9, the normal dis-
placements of surface S1 are specified as un(S1) = 𝜀̄0∕(Le∕2) , 
whereas they are blocked on boundaries S2 , S3 , and S4 , i.e. 
un(S2) = un(S3) = un(S4) = 0 . A special condition has to be 
applied on S5 , so that this wall moves freely along its normal 
as a flat surface. This can be done by applying the following 

(23)

�⟨𝜀ij⟩
�
=

⎡⎢⎢⎣

⟨𝜀22⟩ 0 0

0 ⟨𝜀22⟩ 0

0 0 𝜀̄0

⎤⎥⎥⎦
,

�⟨𝜎ij⟩
�
=

⎡⎢⎢⎣

0 0 0

0 0 0

0 0 ⟨𝜎33⟩

⎤⎥⎥⎦
.

constraint: un(S5) = ⟨un(S5)⟩S5
 , where ⟨…⟩S5

=
1

S5

∫
S5

… dS 
is the averaging operator over the surface S5 . Alternatively, 
the same condition can be realised by requiring that normal 
displacements of S5 are all equal to the normal displacement 
at an arbitrarily chosen point P  on this surface, i.e. 
un(S5) = un(P) for P on S5 . No surface integration (averag-
ing) is required in this case, so this approach is preferred, but 
should also be used with caution when performing paramet-
ric analyses where the relative pore size changes like in the 
numerical tests of this work. Specifically, the point P should 
be defined, so that it always lies on the wall S5 when the 
pores in the cell are being enlarged. After performing such 
FEM analyses, Young’s modulus is calculated as

This numerical test, and in particular the resulting normal 
displacement of the flat boundary S5 , can also be used to 
determine the corresponding Poisson’s ratio 𝜈̄e = −⟨𝜀22⟩∕𝜀̄0 , 
where ⟨�22⟩ = un(P)∕(Le∕2) for any point P on S5.

The same uniaxial state of strains and stresses (23) can 
be realised in a similar way for the segments of the hex-
agonal prisms shown in Fig. 10. Due to different dimen-
sions of the cell, the normal displacement on the upper 
surface is specified as un(S1) = 𝜀̄0∕Ld , but the boundary 
conditions on the remaining surfaces are the same as for 
the the cubic cell segment described above. The Young’s 
modulus for this orientation, i.e. along the diagonal of the 
original cube, is determined from the averaged stresses of 
the hexagonal prism segment as Ēd = fm⟨𝜎33⟩m∕𝜀̄0 , and the 
corresponding Poisson’s ratio as 𝜈̄d = −⟨𝜀22⟩∕𝜀̄0 , where 
⟨�22⟩ = un(P)∕(Lh

√
3∕2) = un(P)∕(Le∕

√
2) for any point 

P on S5.
The results of direct numerical tests for Ēe and Ēd are 

identical to those calculated indirectly from formulae (17), 
which confirms the entire numerical homogenisation proce-
dure. Figures 13, 14 and 15 compare the effective Young’s 
moduli determined for two orientations of the porous materi-
als with spherical pores in the RC, BCC, and FCC arrange-
ments, respectively. In each graph, the results of numerical 
homogenisation by FEM are confronted with the analytical 
calculations for the cluster associated with the respective 
unit cell, as well as with the experimental results measured 
for several 3D printed samples discussed in Sects. 2.1 and 
2.2. Recall that the experimental Young’s moduli are plotted 
for the relative pore diameter values, Dp∕Le , determined for 
the actual pore sizes listed in Table 3. Additional analytical 
results are presented in each graph for the Voigt upper bound 
(Voigt), self-consistent model (SC), Mori–Tanaka model 
(MT), and the method of morphologically representative 
pattern (MRP).

(24)Ēe =
⟨𝜎33⟩
⟨𝜀33⟩ =

fm⟨𝜎33⟩m
𝜀̄0

.
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In general, the agreement between the FEM and 
cluster calculations is very good and the discrepancy is 
clearly visible only when the pores are relatively large. 

This discrepancy is due to deformation of thin walls sepa-
rating large pores which is demonstrated in Fig. 16 for the 
FCC case—-see in particular the detail of the deformed 

Fig. 13   Young’s moduli of materials with spherical pores arranged according to the RC system

Fig. 14   Young’s moduli of materials with spherical pores arranged according to the BCC system
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mesh for Dp∕Le = 0.7 . The buckling-like deformation of 
thin walls is only captured by the FE solution and makes 
such a porous material—with locally very thin walls—
slightly softer than the cluster model is able to predict. 

Note that the stress �33 shown in Fig. 16 is normalised, i.e. 
divided by 𝜀̄0Em∕fm , and its sign is the same as 𝜀̄0 almost 
everywhere, except for small regions at the top or bottom 
of the pores. Moreover, when the pores are small, e.g. 

Fig. 15   Young’s moduli of materials with spherical pores arranged according to the FCC system

Fig. 16   Normalised stress and scaled deformation of the axially compressed representative segments of hexagonal prisms with spherical pores in 
the FCC arrangement—for various pore sizes and solid volume fractions
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for Dp∕Le ⩽ 0.1 , the normalised stress is the same almost 
everywhere and close to the averaged value, i.e. the ratio 
Ēd∕Em . For larger pores, the stress distribution is more 
complex, cf. the results for Dp∕Le = 0.54 and Dp∕Le = 0.70 
in Fig. 16.

A significant difference between Ēe and Ēd is shown only 
by materials with the RC arrangement of pores, see Fig. 13, 
and only for larger pores. In this case, the material is stiffer 
along the cube’s edge, i.e. Ēe − Ēd > 0 , because even with 
very large pores, there is a continuous solid core along this 
direction. On the other hand, this difference is negative when 
the pores are arranged according to the BCC or FCC system 
(cf. Ēe and Ēd in Figs. 14 and 15), and rather insignificant, 
in particular in the BCC case. All these observations are 
consistent with the fact that porous materials based on the 
RC system have stronger anisotropy than in the other cases; 
cf. Fig. 8.

As for other analytical models, recall that these models 
are inherently isotropic and do not distinguish between the 
two orientations (i.e. along the edge or the diagonal of the 
cubic unit cell). The Voigt model shows the upper bound 
correctly,2 but with quite a large margin. The self-consistent 
model generally gives lower bound predictions that are accu-
rate for relatively small pores, but fail equally as the void 
fraction increases. Predictions by the Mori–Tanaka model 
are quite accurate and are somewhat in between the results 
obtained for Ēe and Ēd using the FEM or cluster approach. 
Therefore, this model is very useful when the spherical pores 
are arranged in the BCC or FCC system, since the differ-
ence between Ēe and Ēd is small in these cases; see Figs. 14 
and 15. The MRP model can be used to predict the ‘lower’ 
Young’s modulus, that is Ēd in the RC case (see Fig. 13), but 
Ēe in the BCC or FCC cases (see Figs. 14 and 15 ); however, 
it clearly underestimates the values for larger pores.

Young’s moduli measured on 3D printed samples gener-
ally confirm the predictions of the FE and cluster methods, 
although the differences between the corresponding numeri-
cal and analytical calculations are very small and negligible 
when compared to the discrepancies with the experimental 
results. As we have a full control on the input data (i.e., 
solid phase properties, pore geometry, and boundary con-
ditions) used in the numerical calculations, there is much 
more uncertainty when interpreting the experimental data. 
Thus, while the comparison between the high fidelity FE 
results and mean-field model estimates verifies very well 
the assumptions used to formulate analytical models, the 
comparison with a physical experiment is more difficult. 
Therefore, to some extent, the observed differences between 
the mean-field model predictions verify in fact the quality 

and repeatability of the 3D printed samples. Recall that the 
shapes of the pores in the samples are slightly distorted (see 
Fig. 4) and their real diameters were taken as averaged val-
ues. Moreover, all calculations were made for Em = 2.3 GPa 
and �m = 0.35 , which are the averages of measurements on 
three solid samples, assuming that the 3D printed material of 
the matrix is isotropic. Such geometrical and material imper-
fections (see Fig. 4) may result in a more substantial local 
loss of response stability leading to a locally non-linear sam-
ple response, which is also observed in the numerical analy-
ses, although to a much lesser extent. All of this explains 
the overall acceptable discrepancy between predictions and 
measurements, and the experimental validation seems to be 
satisfactory, especially in terms of qualitative observations. 
In particular, it is important that the difference between Ēe 
and Ēd for the RC system was captured by the experiments 
(see Fig. 13). For yet another comparison, all experimen-
tal results along with the corresponding predictions by the 
FEM and cluster approach are plotted together in Fig. 17 
with respect to the porosity and solid volume fraction. This 
graph clearly shows that the porosity has a major and pri-
mary effect on stiffness reduction, while the effect of pore 
arrangement is secondary. It is also clear that for the same 
porosity, the Young’s moduli Ēd for the RC system and Ēe 
for the BCC and FCC systems are quite similar, while they 
more significantly differ from Ēe found for the RC system. 
Recall, however, that the highest porosities available to these 
systems of closed, i.e. non-overlapping spherical pores are 
substantially different. Regarding the measurement results 
for the 3D printed samples, the primary effect of porosity 
was satisfactorily observed in the experiment, while the sec-
ondary effect of pore distribution could only be assessed 
qualitatively, based on the differences between Ēd and Ēe 
(cf. the corresponding black and yellow triangular markers 
in Fig. 17), since the measurement error of Young’s modulus 
is of the order of the secondary effect.

4 � Conclusions

The effect of pore distribution on the anisotropic elastic 
properties of porous materials produced by additive manu-
facturing has been analysed. In particular, three periodic 
arrangements of closed pores, based on the well-known 
cubic symmetry systems, RC, BCC, and FCC, have been 
comprehensively studied by means of experimental analysis, 
numerical and mean-field modelling.

The mean-field estimates by the interaction ‘cluster’ 
model, initially proposed by [29] for the general case of 
a multiphase particulate composite, have been specified 
here for porous materials as a relevant micromechanical 
approach. The closed-form formulas for three independent 
cubic elastic moduli (14)-(16) have been derived assuming 

2  Note that the lower bound by the simple Reuss model is not rel-
evant here as it delivers zero stiffness for porous materials.
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sufficiently large cluster size to reach the model conver-
gence. The model assumes isotropy of the solid phase and 
spherical shape of pores. It should be noted that although 
the cluster model is used here for the relatively simple cubic 
anisotropy, its formulation admits arbitrary periodic space 
distribution of pores with different sizes, which may lead to 
arbitrary anisotropy of the effective elastic stiffness tensor.

The proposed mean-field modelling scheme has been ver-
ified by a numerical homogenisation procedure performed 
on the unit cells. Excellent agreement between analytical 
estimates and numerical predictions has been observed for a 
large range of porosities (i.e., pore sizes) and all considered 
microstructures (i.e., pore distributions). Moreover, in spite 
of its relative simplicity, the ’cluster’ model is able to cor-
rectly describe the cubic anisotropy of effective elastic prop-
erties, resulting from the periodic distribution of pores, as 
opposed to other mean-field models. This proves the validity 
of the applied micro–macro transition scheme.

The obtained results allow us to positively answer two 
questions raised in the introduction. We have demonstrated 
that there is a non-negligible influence of morphological 
features on the developed anisotropy degree of the effective 
elastic stiffness of a porous material even if the solid phase 
is isotropic and pores are spherical. We have also shown that 
the mean-field cluster model is a computationally efficient 

tool which correctly describes this effect, at least for the 
analysed cases.

The mean-field estimates and numerical predictions of 
the effective Young’s modulus have also been confronted 
with the results of uniaxial compression experiments per-
formed on 3D printed cylindrical samples with varying 
pore sizes and the three cubic geometries. The measure-
ment and modelling results are in good agreement in terms 
of the quantitative assessment of the primary effect related 
to porosity (or relative pore size). Qualitative compliance 
is also observed with respect to the anisotropy of the ten-
sile Young’s modulus. The quantitative assessment of the 
secondary effect of pore distribution on the fabricated 
samples is more challenging, mainly due to inherent inac-
curacy of 3D printed geometries and possible variation of 
solid properties within the samples. Nevertheless, the use 
of low-cost additive manufacturing techniques to proto-
type porous and composite materials for testing mean-field 
approaches, useful in microstructure optimisation, can be 
recommended and is, indeed, a promising methodology.

In further research, the cluster model should be veri-
fied for more complex pore distributions (of lower sym-
metry and/or different sizes of pores), which will require 
usage of the multi-family model variant [29]. Moreover, 
the possibility of its application to estimate the yield stress 

Fig. 17   Young’s moduli vs. porosity and solid volume fraction for solid and porous materials with RC, BCC, and FCC arrangements of spherical 
pores
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or strength of the porous material should be investigated. 
When it comes to applying the FDM technique for the 
purpose of mean-field model validation, the use of more 
accurate printing techniques that enable an enhanced con-
trol of the sample microstructure should be considered.

Author contributions  KK-G (corresponding author): conceptualiza-
tion; funding acquisition; methodology; software; supervision; valida-
tion; visualisation; writing—original draft; writing—review & editing. 
MM: conceptualization; resources; data curation; investigation; writ-
ing—review & editing. KB: software; visualisation. MM: software; 
visualisation. KCO: investigation; data curation; methodology; writing 
- review & editing. TGZ: conceptualization; resources; funding acquisi-
tion; methodology; validation; visualisation; software; writing—origi-
nal draft; writing—review & editing.

Funding  This research was partially supported by two projects 
financed by the National Science Center (NCN), Poland, under Grant 
Agreements: No. 2016/23/B/ST8/03418 (K. Kowalczyk-Gajewska, K. 
Bieniek, M. Maj, M. Majewski) and No. 2021/41/B/ST8/04492 (T. G. 
Zieliński, K. C. Opiela).

Data availability  Data will be made available on request.

Declarations 

Conflict of interest  The authors have no competing interests to declare 
that are relevant to the content of this article.

 Ethical approval  The authors state that the research was conducted 
according to ethical standards. This article does not contain any studies 
with human participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Torquato S. Random heterogeneous materials. Microstructure and 
Macroscopic Properties: Springer; 2002.

	 2.	 Biot MA. The theory of propagation of elastic waves in a fluid-
saturated porous solid. J Acoust Soc Am. 1956;28(2):168–91. 
https://​doi.​org/​10.​1121/1.​19082​39.

	 3.	 Campoli G, Borleffs MS, Yavari SA, Wauthle R, Weinans HH, 
Zadpoor AA. Mechanical properties of open-cell metallic bio-
materials manufactured using additive manufacturing. Mater Des. 
2013;49:957–65. https://​doi.​org/​10.​1016/j.​matdes.​2013.​01.​071.

	 4.	 Andersons JA, Kirpluks M, Stiebra L, Cabulis U. Anisotropy 
of the stiffness and strength of rigid low-density closed-cell 

polyisocyanurate foams. Mater Des. 2016;92:836–45. https://​doi.​
org/​10.​1016/j.​matdes.​2015.​12.​122.

	 5.	 Al-Maharma AY, Patil SP, Markert B. Effects of porosity on the 
mechanical properties of additively manufactured components: a 
critical review. Mater Res Express. 2020;7(12):1–27. https://​doi.​
org/​10.​1088/​2053-​1591/​abcc5d.

	 6.	 Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechani-
cal characterization of 3D-printed polymers. Addit Manuf. 
2018;20:44–67. https://​doi.​org/​10.​1016/j.​addma.​2017.​12.​002.

	 7.	 Moradi M, Aminzadeh A, Rahmatabadi D, Hakimi A. Experi-
mental investigation on mechanical characterization of 3D printed 
PLA produced by fused deposition modeling (FDM). Mater Res 
Express. 2021;8(3):1–10. https://​doi.​org/​10.​1088/​2053-​1591/​
abe8f3.

	 8.	 Mao H, Rumpler R, Gaborit M, Göransson P, Kennedy J, 
O’Connor D, Trimble D, Rice H. Twist, tilt and stretch: from 
isometric Kelvin cells to anisotropic cellular materials. Mater Des. 
2020;193:1–15. https://​doi.​org/​10.​1016/j.​matdes.​2020.​108855.

	 9.	 Mao H, Rumpler R, Göransson P. A note on the linear deforma-
tions close to the boundaries of a cellular material. Mech Res 
Commun. 2021;111:1–7. https://​doi.​org/​10.​1016/j.​mechr​escom.​
2021.​103657.

	10.	 Mueller J, Shea K. Buckling, build orientation, and scaling 
effects in 3D printed lattices, Materials Today. Communications. 
2018;17:69–75. https://​doi.​org/​10.​1016/j.​mtcomm.​2018.​08.​013.

	11.	 Eshelby JD. The determination of the elastic field of an ellipsoidal 
inclusion, and related problems. Proc Roy Soc A. 1957;241:376–
96. https://​doi.​org/​10.​1098/​rspa.​1957.​0133.

	12.	 Nemat-Nasser S, Hori M. Micromechanics: overall properties of 
heterogeneous materials, North-Holland Elsevier 1999.

	13.	 Herve E, Zaoui A. n-layered inclusion-based micromechanical 
modelling. Int J Engng Sci. 1993;31:1–10. https://​doi.​org/​10.​
1016/​0020-​7225(93)​90059-​49.

	14.	 Cherkaoui M, Sabar H, Berveiller M. Micromechanical approach 
of the coated inclusion problem and applications to composite 
materials. J Eng Mater Technol. 1994;116:274–8. https://​doi.​org/​
10.​1051/​jp3:​19941​61.

	15.	 Capolungo L, Cherkaoui M, Qu J. On the elastic-viscoplastic 
behavior of nanocrystalline materials. Int J Plast. 2007;23:561–91. 
https://​doi.​org/​10.​1016/j.​ijplas.​2006.​05.​003.

	16.	 Duan H, Yi X, Huang Z, Wang J. A unified scheme for predic-
tion of effective moduli of multiphase composites with interface 
effects. Part I: Theoretical framework. Mech Mater. 2007;39:81–
93. https://​doi.​org/​10.​1016/j.​mechm​at.​2006.​02.​009.

	17.	 Marcadon V, Herve E, Zaoui A. Micromechanical modeling of 
packing and size effects in particulate composites. Int J Solids 
Struct. 2007;44:8213–28. https://​doi.​org/​10.​1016/j.​ijsol​str.​2007.​
06.​008.

	18.	 Majewski M, Kursa M, Holobut P, Kowalczyk-Gajewska 
K. Micromechanical and numerical analysis of packing and 
size effects in elastic particulate composites. Compos B. 
2017;124:158–74. https://​doi.​org/​10.​1016/j.​compo​sitesb.​2017.​
05.​004.

	19.	 Vu T-S, Tran B-V, Nguyen H-Q, Chateau X. A refined morpho-
logical representative pattern approach to the behavior of poly-
disperse highly-filled inclusion-matrix composites. Int J Solids 
Struct. 2023;270: 112253. https://​doi.​org/​10.​1016/j.​ijsol​str.​2023.​
112253.

	20.	 Ponte Castañeda P, Willis J. The effect of spatial distribution on 
the effective behavior of composite materials and cracked media. J 
Mech Phys Solids. 1995;43(12):1919–51. https://​doi.​org/​10.​1016/​
0022-​5096(95)​00058-Q.

	21.	 Ma H, Hu G, Huang Z. A micromechanical method for particu-
late composites with finite particle concentration. Mech Mater. 
2004;36(4):359–68. https://​doi.​org/​10.​1016/​S0167-​6636(03)​
00065-6.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1121/1.1908239
https://doi.org/10.1016/j.matdes.2013.01.071
https://doi.org/10.1016/j.matdes.2015.12.122
https://doi.org/10.1016/j.matdes.2015.12.122
https://doi.org/10.1088/2053-1591/abcc5d
https://doi.org/10.1088/2053-1591/abcc5d
https://doi.org/10.1016/j.addma.2017.12.002
https://doi.org/10.1088/2053-1591/abe8f3
https://doi.org/10.1088/2053-1591/abe8f3
https://doi.org/10.1016/j.matdes.2020.108855
https://doi.org/10.1016/j.mechrescom.2021.103657
https://doi.org/10.1016/j.mechrescom.2021.103657
https://doi.org/10.1016/j.mtcomm.2018.08.013
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1016/0020-7225(93)90059-49
https://doi.org/10.1016/0020-7225(93)90059-49
https://doi.org/10.1051/jp3:1994161
https://doi.org/10.1051/jp3:1994161
https://doi.org/10.1016/j.ijplas.2006.05.003
https://doi.org/10.1016/j.mechmat.2006.02.009
https://doi.org/10.1016/j.ijsolstr.2007.06.008
https://doi.org/10.1016/j.ijsolstr.2007.06.008
https://doi.org/10.1016/j.compositesb.2017.05.004
https://doi.org/10.1016/j.compositesb.2017.05.004
https://doi.org/10.1016/j.ijsolstr.2023.112253
https://doi.org/10.1016/j.ijsolstr.2023.112253
https://doi.org/10.1016/0022-5096(95)00058-Q
https://doi.org/10.1016/0022-5096(95)00058-Q
https://doi.org/10.1016/S0167-6636(03)00065-6
https://doi.org/10.1016/S0167-6636(03)00065-6


	 Archives of Civil and Mechanical Engineering           (2024) 24:34    34   Page 22 of 22

	22.	 Li D, Hu G-K. Effective viscoelastic behavior of particulate poly-
mer composites at finite concentration. Appl Math Mech-Engl Ed. 
2007;28(3):297–307. https://​doi.​org/​10.​1007/​s10483-​007-​0303-1.

	23.	 Vilchevskaya E, Kushch V, Kachanov M, Sevostianov I. Effec-
tive properties of periodic composites: Irrelevance of one parti-
cle homogenization techniques. Mech Mater. 2021;159: 103918. 
https://​doi.​org/​10.​1016/j.​mechm​at.​2021.​103918.

	24.	 Sangani AS, Lu W. Elastic coefficients of composites contain-
ing spherical inclusions in a periodic array. J Mech Phys Solids. 
1987;35(1):1–21. https://​doi.​org/​10.​1016/​0022-​5096(87)​90024-X.

	25.	 Rodin GJ. The overall elastic response of materials containing 
spherical inhomogeneities. Int J Solids Struct. 1993;30(14):1849–
63. https://​doi.​org/​10.​1016/​0020-​7683(93)​90221-R.

	26.	 Nemat-Nasser S, Iwakuma T, Hejazi M. On composites with peri-
odic structure. Mech Mater. 1982;1(3):239–67. https://​doi.​org/​10.​
1016/​0167-​6636(82)​90017-5.

	27.	 Schjødt-Thomsen J, Pyrz R. Cubic inclusion arrangement: 
effect on stress and effective properties. Comput Mater Sci. 
2005;34(2):129–39. https://​doi.​org/​10.​1016/j.​comma​tsci.​2004.​
12.​061.

	28.	 Kushch VI, Mogilevskaya SG, Stolarski HK, Crouch SL. Evalua-
tion of the effective elastic moduli of particulate composites based 
on Maxwell’s concept of equivalent inhomogeneity: microstruc-
ture-induced anisotropy. J Mech Mater Struct. 2013;8((5–7)):283–
303. https://​doi.​org/​10.​2140/​jomms.​2013.8.​283.

	29.	 Molinari A, El Mouden M. The problem of elastic inclusions at 
finite concentration. Int J Solids Struct. 1996;33:3131–50. https://​
doi.​org/​10.​1016/​0020-​7683(95)​00275-8.

	30.	 El Mouden M, Molinari A. Thermoelastic properties of com-
posites containing ellipsoidal inhomogeneities. J Therm Stress. 
2000;23:233–55. https://​doi.​org/​10.​1080/​01495​73002​80425.

	31.	 FreeCAD, FreeCAD (version 0.20). https://​www.​freec​adweb.​org/. 
Accessed 1 Mar 2023.

	32.	 Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Addi-
tive manufacturing (3D printing): a review of materials, methods, 
applications and challenges. Compos B Eng. 2018;143:172–96. 
https://​doi.​org/​10.​1016/j.​compo​sitesb.​2018.​02.​012.

	33.	 Nowak M, Maj M. Determination of coupled mechanical and 
thermal fields using 2D digital image correlation and infrared 
thermography: numerical procedures and results. Arch Civ Mech 
Eng. 2018;18(2):630–44. https://​doi.​org/​10.​1016/j.​acme.​2017.​10.​
005.

	34.	 Musiał S, Maj M, Urbański L, Nowak M. Field analysis of energy 
conversion during plastic deformation of 310s stainless steel. Int 
J Solids Struct. 2022;238: 111411. https://​doi.​org/​10.​1016/j.​ijsol​
str.​2021.​111411.

	35.	 Mercier S, Molinari A, El Mouden M. Thermal conductivity of 
composite material with coated inclusions: applications to tetrago-
nal array of spheroids. J Appl Phys. 2000;87:3511. https://​doi.​org/​
10.​1063/1.​372374.

	36.	 Kowalczyk-Gajewska K, Majewski M, Mercier S, Molinari A. 
Mean field interaction model accounting for the spatial distribu-
tion of inclusions in elastic-viscoplastic composites. Int J Solids 
Struct. 2021;224: 111040. https://​doi.​org/​10.​1016/j.​ijsol​str.​2021.​
111040.

	37.	 Bieniek K, Majewski M, Holobut P, Kowalczyk-Gajewska K. 
Composite anisotropy induced by the spatial distribution of par-
ticles: the cluster model and numerical homogenization, submitted 
2023.

	38.	 Zeller R, Dederichs P. Elastic constant of polycrystals. Phys Sta-
tus Solidi B. 1973;55:831–42. https://​doi.​org/​10.​1002/​pssb.​22205​
50241.

	39.	 Forte S, Vianello M. Symmetry classes for elasticity tensors. J 
Elast. 1996;43:81–108. https://​doi.​org/​10.​1007/​BF000​42505.

	40.	 Kowalczyk-Gajewska K. Estimation of overall properties of ran-
dom polycrystals with the use of invariant decompositions of 
Hooke’s tensor. Int J Solids Struct. 2012;49:3022–37. https://​doi.​
org/​10.​1016/j.​ijsol​str.​2012.​06.​002.

	41.	 Benveniste Y. A new approach to the application of Mori-Tanaka’s 
theory in composite materials. Mech Mater. 1987;6(2):147–57. 
https://​doi.​org/​10.​1016/​0167-​6636(87)​90005-6.

	42.	 Sevostianov I, Kachanov M. On some controversial issues in effec-
tive field approaches to the problem of the overall elastic proper-
ties. Mech Mater. 2014;69(1):93–105. https://​doi.​org/​10.​1016/j.​
mechm​at.​2013.​09.​010.

	43.	 Jiménez Segura N, Pichler BL, Hellmich C. Concentration ten-
sors preserving elastic symmetry of multiphase composites. Mech 
Mater. 2023;178: 104555. https://​doi.​org/​10.​1016/j.​mechm​at.​
2023.​104555.

	44.	 Rychlewski J. CEIIINOSSSTTUV. Mathematical structure of elas-
tic bodies, Tech. Rep. 217, Inst. Mech. Probl. USSR Acad. Sci., 
Moskva, in Russian, 1983. English Translations by A. Ziółkowski: 
Library of Applied Mechanics, Institute of Fundamental Techno-
logical Research, Polish Academy of Sciences, ISBN: 978-83-
65550-45-3, Warsaw, 2023.

	45.	 Ostrowska-Maciejewska J, Rychlewski J. Generalized 
proper states for anisotropic elastic materials. Arch Mech. 
2001;53(4–5):501–18.

	46.	 Kouznetsova V, Brekelmans W, Baaijens F. An approach to micro-
macro modeling of heterogeneous materials. Comput Mech. 
2001;27:37–48. https://​doi.​org/​10.​1007/​s0046​60000​212.

	47.	 Pierard O, Lorca J, Segurado J, Doghri I. Micromechanics of 
particle-reinforced elasto-viscoplastic composites: finite ele-
ment simulations versus affine homogenization. Int J Plast. 
2007;23:1041–60. https://​doi.​org/​10.​1016/j.​ijplas.​2006.​09.​003.

	48.	 Kursa M, Kowalczyk-Gajewska K, Lewandowski M, Petryk H. 
Elastic-plastic properties of metal matrix composites: Validation 
of mean-field approaches. Eur J Mech A Solids. 2018;68:53–66. 
https://​doi.​org/​10.​1016/j.​eurom​echsol.​2017.​11.​001.

	49.	 Mercier S, Kowalczyk-Gajewska K, Czarnota C. Effective behav-
ior of composites with combined kinematic and isotropic harden-
ing based on additive tangent Mori-Tanaka scheme. Compos B 
Eng. 2019;174:107052. https://​doi.​org/​10.​1016/j.​compo​sitesb.​
2019.​107052.

	50.	 Majewski M, Wichrowski M, Holobut P, Kowalczyk-Gajewska 
K. Shape and packing effects in particulate composites: micro-
mechanical modelling and numerical verification. Arch Civ Mech 
Eng. 2022;22:86. https://​doi.​org/​10.​1007/​s43452-​022-​00405-9.

	51.	 Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, Shan C. Isotropic and 
anisotropic elasticity and yielding of 3D printed material. Compos 
B Eng. 2016;99:506–13. https://​doi.​org/​10.​1016/j.​compo​sitesb.​
2016.​06.​009.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10483-007-0303-1
https://doi.org/10.1016/j.mechmat.2021.103918
https://doi.org/10.1016/0022-5096(87)90024-X
https://doi.org/10.1016/0020-7683(93)90221-R
https://doi.org/10.1016/0167-6636(82)90017-5
https://doi.org/10.1016/0167-6636(82)90017-5
https://doi.org/10.1016/j.commatsci.2004.12.061
https://doi.org/10.1016/j.commatsci.2004.12.061
https://doi.org/10.2140/jomms.2013.8.283
https://doi.org/10.1016/0020-7683(95)00275-8
https://doi.org/10.1016/0020-7683(95)00275-8
https://doi.org/10.1080/014957300280425
https://www.freecadweb.org/
https://doi.org/10.1016/j.compositesb.2018.02.012
https://doi.org/10.1016/j.acme.2017.10.005
https://doi.org/10.1016/j.acme.2017.10.005
https://doi.org/10.1016/j.ijsolstr.2021.111411
https://doi.org/10.1016/j.ijsolstr.2021.111411
https://doi.org/10.1063/1.372374
https://doi.org/10.1063/1.372374
https://doi.org/10.1016/j.ijsolstr.2021.111040
https://doi.org/10.1016/j.ijsolstr.2021.111040
https://doi.org/10.1002/pssb.2220550241
https://doi.org/10.1002/pssb.2220550241
https://doi.org/10.1007/BF00042505
https://doi.org/10.1016/j.ijsolstr.2012.06.002
https://doi.org/10.1016/j.ijsolstr.2012.06.002
https://doi.org/10.1016/0167-6636(87)90005-6
https://doi.org/10.1016/j.mechmat.2013.09.010
https://doi.org/10.1016/j.mechmat.2013.09.010
https://doi.org/10.1016/j.mechmat.2023.104555
https://doi.org/10.1016/j.mechmat.2023.104555
https://doi.org/10.1007/s004660000212
https://doi.org/10.1016/j.ijplas.2006.09.003
https://doi.org/10.1016/j.euromechsol.2017.11.001
https://doi.org/10.1016/j.compositesb.2019.107052
https://doi.org/10.1016/j.compositesb.2019.107052
https://doi.org/10.1007/s43452-022-00405-9
https://doi.org/10.1016/j.compositesb.2016.06.009
https://doi.org/10.1016/j.compositesb.2016.06.009

	Cubic elasticity of porous materials produced by additive manufacturing: experimental analyses, numerical and mean-field modelling
	Abstract
	1 Introduction
	2 Production and testing of porous samples with cubic symmetry
	2.1 Geometry, additive manufacturing, and quality of porous samples
	2.2 Mechanical properties’ measurements

	3 Mean-field modelling vs. numerical homogenisation and measurements
	3.1 Interaction cluster model for porous materials
	3.2 Representative segments of unit cells for numerical experiments
	3.3 Hydrostatic compression
	3.4 Isochoric deformation
	3.5 Uniaxial compression or tension

	4 Conclusions
	References


